WO2022265105A1 - イムノクロマト試験片およびイムノクロマトキット - Google Patents

イムノクロマト試験片およびイムノクロマトキット Download PDF

Info

Publication number
WO2022265105A1
WO2022265105A1 PCT/JP2022/024380 JP2022024380W WO2022265105A1 WO 2022265105 A1 WO2022265105 A1 WO 2022265105A1 JP 2022024380 W JP2022024380 W JP 2022024380W WO 2022265105 A1 WO2022265105 A1 WO 2022265105A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
protein
cov
sars
immunochromatographic
Prior art date
Application number
PCT/JP2022/024380
Other languages
English (en)
French (fr)
Inventor
美穂 松尾
淳 岡本
研吾 西村
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2023530438A priority Critical patent/JPWO2022265105A1/ja
Publication of WO2022265105A1 publication Critical patent/WO2022265105A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention is an immunochromatography test piece that can detect the nucleocapsid protein (N protein) of severe acute respiratory syndrome (Severe Acute Respiratory Syndrome) coronavirus 2 (SARS-CoV-2) with high sensitivity and suppressing false positives, and immunochromatography It relates to a kit containing test strips.
  • N protein nucleocapsid protein
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • SARS-CoV-2 is the causative virus of the new coronavirus infection (COVID-19), and has spread rapidly around the world since the beginning of 2020.
  • SARS-CoV-2 like common coronaviruses, is composed of a nucleocapsid and an envelope surrounding the nucleocapsid.
  • the nucleocapsid contains a viral genome (RNA) and a nucleocapsid protein (N protein) that binds to the viral genome.
  • the envelope includes a lipid and a spike protein (S protein) that binds to the lipid, a membrane protein (M protein), and an envelope protein (E protein).
  • the N protein is a protein involved in the formation of the viral core, packaging of the viral genome, transcription, etc., and is linked to the N-terminal domain (NTD) via a linker having a serine (S)/arginine (R)-rich region. and a C-terminal domain (CTD) bound together.
  • NTD N-terminal domain
  • S serine
  • R arginine
  • Non-Patent Document 1 describes that the N protein is extensively phosphorylated and shows mapping of phosphorylation sites. Since the amino acid sequence of the N protein is conserved among strains, the N protein is used as a diagnostic marker and the like.
  • Immunochromatography is an immunoassay method that utilizes capillary action, and is widely used worldwide in influenza testing and the like.
  • One technique for detecting a substance to be measured using immunochromatography is a sandwich method that utilizes an antigen-antibody reaction.
  • sandwich method two types of antibodies with different epitopes are used for the substance to be measured.
  • One antibody is used as a detection antibody sensitized with detection particles such as colloidal gold, colored latex particles, fluorescent particles and the like.
  • detection particles such as colloidal gold, colored latex particles, fluorescent particles and the like.
  • the other antibody forms the test line as a capture antibody linearly immobilized on the surface of the porous support.
  • an antibody that specifically captures the detection antibody is linearly immobilized on the surface of the porous support at a position different from the test line to form a control line.
  • the substance to be measured contained in the measurement sample develops from one end (upstream side) of the porous support, moves while forming an immune complex with the detection antibody, and is captured by coming into contact with the capture antibody on the test line. develop color.
  • Free detection particles that did not form an immune complex with the substance to be measured and the sensitized detection antibody pass through the test line are captured by the control line antibody, and develop color. The presence or absence of the substance to be measured can be determined by visually confirming these color development intensities.
  • immunoassay methods using mouse monoclonal antibodies are used to measure analytes (measurement targets) contained in samples such as blood and urine.
  • analytes measured targets
  • samples such as blood and urine.
  • non-specific reactions other than the intended specific antigen-antibody reactions often impair the reliability of the measured values. It recognized.
  • Heterophilic antibodies such as human anti-mouse antibodies (HAMA) contained in the specimen to be tested, allow binding to the solid phase, for example in a typical sandwich ELISA assay, even though the analyte is not present.
  • HAMA human anti-mouse antibodies
  • Non-specific cross-linking between the labeled antibody and the labeled antibody to be detected occurs, resulting in a false positive signal. While automation of testing has progressed and rapid measurement has become possible, false reactions such as HAMA have increased, and these non-specific reactions are often overlooked.
  • Non-Patent Document 2 See Non-Patent Document 3. This phenomenon also applies to immunochromatography.
  • HAMA human-derived specimens
  • In vivo administration of a mouse antibody produces HAMA, which poses a problem of eliciting an immune response to a heterologous antigen.
  • Recent antibody drugs include chimeric antibodies fusing a mouse-derived antigen-binding site and a human-derived constant region, and advances in humanized antibody production technology. is increasing and the problem cannot be completely ignored.
  • Heterophilic antibodies are known not only for mice, but also for animals such as goats, sheep, and rabbits. (Goat: HAGA, Sheep: HASA, Rabbit: HARA).
  • aggregates derived from monoclonal or polyclonal antibodies has been suggested.
  • This aggregate may be a homopolymer of the antibody, an antibody fragment, or a heteropolymer with a protein such as albumin or a polysaccharide macromolecule such as dextran.
  • An object of the present invention is to provide an immunochromatographic test strip that can detect the SARS-CoV-2 N protein with high sensitivity and reduced false positives, and a kit containing the immunochromatographic test strip.
  • the present inventors have found that by using a mixture of two types of antibodies of different origins as a capture antibody and a detection antibody, SARS-1 can be detected with high sensitivity and reduced false positives. It was found that the N protein of CoV-2 could be detected. In addition, the inventors have found that the N protein of SARS-CoV-2 can be detected with higher sensitivity by using cellulose-based colored microparticles as detection particles, and have completed the present invention.
  • the representative present invention is as follows. 1. (1) a sample pad; (2) Carrying a complex of an antibody composition A that specifically binds to the nucleocapsid protein (N protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a measurement sample and cellulose-based colored fine particles a conjugation pad with (3) Line the antibody composition B that specifically binds to the N protein of SARS-CoV-2 in the measurement sample and the antibody composition C that specifically binds to the antibody composition A at different positions.
  • N protein nucleocapsid protein
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • the antibody composition A is a mixture of antibody A1 and antibody A2 derived from different origins, An immunochromatographic test strip, wherein the antibody composition B is a mixture of antibody B1 and antibody B2 derived from different origins.
  • Any one of the antibody A1 and the antibody A2 is a mouse-derived antibody.
  • the antibody A1 and the antibody A2 are supported on the conjugation pad at a mixing ratio (mass ratio) of 10:1 to 1:10. or 2.
  • 4. 1. Any one of the antibody B1 and the antibody B2 is a mouse-derived antibody. to 3. Immunochromatographic test strip according to any one of. 5. 1.
  • the antibody B1 and the antibody B2 are linearly immobilized on the membrane at a mixing ratio (mass ratio) of 10:1 to 1:10. to 4.
  • Immunochromatographic test strip according to any one of. 6.
  • the antibody composition C is a mixture of an antibody C1 that binds to the antibody A1 and an antibody C2 that binds to the antibody A2. to 3.
  • the antibody C1 and the antibody C2 are linearly immobilized on the membrane at a mixing ratio (mass ratio) of 10:1 to 1:10.
  • An immunochromatographic kit comprising the immunochromatographic test piece according to any one of 1, a measurement sample collecting tool, a filter, and a measurement sample diluent.
  • the immunochromatographic test strip of the present invention carries specific antibodies and detection particles in a specific arrangement, it is possible to detect the SARS-CoV-2 N protein with high sensitivity and reduced false positives.
  • FIG. 1 is a diagram (top view) showing an example of an immunochromatographic test strip of the present invention.
  • FIG. 1 is a diagram (side view) showing an example of an immunochromatographic test strip of the present invention.
  • FIG. 1 is a diagram (side view) showing an example of an immunochromatographic test strip of the present invention.
  • the immunochromatographic test strip is a test strip for detecting the nucleocapsid protein (N protein) of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) in a measurement sample.
  • the measurement sample used in the present invention includes not only the sample as collected but also the sample subjected to pretreatment such as removal of contaminants.
  • sample to be measured examples include, but are not limited to, blood, serum, plasma, bone marrow fluid, lymph, tears, nasal discharge, nasal wash, nasal swab, saliva, gargle, sputum, pharyngeal swab, sweat, tracheal aspirate, bronchi. Lavage, pleural fluid, ascites, amniotic fluid, intestinal lavage, urine, feces, cell extract, tissue extract, organ extract and the like.
  • the N protein of SARS-CoV-2 has the amino acid sequence disclosed in GenBank Accession No. (MN908947).
  • the SARS-CoV N protein has the amino acid sequence disclosed in GenBank Accession No. (AY278741).
  • the configuration of the immunochromatography test piece is such that the addition portion (dropping portion) of the measurement sample solution of the immunochromatography test piece is on the upstream side, and the sample pad having the addition portion, the conjugation pad, the membrane, and the absorption pad are connected in this order.
  • 1 is a sample pad
  • 2 is a conjugation pad
  • 3 is a membrane
  • 4 is an absorbent pad
  • 5 is a backing sheet
  • 6 is a test line
  • 7 is a control line
  • 8 is an adhesive sheet, respectively.
  • the immunochromatographic test piece has a long and narrow rectangular shape with a width of 3 to 5 mm (preferably about 4 mm) and a length of 40 to 100 mm (preferably about 60 mm).
  • the conjugation pad 2 of the immunochromatography test strip carries a complex of antibody composition A and cellulose-based colored fine particles for specifically capturing the N protein of SARS-CoV-2 in the measurement sample.
  • the antibody composition B for specifically capturing the SARS-CoV-2 N protein in the measurement sample was linearly immobilized at a position about 15 mm from the upstream end of the membrane 3 of the immunochromatographic test strip.
  • a test line 6 is formed.
  • a control line 7 is formed in which the antibody composition C that specifically binds to the antibody composition A is linearly fixed at a position about 20 mm from the end.
  • the sample pad 1 is not particularly limited as long as it is made of a material that can rapidly absorb the measurement sample and then spread to downstream conjugation pads, membranes, and absorbent pads.
  • cellulose filter paper or non-woven fabric. glass filter paper or non-woven fabric, polyester filter paper or non-woven fabric, polyethylene filter paper or non-woven fabric.
  • the thickness of the sample pad 1 is preferably 0.1 to 2 mm, more preferably 0.2 to 1 mm. If the thickness is too small, the flow of the sample to be measured downstream may become non-uniform, resulting in a decrease in measurement accuracy. On the other hand, if the thickness is large, the downstream deployment may be delayed and the measurement time may be lengthened. In addition, the amount of measurement sample required for downstream development is increased.
  • the conjugation pad 2 can hold in a dry state a complex of the antibody composition A that specifically binds to the SARS-CoV-2 N protein in the measurement sample and the cellulose-based colored fine particles, and the measurement
  • the material is not particularly limited as long as it can rapidly release the complex as the sample is developed downstream, but for example, cellulose filter paper or nonwoven fabric, glass filter paper or nonwoven fabric, polyester filter paper or Non-woven fabrics, polyethylene filter paper or non-woven fabrics can be mentioned. Among these, glass filter paper is preferable.
  • the thickness of the conjugation pad 2 is preferably 0.1 to 2 mm, more preferably 0.2 to 1 mm. If the thickness is too small, it may not be possible to retain the desired amount of the composite in a dry state. On the other hand, if the thickness is large, the downstream deployment may be delayed and the measurement time may be lengthened. In addition, the amount of measurement sample required for downstream development is increased.
  • the membrane 3 is not particularly limited as long as it can accurately and uniformly develop the measurement sample.
  • Membranes made of vinylidene chloride or nylon can be mentioned. Among these, nitrocellulose membranes are preferred.
  • the absorbent pad 4 is not particularly limited as long as it is made of a material that can quickly absorb the measurement sample developed from upstream and then hold it so that it does not flow back.
  • cellulose filter paper or nonwoven fabric glass filter paper or non-woven fabric, polyester filter paper or non-woven fabric, and polyethylene filter paper or non-woven fabric.
  • the thickness of the absorbent pad 4 is preferably 0.2 to 5 mm, more preferably 0.5 to 2 mm. If the thickness is small, the measurement sample once absorbed by the absorbent pad may flow back to the membrane side depending on the amount of the measurement sample dropped. On the other hand, if the thickness is large, the sizes of the immunochromatographic test piece and the housing case covering the immunochromatographic test piece also become large, which is not preferable from the point of view of POCT.
  • the antibodies used in the present invention may be monoclonal antibodies or polyclonal antibodies, but monoclonal antibodies are preferred.
  • Antibodies can be of any isotype, eg, IgG, IgA, IgD, IgE, IgM, etc., but IgG is preferred.
  • the antibody may be a commercially available product, or may be separately produced by a known method.
  • Antibody composition A used as a detection antibody in the present invention must be a mixture of antibody A1 and antibody A2 that specifically binds to the N protein of SARS-CoV-2 and has different origins. Antibodies of different origins have different three-dimensional structures because they bind to different sugar chains. Therefore, since they have different reactivities with respect to antigens, the degree of binding of antibodies to antigens increases compared to the case of antibodies alone, resulting in higher sensitivity. In particular, mouse-derived antibodies are presumed to have a structure with a higher degree of binding to antigens than other antibodies. Therefore, it is preferable that either the antibody A1 or the antibody A2 is a mouse-derived antibody. If the antibody composition A is not a mixture of antibodies A1 and A2 derived from different origins, the detection sensitivity may be reduced. Also, false positives may occur.
  • the mixing ratio (mass ratio) of antibody A1 and antibody A2 having different origins is preferably 10:1 to 1:10, more preferably 8:1 to 1:8, and even more preferably 5:1 to 1:5. If the mixing ratio (mass ratio) exceeds this range, the detection sensitivity may decrease. Also, false positives may occur.
  • the reflection absorbance of the test line is preferably 40 mAbs or more, more preferably 60 mAbs or more, and even more preferably 80 mAbs or more, because the visibility at the time of completion of measurement is good and the line can be visually recognized at an early point from the start of measurement.
  • Cellulose-based colored fine particles have a large amount of hydroxyl groups, so they can not only hold many reactive dyes through covalent bonds, but also maintain stable dispersibility in water even after deep dyeing.
  • As the cellulose-based colored fine particles regenerated cellulose, purified cellulose, natural cellulose, etc. can be used, and partially derivatized cellulose may also be used.
  • 20 to 90 mass % of the mass of the cellulose-based colored fine particles is preferably derived from cellulose, more preferably 20 to 80 mass %, even more preferably 20 to 70 mass %.
  • the average particle size of the cellulose-based colored fine particles is not particularly limited, but is preferably 100 nm to 1000 nm, more preferably 200 nm to 800 nm. If the average particle size is large, downstream development may be delayed and the measurement time may be lengthened. In addition, it tends to be captured on the membrane, and the background itself develops color, which may obscure the color development on the test line and the control line. On the other hand, when the average particle size is small, the amount of antibody that can be physically adsorbed or chemically bonded decreases, and the measurement sensitivity may decrease.
  • the color of the cellulose-based colored fine particles is not particularly limited, but examples include red, blue, yellow, green, black, white, and fluorescent colors. Among these, red, blue, and black, which are highly visible, are preferable.
  • Examples of such colored cellulose-based fine particles include colored cellulose nanobeads (NanoAct (registered trademark)) manufactured by Asahi Kasei Corporation.
  • the binding amount of the antibody composition A to the cellulose-based colored fine particles can be controlled by adjusting the charged mass ratio of the cellulose-based colored fine particles and the antibody composition A, and is not particularly limited.
  • the charged mass ratio with substance A is preferably 1:0.01 to 1:1, more preferably 1:0.02 to 1:0.5, and even more preferably 1:0.02 to 1:0.2. If the mass ratio is outside the above range, the binding amount of the antibody composition A to the cellulose-based colored fine particles becomes insufficient, or the binding amount of the antibody composition A to the cellulose-based colored fine particles increases excessively, resulting in an antigen-antibody reaction. Since the amount of antibody composition A that does not contribute increases, the measurement sensitivity may decrease.
  • the method of binding the antibody composition A and the cellulose-based colored microparticles is not particularly limited, but sensitization is preferably performed by physical adsorption by hydrophobic bonding or chemical bonding by covalent bonding. Adsorption is more preferred.
  • a reactive active group may be introduced into the cellulose-based colored fine particles.
  • reactive active groups include, but are not limited to, carboxyl groups, amino groups, aldehyde groups, thiol groups, epoxy groups, and hydroxyl groups. Among these, a carboxyl group and an amino group are preferred. In the case of carboxyl groups, carbodiimides can be used to form covalent bonds with amino groups of ligands.
  • the method of causing the conjugation pad 2 to support the complex of the antibody composition A that specifically binds to the N protein of SARS-CoV-2 in the measurement sample and the cellulose-based colored fine particles is not particularly limited. It can be produced by uniformly applying, spraying or impregnating the body solution onto the conjugation pad and then drying it in a constant temperature bath at an appropriate temperature for a certain period of time.
  • the amount of the composite solution to be applied is not particularly limited, but is preferably 5 ⁇ L to 50 ⁇ L per 1 cm line length.
  • the concentration of the cellulose-based colored fine particles in the solution of the composite is not particularly limited, but is preferably 0.01 to 0.5% by mass, more preferably 0.02 to 0.2% by mass, and 0.02 to 0.2% by mass.
  • the applied conjugation pad is then dried.
  • the drying temperature is not particularly limited, but is preferably 20°C to 80°C, more preferably 20°C to 60°C.
  • the drying time varies depending on the drying temperature, but is usually 5 to 120 minutes.
  • antibody composition B used as a capture antibody forming test line 6 specifically binds to the N protein of SARS-CoV-2 and is a mixture of antibody B1 and antibody B2 of different origins. is necessary.
  • Antibodies of different origins have different three-dimensional structures because they bind to different sugar chains. As a result, they have different reactivities to the antigen, and the degree of binding of the antibody to the antigen increases, resulting in higher sensitivity.
  • the mouse-derived antibody has a structure with a higher degree of binding to an antigen than other antibodies due to the attachment of sugar chains. Therefore, it is preferable that either the antibody B1 or the antibody B2 is a mouse-derived antibody. If antibody composition B is not a mixture of antibody B1 and antibody B2 derived from different origins, the detection sensitivity may be reduced. Also, false positives may occur.
  • the mixing ratio (mass ratio) of antibody B1 and antibody B2 having different origins is preferably 10:1 to 1:10, more preferably 8:1 to 1:8, and even more preferably 5:1 to 1:5. If the mixing ratio (mass ratio) exceeds this range, the detection sensitivity may decrease. Also, false positives may occur.
  • the antibody composition C used as the capture antibody forming the control line 7 must be an antibody that specifically binds to the antibody composition A. Moreover, the antibody composition C is preferably a mixture of the antibody C1 that binds to the antibody A1 and the antibody C2 that binds to the antibody A2. If antibody composition C is not a mixture of antibody C1 and antibody C2, the control line will be faint and may be judged as re-measurement.
  • the mixing ratio (mass ratio) of the antibodies C1 and C2 is preferably 10:1 to 1:10, more preferably 8:1 to 1:8, and even more preferably 5:1 to 1:5. If the mixing ratio (mass ratio) exceeds this range, the control line becomes thin and may be judged as re-measurement.
  • the method of linearly immobilizing the capturing antibody forming the test line 6 and the capturing antibody forming the control line 7 on the membrane 3 is not particularly limited, but for example, the capturing antibody forming the test line and the capturing antibody forming the control line are fixed. can be produced by applying a given amount of each of and to different positions on the line, and then drying at an appropriate temperature in a constant temperature bath for a given period of time.
  • the amount of the two capture antibodies to be applied is not particularly limited, but is preferably 0.1 ⁇ L to 2 ⁇ L per 1 cm of line length.
  • the application concentration of both the capturing antibodies is not particularly limited, but is preferably 0.1 mg/mL to 10 mg/mL, more preferably 0.2 mg/mL to 8 mg/mL, and 0.5 mg/mL to 5 mg/mL. is more preferred. If the concentration is too low, the N protein of SARS-CoV-2 cannot be sufficiently captured and detected, and the measurement sensitivity may decrease. On the other hand, even if the concentration is high, the measurement sensitivity is not improved, and only the cost is increased.
  • the drying temperature is not particularly limited, but is preferably 20°C to 80°C, more preferably 20°C to 60°C. The drying time varies depending on the drying temperature, but is usually 5 to 120 minutes.
  • the membrane 3 prepared above is attached near the center of the adhesive sheet 8, and then the conjugation pad 2 is partially overlapped on one end of the membrane 3 and attached. is partially overlapped on the end of the conjugation pad 2 opposite to the overlap with the membrane 3, then the absorbent pad 4 is partially overlapped on the other end of the membrane 3, and then fixed It can be produced by cutting it into width strips.
  • the test line 6 and the control line 7 may be prepared after preparing the test piece, or may be prepared before preparing the test piece.
  • the immunochromatographic test piece has at least a first opening for dropping the measurement sample onto the sample pad 1 and a second opening for visually confirming the test line 6 and the control line 7 on the membrane 3. may be housed in a plastic housing case.
  • the immunochromatographic measurement kit includes, in addition to the immunochromatographic test strip, a measurement sample collecting tool for collecting a measurement sample, a measurement sample diluent for pretreating and / or diluting the measurement sample, and a measurement sample for filtering. preferably contains a filter of
  • the measurement sample diluent preferably contains a nonionic surfactant that improves the spreadability of the measurement sample and does not affect the immune reaction.
  • nonionic surfactants include, but are not limited to, polyoxyethylene alkylphenyl ethers (Triton (registered trademark) surfactants, etc.), polyoxyethylene alkyl ethers (Brij (registered trademark) surfactants, etc.), Examples include polyoxyethylene sorbitan fatty acid esters (Tween (registered trademark) surfactants, etc.), polyoxyethylene fatty acid esters, sorbitan fatty acid esters, alkylglucosides, sucrose fatty acid esters, and the like.
  • surfactants may be used alone or in combination of two or more.
  • concentration of the nonionic surfactant is preferably 0.01% by mass to 5.0% by mass, more preferably 0.05% by mass to 4.0% by mass, and 0.1% by mass to 3.0% by mass. More preferred. Low concentrations can make downstream deployment difficult. In addition, the deployment may become uneven and the measurement accuracy may be lowered. On the other hand, if the concentration is high, the physically adsorbed detection particles and the antibody, and/or the membrane and the antibody, may deviate from each other, resulting in failure to obtain measurement values.
  • Inorganic salts and buffers used for pH adjustment may be added to the measurement sample diluent.
  • the buffering agent any type of buffering agent may be used as long as it has a sufficient buffering capacity in the target pH range. acid, oxalic acid, boric acid, tartaric acid, acetic acid, carbonic acid, Good's buffer (MES, ADA, PIPES, ACES, colamin hydrochloride, BES, TES, HEPES, acetamidoglycine, tricine, glycinamide, bicine).
  • tris, phosphoric acid, MES, PIPES, TES, and HEPES are preferable, because they have sufficient buffering capacity around 7.0, which is the optimum pH range of the antibody used in the present invention.
  • Acid, PIPES is more preferred.
  • Example 1 Preparation of complexes of antibody A1, antibody A2 and cellulose-based colored fine particles 1.0% by mass of cellulose-based colored fine particles (NanoAct (registered trademark), BL2: Dark Navy, average particle size 365 nm, manufactured by Asahi Kasei Corporation) 100 ⁇ L, 10 mM Tris buffer (204-07885, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (pH 8.0) 900 ⁇ L, 1.0 mg / mL mouse-derived anti-SARS-CoV-2 N protein monoclonal antibody as antibody A1 ( Anti-SARS-CoV-2-NP Monoclonal antibody, SCV-101, manufactured by Toyobo) 50 ⁇ L, and 1.0 mg / mL rabbit-derived anti-SARS-CoV-2 N protein monoclonal antibody (SARS-CoV- 2 (COVID-19) nucleocapsid antibody, [HL5511], Cat No.
  • NaAct registered trademark
  • BL2 Dark Navy,
  • GTX635689, manufactured by GeneTex 50 ⁇ L was added to a 15 mL centrifuge tube and vortexed. Then, it was allowed to stand at 37°C for 120 minutes. Next, a blocking solution (pH 8.0) consisting of 1.0% by mass of casein (030-01505, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 100 mM borate buffer (021-02195, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) ) was added, and the mixture was allowed to stand at 37° C. for 60 minutes. Then, using a centrifuge (MX-307, manufactured by Tomy Seiko Co., Ltd.), centrifugation was performed at 13,000 ⁇ g at 25° C.
  • a cleaning solution consisting of 50 mM borate buffer (021-02195, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is added, and treated for 10 seconds with an ultrasonic disperser (UH-50, manufactured by SMTE). did. Then, using a centrifuge (MX-307, manufactured by Tomy Seiko Co., Ltd.), centrifugation was performed at 13,000 ⁇ g at 25° C. for 15 minutes to precipitate the antibody-sensitized cellulose-based colored fine particles, and then the supernatant was removed.
  • a cleaning solution consisting of 50 mM borate buffer (021-02195, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is added, and treated for 10 seconds with an ultrasonic disperser (UH-50, manufactured by SMTE). did. Then, using a centrifuge (MX-307, manufactured by Tomy Seiko Co., Ltd.), centrifugation was performed at 13,000 ⁇ g at 25° C. for 15 minutes to precipitate the antibody
  • sucrose (196-00015, manufactured by Fujifilm Wako Pure Chemical Industries), 0.2% by mass of casein (030-01505, manufactured by Fujifilm Wako Pure Chemical Industries), 62 mM borate buffer (021 -02195, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added with 2.0 mL of a coating solution (pH 9.2), and treated for 10 seconds with an ultrasonic disperser (UH-50, manufactured by SMTE). A composite with cellulose-based colored fine particles was obtained.
  • 1.0 mg/mL rabbit-derived anti-mouse IgG polyclonal antibody (Mouse IgG-heavy and light chain antibody, A90-117A, manufactured by BETHYL) as antibody C1
  • 1.0 mg/mL goat-derived anti-antibody as antibody C2.
  • a rabbit IgG polyclonal antibody (Rabbit IgG-heavy and light chain antibody, A120-101A, manufactured by BETHYL) was mixed at a mixing ratio (mass ratio) of 1:1.
  • a 60 mm ⁇ 300 mm membrane card (Hi-Flow Plus 120 Membrane Cards) composed of an adhesive tape portion of 20 mm ⁇ 300 mm on the upstream side, a membrane portion of 25 mm ⁇ 300 mm in the center, and an adhesive tape portion of 15 mm ⁇ 300 mm on the downstream side.
  • a 20 mm ⁇ 300 mm absorbent pad (CELLULOSE FIBER SAMPLE PADS, CFSP002000, Millipore Co., Ltd. ) were pasted together. Then, using a guillotine cutting module (CM5000, manufactured by BIODOT), a strip of 4 mm in width and 60 mm in length was cut to obtain an immunochromatographic test strip for detecting SARS-CoV-2 N protein. The obtained immunochromatographic test piece for detecting N protein of SARS-CoV-2 was housed in a housing case (K007, manufactured by Shengfeng Plastic) to obtain an immunochromatographic device 1 for detecting N protein of SARS-CoV-2.
  • CM5000 manufactured by BIODOT
  • Example 2 Rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1137, manufactured by East Coast Bio) was used as antibody A2, and a goat-derived anti-rat IgG polyclonal antibody (Rat An immunochromatographic device 2 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except that IgG-heavy and light chain antibody, A110-105A, manufactured by BETHYL) was used.
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Example 3 SARS-CoV in the same manner as in Example 1 except that a rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1138, manufactured by EastCoast Bio) was used as antibody B2.
  • An immunochromatographic device 3 for N protein detection of -2 was obtained.
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1137, manufactured by EastCoast Bio) was used as antibody A2, and rat-derived anti-SARS-CoV-2 was used as antibody B2.
  • N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1138, manufactured by East Coast Bio) was used, and antibody C2 was a goat-derived anti-rat IgG polyclonal antibody (Rat IgG-heavy and light chain antibody, A110-105A,
  • An immunochromatographic device 4 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except for using BETHYL).
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1137, manufactured by EastCoast Bio) was used as antibody A1, and a rabbit-derived anti-rat IgG polyclonal antibody (Rat An immunochromatographic device 5 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except that IgG-heavy and light chain antibody, A110-122A, manufactured by BETHYL) was used.
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Example 6 SARS-CoV in the same manner as in Example 1 except that a rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1138, manufactured by EastCoast Bio) was used as antibody B1.
  • An immunochromatographic device 6 for N protein detection of -2 was obtained.
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Rat-derived anti-SARS-CoV-2 N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1137, manufactured by EastCoast Bio) was used as antibody A1, and rat-derived anti-SARS-CoV-2 was used as antibody B1.
  • N protein monoclonal antibody (Coronavirus (COVID-19 NP) Antibody, ECB-HM1138, manufactured by East Coast Bio) was used, and a rabbit-derived anti-rat IgG polyclonal antibody (Rat IgG-heavy and light chain antibody, A110-122A, A110-122A, An immunochromatographic device 7 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except that BETHYL) was used.
  • Table 1 shows the evaluation results of (8) nonspecific adsorption
  • Table 2 shows the evaluation results of (9) sensitivity
  • Table 3 shows the evaluation results of (10) false positives of the obtained device.
  • Example 8 An immunochromatographic device 8 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except that the concentration of antibody A1 was 0.222 mg/mL and the concentration of antibody A2 was 1.778 mg/mL.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 9 An immunochromatographic device 9 for detecting SARS-CoV-2 N protein was obtained in the same manner as in Example 1, except that the concentration of antibody A1 was 1.818 mg/mL and the concentration of antibody A2 was 0.182 mg/mL.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 10 An immunochromatographic device 10 for detecting SARS-CoV-2 N protein was obtained in the same manner as in Example 1, except that the concentration of antibody A1 was 1.905 mg/mL and the concentration of antibody A2 was 0.095 mg/mL.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 11 An immunochromatographic device 11 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody B1 and antibody B2 were mixed at a mass ratio of 1:8.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 12 An immunochromatographic device 12 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody B1 and antibody B2 were mixed at a mass ratio of 10:1.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 13 An immunochromatographic device 13 for detecting SARS-CoV-2 N protein was obtained in the same manner as in Example 1, except that antibody B1 and antibody B2 were mixed at a mass ratio of 20:1.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 14 An immunochromatographic device 14 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody C1 and antibody C2 were mixed at a mass ratio of 1:0.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 15 An immunochromatographic device 15 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody C1 and antibody C2 were mixed at a mass ratio of 1:8.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 16 An immunochromatographic device 16 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody C1 and antibody C2 were mixed at a mass ratio of 10:1.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • Example 17 An immunochromatographic device 17 for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1, except that antibody C1 and antibody C2 were mixed at a mass ratio of 20:1.
  • Table 4 shows the evaluation results of (8) nonspecific adsorption
  • Table 5 shows the evaluation results of (9) sensitivity
  • Table 6 shows the evaluation results of (10) false positive of the obtained device.
  • An immunochromatographic device A for detecting N protein of SARS-CoV-2 was obtained in the same manner as in Example 1.
  • Table 7 shows the evaluation results of (8) nonspecific adsorption
  • Table 8 shows the evaluation results of (9) sensitivity
  • Table 9 shows the evaluation results of (10) false positives of the obtained device.
  • Example 3 1.0 mg/mL mouse-derived anti-SARS-CoV-2 N protein monoclonal antibody (Anti-SARS-CoV-2-NP Monoclonal antibody, SCV-100, manufactured by Toyobo) was used as antibody B1, and antibody B2 was used.
  • An immunochromatographic device C for detecting the N protein of SARS-CoV-2 was obtained in the same manner as in Example 1 except that it was not used.
  • Table 7 shows the evaluation results of (8) nonspecific adsorption
  • Table 8 shows the evaluation results of (9) sensitivity
  • Table 9 shows the evaluation results of (10) false positives of the obtained device.
  • an immunochromatographic test strip that can detect the N protein of SARS-CoV-2 with high sensitivity and suppressed false positives.
  • sample pad 2 conjugation pad 3: membrane 4: absorbent pad 5: backing sheet 6: test line 7: control line 8: adhesive sheet

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】 高感度かつ偽陽性を抑えてSARS-CoV-2のNタンパク質を検出し得るイムノクロマト試験片を提供する。 【解決手段】 本発明は、(1)サンプルパッドと、(2)測定試料中の重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)のヌクレオカプシドタンパク質(Nタンパク質)と特異的に結合する抗体組成物Aとセルロース系着色微粒子との複合体を担持したコンジュゲーションパッドと、(3)測定試料中のSARS-CoV-2のNタンパク質と特異的に結合する抗体組成物Bと、前記抗体組成物Aと特異的に結合する抗体組成物Cとをそれぞれ異なる位置に線状に固定したメンブレンと、(4)吸収パッドとから構成され、前記抗体組成物Aは由来の異なる抗体A1、および抗体A2の混合物であり、前記抗体組成物Bは由来の異なる抗体B1、および抗体B2の混合物であるイムノクロマト試験片である。

Description

イムノクロマト試験片およびイムノクロマトキット
 本発明は、高感度かつ偽陽性を抑えて重症急性呼吸器症候群(Severe Acute Respiratory Syndrome)コロナウイルス2(SARS-CoV-2)のヌクレオカプシドタンパク質(Nタンパク質)を検出し得るイムノクロマト試験片、およびイムノクロマト試験片を含むキットに関する。
 SARS-CoV-2は、新型コロナウイルス感染症(COVID-19)の原因ウイルスであり、2020年初より世界中で急速に流行している。SARS-CoV-2は、一般的なコロナウイルスと同様に、ヌクレオカプシドおよび当該ヌクレオカプシドを取り囲むエンベロープで構成され、前記ヌクレオカプシドには、ウイルスゲノム(RNA)および当該ウイルスゲノムに結合するヌクレオカプシドタンパク質(Nタンパク質)が含まれ、前記エンベロープには、脂質および当該脂質に結合するスパイクタンパク質(Sタンパク質)、膜タンパク質(Mタンパク質)、およびエンベロープタンパク質(Eタンパク質)が含まれる。
 Nタンパク質は、ウイルスコアの形成、並びに、ウイルスゲノムのパッケージングおよび転写等に関与するタンパク質であり、セリン(S)/アルギニン(R)リッチな領域を有するリンカーを介してN末端ドメイン(NTD)およびC末端ドメイン(CTD)が結合した構造を有する。非特許文献1には、Nタンパク質が多量にリン酸化されることが記載され、リン酸化部位のマッピングが示されている。Nタンパク質のアミノ酸配列は株間で保存されているため、Nタンパク質は診断マーカー等として使用される。
 複数ある感染症診断法の中でも迅速・簡便・安価であるイムノクロマト法は最も普及した技術の1つである。イムノクロマト法とは毛細管現象を利用した免疫測定法であり、インフルエンザ検査などにおいて世界的に普及している。イムノクロマト法を用いて測定対象物質を検出する手法の一つとしては、抗原抗体反応を利用したサンドイッチ法が挙げられる。サンドイッチ法では測定対象物質に対してエピトープの異なる2種類の抗体を利用する。一方の抗体は、金コロイド、着色ラテックス粒子、蛍光粒子等の検出粒子と感作した検出抗体として使用する。他方の抗体は、多孔質支持体の表面に線状に固定した捕捉抗体としてテストラインを形成する。加えて、前記検出抗体を特異的に捕捉する抗体を多孔質支持体の表面の、前記テストラインとは異なる位置に線状に固定しコントロールラインを形成する。測定試料中に含まれる測定対象物質は、多孔質支持体の一端(上流側)から展開し、検出抗体と免疫複合体を形成しながら移動し、テストライン上で捕捉抗体と接触して捕捉され発色する。測定対象物質と免疫複合体を形成しなかった遊離の検出粒子と感作した検出抗体はテストライン上を通過し、コントロールラインの抗体に捕捉され発色する。これらの発色強度を目視で確認することで測定対象物質の有無を判定することができる。
 一般的に、血液や尿中等の検体に含まれるアナライト(測定対象)の測定にマウスモノクローナル抗体を用いた免疫測定方法が用いられている。しかし、抗原抗体反応の特異的な結合に基づいた免疫測定法においては、本来の目的とする特異的な抗原抗体反応以外の非特異反応により、測定値の信頼性が損なわれてしまうことがしばしば認められている。
 この現象は、検体中に含まれる抗原以外の成分が標識抗体と反応することによって引き起こされる。試験される検体中に含まれるヒト抗マウス抗体(以下、HAMAという)のような異好性抗体により、アナライトが存在しないにもかかわらず、例えば、通常のサンドイッチELISA測定において、固相に結合した抗体と標識された検出される抗体との非特異的架橋が起こり、結果として偽陽性シグナルが生じる。検査の自動化が進み迅速な測定が可能になった反面、HAMAのような偽反応が増え、この非特異的反応が見逃されることが多くなっている。このようにイムノアッセイ系において非特異反応が認められ、目的アナライトを含まない検体に対しても反応することにより、本来陰性である検体が陽性と判定されることがあった(非特許文献2、非特許文献3参照。)。この現象はイムノクロマト法でも同様である。
 ヒト由来の検体中にHAMAが存在する理由の1つには、治療としてマウスモノクローナル抗体を患者に大量に投与されるために生じることが挙げられる。マウス抗体の生体内への投与はHAMAを産生し、異種抗原に対する免疫応答の惹起が問題となっている。近年の抗体医薬品ではマウス由来の抗原結合部位とヒト由来の定常領域を融合させたキメラ抗体や、ヒト化抗体作製技術の進歩により生体内でのHAMAの出現は減少しているもののHAMAを持つ患者は増え続けており、その問題を完全に無視することはできない。
 異好性抗体は、マウスだけではなくヤギ、ヒツジ、ウサギなどの動物に対する抗体も知られている。(ヤギ:HAGA、ヒツジ:HASA、ウサギ:HARA)。
 測定に使用するモノクローナル抗体と異好性抗体の結合を防がなければ、不正確な測定結果により、診断ミス等の重大な問題を生じる可能性がある。優れた特異性を持つモノクローナル抗体を実際の測定系に使用しても、その性能を十分生かすことができないことが大きな問題となっている(特許文献1参照)。
 上述した非特異反応を回避した正しい測定値を得るために、従来色々な試みが行われてきた。例えば、測定すべき検体を加熱や適当な試薬により前処理をしたり、各種動物血清、免疫グロブリン画分、アルブミン、スキムミルク、界面活性剤等を測定系に添加したりすることが一般的に行われてきた。また、FabやF(ab’)2等の抗体断片を特異反応に使用することで、抗体のFc部位に起因する非特異反応を回避することも行われている(特許文献2、特許文献3参照)。また、測定系に使用するモノクローナル抗体とは反応特異性が異なり、かつ測定系に係わる反応を阻害しないモノクローナル抗体を測定系に添加することも行われている。例えば、モノクローナル抗体又はポリクローナル抗体から誘導された凝集体の使用が提案されている。この凝集体は該抗体のホモポリマーであっても、抗体断片、あるいはアルブミンのような蛋白質やデキストランのような多糖類の巨大分子とのヘテロポリマーであってもよい。
 また、非特異反応の抑制のために、特異反応に使用するモノクローナル抗体を加熱処理などすることにより調製した、本来の抗体の特異活性は失っているが、非特異反応抑制活性は保持しているモノクローナル抗体由来物質が開示されている(特許文献4参照)。しかし、これらの方法は非特異反応の抑制にある程度の効果はあるものの、一部の検体ではその効果はまだ不十分であるとともに、目的とする抗原抗体反応を一部阻害することもあり、実用上必ずしも満足できるものではなかった。
特許第2109086号公報 特開昭54-119292号公報 特開平04-221762号公報 特許第2561134号公報
Klann et al., Molecular Cell, 80(1), 2020, pp.164-174 Clin.Chem. 34/1,261-264(1988) Clin.Chem. 35/1,146-151(1989)
 本発明は、高感度かつ偽陽性を抑えてSARS-CoV-2のNタンパク質を検出し得るイムノクロマト試験片、イムノクロマト試験片を含むキットを提供することを課題とするものである。
 本発明者は、上記課題を解決するために鋭意研究した結果、捕捉抗体および検出抗体として、それぞれ由来の異なる2種の抗体の混合物を使用することにより、高感度かつ偽陽性を抑えてSARS-CoV-2のNタンパク質を検出できることを見出した。また、検出粒子としてセルロース系着色微粒子を使用することにより、SARS-CoV-2のNタンパク質をさらに高感度で検出できることを見出し、本発明を完成させた。
 すなわち、代表的な本発明は以下の通りである。
1. (1)サンプルパッドと、
(2)測定試料中の重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)のヌクレオカプシドタンパク質(Nタンパク質)と特異的に結合する抗体組成物Aとセルロース系着色微粒子との複合体を担持したコンジュゲーションパッドと、
(3)測定試料中のSARS-CoV-2のNタンパク質と特異的に結合する抗体組成物Bと、前記抗体組成物Aと特異的に結合する抗体組成物Cとを、それぞれ異なる位置に線状に固定したメンブレンと、
(4)吸収パッドと、から構成され、
前記抗体組成物Aは由来の異なる抗体A1、および抗体A2の混合物であり、
前記抗体組成物Bは由来の異なる抗体B1、および抗体B2の混合物であることを特徴とするイムノクロマト試験片。
2. 前記抗体A1および抗体A2のいずれかはマウス由来の抗体であることを特徴とする1.に記載のイムノクロマト試験片。
3. 前記抗体A1と抗体A2とが、10:1~1:10の混合比(質量比)で、前記コンジュゲーションパッドに担持されていることを特徴とする1.または2.に記載のイムノクロマト試験片。
4. 前記抗体B1および抗体B2のいずれかはマウス由来の抗体であることを特徴とする1.から3.のいずれかに記載のイムノクロマト試験片。
5. 前記抗体B1と抗体B2とが、10:1~1:10の混合比(質量比)で、前記メンブレンに線状に固定されていることを特徴とする1.から4.のいずれかに記載のイムノクロマト試験片。
6. 前記抗体組成物Cは前記抗体A1と結合する抗体C1、および前記抗体A2と結合する抗体C2との混合物であることを特徴とする1.から3.のいずれかに記載のイムノクロマト試験片。
7. 前記抗体C1と抗体C2とが、10:1~1:10の混合比(質量比)で、前記メンブレンに線状に固定されていることを特徴とする6.に記載のイムノクロマト試験片。
8. 1.から7.のいずれかに記載のイムノクロマト試験片、測定試料採取具、フィルター、測定試料希釈液からなることを特徴とするイムノクロマトキット。
 本発明のイムノクロマト試験片は、特定の抗体、および検出粒子を、特定の配置で担持させているため、高感度かつ偽陽性を抑えてSARS-CoV-2のNタンパク質を検出することができる。
本発明のイムノクロマト試験片の一例を示す図(上面図)である。 本発明のイムノクロマト試験片の一例を示す図(側面図)である。
 本発明において、イムノクロマト試験片は測定試料中の重症急性呼吸器症候群(Severe Acute Respiratory Syndrome)コロナウイルス2(SARS-CoV-2)のヌクレオカプシドタンパク質(Nタンパク質)を検出するための試験片である。本発明に用いる測定試料は、採取したままの試料のみならず、当該試料に対して夾雑物の除去等の前処理を施したものも含まれる。
 測定試料としては、特に限定されないが例えば血液、血清、血漿、骨髄液、リンパ液、涙、鼻汁、鼻腔洗浄液、鼻腔拭い液、唾液、うがい液、喀痰、咽頭拭い液、汗、気管吸引液、気管支洗浄液、胸水、腹水、羊水、腸管洗浄液、尿、糞便、細胞抽出液、組織抽出液、臓器抽出液等が挙げられる。
 本発明において、SARS-CoV-2のNタンパク質は、GenBankアクセッション番号(MN908947)に開示されたアミノ酸配列を有する。なお、SARS-CoVのNタンパク質は、GenBankアクセッション番号(AY278741)に開示されたアミノ酸配列を有する。
 本発明において、イムノクロマト試験片の構成は、イムノクロマト試験片の測定試料溶液の添加部(滴下部)を上流側として、前記添加部を有するサンプルパッド、コンジュゲーションパッド、メンブレン、吸収パッドの順に連接配置されている。次いで、本発明のイムノクロマト試験片の一例を、図面を参照して説明する。図1および2において、1はサンプルパッド、2はコンジュゲーションパッド、3はメンブレン、4は吸収パッド、5はバッキングシート、6はテストライン、7はコントロールライン、8は粘着シートをそれぞれ示す。
 図1および2の例では、イムノクロマト試験片は、幅3~5mm(好ましくは4mm程度)、長さ40~100mm(好ましくは60mm程度)の細長い短冊状の形態をしている。なお、イムノクロマト試験片のコンジュゲーションパッド2には測定試料中のSARS-CoV-2のNタンパク質を特異的に捕捉するための抗体組成物Aとセルロース系着色微粒子との複合体が担持されている。また、イムノクロマト試験片のメンブレン3の上流側の端部から約15mmの位置に測定試料中のSARS-CoV-2のNタンパク質を特異的に捕捉するための抗体組成物Bを線状に固定したテストライン6が形成される。また、前記端部から約20mmの位置に抗体組成物Aと特異的に結合する抗体組成物Cを線状に固定したコントロールライン7が形成される。
 本発明において、サンプルパッド1は、測定試料を速やかに吸収した後、下流のコンジュゲーションパッド、メンブレン、吸収パッドへ展開できる材質のものであれば、特に限定されないが、例えばセルロース製のろ紙または不織布、ガラス製のろ紙または不織布、ポリエステル製のろ紙または不織布、ポリエチレン製のろ紙または不織布が挙げられる。これらの中でも、セルロース製のろ紙が好ましい。また、前記サンプルパッド1の厚みは、0.1~2mmが好ましく、0.2~1mmがより好ましい。厚みが小さいと、下流での測定試料の流れが不均一となり測定精度が低下することがある。一方、厚みが大きいと、下流への展開が遅くなり測定時間が長くなることがある。また、下流への展開に必要となる測定試料量が多くなる。
 本発明において、コンジュゲーションパッド2は、測定試料中のSARS-CoV-2のNタンパク質と特異的に結合する抗体組成物Aとセルロース系着色微粒子との複合体を乾燥状態で保持でき、かつ測定試料の下流への展開と共に前記複合体を速やかに放出することができる材質のものであれば、特に限定されないが、例えばセルロース製のろ紙または不織布、ガラス製のろ紙または不織布、ポリエステル製のろ紙または不織布、ポリエチレン製のろ紙または不織布が挙げられる。これらの中でも、ガラス製のろ紙が好ましい。また、前記コンジュゲーションパッド2の厚みは、0.1~2mmが好ましく、0.2~1mmがより好ましい。厚みが小さいと、目的量の前記複合体を乾燥状態で保持できないことがある。一方、厚みが大きいと、下流への展開が遅くなり測定時間が長くなることがある。また、下流への展開に必要となる測定試料量が多くなる。
 本発明において、メンブレン3は、測定試料を精度よく均一に展開できるものであれば、特に限定されないが、例えばセルロース、セルロース誘導体、ニトロセルロース、酢酸セルロース、ポリウレタン、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、またはナイロン製のメンブレンが挙げられる。これらの中でも、ニトロセルロース製のメンブレンが好ましい。
 本発明において、吸収パッド4は、上流より展開してきた測定試料を速やかに吸収した後、逆流しないよう保持できる材質のものであれば、特に限定されないが、例えばセルロース製のろ紙または不織布、ガラス製のろ紙または不織布、ポリエステル製のろ紙または不織布、ポリエチレン製のろ紙または不織布が挙げられる。これらの中でも、セルロース製のろ紙が好ましい。また、前記吸収パッド4の厚みは、0.2~5mmが好ましく、0.5~2mmがより好ましい。厚みが小さいと、測定試料の滴下量によっては一度吸収パッドに吸収された測定試料がメンブレン側に逆流することがある。一方、厚みが大きいと、イムノクロマト試験片およびイムノクロマト試験片を覆うハウジングケースのサイズも大きくなり、POCTの観点から好ましくない。
 なお、本発明で用いる抗体は、モノクローナル抗体であってもポリクローナル抗体であってもよいが、モノクローナル抗体が好ましい。抗体は、任意のアイソタイプ、例えばIgG、IgA、IgD、IgE、IgM等であることができるが、IgGが好ましい。また、抗体は、市販品を用いてもよいし、別途公知の方法で製造してもよい。
 本発明で検出抗体として用いる抗体組成物Aは、SARS-CoV-2のNタンパク質と特異的に結合し、かつ由来の異なる抗体A1および抗体A2の混合物であることが必要である。由来が異なる抗体は、結合する糖鎖が異なるため立体構造が異なる。そのため、抗原に対して異なる反応性を持つため、抗体単独の場合に比べて抗原への抗体結合度が上がり感度が高くなる。特にマウス由来抗体の糖鎖の付き方は他に比べて、抗原への結合度が高い構造であると推測される。したがって、前記抗体A1および抗体A2のいずれかはマウス由来の抗体であることが好ましい。抗体組成物Aが由来の異なる抗体A1および抗体A2の混合物ではない場合、検出感度が低減することがある。また、偽陽性が発生することがある。
 前記由来の異なる抗体A1および抗体A2の混合比(質量比)は10:1~1:10が好ましく、8:1~1:8がより好ましく、5:1~1:5がさらに好ましい。混合比(質量比)がこの範囲を超えると、検出感度が低減することがある。また、偽陽性が発生することがある。
 テストラインの反射吸光度は、測定完了時の視認性が良く、測定開始から早い時点でラインを視認できるため、40mAbs以上が好ましく、60mAbs以上がより好ましく、80mAbs以上がさらに好ましい。
 セルロース系着色微粒子は、大量の水酸基を有するため、多くの反応性染料を共有結合により保持することができるだけでなく、濃染化した後も水などへの安定分散性を保持することができる。セルロース系着色微粒子として、再生セルロース、精製セルロース、天然セルロース等を用いることができるし、一部誘導体化されたセルロースを用いてもよい。前記セルロース系着色微粒子の質量の20~90質量%はセルロース由来であることが好ましく、20~80質量%がより好ましく、20~70質量%がさらに好ましい。
 セルロース系着色微粒子の平均粒子径は、特に限定されないが、100nm~1000nmが好ましく、200nm~800nmがより好ましい。平均粒子径が大きいと、下流への展開が遅くなり、測定時間が長くなることがある。また、メンブレン上に捕捉されやすくなり、バックグラウンド自体が発色してしまうことでテストラインおよびコントロールラインでの発色が不明瞭になることがある。一方、平均粒子径が小さいと、物理吸着または化学結合できる抗体量が低下し、測定感度が低下することがある。
 セルロース系着色微粒子の色は、特に限定されないが、例えば赤色、青色、黄色、緑色、黒色、白色、蛍光色が挙げられる。これらの中でも、視認性のよい赤色、青色、黒色が好ましい。このようなセルロース系着色微粒子としては、旭化成社製の着色セルロースナノビーズ(NanoAct(登録商標))が挙げられる。
 セルロース系着色微粒子への前記抗体組成物Aの結合量は、セルロース系着色微粒子と抗体組成物Aとの仕込み質量比を調整することで制御でき、特に限定されないが、セルロース系着色微粒子と抗体組成物Aとの仕込み質量比は1:0.01~1:1が好ましく、1:0.02~1:0.5がより好ましく、1:0.02~1:0.2がさらに好ましい。質量比が前記範囲を外れると、セルロース系着色微粒子への抗体組成物Aの結合量が不十分となるとか、セルロース系着色微粒子への抗体組成物Aの結合量が増えすぎ、抗原抗体反応に寄与しない抗体組成物Aが増えるため、測定感度が低下することがある。
 抗体組成物Aとセルロース系着色微粒子との結合方法は、特に限定されないが、疎水結合による物理吸着または共有結合による化学結合で感作するのが好ましく、操作が簡便であり、かつコストも安い物理吸着がより好ましい。なお、感作効率を向上させるため、セルロース系着色微粒子に反応性活性基を導入してもよい。反応性活性基としては、特に限定されないが、例えばカルボキシル基、アミノ基、アルデヒド基、チオール基、エポキシ基、水酸基が挙げられる。これらの中でも、カルボキシル基、アミノ基が好ましい。カルボキシル基の場合は、カルボジイミドを用いてリガンドのアミノ基と共有結合を形成することができる。
 コンジュゲーションパッド2に測定試料中のSARS-CoV-2のNタンパク質と特異的に結合する抗体組成物Aとセルロース系着色微粒子との複合体を担持させる方法は、特に限定されないが、例えば前記複合体の溶液をコンジュゲーションパッドに均一に塗布、噴霧または含浸した後、恒温槽内で適当な温度で一定時間乾燥することで作製することができる。前記複合体の溶液の塗布量は、特に限定されないが、ライン長1cm辺り5μL~50μLが好ましい。また、前記複合体の溶液におけるセルロース系着色微粒子濃度は、特に限定されないが、0.01~0.5質量%が好ましく、0.02~0.2質量%がより好ましく、0.02~0.1質量%がさらに好ましい。濃度が低いと、SARS-CoV-2のNタンパク質を十分捕捉・検出することができず、測定感度が低下することがある。一方、濃度が高くても、測定感度の向上は見られず、コストだけが高くなる。次いで、塗布後のコンジュゲーションパッドを乾燥する。乾燥温度は、特に限定されないが、20℃~80℃が好ましく、20℃~60℃がより好ましい。乾燥時間は乾燥温度によって異なるが、通常は5~120分間である。
 本発明において、テストライン6を形成する捕捉抗体として用いる抗体組成物Bは、SARS-CoV-2のNタンパク質と特異的に結合し、かつ由来の異なる抗体B1および抗体B2の混合物であることが必要である。由来が異なる抗体は、結合する糖鎖が異なるため立体構造が異なる。そのため、抗原に対して異なる反応性を有することになり、抗原への抗体結合度が上がり感度が高くなる。特に、マウス由来抗体の糖鎖の付き方は他に比べて抗原への結合度が高い構造であると推測される。したがって、前記抗体B1および抗体B2のいずれかはマウス由来の抗体であることが好ましい。抗体組成物Bが由来の異なる抗体B1および抗体B2の混合物ではない場合、検出感度が低減することがある。また、偽陽性が発生することがある。
 前記由来の異なる抗体B1および抗体B2の混合比(質量比)は10:1~1:10が好ましく、8:1~1:8がより好ましく、5:1~1:5がさらに好ましい。混合比(質量比)がこの範囲を超えると、検出感度が低減することがある。また、偽陽性が発生することがある。
 本発明において、コントロールライン7を形成する捕捉抗体として用いる抗体組成物Cは、前記抗体組成物Aと特異的に結合する抗体である必要がある。また、抗体組成物Cは前記抗体A1と結合する抗体C1と前記抗体A2と結合する抗体C2との混合物であることが好ましい。抗体組成物Cが抗体C1および抗体C2の混合物ではない場合、コントロールラインが薄くなり、再測定と判断されることがある。
 前記抗体C1および抗体C2の混合比(質量比)は10:1~1:10が好ましく、8:1~1:8がより好ましく、5:1~1:5がさらに好ましい。混合比(質量比)がこの範囲を超えると、コントロールラインが薄くなり、再測定と判断されることがある。
 メンブレン3にテストライン6を形成する捕捉抗体とコントロールライン7を形成する捕捉抗体を線状に固定する方法は、特に限定されないが、例えばテストラインを形成する捕捉抗体とコントロールラインを形成する捕捉抗体とを、それぞれ線上に一定量を異なる位置に塗布した後、恒温槽内で適当な温度で一定時間乾燥することで作製することができる。前記両捕捉抗体の塗布量は、特に限定されないが、ライン長1cm辺り0.1μL~2μLが好ましい。また、前記両捕捉抗体の塗布濃度は、特に限定されないが、0.1mg/mL~10mg/mLが好ましく、0.2mg/mL~8mg/mLがより好ましく、0.5mg/mL~5mg/mLがさらに好ましい。濃度が低いと、SARS-CoV-2のNタンパク質を十分捕捉・検出することができず、測定感度が低下することがある。一方、濃度が高くても、測定感度の向上は見られず、コストだけが高くなる。次いで、前記塗布後のメンブレン3を乾燥する。乾燥温度は、特に限定されないが、20℃~80℃が好ましく、20℃~60℃がより好ましい。乾燥時間は乾燥温度によって異なるが、通常は5~120分間である。
 本発明のイムノクロマト試験片は、前記作製したメンブレン3を粘着シート8の中央付近に貼り付け、次いでコンジュゲーションパッド2をメンブレン3の一方の末端上に一部重ね合わせて貼り付け、次いでサンプルパッド1をコンジュゲーションパッド2のメンブレン3との重なりとは逆の末端上に一部重ね合わせて貼り付け、次いで吸収パッド4をメンブレン3の他方の末端上に一部重ね合わせて貼り付けた後、一定幅の短冊状に切断することで作製することができる。なお、テストライン6およびコントロールライン7は試験片を作製した後に調製してもよいし、試験片を作製する前に調製してもよい。
 イムノクロマト試験片は、少なくともサンプルパッド1上に測定試料を滴下するための第一の開口部、メンブレン3上にテストライン6とコントロールライン7を目視で確認するための第二の開口部を有する適当なプラスチック製のハウジングケースに収容してもよい。
 本発明において、イムノクロマト測定キットは、イムノクロマト試験片に加え、測定試料を採取するための測定試料採取具、測定試料を前処理および/または希釈するための測定試料希釈液、測定試料をろ過するためのフィルターを含むのが好ましい。
 測定試料希釈液は、測定試料の展開性を向上させ、かつ免疫反応に影響しないノニオン性界面活性剤を含むことが好ましい。ノニオン性界面活性剤としては、特に限定されないが、ポリオキシエチレンアルキルフェニルエーテル(Triton(登録商標)系界面活性剤等)、ポリオキシエチレンアルキルエーテル(Brij(登録商標)系界面活性剤等)、ポリオキシエチレンソルビタン脂肪酸エステル(Tween(登録商標)系界面活性剤等)、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アルキルグルコシド、ショ糖脂肪酸エステル等が挙げられる。また、界面活性剤は単独で用いても、二種以上を組み合わせて用いてもよい。ノニオン性界面活性剤の濃度は、0.01質量%~5.0質量%が好ましく、0.05質量%~4.0質量%がより好ましく、0.1質量%~3.0質量%がさらに好ましい。濃度が低いと、下流への展開が困難になることがある。また、展開が不均一となり測定精度が低下することがある。一方、濃度が高いと、物理的に吸着している検出粒子と抗体、および/またはメンブレンと抗体とが乖離し、測定値が得られないことがある。
 測定試料希釈液は、無機塩類やpH調整に用いる緩衝剤を添加しても良い。緩衝剤としては、目的とするpH範囲において充分な緩衝能力を有していれば、いかなる種類の緩衝剤を用いてもよく、例えば、トリス、リン酸、フタル酸、クエン酸、マレイン酸、コハク酸、シュウ酸、ホウ酸、酒石酸、酢酸、炭酸、グッドバッファー(MES、ADA、PIPES、ACES、コラミン塩酸、BES、TES、HEPES、アセトアミドグリシン、トリシン、グリシンアミド、ビシン)が挙げられる。これらの中でも、本発明に用いる抗体の至適pH範囲である7.0付近において充分な緩衝能力を有する等の理由から、トリス、リン酸、MES、PIPES、TES、HEPESが好ましく、トリス、リン酸、PIPESがより好ましい。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
(1)抗体A1、抗体A2とセルロース系着色微粒子との複合体の調製
 1.0質量%のセルロース系着色微粒子(NanoAct(登録商標)、BL2:Dark Navy、平均粒子径365nm、旭化成社製)100μL、10mMのトリス緩衝液(204-07885、富士フィルム和光純薬社製)(pH8.0)900μL、抗体A1として1.0mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-101、東洋紡社製)50μL、および抗体A2として1.0mg/mLのウサギ由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(SARS-CoV-2(COVID-19)nucleocapsid antibody、[HL5511]、Cat No.GTX635689、GeneTex社製)50μLを15mLの遠沈管に加え、ボルテックスで撹拌した。次いで、37℃で120分間静置した。次いで、1.0質量%のカゼイン(030-01505、富士フィルム和光純薬社製)、100mMのホウ酸緩衝液(021-02195、富士フィルム和光純薬社製)からなるブロッキング液(pH8.0)12mLを加え、さらに37℃で60分間静置した。次いで、遠心分離機(MX-307、トミー精工社製)を用い、13,000×gの遠心を25℃で15分間行い、抗体感作セルロース系着色微粒子を沈降させた後に上澄みを除去した。次いで、50mMのホウ酸緩衝液(021-02195、富士フィルム和光純薬社製)からなる洗浄液(pH10.0)12mLを加え、超音波分散機(UH-50、エスエムテー社製)で10秒間処理した。次いで、遠心分離機(MX-307、トミー精工社製)を用い、13,000×gの遠心を25℃で15分間行い、抗体感作セルロース系着色微粒子を沈降させた後に上澄みを除去した。次いで、15質量%のスクロース(196-00015、富士フィルム和光純薬社製)、0.2質量%のカゼイン(030-01505、富士フィルム和光純薬社製)、62mMのホウ酸緩衝液(021-02195、富士フィルム和光純薬社製)からなる塗布液(pH9.2)2.0mLを加え、超音波分散機(UH-50、エスエムテー社製)で10秒間処理し、抗体A1、A2とセルロース系着色微粒子との複合体を得た。
(2)SARS-CoV-2のNタンパク質検出用メンブレンカードの作製
 抗体B1として2.0mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-100、東洋紡社製)、および抗体B2として2.0mg/mLのウサギ由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(SARS-CoV-2(COVID-19) nucleocapsid antibody、[HL146]、Cat No.GTX635680、GeneTex社製)を混合比(質量比)1:1で混合した。次いで、抗体C1として1.0mg/mLのウサギ由来抗マウスIgGポリクローナル抗体(Mouse IgG-heavy and light chain antibody、A90-117A、BETHYL社製)、および抗体C2として1.0mg/mLのヤギ由来抗ウサギIgGポリクローナル抗体(Rabbit IgG-heavy and light chain antibody、A120-101A、BETHYL社製)を混合比(質量比)1:1で混合した。次いで、上流側に20mm×300mmの粘着テープ部、中央に25mm×300mmのメンブレン部、下流側に15mm×300mmの粘着テープ部から構成される60mm×300mmのメンブレンカード(Hi-Flow Plus 120 Membrane Cards、HF120、Millipore社製)のメンブレン部の上流側から8mmの位置に、分注プラットフォーム(XYZ3060、BIODOT社製)と、Bio Jetノズル(BHQHR-XYZ、BIODOT社製)を用い、抗体B1と抗体B2との混合物を1.0μL/cmの塗布量で塗布した後、45℃に調整した乾燥機(WFO-510、東京理化器械社製)で30分間乾燥し、ライン幅約1mmのテストラインを形成した。さらに、テストラインを形成したメンブレンカードのメンブレン部の上流側から15mmの位置に、分注プラットフォーム(XYZ3060、BIODOT社製)と、Bio Jetノズル(BHQHR-XYZ、BIODOT社製)を用い、抗体C1とC2との混合物を1.0μL/cmの塗布量で塗布した後、45℃に調整した乾燥機(WFO-510、東京理化器械社製)で30分間乾燥し、ライン幅約1mmのコントロールラインを形成することで、SARS-CoV-2のNタンパク質検出用メンブレンカードを得た。
(3)SARS-CoV-2のNタンパク質検出用コンジュゲーションパッドの作製
 10mm×300mmのコンジュゲーションパッド(GLASSFIBER DIAGNOSTIC PAD、GFDX001050、Millipore社製)の全面に、分注プラットフォーム(XYZ3060、BIODOT社製)と、Air Jetノズル(AJQHR-XYZ、BIODOT社製)を用い、前記抗体A1、抗体A2とセルロース系着色微粒子との複合体を15μL/cmの塗布量で均一に塗布した後、45℃に調整した乾燥機(WFO-510、東京理化器械社製)で30分間乾燥し、SARS-CoV-2のNタンパク質検出用コンジュゲーションパッドを得た。
(4)SARS-CoV-2のNタンパク質検出用イムノクロマト試験片およびデバイスの作製
 SARS-CoV-2のNタンパク質検出用メンブレンカードの上流側の20mm×300mmの粘着テープ部に、メンブレン部と2mm重なるようにSARS-CoV-2のNタンパク質検出用コンジュゲーションパッドを貼り合わせた。次いで、さらに上流側にコンジュゲーションパッドと3mm重なるよう15mm×300mmのサンプルパッド(CELLULOSE FIBER SAMPLE PADS、CFSP002000、Millipore社製)を貼り合わせた。次いで、SARS-CoV-2のNタンパク質検出用メンブレンカードの下流側の15mm×300mmの粘着テープ部に、メンブレン部と5mm重なるよう20mm×300mmの吸収パッド(CELLULOSE FIBER SAMPLE PADS、CFSP002000、Millipore社製)を貼り合わせた。次いで、ギロチン式カッティングモジュール(CM5000、BIODOT社製)を用い、幅4mm、長さ60mmの短冊状にカットすることで、SARS-CoV-2のNタンパク質検出用イムノクロマト試験片を得た。得られたSARS-CoV-2のNタンパク質検出用イムノクロマト試験片をハウジングケース(K007、Shengfeng Plastic社製)に収納することでSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス1を得た。
(5)測定試料希釈液の調製
 100mMのトリス緩衝液(204-07885、富士フィルム和光純薬社製)(pH8.5)1L、塩化ナトリウム(191-01665、富士フィルム和光純薬社製)8.77g、ポリオキシエチレン(20)ソルビタンモノラウレート:Tween(登録商標)20(166-21213、富士フィルム和光純薬社製)2g、ポリオキシエチレン(10)オクチルフェニルエーテル:TritonX(登録商標)-100(160-24751、富士フィルム和光純薬社製)9gをガラス瓶に加え、溶解することで測定試料希釈液を調製した。
(6)陽性試料の調製
 市販のSARS-CoV-2のNタンパク質であるRecombinant SARS-CoV-2 Nucleocapsid protein(230-30164、RayBiotech社製)を、前記測定試料希釈液にて1ng/mLに希釈することで陽性試料を得た。
(7)陰性試料の調製
 市販のHAMA(3PH490、 Scantibodies Laboratory社製)を、前記測定試料希釈液にて100ng/mLに希釈することで陰性試料を得た。
(8)SARS-CoV-2のNタンパク質検出用イムノクロマト試験片の評価:非特異吸着の評価
 前記SARS-CoV-2のNタンパク質検出用イムノクロマトデバイスを水平な台に設置した。次いで、前記測定試料希釈液100μLを、マイクロピペットで分取し、サンプルパッドに緩やかに滴下し、25℃で15分間静置した。次いで、メンブレン上のテストラインの反射吸光度(mAbs)をイムノクロマトリーダー(C10060-10、測定モード:Latex、Line、浜松ホトニクス社製)を用いて測定した。評価結果を表1に示す。
 実施例1のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの非特異吸着は、テストラインの反射吸光度<10mAbsであり問題ないことを確認した。
(9)SARS-CoV-2のNタンパク質検出用イムノクロマト試験片の評価:感度の評価
 前記SARS-CoV-2のNタンパク質検出用イムノクロマトデバイスを水平な台に設置した。次いで、前記陽性試料100μLを、マイクロピペットで分取し、サンプルパッドに緩やかに滴下し、25℃で15分間静置した。次いで、メンブレン上のコントロールラインおよびテストラインの反射吸光度(mAbs)をイムノクロマトリーダー(C10060-10、測定モード:Latex、Line、浜松ホトニクス社製)を用いて測定した。評価結果を表2に示す。
 実施例1のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスは高感度な測定が可能であった。
(10)SARS-CoV-2のNタンパク質検出用イムノクロマト試験片の評価:偽陽性の評価
 前記SARS-CoV-2のNタンパク質検出用イムノクロマトデバイスを水平な台に設置した。次いで、前記陰性試料100μLを、マイクロピペットで分取し、サンプルパッドに緩やかに滴下し、25℃で15分間静置した。次いで、メンブレン上のテストラインの反射吸光度(mAbs)をイムノクロマトリーダー(C10060-10、測定モード:Latex、Line、浜松ホトニクス社製)を用いて測定した。評価結果を表3に示す。
 実施例1のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスは偽陽性が抑えられ、特異性の高い測定が可能であった。
(実施例2)
 抗体A2としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1137、EastCoast Bio社製)を用い、抗体C2としてヤギ由来抗ラットIgGポリクローナル抗体(Rat IgG-heavy and light chain antibody、A110-105A、BETHYL社製)を用いた以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス2を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
(実施例3)
 抗体B2としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1138、EastCoast Bio社製)を使用した以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス3を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
(実施例4)
 抗体A2としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1137、EastCoast Bio社製)を用い、抗体B2としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1138、EastCoast Bio社製)を用い、抗体C2としてヤギ由来抗ラットIgGポリクローナル抗体(Rat IgG-heavy and light chain antibody、A110-105A、BETHYL社製)を用いた以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス4を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
(実施例5)
 抗体A1としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1137、EastCoast Bio社製)を用い、抗体C1としてウサギ由来抗ラットIgGポリクローナル抗体(Rat IgG-heavy and light chain antibody、A110-122A、BETHYL社製)を用いた以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス5を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
(実施例6)
 抗体B1としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1138、EastCoast Bio社製)を使用した以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス6を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
(実施例7)
 抗体A1としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1137、EastCoast Bio社製)を用い、抗体B1としてラット由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Coronavirus (COVID-19 NP) Antibody、ECB-HM1138、EastCoast Bio社製)を用い、抗体C1としてウサギ由来抗ラットIgGポリクローナル抗体(Rat IgG-heavy and light chain antibody、A110-122A、BETHYL社製)を使用した以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス7を得た。得られたデバイスの(8)非特異吸着の評価結果を表1に、(9)感度の評価結果を表2に、(10)偽陽性の評価結果を表3にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示される結果より、実施例2~7のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの非特異吸着は、テストラインの反射吸光度<10mAbsであり問題ないことが確認された。また、表2に示される結果より、実施例2~4のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの感度は、テストラインの反射吸光度>40mAbsであり問題ないことが確認された。さらに、表3に示される結果より、実施例2~4のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの偽陽性は、テストラインの反射吸光度<10mAbsであり問題ないことが確認された。
(実施例8)
 抗体A1の濃度を0.222mg/mL、抗体A2の濃度を1.778mg/mLとした他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス8を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例9)
 抗体A1の濃度を1.818mg/mL、抗体A2の濃度を0.182mg/mLとした他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス9を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例10)
 抗体A1の濃度を1.905mg/mL、抗体A2の濃度を0.095mg/mLとした他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス10を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例11)
 抗体B1と抗体B2を質量比1:8で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス11を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例12)
 抗体B1と抗体B2を質量比10:1で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス12を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例13)
 抗体B1と抗体B2を質量比20:1で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス13を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例14)
 抗体C1と抗体C2を質量比1:0で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス14を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例15)
 抗体C1と抗体C2を質量比1:8で混合した他は実施例1と同様にしてS ARS-CoV-2のNタンパク質検出用イムノクロマトデバイス15を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例16)
 抗体C1と抗体C2を質量比10:1で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス16を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
(実施例17)
 抗体C1と抗体C2を質量比20:1で混合した他は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイス17を得た。得られたデバイスの(8)非特異吸着の評価結果を表4に、(9)感度の評価結果を表5に、(10)偽陽性の評価結果を表6にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4に示される結果より、実施例5~17のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの非特異吸着は、テストラインの反射吸光度<10mAbsであり問題ないことが確認された。また、コントロールラインはC1とC2の抗体濃度が近いほど、反射吸光度が高い結果となった。また、表5に示される結果より、実施例5~14のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの感度は、テストラインの反射吸光度>40mAbsであり問題ないことが確認された。さらに、表6に示される結果より、実施例5~14のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの偽陽性は、テストラインの反射吸光度<10mAbsであり問題ないことが確認された。
(比較例1)
 抗体A1として0.5mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-101、東洋紡社製)100μLを用い、抗体A2は用いず、抗体B1として1.0mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-100、東洋紡社製)を用い、抗体B2は用いず、抗体C1として0.5mg/mLのウサギ由来抗マウスIgGポリクローナル抗体(Mouse IgG-heavy and light chain antibody、A90-117A、BETHYL社製)を用い、抗体C2は用いなかった以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスAを得た。得られたデバイスの(8)非特異吸着の評価結果を表7に、(9)感度の評価結果を表8に、(10)偽陽性の評価結果を表9にそれぞれ示す。
(比較例2)
 抗体A1として0.5mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-101、東洋紡社製)100μLを用い、抗体A2は用いず、抗体C1として0.5mg/mLのウサギ由来抗マウスIgGポリクローナル抗体(Mouse IgG-heavy and light chain antibody、A90-117A、BETHYL社製)を用い、抗体C2は用いなかった以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスBを得た。得られたデバイスの(8)非特異吸着の評価結果を表7に、(9)感度の評価結果を表8に、(10)偽陽性の評価結果を表9にそれぞれ示す。
(比較例3)
 抗体B1として1.0mg/mLのマウス由来抗SARS-CoV-2のNタンパク質モノクローナル抗体(Anti-SARS-CoV-2-NP Monoclonal antibody、SCV-100、東洋紡社製)を用い、抗体B2は用いなかった以外は実施例1と同様にしてSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスCを得た。得られたデバイスの(8)非特異吸着の評価結果を表7に、(9)感度の評価結果を表8に、(10)偽陽性の評価結果を表9にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表7に示される結果より、比較例1~3のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスの非特異吸着は、テストラインの反射吸光度<10mAbsであり問題ないことが確認された。また、表8に示される結果より、比較例1~3のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスは実施例1に比べて明確に感度が低いことが確認された。さらに、表9に示される結果より、比較例1~3のSARS-CoV-2のNタンパク質検出用イムノクロマトデバイスでは偽陽性が発生し、特異性が低いことが確認された。
 本発明により、高感度かつ偽陽性を抑えてSARS-CoV-2のNタンパク質を検出し得るイムノクロマト試験片を提供することができる。
1:サンプルパッド
2:コンジュゲーションパッド
3:メンブレン
4:吸収パッド
5:バッキングシート
6:テストライン
7:コントロールライン
8:粘着シート

Claims (8)

  1.  (1)サンプルパッドと、
    (2)測定試料中の重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)のヌクレオカプシドタンパク質(Nタンパク質)と特異的に結合する抗体組成物Aとセルロース系着色微粒子との複合体を担持したコンジュゲーションパッドと、
    (3)測定試料中のSARS-CoV-2のNタンパク質と特異的に結合する抗体組成物Bと、前記抗体組成物Aと特異的に結合する抗体組成物Cとを、それぞれ異なる位置に線状に固定したメンブレンと、
    (4)吸収パッドと、から構成され、
    前記抗体組成物Aは由来の異なる抗体A1、および抗体A2の混合物であり、
    前記抗体組成物Bは由来の異なる抗体B1、および抗体B2の混合物であることを特徴とするイムノクロマト試験片。
  2.  前記抗体A1および抗体A2のいずれかはマウス由来の抗体であることを特徴とする請求項1に記載のイムノクロマト試験片。
  3.  前記抗体A1と抗体A2とが、10:1~1:10の混合比(質量比)で、前記コンジュゲーションパッドに担持されていることを特徴とする請求項1または2に記載のイムノクロマト試験片。
  4.  前記抗体B1および抗体B2のいずれかはマウス由来の抗体であることを特徴とする請求項1から3のいずれかに記載のイムノクロマト試験片。
  5.  前記抗体B1と抗体B2とが、10:1~1:10の混合比(質量比)で、前記メンブレンに線状に固定されていることを特徴とする請求項1から4のいずれかに記載のイムノクロマト試験片。
  6.  前記抗体組成物Cは前記抗体A1と結合する抗体C1、および前記抗体A2と結合する抗体C2との混合物であることを特徴とする請求項1から3のいずれかに記載のイムノクロマト試験片。
  7.  前記抗体C1と抗体C2とが、10:1~1:10の混合比(質量比)で、前記メンブレンに線状に固定されていることを特徴とする請求項6に記載のイムノクロマト試験片。
  8.  請求項1から7のいずれかに記載のイムノクロマト試験片、測定試料採取具、フィルター、測定試料希釈液からなることを特徴とするイムノクロマトキット。
PCT/JP2022/024380 2021-06-17 2022-06-17 イムノクロマト試験片およびイムノクロマトキット WO2022265105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530438A JPWO2022265105A1 (ja) 2021-06-17 2022-06-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101041 2021-06-17
JP2021-101041 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022265105A1 true WO2022265105A1 (ja) 2022-12-22

Family

ID=84527142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024380 WO2022265105A1 (ja) 2021-06-17 2022-06-17 イムノクロマト試験片およびイムノクロマトキット

Country Status (2)

Country Link
JP (1) JPWO2022265105A1 (ja)
WO (1) WO2022265105A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187271A1 (ja) * 2018-03-30 2019-10-03 株式会社バイオメディカル研究所 検査キットおよび検査方法
CN111733141A (zh) * 2020-06-19 2020-10-02 清华大学深圳国际研究生院 一种可分泌抗新型冠状病毒n蛋白单克隆抗体的杂交瘤细胞、单克隆抗体及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187271A1 (ja) * 2018-03-30 2019-10-03 株式会社バイオメディカル研究所 検査キットおよび検査方法
CN111733141A (zh) * 2020-06-19 2020-10-02 清华大学深圳国际研究生院 一种可分泌抗新型冠状病毒n蛋白单克隆抗体的杂交瘤细胞、单克隆抗体及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIAN XINGUI, MO CHUNCONG, ZHOU LILING, YANG YUJIE, ZHOU ZHICHAO, YOU AIPING, FAN YE, LIU WENKUAN, LI XIAO, ZHOU RONG: "Epitope mapping of severe acute respiratory syndrome-related coronavirus nucleocapsid protein with a rabbit monoclonal antibody", VIRUS RESEARCH, vol. 300, 1 July 2021 (2021-07-01), NL , pages 1 - 7, XP093014610, ISSN: 0168-1702, DOI: 10.1016/j.virusres.2021.198445 *
YAMAKATUA KENTARO, FUJIMOTO AKIRA, MIYATNOTO KAZUYOSHI, OSHIMA TAKUMA, SUZUKI TADAKI, NAGATA NORIYO, SHIRATO KAZUYA, SATO HIDEO, H: "Development of Rapid Immunochromatographic Enzyme Immunoassay for SARS CoV-2 nucleocapsid antigen.", IKAGAKU TO YAKUGAKU = JAPANESE JOURNAL OF MEDICINE AND PHARMACEUTICAL SCIENCE, vol. 77, no. 6, 27 May 2020 (2020-05-27), JP , pages 937 - 944, XP009536599, ISSN: 0389-3898 *

Also Published As

Publication number Publication date
JPWO2022265105A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP7330945B2 (ja) 分析物検出の改善のためのアッセイ法
JP6168529B2 (ja) 多価抗原測定用コンジュゲート、これを用いた多価抗原測定用イムノクロマトテストストリップおよびイムノクロマト測定方法
KR101947884B1 (ko) 면역 크로마토그래피 분석 방법
US20230341398A1 (en) SARS-CoV-2 DETECTION KIT AND SARS-CoV-2 DETECTION METHOD
JP5753942B2 (ja) 赤血球含有サンプル中の対象物を検出するためのイムノクロマトグラフィー用テストストリップおよびイムノクロマトグラフィーを利用した検出方法
JP6084759B1 (ja) 免疫学的検出方法及びこれに用いるテストストリップ
JP6143818B2 (ja) マイコプラズマ・ニューモニエ検出用免疫クロマト分析装置
JP2009085751A (ja) イムノクロマトグラフィー用試験具
WO2012133615A1 (ja) 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
CN105793707A (zh) 免疫层析辅助的检测方法
JP2021188960A (ja) イムノクロマトグラフィー用テストストリップ
JP2022505934A (ja) 差異的アイソタイプ検出のためのラテラルフローアッセイ
WO2023112859A1 (ja) イムノクロマトグラフィー用テストストリップ、イムノクロマトグラフィーキット、及びそれらを用いた免疫測定方法、並びにサンプルの濾過方法
WO2013147308A1 (ja) 赤血球含有サンプル中の対象物を検出するためのイムノクロマトグラフィー用テストストリップおよびイムノクロマトグラフィーを利用した検出方法
WO2022265105A1 (ja) イムノクロマト試験片およびイムノクロマトキット
WO2023017817A1 (ja) 免疫測定方法、検体希釈液、及びイムノクロマトグラフィーキット
WO2022024925A1 (ja) シグナルの低下を改善した検査試薬
WO2022265106A1 (ja) イムノクロマト試験片
EP3835788A1 (en) Method for immunologically detecting mycoplasma pneumoniae
JP7226878B1 (ja) 検査方法、イムノクロマトグラフィーテストストリップ、及びイムノクロマトグラフィーキット
JP6470147B2 (ja) 免疫学的検出方法
WO2020196295A1 (ja) 呼吸器感染ウイルスの免疫学的分析方法及び検出キット
JP2009133739A (ja) イムノクロマトグラフィー用試験キット
WO2020091029A1 (ja) マイコプラズマ・ニューモニエの免疫学的検出方法
JP2024003083A (ja) Rsウイルスを検出するための検出用試薬又はキット及びrsウイルスを検出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023530438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825093

Country of ref document: EP

Kind code of ref document: A1