WO2022260003A1 - Release film and method for manufacturing molded product - Google Patents

Release film and method for manufacturing molded product Download PDF

Info

Publication number
WO2022260003A1
WO2022260003A1 PCT/JP2022/022780 JP2022022780W WO2022260003A1 WO 2022260003 A1 WO2022260003 A1 WO 2022260003A1 JP 2022022780 W JP2022022780 W JP 2022022780W WO 2022260003 A1 WO2022260003 A1 WO 2022260003A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
release
layer
thermoplastic resin
less
Prior art date
Application number
PCT/JP2022/022780
Other languages
French (fr)
Japanese (ja)
Inventor
明徳 橋本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN202280040308.1A priority Critical patent/CN117425566A/en
Publication of WO2022260003A1 publication Critical patent/WO2022260003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a method for manufacturing a release film and a molded product.
  • the release film When forming a flexible printed circuit board using such a release film, in other words, a laminate of a flexible circuit board and a coverlay film, the release film has two properties, namely, embeddability and separation. It has been required to have both formality and character.
  • recesses are formed in the flexible printed circuit board by laminating a coverlay film on the flexible circuit board. Desired.
  • lamination of the coverlay film on the flexible circuit board is performed via an adhesive layer provided on the coverlay film.
  • the release film is required to exhibit excellent embedding properties in the recesses to suppress the seepage of the adhesive in the recesses.
  • the release film when the release film is peeled off from the formed flexible printed circuit board, the release film exerts excellent releasability against the flexible printed circuit board, and the flexible printed circuit board is formed. It is required that the occurrence of elongation and breakage in is suppressed.
  • Patent Document 1 For the purpose of making a release film having both of the above two properties (embedding property and releasability), for example, in Patent Document 1, a polyester-based elastomer layer as a release layer and a polyester film as a cushion layer A release film having a layer is proposed.
  • the release film With this release film, the release film is embedded in the recess while the release layer is placed in contact with the flexible printed circuit board. As a result, the release film is given embedding properties, but from the viewpoint of suppressing the seepage of the adhesive in the recesses, it is necessary to develop a release film that exhibits better embedding properties in the recesses. What was required was the reality.
  • An object of the present invention is to provide a release film that can exhibit excellent embedding properties in concave portions, and a method for manufacturing a molded product using such a release film.
  • a release film having a first release layer made of a first thermoplastic resin composition and a cushion layer made of a third thermoplastic resin composition A release film having a complex shear elastic modulus at 80° C. of 1.00 MPa or less.
  • thermoplastic resin composition contains a polyester-based resin as a main material.
  • thermoplastic resin composition according to any one of (1) to (9) above, which contains a plurality of thermoplastic resins, and the thermoplastic resin has a melting point of less than 80°C. release film.
  • thermoplastic resin composition contains a polyester-based resin and a polyolefin-based resin as the thermoplastic resins.
  • the release film has a second release layer made of a second thermoplastic resin composition, which is laminated on the side opposite to the first release layer of the cushion layer. ) The release film according to any one of ).
  • the step of placing the release film on the object, and the step of subjecting the object on which the release film is placed to a hot press, wherein the step of placing the release film includes: A method for manufacturing a molded product, wherein the surface of the object on which the release film is arranged is made of a material containing a semi-cured thermosetting resin.
  • the release film when used, for example, to form a flexible printed circuit board using a flexible circuit board and a coverlay film, the release film is applied to the concave portion formed in the flexible printed circuit board. , can be embedded with excellent embedding properties. Therefore, when the concave portion is formed in the flexible printed circuit board, it is possible to accurately suppress or prevent the adhesive from oozing out from the adhesive layer of the coverlay film into the formed concave portion.
  • FIG. 1 is a vertical cross-sectional view for explaining a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state.
  • FIG. 2 is a vertical cross-sectional view showing each step in a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state.
  • FIG. 3 is a longitudinal sectional view showing an embodiment of the release film of the present invention.
  • FIG. 4 is a partially enlarged longitudinal sectional view partially enlarging the A portion of the release film shown in FIG.
  • FIG. 1 is a vertical cross-sectional view for explaining a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state.
  • FIG. 2 is a longitudinal sectional view showing each step in a manufacturing method for manufacturing a flexible printed circuit board in a state of being laminated in multiple stages.
  • FIG. 3 is a longitudinal sectional view showing an embodiment of the release film of the present invention.
  • FIG. 4 is a partially enlarged longitudinal sectional view partially enlarging the A portion of the release film shown in FIG. In the following, for convenience of explanation, the upper side in FIGS. ’ says.
  • a manufacturing method for manufacturing a flexible printed circuit board 200 in multiple stages includes glass cloth 300A, release film 10A, and FPC 200 each having a sheet shape. , a first step of stacking a laminate in which the release film 10B and the glass cloth 300B are superimposed in this order in multiple stages, and heat-pressing each of the multilayer laminates.
  • CL film 220 coverlay film 220
  • the release film 10 (10A, 10B) from the FPC 200 is released from the mold to obtain the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210 .
  • thermocompression plates 521 First, three flat-plate-like thermocompression plates 521 are prepared and arranged so that two gaps are formed in their thickness direction.
  • the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, which are in the form of a sheet (film), are placed in the two gaps, respectively, on the upper side. From top to bottom, in this order, place them in an overlapping state.
  • the FPC 200 arranged in the gap is in a laminated state by overlapping the flexible circuit board 210 and the CL film 220, but the flexible circuit board 210 and the CL film 220 are stacked. It is not bonded to the film 220 via the adhesive layer 222 of the CL film 220 .
  • the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B are laminated in this order between the thermocompression plates 521.
  • the stacked body in the folded state is stacked in two stages.
  • this step (1-2) constitutes the step of placing a release film on the object (FPC 200) in the method for producing a molded product of the present invention.
  • thermocompression plate 521 is heated while the glass cloth 300 (300A, 300B) is in contact with the thermocompression plate 521 .
  • the laminated body in which the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B are superimposed is heated by transferring heat from the thermocompression plate 521. .
  • the temperature for heating the laminate that is, the FPC 200 is not particularly limited, but for example, it is preferably 100° C. or higher and 250° C. or lower, and more preferably 150° C. or higher and 200° C. or lower. .
  • the time for heating the laminate is not particularly limited, but is preferably set to 40 sec or more and 5000 sec or less, more preferably 200 sec or more and 4000 sec or less.
  • the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B in the laminate can be heated substantially uniformly.
  • thermocompression-bonding plate 521 and the lower thermocompression-bonding plate 521 are separated from each other by their thicknesses. approach along the longitudinal direction (press molding method).
  • the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B arranged in the two gaps formed between the three thermocompression plates 521 are separated.
  • the FPC 200 is pressed through the glass cloths 300A and 300B and the release films 10A and 10B (see FIGS. 1 and 2(b)).
  • the FPC 200 is heated and pressurized, so that the flexible circuit board 210 and the CL film 220 that are overlaid on the FPC 200 are bonded via the adhesive layer 222 of the CL film 220 .
  • the coverlay 221 and the flexible circuit board 210 are bonded via the adhesive layer 222 .
  • the release film 10 is inserted into the concave portion 223 formed in the coverlay 221. will be embedded. Therefore, it is possible to suppress the seepage of the adhesive originating from the adhesive layer 222 into the recess 223 (see FIG. 2B).
  • the pressure to pressurize the FPC 200 is not particularly limited, but is preferably 0.1 MPa or more and 20.0 MPa or less, more preferably 0.5 MPa or more and 15.0 MPa or less. .
  • the time for which the FPC 200 is pressurized is not particularly limited, but is preferably set to 20 sec or more and 5000 sec or less, more preferably 100 sec or more and 4000 sec or less.
  • the coverlay 221 and the flexible circuit board 210 can be reliably bonded via the adhesive layer 222 .
  • this step (2-2) constitutes the step of hot pressing the object (FPC 200) on which the release film 10 is arranged in the method for manufacturing a molded product of the present invention.
  • the coverlay 221 is made of a material containing a semi-cured thermosetting resin
  • the coverlay 221 forms the surface of the object (FPC 200) on which the release film 10 is arranged. do. Since the release film 10 is overlaid on the surface of the coverlay 221 so that the surface on the first release layer 1 side, which will be described later, is in contact with the surface of the coverlay 221, the recess 223 is formed by the release film 10. Since the thermosetting resin can be cured while maintaining the shape of the coverlay 221, the coverlay 221 (molded product) can be molded on the flexible circuit board 210 with excellent accuracy.
  • the heating of the FPC 200 in the step (2-1) and the pressurization of the FPC 200 in the main step (2-2) are preferably performed almost simultaneously as described above, but the step (2- 1) and step (2-2) can also be performed in order.
  • the steps (2-1) and (2-2) almost simultaneously, it is possible to shorten the time required for the second step and thus the manufacturing of the FPC 200 .
  • step (3) Next, the release films 10 (10A, 10B) are released from the FPC 200 to obtain the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210 (see FIG. 2(c)).
  • the release method for releasing the release film 10 from the FPC 200 is not particularly limited, but for example, a method of holding one end of the release film by hand and then peeling it off in a direction of 90° or more and 180° or less. It is preferably used.
  • thermocompression plate 521 When releasing the release film 10 from the FPC 200, if excellent releasability is exhibited between the thermocompression plate 521 and the release film 10, the relationship between the thermocompression plate 521 and the release film 10 Arrangement of the glass cloth 300 in between may be omitted.
  • the manufacturing method of the flexible printed circuit board 200 using the release film 10 is configured by the steps described above.
  • the release film of the present invention is used as the release film 10 applied to manufacture this flexible printed circuit board 200 . That is, as the release film 10, the first release layer 1 made of the first thermoplastic resin composition, the cushion layer 3 made of the third thermoplastic resin composition, and the second release layer 3 made of the second thermoplastic resin composition The first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order, and the complex shear elastic modulus of the release film 10 at 80°C is 1.00 MPa. The following release films are used.
  • a release film having a complex shear elastic modulus of 1.00 MPa or less at 80° C. is selected as the release film 10 .
  • the release film 10 exhibits excellent embedding properties of the release film 10 in the recesses 223 formed in the flexible printed circuit board 200 , so that adhesion derived from the adhesive layer 222 in the recesses 223 is achieved. It suppresses the seepage of the agent.
  • the release film 10 is composed of a laminate in which a first release layer 1, a cushion layer 3, and a second release layer 2 are laminated in this order.
  • the CL film 220 included in the FPC 200 is overlapped so that the surface on the first release layer 1 side is in contact with the CL film 220 .
  • a release film having a complex shear elastic modulus of 1.00 MPa or less at 80°C is selected. This makes it possible to obtain the release film 10 having superior conformability.
  • the release film 10 has better followability, in the step (2-2) of the flexible printed circuit board 200 using the release film 10 described above, the flexible circuit board 210 and the superimposed flexible circuit board 210
  • the first release layer 1 follows the shape of the concave portion 223 formed by the flexible circuit board 210 and the CL film 220. It is a layer into which the first release layer 1 is pushed, and functions as a cushion.
  • the release film 10 since the release film 10 includes the cushion layer 3, the release film 10 can press the CL film 220 against the flexible circuit board 210 with a uniform pressure.
  • the FPC 200 in the step (2-1) is less responsive than the pressurization of the FPC 200 in step (2-2). That is, when the FPC 200 is heated and pressurized almost simultaneously, the target pressure can be applied to the FPC 200 relatively early. is relatively time consuming.
  • the target pressure is applied to the FPC 200 before the FPC 200 is heated at the target heating temperature. Therefore, in consideration of the heating temperature of the FPC 200 in the step (2-1), for example, the elastic modulus of the release film 10 within the range of 100 ° C. or higher and 250 ° C. or lower, which is a preferable temperature range of the heating temperature.
  • the release film 10 cannot be embedded in the recess 223 with excellent embedding properties, and it has been conventionally difficult to sufficiently suppress the exudation of the adhesive derived from the adhesive layer 222 in the recess 223. I wasn't able to.
  • the complex shear elastic modulus of the release film 10 at 80° C. is set to 1.00 MPa or less. Therefore, the function of the release film 10 can be exhibited more reliably, and the release film 10 can be embedded in the concave portion 223 with excellent embedding properties. Therefore, it is possible to appropriately suppress or prevent the seepage of the adhesive originating from the adhesive layer 222 in the concave portion 223 .
  • This cushion layer 3 is arranged as an intermediate layer between the first release layer 1 and the second release layer 2 .
  • the cushion layer 3 is made of a third thermoplastic resin composition.
  • This third thermoplastic resin composition provides the release film 10 with the above function, that is, for the purpose of setting the complex shear elastic modulus of the release film 10 at 80° C. to the above upper limit or less.
  • Combinations of a plurality of types of thermoplastic resins include, for example, combinations of polyester resins and polyolefin resins, combinations of polyolefin resins, and combinations of polyamide resins and polyolefin resins.
  • the complex shear elastic modulus at 80° C. of the release film 10 can be relatively easily set to the upper limit value or less.
  • the polyester resin is not particularly limited, but for example, polyethylene terephthalate (PET), polycyclohexane terephthalate (PCT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycyclohexanedimethylene terephthalate, polypropylene terephthalate etc., and one or more of these may be used in combination.
  • the polyester resin may be a blend or a copolymer thereof.
  • the polyester-based resin is particularly preferably polybutylene terephthalate.
  • the cushion layer 3 can be provided with excellent conformability to the concave portion 223 .
  • the cushion layer 3 exhibits excellent adhesion to the first release layer 1 .
  • the polyolefin resin is not particularly limited, and examples include polyethylene such as low-density polyethylene and high-density polyethylene, ⁇ -olefin polymers such as polypropylene, ethylene, propylene, butene, pentene, hexene, octene, and the like.
  • the cushion layer 3 can be provided with excellent conformability to the concave portion 223 .
  • the content of the polyester resin in the third thermoplastic resin composition is preferably 5 wt% or more, and 8 wt% or more and 20 wt% or less. is more preferable. As a result, it is possible to provide the release film 10 with excellent conformability to the concave portions 223 .
  • thermoplastic resin contained in the third thermoplastic resin composition preferably has a melting point of less than 80°C, more preferably 40°C or more and less than 80°C.
  • the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
  • the third thermoplastic resin composition constituting the cushion layer 3 contains a crystal nucleating agent, an antioxidant, a slip agent, an antiblocking agent, an antistatic agent, a coloring agent, and a stabilizer. It may contain additives such as
  • the storage elastic modulus E' of the cushion layer 3 at 150°C is preferably 9.0 MPa or more, more preferably 10 MPa or more and 50 MPa or less, and even more preferably 10 MPa or more and 25 MPa or less.
  • the storage elastic modulus E' of the cushion layer 3 at 150 ° C. is measured, for example, by preparing a cushion layer 3 with a width of 4 mm and a length of 20 mm in accordance with JIS K7244-4, using a dynamic viscoelasticity measuring device (Hitachi High Tech Science Co., Ltd., "DMA7100"), it can be obtained by measuring at a tension mode, a frequency of 1 Hz, and a heating rate of 5°C/min.
  • a dynamic viscoelasticity measuring device Hitachi High Tech Science Co., Ltd., "DMA7100
  • the cushion layer 3 preferably has an average thickness Tk of 60 ⁇ m or more and 200 ⁇ m or less, more preferably 70 ⁇ m or more and 180 ⁇ m or less. Thereby, the effect obtained by setting the complex shear elastic modulus of the release film 10 at 80° C. to the upper limit value or less can be exhibited more remarkably.
  • First release layer 1 Next, the first release layer 1 is described.
  • the first release layer 1 is laminated on one side of the cushion layer 3 .
  • the first release layer 1 is flexible, and in the method for manufacturing the flexible printed circuit board 200 using the release film 10 described above, the first release layer Release films 10 are superimposed so that 1 is in contact. Then, in the step (2-2) of this manufacturing method, when the flexible circuit board 210 and the CL film 220 that are overlaid are joined via the adhesive layer 222, the flexible circuit board 210 and the CL film 220 are bonded together. It is a layer that follows the shape of the concave portion 223 formed by and is pushed in, and functions as a protective (buffer) material that prevents the release film 10 from breaking. Furthermore, the first release layer 1 functions as a contact layer for exhibiting excellent releasability of the release film 10 from the CL film 220 (FPC 200) in the step (3). .
  • the release film 10 can accurately suppress or prevent the adhesive originating from the adhesive layer 222 from seeping into the concave portions 223 formed in the FPC 200 in the step (2-2). Further, after forming the FPC 200 in which the flexible circuit board 210 and the CL film 220 are bonded via the adhesive layer 222 provided in the CL film 220 in the step (2-2), in the step (3), When peeling the release film 10 from the FPC 200, it is possible to precisely suppress or prevent the FPC 200 from stretching and breaking. Moreover, when the third thermoplastic resin composition constituting the cushion layer 3 contains a polyester-based resin, the first release layer 1 can exhibit excellent adhesion to the cushion layer 3 .
  • the first release layer 1 is made of a first thermoplastic resin composition.
  • the first thermoplastic resin composition is preferably composed of a composition capable of setting the storage elastic modulus E′ of the first release layer 1 at 150° C. to 100 MPa or more, and for example, mainly contains a polyester-based resin. preferably.
  • the storage elastic modulus E′ can be relatively easily set to 100 MPa or more, and the functions described above can be reliably imparted to the first release layer 1 .
  • the release film 10 can be imparted with the above functions relatively easily, that is, the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
  • the polyester-based resin is not particularly limited, but for example, the same resins as those listed in the third thermoplastic resin composition can be used, and among them, polybutylene terephthalate (PBT) is particularly preferred. is preferred. Thereby, the effect obtained by using the polyester-based resin can be exhibited more remarkably. Moreover, when the third thermoplastic resin composition constituting the cushion layer 3 contains polybutylene terephthalate, the first release layer 1 can exhibit excellent adhesion to the cushion layer 3 .
  • PBT polybutylene terephthalate
  • the first thermoplastic resin composition when mainly composed of a polyester resin, it may contain a thermoplastic resin other than the polyester resin.
  • the thermoplastic resin include polyethylene, polypropylene, Polyolefin-based resins such as poly-4-methyl-1-pentene, polystyrene-based resins such as syndiotactic polystyrene, and the like can be mentioned, and one or more of these can be used in combination.
  • first thermoplastic resin composition may further contain at least one of inorganic particles and organic particles in addition to the thermoplastic resins described above.
  • inorganic particles include, but are not limited to, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whiskers, Boron nitride, crystalline silica, amorphous silica, antimony oxide, E glass, D glass, S glass, etc., may be mentioned, and one or more of these may be used in combination.
  • the organic particles are not particularly limited, but include, for example, polystyrene particles, acrylic particles, polyimide particles, polyester particles, silicone particles, polypropylene particles, polyethylene particles, fluororesin particles and core-shell particles. It can be used alone or in combination of two or more.
  • the inorganic particles and the organic particles preferably have an average particle size of 3 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the 10-point average roughness (Rz) on the surface is preferably 0.5 ⁇ m or more and 3.6 ⁇ m or less, and 1.0 ⁇ m or more and 3.5 ⁇ m. The following are more preferable.
  • the 10-point average roughness (Rz) can be measured according to JIS B 0601-1994.
  • the first release layer 1 having such a structure preferably has a storage modulus E′ at 150° C. of 100 MPa or more, more preferably 100 MPa or more and 1000 MPa or less, and further preferably 100 MPa or more and 200 MPa or less. preferable. Thereby, the function mentioned above can be provided to the 1st release layer 1 reliably.
  • the storage elastic modulus E' of the first release layer 1 at 150°C was measured by preparing the first release layer 1 having a width of 4 mm and a length of 20 mm in accordance with JIS K7244-4.
  • Hitachi High-Tech Science Co., Ltd., "DMA7100” can be obtained by measuring at a tension mode, a frequency of 1 Hz, and a heating rate of 5°C/min.
  • the average thickness T1 of the first release layer 1 is preferably set to 5 ⁇ m or more and 30 ⁇ m or less, and more preferably set to 6 ⁇ m or more and 25 ⁇ m or less. As a result, the average thickness of the first release layer 1 is set within an appropriate range, so that the first release layer 1 can be more reliably provided with the functions described above.
  • the thickness of the first release layer 1 is the position including the protrusions, and The thickness of each recess is measured at a position including the recess.
  • first thermoplastic resin composition constituting the first release layer 1 may contain, in addition to the above-described resin material, inorganic particles, and organic particles, the same materials as those listed for the third thermoplastic resin composition. Additives may be included.
  • the second release layer 2 is laminated on the other side of the cushion layer 3 , that is, on the side of the cushion layer 3 opposite to the first release layer 1 .
  • the second release layer 2 has flexibility. are in contact with each other, and in the step (2-2) of this manufacturing method, the laminated flexible circuit board 210 and the CL film 220 are bonded together via an adhesive layer 222. It functions as a layer that transmits the force from the thermocompression plate 521 to the cushion layer 3 when joining by pressing. Furthermore, the second release layer 2 functions as a contact layer for exhibiting excellent release properties between the glass cloth 300 and the release film 10 in the step (3).
  • the second release layer 2 is made of a second thermoplastic resin composition, and the second thermoplastic resin composition can set the storage elastic modulus E′ of the second release layer 2 at 150° C. to 100 MPa or more.
  • a resin is preferably selected, and specifically, it preferably contains mainly a polyester-based resin as in the first thermoplastic resin composition.
  • the storage elastic modulus E′ can be relatively easily set to 100 MPa or more, and the second release layer 2 can be reliably provided with the functions described above.
  • the release film 10 can be imparted with the above functions relatively easily, that is, the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
  • the polyester-based resin is not particularly limited, but for example, the same resins as those listed in the third thermoplastic resin composition can be used, and among them, polybutylene terephthalate (PBT) is particularly preferred. is preferred. Thereby, the effect obtained by using the polyester-based resin can be exhibited more remarkably.
  • PBT polybutylene terephthalate
  • the second thermoplastic resin composition when mainly composed of a polyester resin, it may contain a thermoplastic resin other than the polyester resin, and the thermoplastic resin is the first thermoplastic resin. Resins similar to those listed in the composition can be used.
  • the second thermoplastic resin composition may further contain at least one of inorganic particles and organic particles in addition to the thermoplastic resins described above.
  • the inorganic particles and organic particles are not particularly limited, but the same particles as those mentioned in the first thermoplastic resin composition can be used.
  • the second release layer 2 having such a structure preferably has a storage modulus E' at 150°C of 100 MPa or more, more preferably 100 MPa or more and 1000 MPa or less. Thereby, the function mentioned above can be provided to the 2nd release layer 2 reliably.
  • the second release layer 2 has an average thickness T2 of preferably 5 ⁇ m or more and 30 ⁇ m or less, more preferably 6 ⁇ m or more and 25 ⁇ m or less. Thereby, the function mentioned above can be provided to the 2nd release layer 2 more reliably.
  • the second thermoplastic resin composition that constitutes the second release layer 2 contains the resin materials, inorganic particles, and organic particles described above, as well as the same as those listed for the third thermoplastic resin composition. Additives may be included.
  • first thermoplastic resin composition and the second thermoplastic resin composition may be the same or different, but substitutability are preferably the same or homogeneous from the viewpoint of having Furthermore, the average thickness of the first release layer 1 and the second release layer 2 may be the same or different.
  • the average thickness Tt is 90 ⁇ m or more and 250 ⁇ m or less. It is preferably 100 ⁇ m or more and 220 ⁇ m or less, more preferably. Thereby, the effect obtained by setting the complex shear elastic modulus of the release film 10 at 80° C. to the upper limit value or less can be exhibited reliably.
  • the complex shear elastic modulus of the release film 10 at 80°C should be 1.00 MPa or less, and preferably 0.65 MPa or less.
  • the storage shear modulus of the release film 10 at 80°C is preferably 1.00 MPa or less, more preferably 0.60 MPa or less.
  • the loss shear modulus of the release film 10 at 80° C. is preferably 0.40 MPa or less, more preferably 0.25 MPa or less.
  • the complex shear elastic modulus, storage shear elastic modulus, and loss shear elastic modulus of the release film 10 at 80° C. are determined, for example, by the release film 10 having a diameter of 8 mm and a disk-like overall shape, that is, a circular shape in plan view. It can be obtained by measuring with a viscoelasticity measuring device (manufactured by Anton Paar, "MCR102") at a frequency of 10 Hz, a strain of 0.1%, and a heating rate of 4°C/min.
  • MCR102 viscoelasticity measuring device
  • the release film 10 is composed of a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order.
  • an adhesive layer disposed between the first release layer 1 and the cushion layer 3 and/or between the second release layer 2 and the cushion layer 3 It may be composed of a laminate having an intermediate layer.
  • the release film 10 can maintain excellent releasability between the glass cloth 300 and the release film 10 in the step (3), the second release film 10 that contacts the glass cloth 300 Layer 2 may be omitted.
  • the release film of the present invention is applied to a press molding method in which flexible printed circuit boards arranged between heating and cooling plates are laminated in two stages to manufacture was described.
  • the number of laminated flexible printed circuit boards is not limited to two, and may be one, or may be three or more.
  • the release film of the present invention is applied when pressurizing a flexible printed circuit board placed between heating and cooling plates using a press molding method, but is not limited to this.
  • the pressing of the flexible printed circuit board can be carried out, for example, using a roll-to-roll press or, furthermore, using a vacuum pressure forming method.
  • ⁇ Thermoplastic resin material Low density polyethylene (LDPE, manufactured by Ube Maruzen Co., Ltd., "R300”) Ethylene vinyl acetate copolymer (EVA, Mitsui Dow Polychemicals, “P1403”) Ethylene vinyl acetate copolymer (EVA, manufactured by Mitsui Dow Polychemicals, "EV360”) Ethylene vinyl acetate copolymer (EVA, manufactured by Mitsui Dow Polychemicals, "V5274”) Ethylene methyl methacrylate copolymer (EMMA, manufactured by Sumitomo Chemical Co., Ltd., "WH102”) Ethylene methyl acrylate copolymer (EMA, manufactured by SK Chemicals, "29MA03”) Ethylene methyl acrylate copolymer (EMA, manufactured by Nippon Polyethylene Co., Ltd., “EB050S”) Polybutylene terephthalate (PBT, manufactured by Changchun Petrochemical Co., Ltd., "110
  • thermoplastic resin composition 70 parts by weight of polybutylene terephthalate (PBT, 1100-630S) and 30 parts by weight of copolymerized polybutylene terephthalate (PBT, 5505S) were used. A composed composition was provided. Further, as the third thermoplastic resin composition, 40 parts by weight of ethylene vinyl acetate copolymer (EVA, EV360), 35 parts by weight of ethylene methyl methacrylate copolymer (EMMA, WH102), polybutylene terephthalate (PBT, 1100-630S) and 15 parts by weight of polypropylene (PP, FH1016).
  • EVA ethylene vinyl acetate copolymer
  • EMMA ethylene methyl methacrylate copolymer
  • WH102 polybutylene terephthalate
  • PP polypropylene
  • the first release layer 1 was obtained by forming a film from the first thermoplastic resin composition by an extrusion T-die method.
  • the first release layer 1 is subjected to an extrusion T-die method using the third thermoplastic resin composition and the second thermoplastic resin composition in order to form each film, thereby forming the first
  • the release film 10 of Example 1 was obtained by forming a laminate in which the cushion layer 3 and the second release layer 2 were laminated in this order on the release layer 1 .
  • the average thickness T1 of the first release layer 1 is 15 ⁇ m
  • the average thickness Tk of the cushion layer 3 is 80 ⁇ m
  • the average thickness T2 of the second release layer 2 is 15 ⁇ m. there were.
  • the complex shear modulus, storage shear modulus, and loss shear modulus at 80° C. were measured using a viscoelasticity measuring device (manufactured by Anton Paar, product number MCR102).
  • a viscoelasticity measuring device manufactured by Anton Paar, product number MCR102.
  • the storage elastic modulus E′ at 150° C. of each of the first release layer 1 and the cushion layer 3 was measured using a dynamic viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Co., Ltd., “DMA7100”) in tensile mode. , a frequency of 1 Hz, and a heating rate of 5° C./min, the results were 180 MPa and 16 MPa.
  • the 10-point average roughness (Rz) on the surface exposed on the side opposite to the cushion layer 3 was measured using a surface roughness measuring device ("SURFTST SJ-210" manufactured by Mitutoyo). It was 2.7 ⁇ m when measured with
  • Example 2 Comparative Examples 1 to 4>
  • the first thermoplastic resin composition, the second thermoplastic resin composition and the third thermoplastic resin composition the compositions shown in Table 1 are used, and the average thickness is as shown in Table 1.
  • the complex shear modulus of the release film 10 at 80° C. is shown in Table 1 in the same manner as in Example 1 except that the release layer 1, the cushion layer 3 and the second release layer 2 were formed. Release films 10 of Example 2 and Comparative Examples 1 to 4 were obtained.
  • the release film 10 of each example and each comparative example has a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Seisakusho Co., Ltd., "CMA0525") is applied to the flexible circuit board 210.
  • the adhesive layer 222 of the coverlay film 220 is adhered to the flexible circuit board 210 side, and the FPC 200 (laminate) having irregularities with a pitch of 50 ⁇ m, a width of 50 ⁇ m, and a height of 18 ⁇ m is formed.
  • the mold film 10 was pressed under conditions of 180° C., 3 MPa, and 15 min against the FPC 200 laminated in two stages as shown in FIG. After that, when one end of the release film 10 was gripped and peeled off, the ease of peeling off the release film 10 (mold release property) was evaluated according to the following criteria.
  • the complex shear elastic modulus of the release film 10 at 80° C. is set to 1.00 MPa or less, and as a result, the seepage of the adhesive in the concave portions 223 is suppressed. showed the results.
  • the complex shear modulus of elasticity at 80° C. of the release film 10 could not be set to 1.00 MPa or less. showed results that are clearly recognized.
  • the present invention it is possible to provide a release film exhibiting excellent embedding properties in concave portions. Therefore, when the release film is used, for example, to form a flexible printed circuit board using a flexible circuit board and a coverlay film, the release film is applied to the concave portion formed in the flexible printed circuit board. , can be embedded with excellent embedding properties. Therefore, when the concave portion is formed in the flexible printed circuit board, it is possible to accurately suppress or prevent the adhesive from oozing out from the adhesive layer of the coverlay film into the formed concave portion. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A release film 10 according to the present invention comprises: a first release layer 1 made of a first thermoplastic resin composition; and a cushion layer 3 made of a third thermoplastic resin composition. The release film 10 has a complex shear elastic modulus of 1.00 MPa or less at 80°C. Further, it is preferable for the cushion layer 3 to have a storage elastic modulus of 9.0 MPa or more at 150°C.

Description

離型フィルムおよび成型品の製造方法Method for manufacturing release film and molded product
 本発明は、離型フィルムおよび成型品の製造方法に関する。 The present invention relates to a method for manufacturing a release film and a molded product.
 近年、回路が露出したフレキシブル回路基板に対して、カバーレイフィルムを、カバーレイフィルムが備える接着剤層を介して、加熱プレスにより接着してフレキシブルプリント回路基板すなわち積層体を形成する際に、離型フィルムが、一般的に、使用されている。 In recent years, when a flexible printed circuit board, that is, a laminate is formed by bonding a coverlay film to a flexible circuit board with an exposed circuit via an adhesive layer provided on the coverlay film by a hot press, separation A mold film is commonly used.
 このような離型フィルムを用いたフレキシブルプリント回路基板、換言すればフレキシブル回路基板とカバーレイフィルムとの積層体の形成の際に、離型フィルムには、2つの特性、すなわち、埋め込み性と離型性との双方を有することが要求されてきた。 When forming a flexible printed circuit board using such a release film, in other words, a laminate of a flexible circuit board and a coverlay film, the release film has two properties, namely, embeddability and separation. It has been required to have both formality and character.
 詳しくは、まず、フレキシブルプリント回路基板には、フレキシブル回路基板へのカバーレイフィルムの積層により、凹部が形成されるが、この凹部に対して、優れた埋め込み性を発揮することが離型フィルムに求められる。 In more detail, first, recesses are formed in the flexible printed circuit board by laminating a coverlay film on the flexible circuit board. Desired.
 より具体的には、フレキシブル回路基板に対するカバーレイフィルムの積層は、カバーレイフィルムが備える接着剤層を介して行われる。この積層の際に、凹部に対して、離型フィルムが優れた埋め込み性を発揮して、凹部内における接着剤のしみ出しが抑制されることが求められる。 More specifically, lamination of the coverlay film on the flexible circuit board is performed via an adhesive layer provided on the coverlay film. At the time of lamination, the release film is required to exhibit excellent embedding properties in the recesses to suppress the seepage of the adhesive in the recesses.
 また、上記のようなフレキシブル回路基板に対するカバーレイフィルムの積層の後には、形成されたフレキシブルプリント回路基板から、優れた離型性をもって離型フィルムが剥離されることが求められる。 In addition, after lamination of the coverlay film on the flexible circuit board as described above, it is required that the release film be peeled off from the formed flexible printed circuit board with excellent releasability.
 より具体的には、形成されたフレキシブルプリント回路基板から、離型フィルムを剥離させる際に、フレキシブルプリント回路基板に対して、離型フィルムが優れた離型性を発揮して、フレキシブルプリント回路基板における伸びおよび破断の発生が抑制されることが求められる。 More specifically, when the release film is peeled off from the formed flexible printed circuit board, the release film exerts excellent releasability against the flexible printed circuit board, and the flexible printed circuit board is formed. It is required that the occurrence of elongation and breakage in is suppressed.
 上記のような2つの特性(埋め込み性および離型性)を併せ持つ離型フィルムとすることを目的に、例えば、特許文献1では、離型層としてのポリエステル系エラストマー層と、クッション層としてのポリエステル層とを有する離型フィルムが提案されている。 For the purpose of making a release film having both of the above two properties (embedding property and releasability), for example, in Patent Document 1, a polyester-based elastomer layer as a release layer and a polyester film as a cushion layer A release film having a layer is proposed.
 この離型フィルムでは、離型層がフレキシブルプリント回路基板に接触するように配置された状態で、凹部に対して離型フィルムが埋め込まれる。これにより、離型フィルムに埋め込み性が付与されているが、凹部内における接着剤のしみ出しを抑制すると言う観点からは、凹部に対してより優れた埋め込み性を発揮する離型フィルムの開発が求められているのが実情であった。 With this release film, the release film is embedded in the recess while the release layer is placed in contact with the flexible printed circuit board. As a result, the release film is given embedding properties, but from the viewpoint of suppressing the seepage of the adhesive in the recesses, it is necessary to develop a release film that exhibits better embedding properties in the recesses. What was required was the reality.
 また、このような問題は、半硬化状態の熱硬化性樹脂を含む材料によって形成された対象物に対して、離型フィルムを貼付した状態とし、この状態で熱硬化性樹脂を硬化させることで、対象物を用いて凹部を備える成形品を製造する場合等についても同様に生じている。 In addition, such a problem can be solved by attaching a release film to an object made of a material containing a semi-cured thermosetting resin and curing the thermosetting resin in this state. This also occurs in the case of manufacturing a molded article having recesses using an object.
特開2011-88351号公報JP 2011-88351 A
 本発明の目的は、凹部に対して、優れた埋め込み性を発揮させることができる離型フィルム、および、かかる離型フィルムを用いた成型品の製造方法を提供することにある。 An object of the present invention is to provide a release film that can exhibit excellent embedding properties in concave portions, and a method for manufacturing a molded product using such a release film.
 このような目的は、下記(1)~(14)に記載の本発明により達成される。
 (1) 第1熱可塑性樹脂組成物からなる第1離型層と、第3熱可塑性樹脂組成物からなるクッション層とを有する離型フィルムであって、
 当該離型フィルムは、80℃における複素せん断弾性率が1.00MPa以下であることを特徴とする離型フィルム。
Such objects are achieved by the present invention described in (1) to (14) below.
(1) A release film having a first release layer made of a first thermoplastic resin composition and a cushion layer made of a third thermoplastic resin composition,
A release film having a complex shear elastic modulus at 80° C. of 1.00 MPa or less.
 (2) 前記クッション層は、150℃における貯蔵弾性率が9.0MPa以上である上記(1)に記載の離型フィルム。 (2) The release film according to (1) above, wherein the cushion layer has a storage elastic modulus of 9.0 MPa or more at 150°C.
 (3) 当該離型フィルムは、80℃における貯蔵せん断弾性率が1.00MPa以下である上記(1)または(2)に記載の離型フィルム。 (3) The release film according to (1) or (2) above, which has a storage shear modulus of 1.00 MPa or less at 80°C.
 (4) 当該離型フィルムは、80℃における損失せん断弾性率が0.40MPa以下である上記(1)ないし(3)のいずれかに記載の離型フィルム。 (4) The release film according to any one of (1) to (3) above, which has a loss shear modulus at 80°C of 0.40 MPa or less.
 (5) 前記第1離型層は、前記クッション層と反対側の表面における10点平均粗さ(Rz)が0.5μm以上3.6μm以下である上記(1)ないし(4)のいずれかに記載の離型フィルム。 (5) Any one of (1) to (4) above, wherein the first release layer has a 10-point average roughness (Rz) of 0.5 μm or more and 3.6 μm or less on the surface opposite to the cushion layer. The release film described in .
 (6) 前記第1離型層は、150℃における貯蔵弾性率E’が100MPa以上である上記(1)ないし(5)のいずれかに記載の離型フィルム。 (6) The release film according to any one of (1) to (5) above, wherein the first release layer has a storage elastic modulus E' at 150°C of 100 MPa or more.
 (7) 前記第1熱可塑性樹脂組成物は、ポリエステル系樹脂を主材料として含む上記(1)ないし(6)のいずれかに記載の離型フィルム。 (7) The release film according to any one of (1) to (6) above, wherein the first thermoplastic resin composition contains a polyester-based resin as a main material.
 (8) 前記クッション層は、その平均厚さが60μm以上200μm以下である上記(1)ないし(7)のいずれかに記載の離型フィルム。 (8) The release film according to any one of (1) to (7) above, wherein the cushion layer has an average thickness of 60 μm or more and 200 μm or less.
 (9) 前記第1離型層は、その平均厚さが5μm以上30μm以下である上記(1)ないし(8)のいずれかに記載の離型フィルム。 (9) The release film according to any one of (1) to (8) above, wherein the first release layer has an average thickness of 5 μm or more and 30 μm or less.
 (10) 前記第3熱可塑性樹脂組成物は、複数種の熱可塑性樹脂を含有し、前記熱可塑性樹脂の融点は、80℃未満である上記(1)ないし(9)のいずれかに記載の離型フィルム。 (10) The third thermoplastic resin composition according to any one of (1) to (9) above, which contains a plurality of thermoplastic resins, and the thermoplastic resin has a melting point of less than 80°C. release film.
 (11) 前記第3熱可塑性樹脂組成物は、前記熱可塑性樹脂として、ポリエステル系樹脂と、ポリオレフィン系樹脂とを含有する上記(10)に記載の離型フィルム。 (11) The release film according to (10) above, wherein the third thermoplastic resin composition contains a polyester-based resin and a polyolefin-based resin as the thermoplastic resins.
 (12) 当該離型フィルムは、前記クッション層の前記第1離型層と反対側に積層された、第2熱可塑性樹脂組成物からなる第2離型層を有する上記(1)ないし(11)のいずれかに記載の離型フィルム。 (12) The release film has a second release layer made of a second thermoplastic resin composition, which is laminated on the side opposite to the first release layer of the cushion layer. ) The release film according to any one of ).
 (13) 当該離型フィルムが、回路形成用である、上記(1)ないし(12)のいずれかに記載の離型フィルム。 (13) The release film according to any one of (1) to (12) above, which is for circuit formation.
 (14) 上記(1)ないし(13)のいずれかに記載の離型フィルムの前記第1離型層が対象物側になるように、
 前記対象物上に前記離型フィルムを配置する工程と、前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、を含み、前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される側の面が、半硬化状態の熱硬化性樹脂を含む材料によって形成されていることを特徴とする成型品の製造方法。
(14) so that the first release layer of the release film according to any one of (1) to (13) is on the object side,
The step of placing the release film on the object, and the step of subjecting the object on which the release film is placed to a hot press, wherein the step of placing the release film includes: A method for manufacturing a molded product, wherein the surface of the object on which the release film is arranged is made of a material containing a semi-cured thermosetting resin.
 本発明によれば、凹部に対して、優れた埋め込み性が発揮された離型フィルムとすることができる。 According to the present invention, it is possible to provide a release film exhibiting excellent embedding properties in concave portions.
 したがって、離型フィルムを、例えば、フレキシブル回路基板とカバーレイフィルムとを用いたフレキシブルプリント回路基板の形成に用いた場合には、フレキシブルプリント回路基板に形成される凹部に対して、離型フィルムを、優れた埋め込み性をもって埋め込むことができる。そのため、フレキシブルプリント回路基板に凹部が形成される際に、カバーレイフィルムが備える接着剤層から、形成される凹部内に、接着剤がしみ出るのを的確に抑制または防止することができる。 Therefore, when the release film is used, for example, to form a flexible printed circuit board using a flexible circuit board and a coverlay film, the release film is applied to the concave portion formed in the flexible printed circuit board. , can be embedded with excellent embedding properties. Therefore, when the concave portion is formed in the flexible printed circuit board, it is possible to accurately suppress or prevent the adhesive from oozing out from the adhesive layer of the coverlay film into the formed concave portion.
図1は、多段に積層した状態でフレキシブルプリント回路基板を製造する製造方法を説明するための縦断面図である。FIG. 1 is a vertical cross-sectional view for explaining a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state. 図2は、多段に積層した状態でフレキシブルプリント回路基板を製造する製造方法における各工程を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing each step in a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state. 図3は、本発明の離型フィルムの実施形態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing an embodiment of the release film of the present invention. 図4は、図3に示す離型フィルムのA部を部分的に拡大した部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view partially enlarging the A portion of the release film shown in FIG.
 以下、本発明の離型フィルムおよび成型品の製造方法を添付図面に示す好適実施形態に基づいて詳細に説明する。 The method for manufacturing the release film and molded product of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
 なお、以下では、本発明の離型フィルムを用いて、フレキシブルプリント回路基板を多段に製造する場合、すなわち、本発明の離型フィルムを回路形成用に用いる場合を一例に説明する。また、本発明の離型フィルムおよび成型品の製造方法を説明するのに先立って、まず、フレキシブルプリント回路基板を多段に製造する製造方法について説明する。 In the following, the case of manufacturing flexible printed circuit boards in multiple stages using the release film of the present invention, that is, the case of using the release film of the present invention for circuit formation will be described as an example. Also, before describing the method for manufacturing the release film and the molded product of the present invention, first, a method for manufacturing a flexible printed circuit board in multiple stages will be described.
 <フレキシブルプリント回路基板の製造方法>
 図1は、多段に積層した状態でフレキシブルプリント回路基板を製造する製造方法を説明するための縦断面図である。図2は、多段に積層した状態でフレキシブルプリント回路基板を製造する製造方法における各工程を示す縦断面図である。図3は、本発明の離型フィルムの実施形態を示す縦断面図である。図4は、図3に示す離型フィルムのA部を部分的に拡大した部分拡大縦断面図である。なお、以下では、説明の都合上、図1~図4中の上側を「上」または「上方」、下側を「下」または「下方」と言い、左側を「左」、右側を「右」と言う。
<Method for manufacturing flexible printed circuit board>
FIG. 1 is a vertical cross-sectional view for explaining a manufacturing method for manufacturing a flexible printed circuit board in a multi-layered state. FIG. 2 is a longitudinal sectional view showing each step in a manufacturing method for manufacturing a flexible printed circuit board in a state of being laminated in multiple stages. FIG. 3 is a longitudinal sectional view showing an embodiment of the release film of the present invention. FIG. 4 is a partially enlarged longitudinal sectional view partially enlarging the A portion of the release film shown in FIG. In the following, for convenience of explanation, the upper side in FIGS. ’ says.
 フレキシブルプリント回路基板200(以下、「FPC200」と言うこともある)を多段に製造する製造方法は、本実施形態では、それぞれがシート状をなす、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが、この順で重ね合わされた状態をなす積層体を、多段に積層する第1の工程と、多段に積層された積層体をそれぞれ加熱プレスすることで、FPC200において、フレキシブル回路基板210に対してカバーレイフィルム220(以下、「CLフィルム220」と言うこともある)を接合する第2の工程と、FPC200から離型フィルム10(10A、10B)を離型させて、フレキシブル回路基板210に対してCLフィルム220が接合されているFPC200を得る第3の工程とを有する。なお、このFPC200の製造方法に、本発明の成型品の製造方法が適用される。 In the present embodiment, a manufacturing method for manufacturing a flexible printed circuit board 200 (hereinafter sometimes referred to as “FPC 200”) in multiple stages includes glass cloth 300A, release film 10A, and FPC 200 each having a sheet shape. , a first step of stacking a laminate in which the release film 10B and the glass cloth 300B are superimposed in this order in multiple stages, and heat-pressing each of the multilayer laminates. Then, in the FPC 200, a second step of bonding the coverlay film 220 (hereinafter sometimes referred to as “CL film 220”) to the flexible circuit board 210, and the release film 10 (10A, 10B) from the FPC 200 is released from the mold to obtain the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210 . It should be noted that the method for manufacturing a molded product of the present invention is applied to the method for manufacturing this FPC 200 .
 以下、各工程について、順次説明する。
(第1の工程)
 まず、それぞれがシート状をなす、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが、この順で重ね合わされた状態をなす積層体を、多段に積層する(図1、図2(a)参照。)。なお、以下では、前記積層体を2段に積層する場合について説明する。
Each step will be described below in sequence.
(First step)
First, a laminated body in which the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, which are each in the form of a sheet, are superimposed in this order, is multi-layered. Laminate (see FIGS. 1 and 2(a)). In addition, below, the case where the said laminated body is laminated|stacked by 2 steps|paragraphs is demonstrated.
 (1-1)まず、3枚の平板状をなす加熱圧着板521を用意し、これらの厚さ方向に、2つの間隙が形成されるように配置する。 (1-1) First, three flat-plate-like thermocompression plates 521 are prepared and arranged so that two gaps are formed in their thickness direction.
 (1-2)次いで、2つの間隙に、それぞれ、シート状(フィルム状)をなす、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとを、上側から下側に向かって、この順で、重ね合わせた状態で配置する。なお、本工程(1-2)において、間隙に配置されるFPC200は、フレキシブル回路基板210とCLフィルム220とを重ね合わせることで積層された状態となってはいるが、フレキシブル回路基板210とCLフィルム220とは、CLフィルム220が備える接着剤層222を介して接合されていない。 (1-2) Next, the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B, which are in the form of a sheet (film), are placed in the two gaps, respectively, on the upper side. From top to bottom, in this order, place them in an overlapping state. In this step (1-2), the FPC 200 arranged in the gap is in a laminated state by overlapping the flexible circuit board 210 and the CL film 220, but the flexible circuit board 210 and the CL film 220 are stacked. It is not bonded to the film 220 via the adhesive layer 222 of the CL film 220 .
 これにより、図1に示すように、加熱圧着板521同士の間において、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが、この順で重ね合わされた状態をなす積層体が、2段に積層される。 As a result, as shown in FIG. 1, the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B are laminated in this order between the thermocompression plates 521. The stacked body in the folded state is stacked in two stages.
 なお、本工程(1-2)により、本発明の成型品の製造方法における、対象物(FPC200)上に離型フィルムを配置する工程が構成される。 Note that this step (1-2) constitutes the step of placing a release film on the object (FPC 200) in the method for producing a molded product of the present invention.
(第2の工程)
 次に、前記第1の工程を経ることで、多段に積層された積層体をそれぞれ加熱プレスすることで、FPC200において、フレキシブル回路基板210に対してCLフィルム220を接合する(図1、図2(b)参照。)。
(Second step)
Next, through the first step, the multi-layered laminates are each heated and pressed to bond the CL film 220 to the flexible circuit board 210 in the FPC 200 (FIGS. 1 and 2). (b)).
 (2-1)まず、加熱圧着板521に、ガラスクロス300(300A、300B)が接触した状態で、加熱圧着板521を加熱する。 (2-1) First, the thermocompression plate 521 is heated while the glass cloth 300 (300A, 300B) is in contact with the thermocompression plate 521 .
 これにより、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが重ね合わされた積層体が、加熱圧着板521からの熱が伝達することで加熱される。 As a result, the laminated body in which the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B are superimposed is heated by transferring heat from the thermocompression plate 521. .
 本工程(2-1)において、積層体すなわちFPC200を加熱する温度は、特に限定されないが、例えば、100℃以上250℃以下であることが好ましく、150℃以上200℃以下であることがより好ましい。 In this step (2-1), the temperature for heating the laminate, that is, the FPC 200 is not particularly limited, but for example, it is preferably 100° C. or higher and 250° C. or lower, and more preferably 150° C. or higher and 200° C. or lower. .
 また、前記積層体を加熱する時間は、特に限定されないが、40sec以上5000sec以下であることが好ましく、より好ましくは200sec以上4000sec以下に設定される。これにより、積層体における、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとをほぼ均一に加熱することができる。 Also, the time for heating the laminate is not particularly limited, but is preferably set to 40 sec or more and 5000 sec or less, more preferably 200 sec or more and 4000 sec or less. Thereby, the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B in the laminate can be heated substantially uniformly.
 (2-2)また、前記工程(2-1)における加熱圧着板521の加熱とほぼ同時に、上側に位置する加熱圧着板521と、下側に位置する加熱圧着板521とを、これらの厚さ方向に沿って接近させる(プレス成型法)。 (2-2) Almost simultaneously with the heating of the thermocompression-bonding plates 521 in the step (2-1), the upper thermocompression-bonding plate 521 and the lower thermocompression-bonding plate 521 are separated from each other by their thicknesses. approach along the longitudinal direction (press molding method).
 その結果、3枚の加熱圧着板521の間に形成された2つの空隙にそれぞれ配置された、ガラスクロス300Aと、離型フィルム10Aと、FPC200と、離型フィルム10Bと、ガラスクロス300Bとが重ね合わされた積層体において、ガラスクロス300A、300Bと、離型フィルム10A、10Bとを介して、FPC200が加圧される(図1、図2(b)参照)。 As a result, the glass cloth 300A, the release film 10A, the FPC 200, the release film 10B, and the glass cloth 300B arranged in the two gaps formed between the three thermocompression plates 521 are separated. In the superimposed laminate, the FPC 200 is pressed through the glass cloths 300A and 300B and the release films 10A and 10B (see FIGS. 1 and 2(b)).
 これにより、FPC200が加熱しつつ加圧されることから、FPC200において、重ね合わされているフレキシブル回路基板210とCLフィルム220とが、CLフィルム220が備える接着剤層222を介して接合される。換言すれば、カバーレイ221とフレキシブル回路基板210とが接着剤層222を介して接合される。また、FPC200の加熱・加圧の際、すなわち、カバーレイ221とフレキシブル回路基板210との接着剤層222を介した接合の際に、カバーレイ221に形成される凹部223内に離型フィルム10が埋入されることとなる。そのため、凹部223内において、接着剤層222に由来する接着剤がしみ出すのを抑制することができる(図2(b)参照)。 As a result, the FPC 200 is heated and pressurized, so that the flexible circuit board 210 and the CL film 220 that are overlaid on the FPC 200 are bonded via the adhesive layer 222 of the CL film 220 . In other words, the coverlay 221 and the flexible circuit board 210 are bonded via the adhesive layer 222 . Further, when the FPC 200 is heated and pressurized, that is, when the coverlay 221 and the flexible circuit board 210 are joined via the adhesive layer 222, the release film 10 is inserted into the concave portion 223 formed in the coverlay 221. will be embedded. Therefore, it is possible to suppress the seepage of the adhesive originating from the adhesive layer 222 into the recess 223 (see FIG. 2B).
 本工程(2-2)において、FPC200を加圧する圧力は、特に限定されないが、0.1MPa以上20.0MPa以下であることが好ましく、より好ましくは0.5MPa以上15.0MPa以下に設定される。 In this step (2-2), the pressure to pressurize the FPC 200 is not particularly limited, but is preferably 0.1 MPa or more and 20.0 MPa or less, more preferably 0.5 MPa or more and 15.0 MPa or less. .
 また、FPC200を加圧する時間は、特に限定されないが、20sec以上5000sec以下であることが好ましく、より好ましくは100sec以上4000sec以下に設定される。 Also, the time for which the FPC 200 is pressurized is not particularly limited, but is preferably set to 20 sec or more and 5000 sec or less, more preferably 100 sec or more and 4000 sec or less.
 FPC200を加圧する圧力および時間を、それぞれ、前記範囲内に設定することにより、カバーレイ221とフレキシブル回路基板210とを、接着剤層222を介して確実に接合することができる。 By setting the pressure and time for pressurizing the FPC 200 within the ranges described above, the coverlay 221 and the flexible circuit board 210 can be reliably bonded via the adhesive layer 222 .
 なお、本工程(2-2)により、本発明の成型品の製造方法における、離型フィルム10が配置された対象物(FPC200)に対し、加熱プレスを行う工程が構成される。また、カバーレイ221が、半硬化状態の熱硬化性樹脂を含む材料で構成される場合には、対象物(FPC200)の離型フィルム10が配置される側の面を、カバーレイ221が構成する。そして、このカバーレイ221の表面に、後述する第1離型層1側の表面が接するように離型フィルム10が重ねて用いられているため、離型フィルム10により、凹部223が形成されたカバーレイ221の形状を維持して、熱硬化性樹脂を硬化させ得ることから、フレキシブル回路基板210上に、カバーレイ221(成型品)を優れた精度で成型することができる。 It should be noted that this step (2-2) constitutes the step of hot pressing the object (FPC 200) on which the release film 10 is arranged in the method for manufacturing a molded product of the present invention. When the coverlay 221 is made of a material containing a semi-cured thermosetting resin, the coverlay 221 forms the surface of the object (FPC 200) on which the release film 10 is arranged. do. Since the release film 10 is overlaid on the surface of the coverlay 221 so that the surface on the first release layer 1 side, which will be described later, is in contact with the surface of the coverlay 221, the recess 223 is formed by the release film 10. Since the thermosetting resin can be cured while maintaining the shape of the coverlay 221, the coverlay 221 (molded product) can be molded on the flexible circuit board 210 with excellent accuracy.
 また、上記では、前記工程(2-1)におけるFPC200の加熱と、本工程(2-2)におけるFPC200の加圧とは、上記の通り、ほぼ同時に実施するのが好ましいが、工程(2-1)と工程(2-2)との順で実施することもできる。ただし、工程(2-1)と工程(2-2)とを、ほぼ同時に実施することで、第2の工程、ひいてはFPC200の製造に要する時間の短縮化を図ることができる。 Further, in the above, the heating of the FPC 200 in the step (2-1) and the pressurization of the FPC 200 in the main step (2-2) are preferably performed almost simultaneously as described above, but the step (2- 1) and step (2-2) can also be performed in order. However, by performing the steps (2-1) and (2-2) almost simultaneously, it is possible to shorten the time required for the second step and thus the manufacturing of the FPC 200 .
(第3の工程;工程(3))
 次に、FPC200から離型フィルム10(10A、10B)を離型させて、フレキシブル回路基板210に対してCLフィルム220が接合されているFPC200を得る(図2(c)参照。)。
(Third step; step (3))
Next, the release films 10 (10A, 10B) are released from the FPC 200 to obtain the FPC 200 in which the CL film 220 is bonded to the flexible circuit board 210 (see FIG. 2(c)).
 このFPC200から、離型フィルム10を離型させる離型法は、特に限定されないが、例えば、離型フィルムの一端を、手で把持した後に、90°以上180°以下の方向に引き剥がす方法が好ましく用いられる。 The release method for releasing the release film 10 from the FPC 200 is not particularly limited, but for example, a method of holding one end of the release film by hand and then peeling it off in a direction of 90° or more and 180° or less. It is preferably used.
 なお、離型フィルム10のFPC200からの剥離の際に、加熱圧着板521と離型フィルム10との間で優れた離型性を示す場合には、加熱圧着板521と離型フィルム10との間におけるガラスクロス300の配置を省略してもよい。 When releasing the release film 10 from the FPC 200, if excellent releasability is exhibited between the thermocompression plate 521 and the release film 10, the relationship between the thermocompression plate 521 and the release film 10 Arrangement of the glass cloth 300 in between may be omitted.
 以上のような工程により、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法が構成される。 The manufacturing method of the flexible printed circuit board 200 using the release film 10 is configured by the steps described above.
 そして、このフレキシブルプリント回路基板200の製造に適用される離型フィルム10として、本発明の離型フィルムが用いられる。すなわち、離型フィルム10として、第1熱可塑性樹脂組成物からなる第1離型層1と、第3熱可塑性樹脂組成物からなるクッション層3と、第2熱可塑性樹脂組成物からなる第2離型層2とを有し、第1離型層1とクッション層3と第2離型層2とがこの順で積層され、離型フィルム10の80℃における複素せん断弾性率が1.00MPa以下である離型フィルムが用いられる。 The release film of the present invention is used as the release film 10 applied to manufacture this flexible printed circuit board 200 . That is, as the release film 10, the first release layer 1 made of the first thermoplastic resin composition, the cushion layer 3 made of the third thermoplastic resin composition, and the second release layer 3 made of the second thermoplastic resin composition The first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order, and the complex shear elastic modulus of the release film 10 at 80°C is 1.00 MPa. The following release films are used.
 ここで、前述したように、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法では、離型フィルム10の凹部223に対する埋め込み性と、フレキシブルプリント回路基板200からの離型性との両立が図られることが求められる。 Here, as described above, in the method for manufacturing the flexible printed circuit board 200 using the release film 10, compatibility between embedding of the release film 10 in the concave portion 223 and releasability from the flexible printed circuit board 200 is achieved. is required.
 しかしながら、特に、フレキシブルプリント回路基板200に形成された凹部223に対する、離型フィルム10の埋め込み性を考慮した場合、凹部223内における接着剤層222に由来する接着剤のしみ出しを抑制すると言う観点からは、前記工程(2-2)において、凹部223に対してより優れた埋め込み性を発揮する離型フィルム10の開発が求められているのが実情であった。 However, especially when considering the embedding property of the release film 10 in the concave portion 223 formed in the flexible printed circuit board 200, the viewpoint of suppressing the seepage of the adhesive originating from the adhesive layer 222 in the concave portion 223. Therefore, in the process (2-2), the development of a release film 10 exhibiting superior embedding properties in the recesses 223 is actually required.
 このような実情に対応して、本発明では、離型フィルム10として、その80℃における複素せん断弾性率が1.00MPa以下である離型フィルムが選択される。これにより、フレキシブルプリント回路基板200に形成された凹部223に対する、離型フィルム10のより優れた埋め込み性を、離型フィルム10に発揮させることで、凹部223内における接着剤層222に由来する接着剤のしみ出しを抑制させている。 In response to such circumstances, in the present invention, a release film having a complex shear elastic modulus of 1.00 MPa or less at 80° C. is selected as the release film 10 . As a result, the release film 10 exhibits excellent embedding properties of the release film 10 in the recesses 223 formed in the flexible printed circuit board 200 , so that adhesion derived from the adhesive layer 222 in the recesses 223 is achieved. It suppresses the seepage of the agent.
 以下、本発明の離型フィルムが適用された離型フィルム10について説明する。
 <離型フィルム10>
 図3に示すように、本実施形態において、離型フィルム10は、第1離型層1と、クッション層3と、第2離型層2とがこの順で積層された積層体で構成されており、FPC200が備えるCLフィルム220に対して、第1離型層1側の表面が接するように重ねて用いられる。
A release film 10 to which the release film of the present invention is applied will be described below.
<Release film 10>
As shown in FIG. 3, in this embodiment, the release film 10 is composed of a laminate in which a first release layer 1, a cushion layer 3, and a second release layer 2 are laminated in this order. The CL film 220 included in the FPC 200 is overlapped so that the surface on the first release layer 1 side is in contact with the CL film 220 .
 この離型フィルム10として、前述の通り、本発明では、その80℃における複素せん断弾性率が1.00MPa以下である離型フィルムが選択される。これにより、より優れた追従性を備える離型フィルム10を得ることができる。 As the release film 10, as described above, in the present invention, a release film having a complex shear elastic modulus of 1.00 MPa or less at 80°C is selected. This makes it possible to obtain the release film 10 having superior conformability.
 離型フィルム10は、より優れた追従性を備えることで、前述した、離型フィルム10を用いたフレキシブルプリント回路基板200の前記工程(2-2)において、重ね合わされているフレキシブル回路基板210とCLフィルム220とを、接着剤層222を介して接合する際に、フレキシブル回路基板210とCLフィルム220とで形成される凹部223の形状に、第1離型層1が追従するように、この第1離型層1を押し込む層であり、クッションとしての機能を発揮する。また、離型フィルム10がクッション層3を備えることで、離型フィルム10により、CLフィルム220をフレキシブル回路基板210に対して、均一な圧力で押し付けることができる。 Since the release film 10 has better followability, in the step (2-2) of the flexible printed circuit board 200 using the release film 10 described above, the flexible circuit board 210 and the superimposed flexible circuit board 210 When the CL film 220 is bonded via the adhesive layer 222, the first release layer 1 follows the shape of the concave portion 223 formed by the flexible circuit board 210 and the CL film 220. It is a layer into which the first release layer 1 is pushed, and functions as a cushion. In addition, since the release film 10 includes the cushion layer 3, the release film 10 can press the CL film 220 against the flexible circuit board 210 with a uniform pressure.
 特に、上記のように、前記工程(2-1)におけるFPC200の加熱と、前記工程(2-2)におけるFPC200の加圧とを、ほぼ同時に実施する場合、前記工程(2-1)におけるFPC200の加熱は、前記工程(2-2)におけるFPC200の加圧と比較して、その応答性が低い。すなわち、FPC200の加熱と加圧とを、ほぼ同時に実施した場合、FPC200に対して、目的とする圧力を比較的早期に付与し得るのに対して、FPC200を目的とする加熱温度に到達させるには、比較的時間を要する。 In particular, as described above, when the heating of the FPC 200 in the step (2-1) and the pressurization of the FPC 200 in the step (2-2) are performed substantially simultaneously, the FPC 200 in the step (2-1) is less responsive than the pressurization of the FPC 200 in step (2-2). That is, when the FPC 200 is heated and pressurized almost simultaneously, the target pressure can be applied to the FPC 200 relatively early. is relatively time consuming.
 したがって、FPC200が目的とする加熱温度で加熱されるのに先立って、FPC200に対して、目的とする圧力が付与されることとなる。そのため、前記工程(2-1)における、FPC200の加熱温度を考慮して、例えば、加熱温度の好ましい温度範囲である100℃以上250℃以下の範囲内における離型フィルム10の弾性率を規定したとしても、離型フィルム10を、優れた埋め込み性をもって凹部223に対して埋め込むことができず、凹部223内における接着剤層222に由来する接着剤のしみ出しを十分に抑制することが従来ではできていなかった。 Therefore, the target pressure is applied to the FPC 200 before the FPC 200 is heated at the target heating temperature. Therefore, in consideration of the heating temperature of the FPC 200 in the step (2-1), for example, the elastic modulus of the release film 10 within the range of 100 ° C. or higher and 250 ° C. or lower, which is a preferable temperature range of the heating temperature. However, the release film 10 cannot be embedded in the recess 223 with excellent embedding properties, and it has been conventionally difficult to sufficiently suppress the exudation of the adhesive derived from the adhesive layer 222 in the recess 223. I wasn't able to.
 これに対して、本発明では、FPC200に対して、目的とする圧力が付与された時点では、FPC200の加熱温度が目的とする温度にまで到達していないことを考慮して、前記の通り、80℃における離型フィルム10の複素せん断弾性率を1.00MPa以下に設定している。そのため、離型フィルム10としての機能を、より確実に発揮させて離型フィルム10を、優れた埋め込み性をもって凹部223に対して埋め込むことができる。したがって、凹部223内における接着剤層222に由来する接着剤のしみ出しを的確に抑制または防止することができる。 On the other hand, in the present invention, considering that the heating temperature of the FPC 200 has not reached the target temperature when the target pressure is applied to the FPC 200, as described above, The complex shear elastic modulus of the release film 10 at 80° C. is set to 1.00 MPa or less. Therefore, the function of the release film 10 can be exhibited more reliably, and the release film 10 can be embedded in the concave portion 223 with excellent embedding properties. Therefore, it is possible to appropriately suppress or prevent the seepage of the adhesive originating from the adhesive layer 222 in the concave portion 223 .
 以下、離型フィルム10を構成する各層について説明する。
<クッション層3>
 まず、クッション層3について説明する。このクッション層3は、第1離型層1と第2離型層2との間の中間層として配置されている。
Each layer constituting the release film 10 will be described below.
<Cushion layer 3>
First, the cushion layer 3 will be explained. This cushion layer 3 is arranged as an intermediate layer between the first release layer 1 and the second release layer 2 .
 このクッション層3は、第3熱可塑性樹脂組成物からなる。この第3熱可塑性樹脂組成物は、離型フィルム10に前記機能を付与すること、すなわち、80℃における離型フィルム10の複素せん断弾性率を前記上限値以下に設定することを目的に、本発明では、複数種の熱可塑性樹脂を含有していることが好ましい。 The cushion layer 3 is made of a third thermoplastic resin composition. This third thermoplastic resin composition provides the release film 10 with the above function, that is, for the purpose of setting the complex shear elastic modulus of the release film 10 at 80° C. to the above upper limit or less. In the invention, it is preferable to contain a plurality of types of thermoplastic resins.
 複数種の熱可塑性樹脂の組み合わせとしては、例えば、ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせ、ポリオレフィン系樹脂同士の組み合わせ、および、ポリアミド系樹脂とポリオレフィン系樹脂との組み合わせ等が挙げられるが、中でも、ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせを選択することで、離型フィルム10の80℃における複素せん断弾性率を比較的容易に前記上限値以下に設定することができる。 Combinations of a plurality of types of thermoplastic resins include, for example, combinations of polyester resins and polyolefin resins, combinations of polyolefin resins, and combinations of polyamide resins and polyolefin resins. By selecting a combination of polyester-based resin and polyolefin-based resin, the complex shear elastic modulus at 80° C. of the release film 10 can be relatively easily set to the upper limit value or less.
 ポリエステル系樹脂としては、特に限定されないが、例えば、例えば、ポリエチレンテレフタレート(PET)、ポリシクロヘキサンテレフタレート(PCT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリシクロヘキサンジメチレンテレフタレート、ポリプロピレンテレフタレート等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。なお、これらのうちの2種以上を組み合わせて用いる場合、このポリエステル系樹脂は、これらのブレンド体であってもよいし、共重合体であってもよい。これらの中でも、ポリエステル系樹脂は、特に、ポリブチレンテレフタレートであるのが好ましい。これにより、クッション層3に優れた凹部223に対する追従性を付与することができる。また、第1離型層1を構成する第1熱可塑性樹脂組成物に、ポリブチレンテレフタレートが含まれる場合、クッション層3は、第1離型層1に対して優れた密着性を発揮する。 The polyester resin is not particularly limited, but for example, polyethylene terephthalate (PET), polycyclohexane terephthalate (PCT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycyclohexanedimethylene terephthalate, polypropylene terephthalate etc., and one or more of these may be used in combination. When two or more of these are used in combination, the polyester resin may be a blend or a copolymer thereof. Among these, the polyester-based resin is particularly preferably polybutylene terephthalate. As a result, the cushion layer 3 can be provided with excellent conformability to the concave portion 223 . Moreover, when the first thermoplastic resin composition constituting the first release layer 1 contains polybutylene terephthalate, the cushion layer 3 exhibits excellent adhesion to the first release layer 1 .
 また、ポリオレフィン系樹脂としては、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレンのようなポリエチレン、ポリプロプレン等のα-オレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、オクテン等を重合体成分として有する、エチレンとヘキセンとの共重合体、エチレンとオクテンとの共重合体、α-オレフィンと(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体のようなα-オレフィン系共重合体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、エチレンと酢酸ビニルとの共重合体(エチレン酢酸ビニル共重合体)およびエチレンと(メタ)アクリル酸との共重合体(エチレン(メタ)アクリル酸共重合体)のうちの少なくとも1種であるのが好ましい。これにより、クッション層3に優れた凹部223に対する追従性を付与することができる。 The polyolefin resin is not particularly limited, and examples include polyethylene such as low-density polyethylene and high-density polyethylene, α-olefin polymers such as polypropylene, ethylene, propylene, butene, pentene, hexene, octene, and the like. as a polymer component, copolymers of ethylene and hexene, copolymers of ethylene and octene, copolymers of α-olefins and (meth)acrylic acid esters, copolymers of ethylene and vinyl acetate , α-olefin copolymers such as copolymers of ethylene and (meth)acrylic acid, and the like, and these may be used alone or in combination of two or more. Among these, at least one of a copolymer of ethylene and vinyl acetate (ethylene vinyl acetate copolymer) and a copolymer of ethylene and (meth)acrylic acid (ethylene (meth)acrylic acid copolymer) Seeds are preferred. As a result, the cushion layer 3 can be provided with excellent conformability to the concave portion 223 .
 ポリエステル系樹脂とポリオレフィン系樹脂との組み合わせとする場合、この第3熱可塑性樹脂組成物における、ポリエステル系樹脂の含有量は、5重量%以上であることが好ましく、8重量%以上20重量%以下であることがより好ましい。これにより、離型フィルム10に優れた凹部223に対する追従性を付与することができる。 When a combination of a polyester resin and a polyolefin resin is used, the content of the polyester resin in the third thermoplastic resin composition is preferably 5 wt% or more, and 8 wt% or more and 20 wt% or less. is more preferable. As a result, it is possible to provide the release film 10 with excellent conformability to the concave portions 223 .
 また、第3熱可塑性樹脂組成物に含まれる熱可塑性樹脂は、その融点が80℃未満であることが好ましく、40℃以上80℃未満であることがより好ましい。これにより、離型フィルム10の80℃における複素せん断弾性率を比較的容易に前記上限値以下に設定することができる。 The thermoplastic resin contained in the third thermoplastic resin composition preferably has a melting point of less than 80°C, more preferably 40°C or more and less than 80°C. As a result, the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
 また、クッション層3を構成する第3熱可塑性樹脂組成物には、前述した樹脂材料の他に、結晶核剤、酸化防止剤、スリップ剤、アンチブロッキング剤、帯電防止剤、着色剤、安定剤のような添加剤が含まれていてもよい。 In addition to the resin materials described above, the third thermoplastic resin composition constituting the cushion layer 3 contains a crystal nucleating agent, an antioxidant, a slip agent, an antiblocking agent, an antistatic agent, a coloring agent, and a stabilizer. It may contain additives such as
 このクッション層3の150℃における貯蔵弾性率E’は、9.0MPa以上であるのが好ましく、10MPa以上50MPa以下であるのがより好ましく、10MPa以上25MPa以下であるのがさらに好ましい。クッション層3の150℃における貯蔵弾性率E’を、上記のように設定することで、前記工程(2-2)における、凹部223に対する離型フィルム10の埋め込みの際に、離型フィルム10の縁部から、クッション層3の一部がはみ出し、FPC200に付着するのを、的確に抑制または防止することができる。したがって、FPC200の汚染を、的確に抑制または防止することができる。また、前記工程(3)における、離型フィルム10の縁部を把持した離型フィルム10の引き剥がしを、容易に行うことが可能となる。 The storage elastic modulus E' of the cushion layer 3 at 150°C is preferably 9.0 MPa or more, more preferably 10 MPa or more and 50 MPa or less, and even more preferably 10 MPa or more and 25 MPa or less. By setting the storage elastic modulus E′ of the cushion layer 3 at 150° C. as described above, when the release film 10 is embedded in the concave portion 223 in the step (2-2), the release film 10 is A portion of the cushion layer 3 protruding from the edge portion and adhering to the FPC 200 can be accurately suppressed or prevented. Therefore, contamination of the FPC 200 can be appropriately suppressed or prevented. In addition, it is possible to easily peel off the release film 10 by gripping the edge of the release film 10 in the step (3).
 なお、クッション層3の150℃における貯蔵弾性率E’は、例えば、JIS K7244-4に準拠して、幅4mm、長さ20mmのクッション層3を用意し、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定することで得ることができる。 In addition, the storage elastic modulus E' of the cushion layer 3 at 150 ° C. is measured, for example, by preparing a cushion layer 3 with a width of 4 mm and a length of 20 mm in accordance with JIS K7244-4, using a dynamic viscoelasticity measuring device (Hitachi High Tech Science Co., Ltd., "DMA7100"), it can be obtained by measuring at a tension mode, a frequency of 1 Hz, and a heating rate of 5°C/min.
 さらに、このクッション層3は、その平均厚さTkが60μm以上200μm以下であることが好ましく、より好ましくは70μm以上180μm以下に設定される。これにより、離型フィルム10の80℃における複素せん断弾性率を、前記上限値以下に設定することにより得られる効果を、より顕著に発揮させることができる。 Furthermore, the cushion layer 3 preferably has an average thickness Tk of 60 μm or more and 200 μm or less, more preferably 70 μm or more and 180 μm or less. Thereby, the effect obtained by setting the complex shear elastic modulus of the release film 10 at 80° C. to the upper limit value or less can be exhibited more remarkably.
 <第1離型層1>
 次に、第1離型層1について説明する。この第1離型層1は、クッション層3の一方の面側に積層されている。
<First release layer 1>
Next, the first release layer 1 is described. The first release layer 1 is laminated on one side of the cushion layer 3 .
 第1離型層1は、可撓性を備え、前述した、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法において、FPC200が備えるCLフィルム220に対して、この第1離型層1が接触するように、離型フィルム10が重ね合わされる。そして、この製造方法の前記工程(2-2)において、重ね合わされているフレキシブル回路基板210とCLフィルム220とを、接着剤層222を介して接合する際に、フレキシブル回路基板210とCLフィルム220とで形成される凹部223の形状に追従して、押し込まれる層であり、離型フィルム10が破断するのを防止する保護(緩衝)材として機能する。さらに、第1離型層1は、前記工程(3)において、CLフィルム220(FPC200)からの離型フィルム10の優れた離型性を発揮させるための接触層としての機能を有している。 The first release layer 1 is flexible, and in the method for manufacturing the flexible printed circuit board 200 using the release film 10 described above, the first release layer Release films 10 are superimposed so that 1 is in contact. Then, in the step (2-2) of this manufacturing method, when the flexible circuit board 210 and the CL film 220 that are overlaid are joined via the adhesive layer 222, the flexible circuit board 210 and the CL film 220 are bonded together. It is a layer that follows the shape of the concave portion 223 formed by and is pushed in, and functions as a protective (buffer) material that prevents the release film 10 from breaking. Furthermore, the first release layer 1 functions as a contact layer for exhibiting excellent releasability of the release film 10 from the CL film 220 (FPC 200) in the step (3). .
 したがって、離型フィルム10を、前記工程(2-2)において、FPC200に形成された凹部223に、接着剤層222に由来する接着剤がしみ出すのを的確に抑制または防止することができる。また、前記工程(2-2)における、フレキシブル回路基板210とCLフィルム220とが、CLフィルム220が備える接着剤層222を介して接合されたFPC200の形成の後に、前記工程(3)において、FPC200から離型フィルム10を剥離させる際に、FPC200に、伸びおよび破断が生じるのを的確に抑制または防止することができる。また、クッション層3を構成する第3熱可塑性樹脂組成物に、ポリエステル系樹脂が含まれる場合、第1離型層1に、クッション層3に対して優れた密着性を発揮させることができる。 Therefore, the release film 10 can accurately suppress or prevent the adhesive originating from the adhesive layer 222 from seeping into the concave portions 223 formed in the FPC 200 in the step (2-2). Further, after forming the FPC 200 in which the flexible circuit board 210 and the CL film 220 are bonded via the adhesive layer 222 provided in the CL film 220 in the step (2-2), in the step (3), When peeling the release film 10 from the FPC 200, it is possible to precisely suppress or prevent the FPC 200 from stretching and breaking. Moreover, when the third thermoplastic resin composition constituting the cushion layer 3 contains a polyester-based resin, the first release layer 1 can exhibit excellent adhesion to the cushion layer 3 .
 第1離型層1は、第1熱可塑性樹脂組成物からなる。また、この第1熱可塑性樹脂組成物は、第1離型層1の150℃における貯蔵弾性率E’を100MPa以上に設定し得る組成物で好ましくは構成され、例えば、主としてポリエステル系樹脂を含有することが好ましい。これにより、前記貯蔵弾性率E’を比較的容易に100MPa以上に設定し得るとともに、第1離型層1に、前述した機能を確実に付与することができる。さらに、離型フィルム10に比較的容易に前記機能を付与すること、すなわち、80℃における離型フィルム10の複素せん断弾性率を比較的容易に前記上限値以下に設定することができる。 The first release layer 1 is made of a first thermoplastic resin composition. In addition, the first thermoplastic resin composition is preferably composed of a composition capable of setting the storage elastic modulus E′ of the first release layer 1 at 150° C. to 100 MPa or more, and for example, mainly contains a polyester-based resin. preferably. As a result, the storage elastic modulus E′ can be relatively easily set to 100 MPa or more, and the functions described above can be reliably imparted to the first release layer 1 . Furthermore, the release film 10 can be imparted with the above functions relatively easily, that is, the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
 また、ポリエステル系樹脂としては、特に限定されないが、例えば、前述した第3熱可塑性樹脂組成物で挙げたのと同様の樹脂を用いることができ、中でも、特に、ポリブチレンテレフタレート(PBT)であるのが好ましい。これにより、ポリエステル系樹脂を用いることにより得られる効果をより顕著に発揮させることができる。また、クッション層3を構成する第3熱可塑性樹脂組成物に、ポリブチレンテレフタレートが含まれる場合、クッション層3に対して優れた密着性を発揮する第1離型層1とし得る。 The polyester-based resin is not particularly limited, but for example, the same resins as those listed in the third thermoplastic resin composition can be used, and among them, polybutylene terephthalate (PBT) is particularly preferred. is preferred. Thereby, the effect obtained by using the polyester-based resin can be exhibited more remarkably. Moreover, when the third thermoplastic resin composition constituting the cushion layer 3 contains polybutylene terephthalate, the first release layer 1 can exhibit excellent adhesion to the cushion layer 3 .
 なお、第1熱可塑性樹脂組成物は、主としてポリエステル系樹脂で構成される場合、ポリエステル系樹脂以外の熱可塑性樹脂が含まれていてもよく、この熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチル1-ペンテンのようなポリオレフィン系樹脂、シンジオタクチックポリスチレンのようなポリスチレン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 In addition, when the first thermoplastic resin composition is mainly composed of a polyester resin, it may contain a thermoplastic resin other than the polyester resin. Examples of the thermoplastic resin include polyethylene, polypropylene, Polyolefin-based resins such as poly-4-methyl-1-pentene, polystyrene-based resins such as syndiotactic polystyrene, and the like can be mentioned, and one or more of these can be used in combination.
 また、第1熱可塑性樹脂組成物は、前述した熱可塑性樹脂の他に、さらに、無機粒子および有機粒子のうちの少なくとも1種を含んでいてもよい。 In addition, the first thermoplastic resin composition may further contain at least one of inorganic particles and organic particles in addition to the thermoplastic resins described above.
 無機粒子としては、特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ホウ酸アルミニウムウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物、Eガラス、Dガラス、Sガラス等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of inorganic particles include, but are not limited to, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whiskers, Boron nitride, crystalline silica, amorphous silica, antimony oxide, E glass, D glass, S glass, etc., may be mentioned, and one or more of these may be used in combination.
 また、有機粒子としては、特に限定されないが、例えば、ポリスチレン粒子、アクリル粒子、ポリイミド粒子、ポリエステル粒子、シリコーン粒子、ポリプロピレン粒子、ポリエチレン粒子、フッ素樹脂粒子およびコアシェル粒子等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The organic particles are not particularly limited, but include, for example, polystyrene particles, acrylic particles, polyimide particles, polyester particles, silicone particles, polypropylene particles, polyethylene particles, fluororesin particles and core-shell particles. It can be used alone or in combination of two or more.
 さらに、無機粒子および有機粒子は、その平均粒子径が3μm以上20μm以下であるのが好ましく、5μm以上20μm以下であるのがより好ましい。これにより、第1熱可塑性樹脂組成物中に、無機粒子および有機粒子のうちの少なくとも一方が含まれる場合に、第1離型層1のクッション層3と反対側の表面における表面粗さを、後述する範囲内に比較的容易に設定することができる。 Furthermore, the inorganic particles and the organic particles preferably have an average particle size of 3 µm or more and 20 µm or less, more preferably 5 µm or more and 20 µm or less. As a result, when at least one of inorganic particles and organic particles is contained in the first thermoplastic resin composition, the surface roughness of the surface of the first release layer 1 opposite to the cushion layer 3 is It can be relatively easily set within the range described later.
 第1離型層1は、その表面に凹凸形状を有する場合、前記表面における10点平均粗さ(Rz)が0.5μm以上3.6μm以下であることが好ましく、1.0μm以上3.5μm以下であることがより好ましい。これにより、離型フィルム10を、FPC200(フレキシブル回路基板210)から離型させる際に、この離型を優れた離型性をもって実施することができる。なお、前記10点平均粗さ(Rz)は、JIS B 0601-1994に準拠して測定することができる。 When the first release layer 1 has an uneven shape on its surface, the 10-point average roughness (Rz) on the surface is preferably 0.5 μm or more and 3.6 μm or less, and 1.0 μm or more and 3.5 μm. The following are more preferable. As a result, when the release film 10 is released from the FPC 200 (flexible circuit board 210), the release can be performed with excellent releasability. The 10-point average roughness (Rz) can be measured according to JIS B 0601-1994.
 かかる構成をなす第1離型層1は、その150℃における貯蔵弾性率E’が100MPa以上であるのが好ましく、100MPa以上1000MPa以下であるのがより好ましく、100MPa以上200MPa以下であるのがさらに好ましい。これにより、第1離型層1に、前述した機能を確実に付与することができる。 The first release layer 1 having such a structure preferably has a storage modulus E′ at 150° C. of 100 MPa or more, more preferably 100 MPa or more and 1000 MPa or less, and further preferably 100 MPa or more and 200 MPa or less. preferable. Thereby, the function mentioned above can be provided to the 1st release layer 1 reliably.
 なお、第1離型層1の150℃における貯蔵弾性率E’は、JIS K7244-4に準拠して、幅4mm、長さ20mmの第1離型層1を用意し、粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定することで得ることができる。 In addition, the storage elastic modulus E' of the first release layer 1 at 150°C was measured by preparing the first release layer 1 having a width of 4 mm and a length of 20 mm in accordance with JIS K7244-4. Hitachi High-Tech Science Co., Ltd., "DMA7100") can be obtained by measuring at a tension mode, a frequency of 1 Hz, and a heating rate of 5°C/min.
 また、この第1離型層1は、その平均厚さT1が好ましくは5μm以上30μm以下に設定され、より好ましくは6μm以上25μm以下に設定される。これにより、第1離型層1の平均厚さが適切な範囲内に設定されるため、第1離型層1に、前述した機能をより確実に付与することができる。 In addition, the average thickness T1 of the first release layer 1 is preferably set to 5 μm or more and 30 μm or less, and more preferably set to 6 μm or more and 25 μm or less. As a result, the average thickness of the first release layer 1 is set within an appropriate range, so that the first release layer 1 can be more reliably provided with the functions described above.
 なお、第1離型層1の厚さは、上記の通り、第1離型層1のクッション層3と反対側の表面が凹凸形状を有する場合、凸部では凸部を含む位置、また、凹部では凹部を含む位置で、それぞれ、その厚さを測定することとする。 As described above, when the surface of the first release layer 1 on the side opposite to the cushion layer 3 has an uneven shape, the thickness of the first release layer 1 is the position including the protrusions, and The thickness of each recess is measured at a position including the recess.
 また、第1離型層1を構成する第1熱可塑性樹脂組成物には、前述した樹脂材料、無機粒子、有機粒子の他に、前記第3熱可塑性樹脂組成物で挙げたのと同様の添加剤が含まれていてもよい。 In addition, the first thermoplastic resin composition constituting the first release layer 1 may contain, in addition to the above-described resin material, inorganic particles, and organic particles, the same materials as those listed for the third thermoplastic resin composition. Additives may be included.
 <第2離型層2>
 次に、第2離型層2について説明する。この第2離型層2は、クッション層3の他方の面側、すなわち、クッション層3の第1離型層1と反対の面側に積層されている。
<Second release layer 2>
Next, the second release layer 2 is described. The second release layer 2 is laminated on the other side of the cushion layer 3 , that is, on the side of the cushion layer 3 opposite to the first release layer 1 .
 第2離型層2は、可撓性を備え、前述した、離型フィルム10を用いたフレキシブルプリント回路基板200の製造方法において、FPC200が備えるCLフィルム220に対して、第1離型層1が接触するように、離型フィルム10が重ね合わされ、そして、この製造方法の前記工程(2-2)において、重ね合わされているフレキシブル回路基板210とCLフィルム220とを、接着剤層222を介して接合する際に、加熱圧着板521からの力を、クッション層3に伝達する層として機能する。さらに、第2離型層2は、前記工程(3)において、ガラスクロス300と離型フィルム10との間で優れた離型性を発揮させるための接触層としての機能を有している。 The second release layer 2 has flexibility. are in contact with each other, and in the step (2-2) of this manufacturing method, the laminated flexible circuit board 210 and the CL film 220 are bonded together via an adhesive layer 222. It functions as a layer that transmits the force from the thermocompression plate 521 to the cushion layer 3 when joining by pressing. Furthermore, the second release layer 2 functions as a contact layer for exhibiting excellent release properties between the glass cloth 300 and the release film 10 in the step (3).
 第2離型層2は、第2熱可塑性樹脂組成物からなり、この第2熱可塑性樹脂組成物は、第2離型層2の150℃における貯蔵弾性率E’を100MPa以上に設定し得る樹脂が好ましく選択され、具体的には、前記第1熱可塑性樹脂組成物と同様に、主としてポリエステル系樹脂を含有することが好ましい。これにより、前記貯蔵弾性率E’を比較的容易に100MPa以上に設定することができるとともに、第2離型層2に、前述した機能を確実に付与することができる。さらに、離型フィルム10に比較的容易に前記機能を付与すること、すなわち、80℃における離型フィルム10の複素せん断弾性率を比較的容易に前記上限値以下に設定することができる。 The second release layer 2 is made of a second thermoplastic resin composition, and the second thermoplastic resin composition can set the storage elastic modulus E′ of the second release layer 2 at 150° C. to 100 MPa or more. A resin is preferably selected, and specifically, it preferably contains mainly a polyester-based resin as in the first thermoplastic resin composition. As a result, the storage elastic modulus E′ can be relatively easily set to 100 MPa or more, and the second release layer 2 can be reliably provided with the functions described above. Furthermore, the release film 10 can be imparted with the above functions relatively easily, that is, the complex shear elastic modulus of the release film 10 at 80° C. can be relatively easily set to the upper limit value or less.
 また、ポリエステル系樹脂としては、特に限定されないが、例えば、前述した第3熱可塑性樹脂組成物で挙げたのと同様の樹脂を用いることができ、中でも、特に、ポリブチレンテレフタレート(PBT)であるのが好ましい。これにより、ポリエステル系樹脂を用いることにより得られる効果をより顕著に発揮させることができる。 The polyester-based resin is not particularly limited, but for example, the same resins as those listed in the third thermoplastic resin composition can be used, and among them, polybutylene terephthalate (PBT) is particularly preferred. is preferred. Thereby, the effect obtained by using the polyester-based resin can be exhibited more remarkably.
 なお、第2熱可塑性樹脂組成物は、主としてポリエステル系樹脂で構成される場合、ポリエステル系樹脂以外の熱可塑性樹脂が含まれていてもよく、この熱可塑性樹脂としては、前記第1熱可塑性樹脂組成物で挙げたのと同様の樹脂を用いることができる。 In addition, when the second thermoplastic resin composition is mainly composed of a polyester resin, it may contain a thermoplastic resin other than the polyester resin, and the thermoplastic resin is the first thermoplastic resin. Resins similar to those listed in the composition can be used.
 また、第2熱可塑性樹脂組成物は、前述した熱可塑性樹脂の他に、さらに、無機粒子および有機粒子のうちの少なくとも1種を含んでいてもよい。 In addition, the second thermoplastic resin composition may further contain at least one of inorganic particles and organic particles in addition to the thermoplastic resins described above.
 無機粒子および有機粒子としては、特に限定されないが、前記第1熱可塑性樹脂組成物で挙げたのと同様の粒子を用いることができる。 The inorganic particles and organic particles are not particularly limited, but the same particles as those mentioned in the first thermoplastic resin composition can be used.
 かかる構成をなす第2離型層2は、その150℃における貯蔵弾性率E’が100MPa以上であるのが好ましく、100MPa以上1000MPa以下であるのがより好ましい。これにより、第2離型層2に、前述した機能を確実に付与することができる。 The second release layer 2 having such a structure preferably has a storage modulus E' at 150°C of 100 MPa or more, more preferably 100 MPa or more and 1000 MPa or less. Thereby, the function mentioned above can be provided to the 2nd release layer 2 reliably.
 また、この第2離型層2は、その平均厚さT2が好ましくは5μm以上30μm以下に設定され、より好ましくは6μm以上25μm以下に設定される。これにより、第2離型層2に、前述した機能をより確実に付与することができる。 In addition, the second release layer 2 has an average thickness T2 of preferably 5 μm or more and 30 μm or less, more preferably 6 μm or more and 25 μm or less. Thereby, the function mentioned above can be provided to the 2nd release layer 2 more reliably.
 さらに、第2離型層2を構成する第2熱可塑性樹脂組成物には、前述した樹脂材料、無機粒子、有機粒子の他に、前記第3熱可塑性樹脂組成物で挙げたのと同様の添加剤が含まれていてもよい。 Furthermore, the second thermoplastic resin composition that constitutes the second release layer 2 contains the resin materials, inorganic particles, and organic particles described above, as well as the same as those listed for the third thermoplastic resin composition. Additives may be included.
 また、第1離型層1と第2離型層2とにおいて、第1熱可塑性樹脂組成物と第2熱可塑性樹脂組成物とは、同一であっても異なっていても良いが、代替性を有すると言う観点からは、同一もしくは同質であることが好ましい。さらに、第1離型層1と第2離型層2とにおいて、その平均厚さは、同一であっても異なっていてもよい。 In addition, in the first release layer 1 and the second release layer 2, the first thermoplastic resin composition and the second thermoplastic resin composition may be the same or different, but substitutability are preferably the same or homogeneous from the viewpoint of having Furthermore, the average thickness of the first release layer 1 and the second release layer 2 may be the same or different.
 以上のような第1離型層1とクッション層3と第2離型層2とが積層された構成をなす離型フィルム10において、その平均厚さTtは、90μm以上250μm以下であることが好ましく、100μm以上220μm以下であることがより好ましい。これにより、前記離型フィルム10の80℃における複素せん断弾性率を前記上限値以下に設定することにより得られる効果を確実に発揮させることができる。 In the release film 10 having the structure in which the first release layer 1, the cushion layer 3, and the second release layer 2 are laminated as described above, the average thickness Tt is 90 μm or more and 250 μm or less. It is preferably 100 μm or more and 220 μm or less, more preferably. Thereby, the effect obtained by setting the complex shear elastic modulus of the release film 10 at 80° C. to the upper limit value or less can be exhibited reliably.
 ここで、離型フィルム10の80℃における複素せん断弾性率は、前述の通り、1.00MPa以下であればよいが、0.65MPa以下であることが好ましい。離型フィルム10の80℃における複素せん断弾性率を、上記の通り設定することで、凹部223内における接着剤層222に由来する接着剤のしみ出しをより的確に抑制または防止することができる。 Here, as described above, the complex shear elastic modulus of the release film 10 at 80°C should be 1.00 MPa or less, and preferably 0.65 MPa or less. By setting the complex shear elastic modulus of the release film 10 at 80° C. as described above, it is possible to more accurately suppress or prevent the seepage of the adhesive originating from the adhesive layer 222 in the recesses 223 .
 また、離型フィルム10の80℃における貯蔵せん断弾性率は、1.00MPa以下であるのが好ましく、0.60MPa以下であることがより好ましい。さらに、離型フィルム10の80℃における損失せん断弾性率は、0.40MPa以下であるのが好ましく、0.25MPa以下であることがより好ましい。離型フィルム10の80℃における貯蔵せん断弾性率および損失せん断弾性率を、それぞれ、上記のように設定することで、凹部223内における接着剤層222に由来する接着剤のしみ出しをより的確に抑制または防止することができる。 In addition, the storage shear modulus of the release film 10 at 80°C is preferably 1.00 MPa or less, more preferably 0.60 MPa or less. Furthermore, the loss shear modulus of the release film 10 at 80° C. is preferably 0.40 MPa or less, more preferably 0.25 MPa or less. By setting the storage shear modulus and the loss shear modulus of the release film 10 at 80° C. as described above, the oozing of the adhesive originating from the adhesive layer 222 in the recesses 223 can be more accurately controlled. Can be suppressed or prevented.
 離型フィルム10の80℃における複素せん断弾性率、貯蔵せん断弾性率、および、損失せん断弾性率は、例えば、直径8mmの全体形状が円盤状すなわち平面視形状が円形状をなす離型フィルム10を用意し、粘弾性測定装置(アントンパール社製、「MCR102」)を用いて、周波数10Hz、ひずみ0.1%、昇温速度4℃/minとして測定することで得ることができる。 The complex shear elastic modulus, storage shear elastic modulus, and loss shear elastic modulus of the release film 10 at 80° C. are determined, for example, by the release film 10 having a diameter of 8 mm and a disk-like overall shape, that is, a circular shape in plan view. It can be obtained by measuring with a viscoelasticity measuring device (manufactured by Anton Paar, "MCR102") at a frequency of 10 Hz, a strain of 0.1%, and a heating rate of 4°C/min.
 なお、離型フィルム10は、本実施形態では、第1離型層1と、クッション層3と、第2離型層2とが、この順で積層された積層体で構成されるが、かかる構成に限定されず、例えば、第1離型層1とクッション層3との間、および、第2離型層2とクッション層3との間の少なくとも一方に配置された、接着剤層のような中間層を備える積層体で構成されてもよい。 In this embodiment, the release film 10 is composed of a laminate in which the first release layer 1, the cushion layer 3, and the second release layer 2 are laminated in this order. Not limited to the configuration, for example, an adhesive layer disposed between the first release layer 1 and the cushion layer 3 and/or between the second release layer 2 and the cushion layer 3 It may be composed of a laminate having an intermediate layer.
 また、離型フィルム10は、前記工程(3)において、ガラスクロス300と離型フィルム10との間で優れた離型性を維持し得るのであれば、ガラスクロス300に接触する第2離型層2が、省略されてもよい。 In addition, if the release film 10 can maintain excellent releasability between the glass cloth 300 and the release film 10 in the step (3), the second release film 10 that contacts the glass cloth 300 Layer 2 may be omitted.
 以上、本発明の離型フィルムおよび成型品の製造方法について説明したが、本発明は、これらに限定されない。 Although the method for manufacturing the release film and molded product of the present invention has been described above, the present invention is not limited to these.
 例えば、前記実施形態では、本発明の離型フィルムを、加熱冷却板同士の間に配置されたフレキシブルプリント回路基板を2段に積層して製造するプレス成型法に適用する場合について説明したが、積層されるフレキシブルプリント回路基板の数は、2段に限定されず、1段であっても良いし、3段以上であってもよい。 For example, in the above-described embodiment, the case where the release film of the present invention is applied to a press molding method in which flexible printed circuit boards arranged between heating and cooling plates are laminated in two stages to manufacture was described. The number of laminated flexible printed circuit boards is not limited to two, and may be one, or may be three or more.
 また、本発明の離型フィルムを、加熱冷却板同士の間に配置されたフレキシブルプリント回路基板に対してプレス成型法を用いて加圧する場合に適用されることとしたが、これに限定されず、フレキシブルプリント回路基板に対する加圧は、例えば、ロールツーロールプレス機を用いて実施することもできるし、さらには、真空圧空成形法を用いて実施することもできる。 In addition, the release film of the present invention is applied when pressurizing a flexible printed circuit board placed between heating and cooling plates using a press molding method, but is not limited to this. The pressing of the flexible printed circuit board can be carried out, for example, using a roll-to-roll press or, furthermore, using a vacuum pressure forming method.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されない。 The present invention will be described in detail below based on examples, but the present invention is not limited to these.
1.原材料の準備
 離型フィルムを製造するための原材料として、それぞれ、以下の材料を用意した。
1. Preparation of raw materials As raw materials for manufacturing the release film, the following materials were prepared respectively.
・熱可塑性樹脂材料
 低密度ポリエチレン(LDPE、宇部丸善社製、「R300」)
 エチレン酢酸ビニル共重合体(EVA、三井ダウポリケミカル社製、「P1403」)
 エチレン酢酸ビニル共重合体(EVA、三井ダウポリケミカル社製、「EV360」)
 エチレン酢酸ビニル共重合体(EVA、三井ダウポリケミカル社製、「V5274」)
 エチレンメタクリル酸メチル共重合体(EMMA、住友化学社製、「WH102」)
 エチレンアクリル酸メチル共重合体(EMA、SKケミカル社製、「29MA03」)
 エチレンアクリル酸メチル共重合体(EMA、日本ポリエチレン社製、「EB050S」)
 ポリブチレンテレフタレート(PBT、長春石油化学社製、「1100-630S」)
 共重合ポリブチレンテレフタレート(PBT、三菱エンジニアリングプラスチック社製、「5505S」)
 ポリプロピレン(PP、住友化学社製、「FH1016」)
 接着性ポリオレフィン(AD、三菱ケミカル社製、「F515A」)
・Thermoplastic resin material Low density polyethylene (LDPE, manufactured by Ube Maruzen Co., Ltd., "R300")
Ethylene vinyl acetate copolymer (EVA, Mitsui Dow Polychemicals, "P1403")
Ethylene vinyl acetate copolymer (EVA, manufactured by Mitsui Dow Polychemicals, "EV360")
Ethylene vinyl acetate copolymer (EVA, manufactured by Mitsui Dow Polychemicals, "V5274")
Ethylene methyl methacrylate copolymer (EMMA, manufactured by Sumitomo Chemical Co., Ltd., "WH102")
Ethylene methyl acrylate copolymer (EMA, manufactured by SK Chemicals, "29MA03")
Ethylene methyl acrylate copolymer (EMA, manufactured by Nippon Polyethylene Co., Ltd., "EB050S")
Polybutylene terephthalate (PBT, manufactured by Changchun Petrochemical Co., Ltd., "1100-630S")
Copolymerized polybutylene terephthalate (PBT, manufactured by Mitsubishi Engineering-Plastics, "5505S")
Polypropylene (PP, manufactured by Sumitomo Chemical Co., Ltd., "FH1016")
Adhesive polyolefin (AD, manufactured by Mitsubishi Chemical Corporation, "F515A")
2.離型フィルムの製造
 <実施例1>
 まず、第1熱可塑性樹脂組成物および第2熱可塑性樹脂組成物として、それぞれ、ポリブチレンテレフタレート(PBT、1100-630S)70重量部と共重合ポリブチレンテレフタレート(PBT、5505S)30重量部とで構成される組成物を用意した。また、第3熱可塑性樹脂組成物として、エチレン酢酸ビニル共重合体(EVA、EV360)40重量部と、エチレンメタクリル酸メチル共重合体(EMMA、WH102)35重量部と、ポリブチレンテレフタレート(PBT、1100-630S)10重量部と、ポリプロピレン(PP、FH1016)15重量部とで構成される組成物を用意した。
2. Production of release film <Example 1>
First, as the first thermoplastic resin composition and the second thermoplastic resin composition, 70 parts by weight of polybutylene terephthalate (PBT, 1100-630S) and 30 parts by weight of copolymerized polybutylene terephthalate (PBT, 5505S) were used. A composed composition was provided. Further, as the third thermoplastic resin composition, 40 parts by weight of ethylene vinyl acetate copolymer (EVA, EV360), 35 parts by weight of ethylene methyl methacrylate copolymer (EMMA, WH102), polybutylene terephthalate (PBT, 1100-630S) and 15 parts by weight of polypropylene (PP, FH1016).
 次いで、第1熱可塑性樹脂組成物を用いて、押出Tダイ法により、フィルム化することにより第1離型層1を得た。 Next, the first release layer 1 was obtained by forming a film from the first thermoplastic resin composition by an extrusion T-die method.
 次いで、第1離型層1に対して、第3熱可塑性樹脂組成物および第2熱可塑性樹脂組成物を用いた押出Tダイ法を、順次、施してそれぞれをフィルム化することにより、第1離型層1に、クッション層3と第2離型層2とがこの順で積層された積層体を形成することで実施例1の離型フィルム10を得た。 Next, the first release layer 1 is subjected to an extrusion T-die method using the third thermoplastic resin composition and the second thermoplastic resin composition in order to form each film, thereby forming the first The release film 10 of Example 1 was obtained by forming a laminate in which the cushion layer 3 and the second release layer 2 were laminated in this order on the release layer 1 .
 なお、得られた離型フィルム10において、第1離型層1の平均厚さT1は15μm、クッション層3の平均厚さTkは80μm、第2離型層2の平均厚さT2は15μmであった。 In the obtained release film 10, the average thickness T1 of the first release layer 1 is 15 μm, the average thickness Tk of the cushion layer 3 is 80 μm, and the average thickness T2 of the second release layer 2 is 15 μm. there were.
 また、離型フィルム10について、それぞれ、80℃における複素せん断弾性率、貯蔵せん断弾性率および損失せん断弾性率を、粘弾性測定装置(アントンパール社製、「製品番号MCR102」)を用いて、周波数10Hz、ひずみ0.1%、昇温速度4℃/minとして測定したところ0.63MPa、0.59MPaおよび0.21MPaであった。 In addition, for the release film 10, the complex shear modulus, storage shear modulus, and loss shear modulus at 80° C. were measured using a viscoelasticity measuring device (manufactured by Anton Paar, product number MCR102). When measured at 10 Hz, strain of 0.1%, and temperature increase rate of 4°C/min, the values were 0.63 MPa, 0.59 MPa and 0.21 MPa.
 さらに、第1離型層1、およびクッション層3について、それぞれ、150℃における貯蔵弾性率E’を、動的粘弾性測定装置(日立ハイテクサイエンス社製、「DMA7100」)を用いて、引っ張りモード、周波数1Hz、昇温速度5℃/minとして測定したところ180MPaおよび16MPaであった。 Furthermore, the storage elastic modulus E′ at 150° C. of each of the first release layer 1 and the cushion layer 3 was measured using a dynamic viscoelasticity measuring device (manufactured by Hitachi High-Tech Science Co., Ltd., “DMA7100”) in tensile mode. , a frequency of 1 Hz, and a heating rate of 5° C./min, the results were 180 MPa and 16 MPa.
 また、第1離型層1について、クッション層3と反対側で露出する表面における10点平均粗さ(Rz)を、表面粗さ測定装置(ミツトヨ社製、「SURFTST SJ-210」)を用いて測定したところ2.7μmであった。 In addition, for the first release layer 1, the 10-point average roughness (Rz) on the surface exposed on the side opposite to the cushion layer 3 was measured using a surface roughness measuring device ("SURFTST SJ-210" manufactured by Mitutoyo). It was 2.7 μm when measured with
 <実施例2、比較例1~4>
 第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物および第3熱可塑性樹脂組成物として、表1に示す組成物を用いて、平均厚さが表1に示すようになっている、第1離型層1、クッション層3および第2離型層2を成膜したこと以外は、前記実施例1と同様にして、離型フィルム10の80℃における複素せん断弾性率が表1に示すようになっている実施例2、比較例1~4の離型フィルム10を得た。
<Example 2, Comparative Examples 1 to 4>
As the first thermoplastic resin composition, the second thermoplastic resin composition and the third thermoplastic resin composition, the compositions shown in Table 1 are used, and the average thickness is as shown in Table 1. The complex shear modulus of the release film 10 at 80° C. is shown in Table 1 in the same manner as in Example 1 except that the release layer 1, the cushion layer 3 and the second release layer 2 were formed. Release films 10 of Example 2 and Comparative Examples 1 to 4 were obtained.
3.評価
 各実施例および各比較例の離型フィルム10について、それぞれ、以下の評価を行った。
3. Evaluation The release films 10 of each example and each comparative example were evaluated as follows.
3-1.離型フィルムの埋め込み性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmとした。そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図1に示すように2段に積層されたFPC200に対して、180℃、3MPa、15minの条件で押し込んだ。その後、FPC200と離型フィルム10との積層体とした状態で、この積層体を厚さ方向に裁断(カット)した後に、離型フィルム10の一端を持ち離型フィルム10を引き剥がした。離型フィルム10の一端を把持して引き剥がした際の、FPC200の凹部における平面視での接着剤の最大しみ出し量を測定し、以下の基準に従って評価した。
3-1. Embedability of Release Film The width of the release film 10 of each example and each comparative example was 270 mm. Then, a coverlay film 220 ("CMA0525" manufactured by Arisawa Seisakusho Co., Ltd.) is attached to the flexible circuit board 210 with the adhesive layer 222 of the coverlay film 220 facing the flexible circuit board 210. , a pitch of 50 μm, a width of 50 μm, and a height of 18 μm. , 15 min. After that, in the state of a laminate of the FPC 200 and the release film 10, after cutting the laminate in the thickness direction, one end of the release film 10 was held and the release film 10 was peeled off. When one end of the release film 10 was gripped and peeled off, the maximum amount of the adhesive seeping out in the concave portion of the FPC 200 in plan view was measured and evaluated according to the following criteria.
 [評価基準]
  A:最大しみ出し量が55mm未満である。
  B:最大しみ出し量が55以上65mm未満である。
  C:最大しみ出し量が65以上である。
[Evaluation criteria]
A: The maximum seepage amount is less than 55 mm.
B: The maximum seepage amount is 55 or more and less than 65 mm.
C: The maximum bleeding amount is 65 or more.
3-2.離型フィルムの剥離性
 各実施例および各比較例の離型フィルム10について、それぞれ、幅270mmとし、そして、フレキシブル回路基板210に、カバーレイフィルム220(有沢製作所社製、「CMA0525」)を、このカバーレイフィルム220が備える接着剤層222をフレキシブル回路基板210側にして貼付することで形成される、ピッチ50μm、幅50μm、高さ18μmの凹凸を備えるFPC200(積層体)とした後に、離型フィルム10を、図1に示すように2段に積層されたFPC200に対して、180℃、3MPa、15minの条件で押し込んだ。その後、離型フィルム10の一端を把持して引き剥がした際の、離型フィルム10の引き剥がし易さ(離型性)について、以下の基準に従って評価した。
3-2. Peelability of release film The release film 10 of each example and each comparative example has a width of 270 mm, and a coverlay film 220 (manufactured by Arisawa Seisakusho Co., Ltd., "CMA0525") is applied to the flexible circuit board 210. The adhesive layer 222 of the coverlay film 220 is adhered to the flexible circuit board 210 side, and the FPC 200 (laminate) having irregularities with a pitch of 50 μm, a width of 50 μm, and a height of 18 μm is formed. The mold film 10 was pressed under conditions of 180° C., 3 MPa, and 15 min against the FPC 200 laminated in two stages as shown in FIG. After that, when one end of the release film 10 was gripped and peeled off, the ease of peeling off the release film 10 (mold release property) was evaluated according to the following criteria.
 [評価基準]
  A:離型フィルム引き剥がし時に、剥離可能である。 
  B:離型フィルム引き剥がし時に、クッション層同士が融着して剥離が困難である。
[Evaluation criteria]
A: It can be peeled off when the release film is peeled off.
B: When peeling off the release film, the cushion layers are fused to each other and peeling is difficult.
3-3.まとめ
 前記3-1.離型フィルムの埋め込み性、および前記3-2.離型フィルムの離型性において得られた評価結果を表1に示す。
3-3. Conclusion 3-1. Embedability of release film, and 3-2. Table 1 shows the evaluation results obtained for the releasability of the release film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例では、離型フィルム10の80℃における複素せん断弾性率が1.00MPa以下に設定されており、その結果、凹部223における接着剤のしみ出しが抑制されている結果を示した。 As shown in Table 1, in each example, the complex shear elastic modulus of the release film 10 at 80° C. is set to 1.00 MPa or less, and as a result, the seepage of the adhesive in the concave portions 223 is suppressed. showed the results.
 これに対して、各比較例では、離型フィルム10の80℃における複素せん断弾性率を1.00MPa以下に設定することができず、これに起因して、凹部223において、接着剤のしみ出しが明らかに認められる結果を示した。 On the other hand, in each of the comparative examples, the complex shear modulus of elasticity at 80° C. of the release film 10 could not be set to 1.00 MPa or less. showed results that are clearly recognized.
1       第1離型層
2       第2離型層
3       クッション層
10      離型フィルム
10A     離型フィルム
10B     離型フィルム
200     フレキシブルプリント回路基板(FPC)
210     フレキシブル回路基板
220     カバーレイフィルム(CLフィルム)
221     カバーレイ
222     接着剤層
223     凹部
300     ガラスクロス
300A    ガラスクロス
300B    ガラスクロス
521     加熱圧着板
T1      第1離型層の平均厚さ
T2      第2離型層の平均厚さ
Tk      クッション層の平均厚さ
Tt      離型フィルムの平均厚さ
1 first release layer 2 second release layer 3 cushion layer 10 release film 10A release film 10B release film 200 flexible printed circuit board (FPC)
210 flexible circuit board 220 coverlay film (CL film)
221 Coverlay 222 Adhesive layer 223 Recess 300 Glass cloth 300A Glass cloth 300B Glass cloth 521 Thermocompression plate T1 Average thickness of first release layer T2 Average thickness of second release layer Tk Average thickness of cushion layer Tt Average thickness of release film
 本発明によれば、凹部に対して、優れた埋め込み性が発揮された離型フィルムとすることができる。そのため、離型フィルムを、例えば、フレキシブル回路基板とカバーレイフィルムとを用いたフレキシブルプリント回路基板の形成に用いた場合には、フレキシブルプリント回路基板に形成される凹部に対して、離型フィルムを、優れた埋め込み性をもって埋め込むことができる。そのため、フレキシブルプリント回路基板に凹部が形成される際に、カバーレイフィルムが備える接着剤層から、形成される凹部内に、接着剤がしみ出るのを的確に抑制または防止することができる。したがって、本発明は、産業上の利用可能性を有する。 According to the present invention, it is possible to provide a release film exhibiting excellent embedding properties in concave portions. Therefore, when the release film is used, for example, to form a flexible printed circuit board using a flexible circuit board and a coverlay film, the release film is applied to the concave portion formed in the flexible printed circuit board. , can be embedded with excellent embedding properties. Therefore, when the concave portion is formed in the flexible printed circuit board, it is possible to accurately suppress or prevent the adhesive from oozing out from the adhesive layer of the coverlay film into the formed concave portion. Therefore, the present invention has industrial applicability.

Claims (14)

  1.  第1熱可塑性樹脂組成物からなる第1離型層と、第3熱可塑性樹脂組成物からなるクッション層とを有する離型フィルムであって、
     当該離型フィルムは、80℃における複素せん断弾性率が1.00MPa以下であることを特徴とする離型フィルム。
    A release film having a first release layer made of a first thermoplastic resin composition and a cushion layer made of a third thermoplastic resin composition,
    A release film having a complex shear elastic modulus at 80° C. of 1.00 MPa or less.
  2.  前記クッション層は、150℃における貯蔵弾性率が9.0MPa以上である請求項1に記載の離型フィルム。 The release film according to claim 1, wherein the cushion layer has a storage elastic modulus of 9.0 MPa or more at 150°C.
  3.  当該離型フィルムは、80℃における貯蔵せん断弾性率が1.00MPa以下である請求項1または2に記載の離型フィルム。 The release film according to claim 1 or 2, wherein the release film has a storage shear modulus at 80°C of 1.00 MPa or less.
  4.  当該離型フィルムは、80℃における損失せん断弾性率が0.40MPa以下である請求項1ないし3のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 3, wherein the release film has a loss shear modulus at 80°C of 0.40 MPa or less.
  5.  前記第1離型層は、前記クッション層と反対側の表面における10点平均粗さ(Rz)が0.5μm以上3.6μm以下である請求項1ないし4のいずれか1項に記載の離型フィルム。 The release layer according to any one of claims 1 to 4, wherein the first release layer has a 10-point average roughness (Rz) of 0.5 µm or more and 3.6 µm or less on the surface opposite to the cushion layer. mold film.
  6.  前記第1離型層は、150℃における貯蔵弾性率E’が100MPa以上である請求項1ないし5のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 5, wherein the first release layer has a storage elastic modulus E' of 100 MPa or more at 150°C.
  7.  前記第1熱可塑性樹脂組成物は、ポリエステル系樹脂を主材料として含む請求項1ないし6のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 6, wherein the first thermoplastic resin composition contains a polyester resin as a main material.
  8.  前記クッション層は、その平均厚さが60μm以上200μm以下である請求項1ないし7のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 7, wherein the cushion layer has an average thickness of 60 µm or more and 200 µm or less.
  9.  前記第1離型層は、その平均厚さが5μm以上30μm以下である請求項1ないし8のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 8, wherein the first release layer has an average thickness of 5 µm or more and 30 µm or less.
  10.  前記第3熱可塑性樹脂組成物は、複数種の熱可塑性樹脂を含有し、前記熱可塑性樹脂の融点は、80℃未満である請求項1ないし9のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 9, wherein the third thermoplastic resin composition contains a plurality of thermoplastic resins, and the thermoplastic resin has a melting point of less than 80°C.
  11.  前記第3熱可塑性樹脂組成物は、前記熱可塑性樹脂として、ポリエステル系樹脂と、ポリオレフィン系樹脂とを含有する請求項10に記載の離型フィルム。 The release film according to claim 10, wherein the third thermoplastic resin composition contains a polyester-based resin and a polyolefin-based resin as the thermoplastic resins.
  12.  当該離型フィルムは、前記クッション層の前記第1離型層と反対側に積層された、第2熱可塑性樹脂組成物からなる第2離型層を有する請求項1ないし11のいずれか1項に記載の離型フィルム。 12. The release film according to any one of claims 1 to 11, wherein the release film has a second release layer made of a second thermoplastic resin composition and laminated on the side opposite to the first release layer of the cushion layer. The release film described in .
  13.  当該離型フィルムが、回路形成用である、請求項1ないし12のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 12, which is for circuit formation.
  14.  請求項1ないし13のいずれか1項に記載の離型フィルムの前記第1離型層が対象物側になるように、
     前記対象物上に前記離型フィルムを配置する工程と、前記離型フィルムが配置された前記対象物に対し、加熱プレスを行う工程と、を含み、前記離型フィルムを配置する前記工程において、前記対象物の前記離型フィルムが配置される側の面が、半硬化状態の熱硬化性樹脂を含む材料によって形成されていることを特徴とする成型品の製造方法。
    So that the first release layer of the release film according to any one of claims 1 to 13 is on the object side,
    The step of placing the release film on the object, and the step of subjecting the object on which the release film is placed to a hot press, wherein the step of placing the release film includes: A method for manufacturing a molded product, wherein the surface of the object on which the release film is arranged is made of a material containing a semi-cured thermosetting resin.
PCT/JP2022/022780 2021-06-09 2022-06-06 Release film and method for manufacturing molded product WO2022260003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280040308.1A CN117425566A (en) 2021-06-09 2022-06-06 Mold release film and method for producing molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-096929 2021-06-09
JP2021096929A JP7095780B1 (en) 2021-06-09 2021-06-09 Manufacturing method of release film and molded product

Publications (1)

Publication Number Publication Date
WO2022260003A1 true WO2022260003A1 (en) 2022-12-15

Family

ID=82308084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022780 WO2022260003A1 (en) 2021-06-09 2022-06-06 Release film and method for manufacturing molded product

Country Status (4)

Country Link
JP (1) JP7095780B1 (en)
CN (1) CN117425566A (en)
TW (1) TW202313301A (en)
WO (1) WO2022260003A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012940A1 (en) * 2006-07-24 2008-01-31 Kuraray Co., Ltd. Release film for manufacture of printed wiring plate
JP2010137434A (en) * 2008-12-11 2010-06-24 Sumitomo Bakelite Co Ltd Release film, and method of bonding and method of manufacturing circuit board using the same
JP2015084352A (en) * 2013-10-25 2015-04-30 東レ株式会社 Multilayered sheet for gluing circuit member, and method for manufacturing semiconductor device
JP2016002730A (en) * 2014-06-18 2016-01-12 住友ベークライト株式会社 Release film
JP2016112729A (en) * 2014-12-12 2016-06-23 住友ベークライト株式会社 Release film
US20190070826A1 (en) * 2016-03-20 2019-03-07 Massachusetts Institute Of Technology Hydrogel-elastomer hybrids
JP2019043135A (en) * 2017-08-31 2019-03-22 積水化学工業株式会社 Release film
JP2019093551A (en) * 2017-11-17 2019-06-20 三井化学株式会社 Release film
WO2021172431A1 (en) * 2020-02-27 2021-09-02 リンテック株式会社 Resin film, composite sheet and method for producing semiconductor device
JP6977848B1 (en) * 2020-11-02 2021-12-08 住友ベークライト株式会社 Manufacturing method of release film and molded product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791480B (en) * 2010-03-12 2015-06-17 积水化学工业株式会社 Mold release film and method for manufacturing mold release film
JP6391554B2 (en) * 2015-12-14 2018-09-19 住友ベークライト株式会社 Release film
WO2018173683A1 (en) * 2017-03-22 2018-09-27 住友ベークライト株式会社 Mold release film and method for producing flexible printed circuit board
JP6863523B2 (en) * 2018-08-24 2021-04-21 住友ベークライト株式会社 Manufacturing method of release film and molded product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012940A1 (en) * 2006-07-24 2008-01-31 Kuraray Co., Ltd. Release film for manufacture of printed wiring plate
JP2010137434A (en) * 2008-12-11 2010-06-24 Sumitomo Bakelite Co Ltd Release film, and method of bonding and method of manufacturing circuit board using the same
JP2015084352A (en) * 2013-10-25 2015-04-30 東レ株式会社 Multilayered sheet for gluing circuit member, and method for manufacturing semiconductor device
JP2016002730A (en) * 2014-06-18 2016-01-12 住友ベークライト株式会社 Release film
JP2016112729A (en) * 2014-12-12 2016-06-23 住友ベークライト株式会社 Release film
US20190070826A1 (en) * 2016-03-20 2019-03-07 Massachusetts Institute Of Technology Hydrogel-elastomer hybrids
JP2019043135A (en) * 2017-08-31 2019-03-22 積水化学工業株式会社 Release film
JP2019093551A (en) * 2017-11-17 2019-06-20 三井化学株式会社 Release film
WO2021172431A1 (en) * 2020-02-27 2021-09-02 リンテック株式会社 Resin film, composite sheet and method for producing semiconductor device
JP6977848B1 (en) * 2020-11-02 2021-12-08 住友ベークライト株式会社 Manufacturing method of release film and molded product

Also Published As

Publication number Publication date
CN117425566A (en) 2024-01-19
TW202313301A (en) 2023-04-01
JP7095780B1 (en) 2022-07-05
JP2022188694A (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP2619034B2 (en) Release film composed of laminate
TWI781093B (en) Release film and method for manufacturing molded article
JP6447216B2 (en) Release film and method for producing molded product
JP6575123B2 (en) Release film and method for producing molded product
JP7463478B2 (en) Release film for resin sealing process by compression molding
JPWO2014156127A1 (en) Laminated film manufacturing method, laminated film, and semiconductor device manufacturing method using the same
JPWO2019182047A1 (en) Protective film
WO2020040240A1 (en) Release film and method for producing molded article
KR20090124797A (en) Complex film for manufacturing fpcb and manufacturing method of fpcb using the same
JP6977848B1 (en) Manufacturing method of release film and molded product
WO2022260003A1 (en) Release film and method for manufacturing molded product
JP4541260B2 (en) Circuit board manufacturing method
TW202043025A (en) Release film for production process of printed circuit board, production process of printed board, apparatus for producing printed board, and printed board
JP7343030B1 (en) Manufacturing method for release film and molded products
JP7287555B1 (en) Method for manufacturing release film and molded product
JP7283639B2 (en) Method for manufacturing release film and molded product
WO2024071185A1 (en) Release film and method for manufacturing molded product
JP7332017B1 (en) Method for manufacturing release film and molded product
JP7343029B1 (en) release film
WO2024075640A1 (en) Mold release film and method for manufacturing molded product
JP2020167212A (en) Mold release film for printed wiring board manufacturing process and application thereof
JP2016129980A (en) Release film
JP2020037184A (en) Protective film
JP2959818B2 (en) Release film
JP2023046645A (en) Method for producing molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040308.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820182

Country of ref document: EP

Kind code of ref document: A1