WO2022252523A1 - 多联机***及其控制方法 - Google Patents

多联机***及其控制方法 Download PDF

Info

Publication number
WO2022252523A1
WO2022252523A1 PCT/CN2021/134215 CN2021134215W WO2022252523A1 WO 2022252523 A1 WO2022252523 A1 WO 2022252523A1 CN 2021134215 W CN2021134215 W CN 2021134215W WO 2022252523 A1 WO2022252523 A1 WO 2022252523A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
indoor
way valve
opened
valve
Prior art date
Application number
PCT/CN2021/134215
Other languages
English (en)
French (fr)
Inventor
杨元涛
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP21943875.1A priority Critical patent/EP4321821A1/en
Publication of WO2022252523A1 publication Critical patent/WO2022252523A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to a control method of a multi-connection system and a multi-connection system.
  • the multi-connected system When the multi-connected system is running, if the user turns off the air conditioner by mistake, it will cause the compressor to stop immediately. Since the multi-connected system will set the time interval for restarting after shutdown, it will generally be set at more than 5 minutes, especially It is when the multi-connection system is heating at low temperature, the unexpected shutdown occurs, and the response speed of the multi-connection system is very slow, which will affect the comfort of the user. At the same time, since the insulation effect of buildings is getting better and better, when the load on the indoor side is small, it is easy for the indoor temperature to reach the set temperature and the compressor will stop. If the temperature is reached frequently, the compressor will be short of oil. This can affect system reliability.
  • the present disclosure aims to solve one of the technical problems in the above technologies at least to a certain extent.
  • the first purpose of this disclosure is to propose a control method for a multi-connected system.
  • the heat storage module can be used for standby operation when the user stops the machine by mistake, so as to respond quickly after the user corrects the error.
  • a second object of the present disclosure is to propose a non-transitory computer-readable storage medium.
  • the third objective of the present disclosure is to provide a multi-connection system.
  • the embodiment of the first aspect of the present disclosure proposes a control method for a multi-connected system
  • the multi-connected system includes an outdoor unit, at least one indoor unit and a thermal storage module
  • the outdoor unit includes a compressor, a second A four-way valve, a second four-way valve, an outdoor heat exchanger, and an outdoor throttle valve
  • each of the indoor units includes an indoor heat exchanger and an indoor throttle valve
  • the heat storage module includes a heat accumulator and a heat storage A throttle valve
  • the first port of the first four-way valve is connected to the exhaust port of the compressor, and the second port of the first four-way valve is connected to one end of each of the indoor heat exchangers
  • the third port of the first four-way valve is connected with the air return port of the compressor, the first port of the second four-way valve is connected with the exhaust port of the compressor, and the second four-way valve
  • the second port of the through valve is connected with one end of the outdoor heat exchanger, and the other end of the outdoor heat exchanger is connected with
  • the fourth port of the through valve is connected to one end of the heat accumulator, and the other end of the heat accumulator is connected to one end of each indoor throttle valve through the heat storage throttle valve, and the control method includes The following steps: after confirming that the shutdown command is received or that the indoor temperature reaches the set temperature, the working mode of the multi-line system is obtained; according to the working mode, the first four-way valve, the second four-way valve, The outdoor throttle valve, the indoor throttle valve and the heat storage throttle valve are controlled.
  • the control method of the multi-connected system in the embodiment of the present disclosure, when the stop command is received or the indoor temperature reaches the set temperature, the working mode of the multi-connected system is acquired, and the first four-way valve, the second The four-way valve, the outdoor throttle valve, the indoor throttle valve and the heat storage throttle valve in the heat storage module are controlled. Therefore, by adding a heat storage module, the method can use the heat storage module to perform standby operation when the user stops the machine by mistake, so as to respond quickly after the user corrects the error and improve the comfort of the user, or the indoor temperature can reach the set temperature Afterwards, the heat storage module is used to continue to run, reducing the number of start and stop of the compressor and improving the reliability of the system.
  • control method of the multi-connected system proposed according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the multi-connected system when the multi-connected system is operating in the normal cooling mode, if a shutdown command is received, the first four-way valve, the second four-way valve, and the outdoor section throttle valve, the indoor throttle valve and the heat storage throttle valve, including: confirming that the shutdown command is received, then controlling the first four-way valve to be powered on, the second four-way valve to be powered off, The outdoor throttle valve is opened, the indoor throttle valve is closed, and the heat storage throttle valve is opened, so that the multi-connected system operates in the first standby mode; confirm that within the first preset time After receiving the start-up command, control the first four-way valve to be powered on, the second four-way valve to be powered off, the outdoor throttle valve to be opened, the indoor throttle valve to be opened, and the heat storage section to be turned on.
  • the flow valve is closed, so that the multi-connected system continues to operate in the normal cooling mode; or, it is confirmed that the start-up command is not received within the first preset time, or the return air of the multi-connected system is over If the temperature is less than the first preset return air superheat degree, the compressor is controlled to stop.
  • the first four-way valve, the second four-way valve, and the outdoor The throttle valve, the indoor throttle valve and the heat storage throttle valve are controlled, including: confirming that the shutdown command is received, then controlling the first four-way valve to be powered off and the second four-way valve to be powered on , the outdoor throttle valve is opened, the indoor throttle valve is opened to a first preset opening degree, and the heat storage throttle valve is opened, so that the multi-connected system operates in the second standby mode; confirm in If a power-on command is received within a preset time, the first four-way valve is controlled to be powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the The thermal storage throttle valve is closed so that the multi-connected system continues to operate in the normal heating mode; or, it is confirmed that no start-up command is received within the second preset time, or the exhaust side of the multi
  • the first four-way valve, the second four-way valve, and the The outdoor throttling valve, the indoor throttling valve and the heat storage throttling valve are controlled, including: confirming that the indoor temperature reaches the set temperature, then obtaining the time when the current indoor temperature reaches the set temperature and the last time The first time interval between the time when the indoor temperature reaches the set temperature; confirm that the first time interval is less than the first preset time interval, then control the power on of the first four-way valve, the second four-way valve Power off, open the outdoor throttle valve, close the indoor throttle valve and open the heat storage throttle valve, so that the multi-split system operates in the first standby operation mode; or, confirm the first If the time interval is greater than or equal to the first preset time interval, the compressor is controlled to stop.
  • the multi-connected system after the multi-connected system operates in the first standby operation mode, it further includes: acquiring the return air superheat degree of the multi-connected system; confirming that the return air superheat degree of the multi-connected system is less than the first Two preset return air superheat degrees, then control the compressor to stop; or, confirm that the return air superheat degree of the multi-line system is greater than or equal to the second preset return air superheat degree, then continue to obtain the current indoor temperature to reach the set value The first time interval between the time of temperature and the last time the room temperature reached the set temperature.
  • the indoor temperature after confirming that the indoor temperature has not reached the set temperature, further comprising: acquiring a first accumulated time for the multi-connected system to operate in normal cooling mode; confirming that the first accumulated time is greater than or equal to the first preset cumulative time, control the first four-way valve to be powered on, the second four-way valve to be powered on, the outdoor throttle valve to be closed, the indoor throttle valve to be opened and all The heat storage throttling valve is opened to cool by the cold stored in the heat accumulator; or, after confirming that the first cumulative time is less than the first preset cumulative time, control the first four-way valve Power on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-split system continues to operate at the normal Cooling mode operation.
  • the method further includes: obtaining the discharge side pressure of the multi-connected system; confirming the exhaust side pressure of the multi-connected system is greater than or equal to the second preset exhaust side pressure, control the first four-way valve to be powered on, the second four-way valve to be powered off, the outdoor throttle valve to be opened, the indoor throttle valve to be opened, and The thermal storage throttle valve is closed, so that the multi-connected system continues to operate in the normal cooling mode; or, after confirming that the exhaust side pressure of the multi-connected system is lower than the second preset exhaust side pressure, continue Control the first four-way valve to be powered on, the second four-way valve to be powered on, the outdoor throttle valve to be closed, the indoor throttle valve to be opened, and the heat storage throttle valve to be opened to pass the The cold stored in the accumulator cools.
  • the pair of the first four-way valve, the second four-way valve, and the The outdoor throttle valve, the indoor throttle valve, and the heat storage throttle valve are controlled, including: confirming that the indoor temperature reaches the set temperature, then obtaining the time when the current indoor temperature reaches the set temperature and the time when the indoor temperature reached the set temperature last time.
  • the second time interval between the time of temperature setting confirm that the second time interval is less than the second preset time interval, then control the power off of the first four-way valve, power on of the second four-way valve,
  • the outdoor throttle valve is opened, the indoor throttle valve is opened to a first preset opening degree, and the heat storage throttle valve is opened, so that the multi-connected system operates in the second standby operation mode; or, confirming that the If the second time interval is greater than or equal to a second preset time interval, the compressor is controlled to stop.
  • the multi-connected system after the multi-connected system operates in the second standby operation mode, it further includes: obtaining the exhaust side pressure of the multi-connected system; confirming that the exhaust side pressure of the multi-connected system is greater than or is equal to the third preset discharge side pressure, then control the compressor to stop; or, confirm that the discharge side pressure of the multi-line system is lower than the third preset discharge side pressure, then continue to obtain the current indoor temperature reached The second time interval between the time at the set temperature and the last time the room temperature reached the set temperature.
  • the indoor temperature after determining that the indoor temperature has not reached the set temperature, further comprising: acquiring a second accumulated time for the multi-connected system to operate in the normal heating operation mode; confirming the first If the second accumulated time is greater than or equal to the second preset accumulated time, the first four-way valve is controlled to be de-energized, the second four-way valve is de-energized, the outdoor throttle valve is closed, and the indoor throttle valve is controlled.
  • the valve is opened and the heat storage throttle valve is opened, so as to use the heat stored in the heat accumulator for heating; or, after confirming that the second accumulated time is less than the second preset accumulated time, control the first
  • the first four-way valve is powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-line system continues to Operates in normal heating mode as described.
  • the heat accumulator after heating by using the heat accumulated in the heat accumulator, it further includes: acquiring the return air superheat degree of the multi-connected system; confirming the return air superheat degree of the multi-connected system is less than the third preset return air superheat degree, control the first four-way valve to be powered off, the second four-way valve to be powered on, the outdoor throttle valve to be opened, the indoor throttle valve to be opened, and the closing the heat storage throttle valve so that the multi-connected system continues to operate in the normal heating mode; or, confirming that the return air superheat of the multi-connected system is greater than or equal to the third preset return air superheat , then continue to control the power-off of the first four-way valve, the power-off of the second four-way valve, the closing of the outdoor throttle valve, the opening of the indoor throttle valve, and the opening of the heat storage throttle valve, so as to Heating is generated by the heat accumulated in the heat accumulator.
  • the embodiment of the second aspect of the present disclosure proposes a non-transitory computer-readable storage medium having instructions stored therein, and when the instructions are executed, the multi-connection system executes the above-mentioned multi-connection system system control method.
  • the non-transitory computer-readable storage medium of the embodiment of the present disclosure can use the heat storage module to perform standby operation when the user stops the machine by mistake by executing the above-mentioned control method of the multi-connected system, so as to respond quickly after the user corrects the error and improve the user's performance.
  • the heat storage module can be used to continue to run, reducing the number of start-up and stop of the compressor, and improving the reliability of the system.
  • the embodiment of the third aspect of the present disclosure proposes a multi-connected system, including: at least one indoor unit, each of which includes an indoor heat exchanger and an indoor throttling valve; a heat storage module, the The heat storage module includes a heat accumulator and a heat storage throttle valve; an outdoor unit, which includes a compressor, a first four-way valve, a second four-way valve, an outdoor heat exchanger, and an outdoor throttle valve, wherein the The first port of the first four-way valve is connected to the exhaust port of the compressor, the second port of the first four-way valve is connected to one end of each indoor heat exchanger, and the first four-way valve The third port of the one-way valve is connected to the air return port of the compressor, the first port of the second four-way valve is connected to the exhaust port of the compressor, and the second port of the second four-way valve is connected to the air return port of the compressor.
  • One end of the outdoor heat exchanger is connected, the other end of the outdoor heat exchanger is connected to one end of each indoor throttle valve through the outdoor throttle valve, and the other end of each indoor throttle valve is respectively connected to the other end of each of the corresponding indoor heat exchangers, the third port of the second four-way valve is connected to the air return port of the compressor, and the fourth port of the second four-way valve is connected to the One end of the heat accumulator is connected, and the other end of the heat accumulator is connected to one end of each of the indoor throttle valves through the heat storage throttle valve; the controller is used to confirm the receipt of the shutdown command or the indoor temperature reaches the set temperature, then obtain the working mode of the multi-line system, and according to the working mode, control the first four-way valve, the second four-way valve, and the outdoor throttle valve , the indoor throttle valve and the heat storage throttle valve are controlled.
  • the multi-connected system is composed of at least one indoor unit, outdoor unit and heat storage module, each indoor unit includes an indoor heat exchanger and an indoor throttle valve, and the heat storage module includes a heat accumulator and a heat storage node Throttle valve, the outdoor unit includes a compressor, a first four-way valve, a second four-way valve, an outdoor heat exchanger, and an outdoor throttle valve, wherein the first port of the first four-way valve is connected to the exhaust port of the compressor , the second port of the first four-way valve is connected with one end of each indoor heat exchanger, the third port of the first four-way valve is connected with the air return port of the compressor, and the first port of the second four-way valve is connected with the compressor
  • the exhaust port of the second four-way valve is connected to one end of the outdoor heat exchanger, and the other end of the outdoor heat exchanger is connected to one end of each indoor throttle valve through an outdoor throttle valve.
  • the other end of the throttle valve is connected to the other end of each corresponding indoor heat exchanger, the third port of the second four-way valve is connected to the air return port of the compressor, and the fourth port of the second four-way valve is connected to the heat storage port.
  • One end of the accumulator is connected, and the other end of the heat accumulator is connected to one end of each indoor throttle valve through the heat storage throttle valve; the controller is used to, when receiving the shutdown command or the indoor temperature reaches the set temperature, Obtain the working mode of the multi-line system, and control the first four-way valve, the second four-way valve, the outdoor throttle valve, the indoor throttle valve and the heat storage throttle valve according to the working mode.
  • the system can use the heat storage module to perform standby operation when the user stops the machine by mistake, so as to respond quickly after the user corrects the error and improve the user's comfort, or the indoor temperature can reach the set temperature Afterwards, the heat storage module is used to continue to run, reducing the number of start and stop of the compressor and improving the reliability of the system.
  • multi-connected system proposed according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the controller receives a shutdown instruction, and the controller is specifically configured to: confirm that the shutdown instruction is received, and then control the first four The through valve is powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is closed, and the heat storage throttle valve is opened, so that the multi-line system operates at the first In the standby operation mode, and confirming that the start-up command is received within the first preset time, control the power-on of the first four-way valve, power-off of the second four-way valve, and control of the outdoor throttling open the valve, open the indoor throttle valve, and close the thermal storage throttle valve, so that the multi-split system continues to operate in the normal cooling mode; or, confirm that no When the start-up instruction is received, or the return air superheat degree of the multi-connected system is less than the first preset return air superheat degree, the compressor is controlled to stop.
  • the controller when the multi-connected system is operating in the normal heating mode, if a shutdown instruction is received, the controller is specifically configured to: confirm that the shutdown instruction is received, and then control the first four The through valve is powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, the indoor throttle valve is opened to a first preset opening degree, and the heat storage throttle valve is opened, so that the The multi-line system operates in the second standby mode, and confirms that the start-up command is received within the second preset time, then controls the first four-way valve to be powered off and the second four-way valve to be powered on , the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-split system continues to operate in the normal heating mode; or, it is confirmed that in the first If the start-up command is not received within two preset times, or the exhaust side pressure of the multi-line system is greater than or equal to the first preset exhaust side pressure, the compressor is controlled to
  • the controller when the multi-connected system is operating in the normal cooling mode, if the indoor temperature reaches the set temperature, the controller is specifically used to: confirm that the indoor temperature reaches the set temperature, then obtain the current indoor temperature The first time interval between the time when the temperature reaches the set temperature and the last time when the indoor temperature reached the set temperature, and confirm that the first time interval is less than the first preset time interval, then control the first four-way The valve is powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is closed, and the heat storage throttle valve is opened, so that the multi-line system is in the first standby mode. running in the operation mode; or, after confirming that the first time interval is greater than or equal to a first preset time interval, then controlling the compressor to stop.
  • the controller is further configured to: after the multi-connected system operates in the first standby operation mode, obtain the return air superheat degree of the multi-connected system, and confirm the If the degree of superheat of the return air is less than the second preset degree of superheat of the return air, then control the shutdown of the compressor; or, confirm that the degree of superheat of the return air of the multi-line system is greater than or equal to the second preset degree of superheat of the return air, then continue to obtain The first time interval between the time when the current indoor temperature reaches the set temperature and the last time when the indoor temperature reached the set temperature.
  • the controller is further configured to: after confirming that the indoor temperature has not reached the set temperature, obtain the first accumulated time for the multi-connected system to operate in the normal cooling mode, and confirm the If the first accumulated time is greater than or equal to the first preset accumulated time, the first four-way valve is controlled to be powered on, the second four-way valve is powered on, the outdoor throttle valve is closed, and the indoor throttle valve is controlled to be powered on.
  • the throttle valve is opened and the heat storage throttle valve is opened, so as to use the cold stored in the heat accumulator for refrigeration; or, after confirming that the first accumulated time is less than the first preset accumulated time, control the
  • the first four-way valve is powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-line The system continues to operate in the normal cooling mode.
  • the controller is further configured to: obtain the discharge side pressure of the multi-connected system after cooling by the cold stored in the heat accumulator, and confirm the pressure of the multi-connected system If the exhaust side pressure is greater than or equal to the second preset exhaust side pressure, the first four-way valve is controlled to be powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, and the indoor throttle valve is controlled to be powered on.
  • the throttle valve is opened and the thermal storage throttle valve is closed, so that the multi-connected system continues to operate in the normal cooling mode; or, confirm that the exhaust side pressure of the multi-connected system is lower than the second preset exhaust gas side pressure, then continue to control the power on of the first four-way valve, the power on of the second four-way valve, the closing of the outdoor throttle valve, the opening of the indoor throttle valve and the opening of the heat storage throttle valve , to refrigerate by the cold stored in the accumulator.
  • the controller when the multi-connected system is operating in normal heating mode, if the indoor temperature reaches the set temperature, the controller is specifically used to: confirm that the indoor temperature has reached the set temperature, obtain the current indoor temperature The second time interval between the time when the temperature reaches the set temperature and the last time when the indoor temperature reaches the set temperature, and confirm that the second time interval is less than the second preset time interval, then control the first four-way The valve is powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, the indoor throttle valve is opened to a first preset opening degree, and the heat storage throttle valve is opened, so that the multi- The on-line system operates in a second standby operation mode; or, after confirming that the second time interval is greater than or equal to a second preset time interval, then controlling the compressor to stop.
  • the controller is further configured to: acquire the exhaust side pressure of the multi-connected system after the multi-connected system operates in the second standby operation mode, and confirm the exhaust pressure of the multi-connected system side pressure is greater than or equal to the third preset discharge side pressure, then control the compressor to stop; or, confirm that the discharge side pressure of the multi-line system is less than the third preset discharge side pressure, continue to obtain The second time interval between the time when the current indoor temperature reaches the set temperature and the last time when the indoor temperature reached the set temperature.
  • the controller is further configured to: after determining that the indoor temperature has not reached the set temperature, obtain a second accumulated value of the multi-connected system operating in the normal heating operation mode. If it is confirmed that the second accumulated time is greater than or equal to the second preset accumulated time, then control the first four-way valve to be de-energized, the second four-way valve to be de-energized, and the outdoor throttle valve to be closed .
  • the indoor throttle valve is opened and the heat storage throttle valve is opened, so as to use the heat accumulated in the heat accumulator for heating; or, confirming that the second accumulated time is less than the second preset accumulated time , then control the first four-way valve to be powered off, the second four-way valve to be powered on, the outdoor throttle valve to be opened, the indoor throttle valve to be opened, and the heat storage throttle valve to be closed, so that The multi-split system continues to operate in the normal heating mode.
  • the controller is further configured to: obtain the return air superheat degree of the multi-connected system after heating by the heat accumulated in the heat accumulator, and confirm the degree of superheat of the multi-connected system If the return air superheat degree is less than the third preset return air superheat degree, the first four-way valve is controlled to be powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, and the indoor throttle valve is controlled to be powered off.
  • FIG. 1 is a schematic structural diagram of a multi-connection system according to an embodiment of the present disclosure
  • Fig. 2 is a refrigerant flow diagram of a multi-connected system operating in a normal cooling mode according to an embodiment of the present disclosure
  • Fig. 3 is a refrigerant flow diagram of a multi-connected system operating in a normal heating mode according to an embodiment of the present disclosure
  • Fig. 4 is a refrigerant flow diagram of a multi-connected system according to an embodiment of the disclosure.
  • Fig. 4a is a flowchart of a control method for receiving a shutdown command when the multi-connected system is operating in a normal cooling mode according to an embodiment of the present disclosure
  • Fig. 5 is a refrigerant flow diagram of the multi-connected system according to an embodiment of the present disclosure, when the normal heating mode is shut down by mistake and the indoor unit is on standby when the indoor unit reaches the set temperature;
  • Fig. 5a is a flowchart of a control method for receiving a shutdown command when the multi-connected system is operating in a normal heating mode according to an embodiment of the present disclosure
  • Fig. 6 is a flow diagram of refrigerants using stored cooling capacity for cooling when the multi-connected system operates in the normal cooling mode and the indoor unit enters the normal cooling mode according to an embodiment of the present disclosure
  • Fig. 7 is a flowchart of a control method when the multi-connected system operates in a normal cooling mode and the indoor unit enters the normal cooling mode according to an embodiment of the present disclosure
  • Fig. 8 is a flow diagram of refrigerants using stored heat for heating when the multi-connected system operates in normal heating mode and the indoor unit enters normal heating mode according to an embodiment of the present disclosure
  • Fig. 9 is a flowchart of a control method when the multi-connected system operates in a normal heating mode and the indoor unit enters the normal heating mode according to an embodiment of the present disclosure
  • Fig. 10 is a flowchart of a control method of a multi-connection system according to an embodiment of the present disclosure.
  • the multi-connected system includes an outdoor unit, at least one indoor unit, a thermal storage module and a controller
  • the outdoor unit includes a compressor, a first four-way valve, a second four-way valve, an outdoor heat exchanger,
  • An outdoor throttle valve each indoor unit includes an indoor heat exchanger and an indoor throttle valve
  • the heat storage module includes a heat accumulator and a heat storage throttle valve, wherein the first port of the first four-way valve is connected to the discharge port of the compressor The air port is connected, the second port of the first four-way valve is connected with one end of each indoor heat exchanger, the third port of the first four-way valve is connected with the return air port of the compressor, and the first port of the second four-way valve It is connected with the exhaust port of the compressor, the second port of the second four-way valve is connected with one end of the outdoor heat exchanger, and the other end of the outdoor heat exchanger is connected with one end of each indoor throttle valve through the outdoor throttle valve, The other end of each indoor throttle valve is connected
  • the multi-connected system includes an outdoor unit, at least one indoor unit, such as two indoor units, a thermal storage module and a controller (not shown in the figure), wherein the outdoor unit includes a compressor 11 , the first four-way valve 13, the second four-way valve 14, an outdoor heat exchanger 15, an outdoor fan 16, an outdoor throttle valve 17 and a gas-liquid separator 21, and the first indoor unit includes an indoor heat exchanger 35 and an indoor throttle valve 34 , the second indoor unit includes an indoor heat exchanger 32 and an indoor throttle valve 31 , and the heat storage module includes a heat accumulator 18 and a heat storage throttle valve 19 .
  • the outdoor unit includes a compressor 11 , the first four-way valve 13, the second four-way valve 14, an outdoor heat exchanger 15, an outdoor fan 16, an outdoor throttle valve 17 and a gas-liquid separator 21, and the first indoor unit includes an indoor heat exchanger 35 and an indoor throttle valve 34 , the second indoor unit includes an indoor heat exchanger 32 and an indoor throttle valve 31 , and the heat storage module includes a heat accumulator 18 and
  • the first port a13 of the first four-way valve 13 is connected with the exhaust port of the compressor 11, the second port b13 of the first four-way valve 13 is connected with one end of the gas side shut-off valve, and the first four-way valve 13
  • the third port c13 is connected to one end of the gas-liquid separator 21 , the other end of the gas-liquid separator 21 is connected to the air return port of the compressor 11 , and the fourth port d13 of the first four-way valve 13 is connected to the bypass capillary.
  • the first port a14 of the second four-way valve 14 is connected to the exhaust port of the compressor 11, the second port b14 of the second four-way valve 14 is connected to one end of the outdoor heat exchanger 15, and the other end of the outdoor heat exchanger 15 It is connected with one end of the outdoor throttle valve 17, the other end of the outdoor throttle valve 17 is connected with one end of the liquid side stop valve, and the third port c14 of the second four-way valve 14 is respectively connected with the first end of the gas-liquid separator 21 and the The third port c13 of the first four-way valve 13 is connected, the fourth port d14 of the second four-way valve 14 is connected with one end of the heat accumulator 18, and the other end of the heat accumulator 18 is connected with one end of the heat storage throttle valve 19 , the other end of the heat storage throttle valve 19 is connected to one end of the liquid side shut-off valve.
  • a plurality of indoor units are connected in parallel between the other end of the liquid side shut-off valve and the other end of the gas detection shut-off valve, and each indoor unit has an indoor heat exchanger and an indoor throttling valve connected in series.
  • each indoor unit may include a first indoor unit and a second indoor unit, wherein the first indoor unit includes a series indoor heat exchanger 35 and an indoor throttle valve 34, and the second indoor unit includes a series indoor heat exchanger 32 and Indoor throttle valve 31.
  • the controller is used to obtain the working mode of the multi-line system when the shutdown command is received or the indoor temperature reaches the set temperature, and according to the working mode, the first four-way valve 13, the second four-way valve 14, and the outdoor throttling Valve 17, indoor throttle valve 34 and heat storage throttle valve 19 are controlled.
  • the internal heat storage material is a phase change energy storage material, which can be paraffin or fatty acid organic matter, ethylene glycol, brine , sodium acetate solution and other substances with large heat storage;
  • multiple sensors can be set on the multi-line system, for example, a discharge pressure sensor 12 is set at the discharge port of the compressor 11 to obtain the discharge pressure of the compressor 11;
  • a return air pressure sensor 20 is set at the first end of the gas-liquid separator 21 to obtain the return air pressure of the compressor 11;
  • an outdoor ambient temperature sensor 22 is arranged outside the outdoor heat exchanger 15 to obtain the outdoor ambient temperature;
  • the other end of the heat exchanger 15 is provided with an outdoor heat exchanger outlet temperature sensor to obtain the outlet temperature of the outdoor heat exchanger;
  • a temperature sensor of the heat accumulator is arranged in the middle of the heat accumulator 18 to obtain the temperature of the heat accumulator;
  • a temperature sensor is set at the other end of the heat accumulator 18 to obtain the outlet temperature of the heat accumulator
  • the first indoor unit is turned on and the second indoor unit is not in operation (the indoor throttle valve 31 is closed) as an example for illustration.
  • the controller controls the first four-way valve 13 to be powered on, the second four-way valve 14 to be powered off, and the outdoor throttle valve 17 to be opened such as to fix a larger opening ( 3/4 ⁇ full open) is opened, the indoor throttle valve 34 is opened, if it is controlled according to the target superheat (1 ⁇ 5°C), the heat storage throttle valve 19 is closed.
  • the flow direction of the refrigerant is shown in Figure 2: the refrigerant is discharged from the exhaust port of the compressor 11 ⁇ the first port a14 of the second four-way valve 14 ⁇ the second port b14 of the second four-way valve 14 ⁇ the outdoor heat exchanger 15 ⁇ outdoor Throttle valve 17 ⁇ indoor throttle valve 34 ⁇ indoor heat exchanger 35 ⁇ second port b13 of the first four-way valve 13 ⁇ third port c13 of the first four-way valve 13 ⁇ gas-liquid separator 21 ⁇ compressor 11 the air return port.
  • the controller controls the first four-way valve 13 to be powered off, the second four-way valve 14 to be powered on, and the outdoor throttle valve 17 to be opened as controlled according to the target superheat degree ( 1 ⁇ 5 °C), the indoor throttle valve 34 is opened, such as opening with a fixed larger opening (3/4 ⁇ full open), and the heat storage throttle valve 19 is closed.
  • the flow direction of the refrigerant is shown in Figure 3: the refrigerant is discharged from the exhaust port of the compressor 11 ⁇ the first port a13 of the first four-way valve 13 ⁇ the second port b13 of the first four-way valve 13 ⁇ the indoor heat exchanger 35 ⁇ indoor Throttle valve 34 ⁇ outdoor throttle valve 17 ⁇ outdoor heat exchanger 15 ⁇ second port b14 of the second four-way valve 14 ⁇ third port b14 of the second four-way valve 14 ⁇ gas-liquid separator 21 ⁇ compressor 11 the air return port.
  • the user may turn off the air conditioner by mistake when operating the air conditioner, such as adjusting the temperature. If the user turns off the air conditioner by mistake, the compressor will stop immediately.
  • the system will set the time interval for restarting after shutting down. For example, it will generally be set at more than 5 minutes. Especially when the multi-connection system is heating at low temperature, the response speed of the multi-connection system is very slow, which will affect the user's safety. comfort.
  • the controller in the embodiment of the present disclosure controls the first four-way valve 13, the second four-way valve 14, the outdoor throttle valve 17, the indoor throttle valve 34 and the heat storage throttle valve 19, so as to
  • the heat storage module is used for standby operation in case of an accidental shutdown, so as to respond quickly after the user corrects the error and improve the comfort of the user.
  • the controller is specifically configured to: when receiving the shutdown instruction, control the first four-way valve 13 to power on , the second four-way valve 14 is de-energized, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is closed, and the heat storage throttle valve 19 is opened, so that the multi-line system operates in the first standby operation mode, and it is judged that in the first Whether the start-up command is received within the preset time, if the start-up command is received within the first preset time, the first four-way valve 13 is controlled to be powered on, the second four-way valve 14 is powered off, the outdoor throttle valve 17 is opened, The indoor throttle valve 34 is opened and the thermal storage throttle valve 19 is closed, so that the multi-split system continues to operate in the normal cooling mode; or, if no start-up command is received within the first preset time, or the return air of the multi-split system If the super
  • the first preset time and the first preset return air superheat degree can be set according to the actual situation, for example, the first preset time can be 10s ⁇ 60s, and the first preset return air superheat degree can be 0°C ⁇ 5°C.
  • the controller controls the first four-way valve 13 to maintain the power-on state, the second The two-way four-way valve 14 remains in the power-off state without reversing, the outdoor throttle valve 17 remains open, the indoor throttle valve 34 is closed, and the heat storage throttle valve 19 is opened, so that the multi-connected system operates in the first standby mode.
  • the flow of the refrigerant in the first standby operation mode is shown in FIG.
  • the refrigerant is discharged from the discharge port of the compressor 11 ⁇ the first port a14 of the second four-way valve 14 ⁇ the second port of the second four-way valve 14 b14 ⁇ outdoor heat exchanger 15 ⁇ outdoor throttle valve 17 ⁇ heat storage throttle valve 19 ⁇ regenerator 18 (evaporating through the regenerator 18) ⁇ fourth port d14 of the second four-way valve 14 ⁇ second
  • the third port c14 of the four-way valve 14 ⁇ gas-liquid separator 21 ⁇ air return port of the compressor 11 .
  • the output of the compressor 11 can be maintained at the lowest frequency to save energy.
  • the multi-connected system After the multi-connected system operates in the first standby operation mode, it is judged in real time whether a power-on command is received within the first preset time, and if the power-on command of the indoor unit is received again within the first preset time, control the first four The through valve 13 remains powered on, the second four-way valve 14 remains powered off and does not change direction, the outdoor throttle valve 17 remains open, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-line The system continues to operate in the normal cooling mode.
  • FIG. 4a is a flow chart of a control method for a multi-connected system that receives a shutdown command when operating in a normal cooling mode according to an embodiment of the present disclosure. As shown in FIG. 4a , The control method includes the following steps:
  • the indoor unit is cooling normally (refrigerant flow direction is shown in Figure 2).
  • step S4a02 judging whether a shutdown command is received. If yes, execute step S4a03; if no, return to step S4a01.
  • step S4a04 judging whether the indoor unit receives a restart instruction. If yes, go back to step S4a01; if no, go to step S4a05.
  • the multi-connected system of the present disclosure adds a heat storage module, so that when the user accidentally stops the multi-connected system in the normal cooling mode, the thermal storage module can be used for standby operation, so that the user can correct the wrong operation. Quick response.
  • the controller is specifically configured to: when receiving the shutdown instruction, control the first four-way valve 13 to shut off. Electricity, the second four-way valve 14 is powered on, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened to the first preset opening degree, and the heat storage throttle valve 19 is opened, so that the multi-split system operates in the second standby mode run, and judge whether to receive a start-up command within the second preset time, if a start-up command is received within the second preset time, then control the power-off of the first four-way valve 13, power-on of the second four-way valve 14, The outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-split system continues to operate in the normal heating mode; or, if no start-up command is received within the second preset time , or the exhaust side pressure of the multi-
  • the controller controls the first four-way valve 13 to maintain the power-off state. reversing, the second four-way valve 14 is kept powered on, the outdoor throttle valve 17 is kept open, and the indoor throttle valve 34 is opened to the first preset opening degree (such as opening 0 to 1/5 opening degree to prevent refrigerant from accumulating In the indoor heat exchanger 35) and the heat storage throttle valve 19 are opened at a fixed larger opening (such as 3/4 ⁇ full open), so that the multi-line system operates in the second standby operation mode, wherein the second standby
  • the flow direction of the refrigerant in the operation mode is shown in Figure 5: the refrigerant is discharged from the exhaust port of the compressor 11 ⁇ the first port a14 of the second four-way valve 14 ⁇ the fourth port d14 of the second four-way valve 14 ⁇ heat accumulator 18 (the refriger
  • the multi-connected system After the multi-connected system operates in the second standby operation mode, it is judged in real time whether a power-on command is received within the second preset time, and if the power-on command of the indoor unit is received again within the second preset time, control the first four The through valve 13 remains in the power-off state, the second four-way valve 14 remains in the power-on state, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-split system continues to operate in the normal mode.
  • Heat mode operation wherein the refrigerant flow direction of normal heating mode operation is shown in Figure 3, which can make the indoor unit respond quickly; if the start-up command is not received beyond the second preset time, or the exhaust side of the multi-connected If the pressure is greater than or equal to the first preset discharge side pressure, the compressor 11 is controlled to stop again.
  • FIG. 5a is a flow chart of a control method for a multi-connected system that receives a shutdown command when operating in normal heating mode according to an embodiment of the present disclosure, as shown in FIG. 5a , the control method includes the following steps:
  • the indoor unit is heating normally (refrigerant flow direction is shown in Figure 3).
  • step S5a04 judging whether the indoor unit has received a restart instruction. If yes, return to step S5a01; if no, execute step S5a05.
  • step S5a05 judging whether the duration is greater than a second preset time. If yes, execute step S5a07; if no, execute step S5a06.
  • the multi-connected system of the present disclosure adds a thermal storage module, so that when the multi-connected system is operating in normal heating mode, the user shuts down by mistake, by using the thermal storage module for standby operation, it is possible for the user to correct the wrong operation. Respond quickly.
  • the controller of the embodiment of the present disclosure controls the first four-way valve 13, the second four-way valve 14, the outdoor throttle valve 17, the indoor throttle valve 34 and the heat storage throttle valve 19 to control the indoor After the temperature reaches the set temperature, the heat storage module is used to continue to run, reducing the number of start-up and stop of the compressor and improving the reliability of the system.
  • the controller when the multi-split system is operating in the normal cooling mode, if the indoor temperature reaches the set temperature, the controller is specifically configured to: acquire the current indoor temperature when the indoor temperature reaches the set temperature The first time interval between the time when the set temperature is reached and the last time when the indoor temperature reached the set temperature, and when the first time interval is less than the first preset time interval, control the first four-way valve 13 to power on, The second four-way valve 14 is powered off, the outdoor throttle valve 17 is opened, the indoor throttle valve is closed 34 and the heat storage throttle valve 19 is opened, so that the multi-connected system operates in the first standby mode; or, at the first time When the interval is greater than or equal to the first preset time interval, the compressor 11 is controlled to stop.
  • the controller is also used for: after the multi-connected system operates in the first standby operation mode, obtain the return air superheat degree of the multi-connected system; when the return air superheat degree of the multi-connected system is less than the second preset return air superheat degree or, when the return air superheat degree of the multi-connected system is greater than or equal to the second preset return air superheat degree, continue to obtain the time when the current indoor temperature reaches the set temperature and the time when the last indoor temperature reached the set temperature.
  • the second preset return air superheat degree can be set according to actual needs, for example, it can be 0°C-5°C.
  • the controller is also used for: after confirming that the indoor temperature has not reached the set temperature, obtain the first accumulated time for the multi-connected system to operate in the normal cooling mode, and determine whether the first accumulated time has reached the first preset time. Set the cumulative time, if the first cumulative time is greater than or equal to the first preset cumulative time, control the first four-way valve 13 to be powered on, the second four-way valve 14 to be powered on, the outdoor throttle valve 17 to be closed, and the indoor throttle valve to be closed.
  • heat storage throttling valve 19 is opened to refrigerate through the cold stored in the heat accumulator 18; or, if the first cumulative time is less than the first preset cumulative time, control the first four-way valve 13 to power on, The second four-way valve 14 is powered off, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-split system continues to operate in the normal cooling mode.
  • the controller is also used to obtain the discharge side pressure of the multi-connected system after being refrigerated by the cold stored in the heat accumulator, and when the exhaust side pressure of the multi-connected system is greater than or equal to the second preset
  • the first four-way valve 13 is controlled to be powered on
  • the second four-way valve 14 is powered off
  • the outdoor throttle valve 17 is opened
  • the indoor throttle valve 34 is opened
  • the heat storage throttle valve 19 is closed, so that the multi- The online system continues to operate in the normal refrigeration mode; or, when the exhaust side pressure of the multi-line system is lower than the second preset exhaust side pressure, continue to control the first four-way valve 13 to be powered on and the second four-way valve 14 to be turned on.
  • the outdoor throttle valve 17 is closed, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is opened to cool by the cold stored in the heat accumulator.
  • the second preset exhaust side pressure can be set according to actual needs, for example, it can be 3.0MP-3.5MPa.
  • the controller will record the time when the current indoor temperature reaches the set temperature and the time since the last indoor temperature The first time interval TA between the time to reach the set temperature. If the first time interval TA ⁇ TAS1 (TAS1 is the first preset time interval, usually 5 minutes to 10 minutes), then control the first four-way valve 13 to keep the power-on state, and the second four-way valve 14 to keep the off state.
  • TAS1 is the first preset time interval, usually 5 minutes to 10 minutes
  • the electric state does not change direction, the outdoor throttle valve 17 remains open, the indoor throttle valve 34 is closed, and the heat storage throttle valve 19 is opened, so that the multi-split system operates in the first standby mode (refrigerant flow direction is shown in Figure 4 ), that is, the flow direction of the refrigerant is changed from FIG. 2 to FIG. 4; if the first time interval TA ⁇ TAS1, the compressor 11 is controlled to stop again.
  • the return air superheat T SH of the multi-connected system is obtained, and when the return air superheat T SH of the multi-connected system is ⁇ T s 2 , the compressor 11 is controlled to stop;
  • the return air superheat T SH ⁇ T s 2 of the multi-connected system continue to record the first time interval TA between the time when the current indoor temperature reaches the set temperature and the last time when the indoor temperature reaches the set temperature.
  • Tst After confirming that the indoor temperature has not reached the set temperature, detect the first cumulative time Tst of the multi-split system operating in normal cooling mode, and continue to judge whether the first cumulative time Tst ⁇ T1 ( ⁇ T1 is the first preset cumulative time, the value range from 5 to 20 minutes). Wherein, if this condition is met (Tst ⁇ T1), it is determined that the heat storage module has stored a certain amount of cooling capacity, and the first four-way valve 13 is controlled to be powered on, the second four-way valve 14 is powered on, and the outdoor section is controlled.
  • the throttle valve 17 is closed, the indoor throttle valve 34 controls the opening according to the target superheat degree, and the indoor throttle valve 31 is opened at a fixed small opening (0 to 1/5 opening to prevent refrigerant from accumulating in the indoor heat exchanger 33) And heat storage throttling valve 19 is opened to cool by the cold stored in heat accumulator 18, and the refrigerant flow direction is changed from Fig. 4 to Fig. 6, and the refrigerant flow direction in Fig.
  • refrigerant is discharged from the exhaust port of compressor 11 ⁇
  • the first accumulated time Tst is cleared after the refrigerant flow direction changes from Figure 4 to Figure 6. If the operation in Figure 6 was not performed during the last operation of the first standby mode, the first accumulated time Tst is unclear. zero. Otherwise (Tst ⁇ T1), the first four-way valve 13 is controlled to be powered on, the second four-way valve 14 is powered off, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed to Make the multi-split system continue to operate in cooling mode, that is, the refrigerant flow direction is changed from Figure 4 to Figure 2.
  • Opening and heat storage throttle valve 19 is opened to cool by the cold stored in the heat accumulator, that is, the multi-connected system continues to use the refrigerant flow direction shown in FIG. 6 for operation.
  • FIG. 7 is a flowchart of a control method when the multi-connected system operates in normal cooling mode and the indoor temperature reaches the set temperature according to an embodiment of the present disclosure, as shown in FIG. 7 As shown, the control method includes the following steps:
  • the indoor unit is cooling normally (refrigerant flow direction is shown in Figure 2).
  • step S702 judging that the indoor temperature has reached the set temperature. If yes, execute step S703; if no, execute step S707.
  • step S704 judging whether the first time interval TA between the temperature reaching this time and the temperature reaching last is less than a first preset time interval TAS1. If yes, execute step S705; if no, execute step S704.
  • step S709 judging whether the exhaust pressure of the system P1 ⁇ Ps2 (Ps2 is the second preset exhaust side pressure, and its value range may be within 3.0MPa ⁇ 3.5MPa) is established. If yes, return to step S701; if not, return to step S708.
  • the thermal storage module is used as a condenser and an evaporator to keep the system running for a sufficient time, reduce the number of compressor starts and stops, and improve user comfort and system efficiency. reliability.
  • the controller is specifically used to obtain the current indoor temperature when the indoor temperature reaches the set temperature.
  • the second time interval between the time when the set temperature is reached and the last time when the indoor temperature reached the set temperature, and when the second time interval is less than the second preset time interval, the first four-way valve 13 is controlled to be de-energized, the second The second four-way valve 14 is powered on, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened to a first preset opening degree, and the heat storage throttle valve 19 is opened, so that the multi-connected system operates in the second standby mode; or , when the second time interval is greater than or equal to the second preset time interval, the compressor 11 is controlled to stop.
  • the controller is also used for: after the multi-connected system operates in the second standby operation mode, obtain the exhaust side pressure of the multi-connected system, and obtain the discharge side pressure of the multi-connected system when the exhaust side pressure of the multi-connected system is greater than or equal to the third preset row.
  • the air side pressure is high, control the compressor 11 to stop; or, confirm that the exhaust side pressure of the multi-line system is less than the third preset exhaust side pressure, then continue to obtain the time when the current indoor temperature reaches the set temperature and the time when the indoor temperature reached the last time. Second time interval between time to set temperature.
  • the third preset exhaust side pressure can be set according to actual needs, for example, it can be 3.0MP-3.5MPa.
  • the controller is also used to: after determining that the indoor temperature has not reached the set temperature, obtain the second accumulated time for the multi-split system to pre-rotate in the normal heating operation mode, and determine whether the second accumulated time reaches the second preset Accumulated time, if the second accumulated time is greater than or equal to the second preset accumulated time, the first four-way valve 13 is controlled to be de-energized, the second four-way valve 14 is de-energized, the outdoor throttle valve 17 is closed, and the indoor throttle valve 34 is controlled to be de-energized.
  • Opening and heat storage throttle valve 19 is opened to make heat through the heat stored in the heat accumulator 18; or, if the second cumulative time is less than the second preset cumulative time, control the first four-way valve 13 to de-energize, the second The two-way four-way valve 14 is powered on, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-connected system continues to operate in the normal heating mode.
  • the controller is also used to: acquire the return air superheat degree of the multi-connected system, and control the first four-way valve when the return air superheat degree of the multi-connected system is greater than or equal to the third preset return air superheat degree 13 is powered off, the second four-way valve 14 is powered on, the outdoor throttle valve 17 is opened, the indoor throttle valve 34 is opened, and the heat storage throttle valve 19 is closed, so that the multi-split system continues to operate in the normal heating mode; or, Confirm that the return air superheat degree of the multi-line system is greater than or equal to the third preset return air superheat degree, then continue to control the first four-way valve 13 to be powered off, the second four-way valve 14 to be powered off, the outdoor throttle valve 17 to be closed, and the indoor The throttle valve 34 is opened and the thermal storage throttle valve 19 is opened to generate heat by the heat accumulated in the thermal accumulator.
  • the third preset return air superheat degree can be set according to actual needs, for example, it can be
  • the controller will record the time since the current indoor temperature reaches the set temperature from the last indoor A second time interval TB between the times when the temperature reaches the set temperature.
  • the second time interval TB ⁇ TBS1 (TBS1 is the second preset time interval, generally takes a value of 5 minutes to 10 minutes)
  • the second four-way valve 14 is kept powered on
  • the outdoor throttle valve 17 is kept open
  • the indoor throttle valve 34 is opened to the first preset opening degree
  • the heat storage throttle valve 19 is opened, so that the multi-split system operates in the second standby mode (refrigerant
  • the flow direction is shown in Figure 5), that is, the refrigerant flow direction is changed from Figure 3 to Figure 5; if the second time interval TB ⁇ TBS1, the compressor 11 is controlled to stop again.
  • the multi-line system After the multi-line system operates in the second standby operation mode, obtain the exhaust side pressure of the multi-line system, and control the compression when the exhaust side pressure P1 of the multi-line system is greater than or equal to the third preset exhaust side pressure Ps3 or, when the exhaust side pressure P1 of the multi-line system is less than the third preset exhaust side pressure Ps3, continue to obtain the time when the current indoor temperature reaches the set temperature and the time when the last indoor temperature reached the set temperature The second time interval between times TB.
  • TSH the return air superheat
  • Ts3 the third preset return air superheat
  • the value range can be 0°C to 5°C
  • the first four-way valve 13 is in the power-off state
  • the second four-way valve 14 is powered on
  • the outdoor throttle valve 17 is opened
  • the indoor throttle valve 34 is opened
  • the heat storage throttle valve 19 is closed, so that the multi- The online system continues to operate in the heating mode, that is, the refrigerant flow direction is changed from Figure 8 to Figure 3.
  • the heat storage throttle valve 19 is controlled according to a fixed target subcooling degree.
  • FIG. 9 is a flowchart of a control method when the multi-connected system operates in normal heating mode and the indoor temperature reaches the set temperature according to an embodiment of the present disclosure, as shown in FIG. 9, the control method includes the following steps:
  • the indoor unit is heating normally (refrigerant flow direction is shown in Figure 3).
  • step S902 judging that the indoor temperature has reached the set temperature. If yes, execute step S903; if no, execute step S907.
  • step S903 judging whether the second time interval TB between the temperature reaching this time and the temperature reaching last time is less than a second preset time interval TBS1. If yes, execute step S905; if no, execute step S904.
  • Ts3 is the third pre-return air superheat, and its value range can be within 0° C. to 5° C.
  • the thermal storage module is used as a condenser and an evaporator to keep the system running for a sufficient time, reduce the number of start-up and stop of the compressor, and improve user comfort and safety. System reliability.
  • the multi-connected system is composed of at least one indoor unit, outdoor unit and heat storage module, each indoor unit includes an indoor heat exchanger and an indoor throttle valve, and the heat storage module includes a heat storage module
  • the outdoor unit includes a compressor, a first four-way valve, a second four-way valve, an outdoor heat exchanger, and an outdoor throttle valve, wherein the first port of the first four-way valve is connected to the first port of the compressor
  • the exhaust port of the first four-way valve is connected with one end of each indoor heat exchanger
  • the third port of the first four-way valve is connected with the air return port of the compressor
  • One port is connected to the exhaust port of the compressor
  • the second port of the second four-way valve is connected to one end of the outdoor heat exchanger
  • the other end of the outdoor heat exchanger is connected to one end of each indoor throttle valve through the outdoor throttle valve.
  • each indoor throttle valve is connected with the other end of each corresponding indoor heat exchanger, the third port of the second four-way valve is connected with the air return port of the compressor, and the third port of the second four-way valve is connected with the air return port of the compressor.
  • the four ports are connected to one end of the heat accumulator, and the other end of the heat accumulator is connected to one end of each indoor throttle valve through the heat storage throttle valve; the controller is used to receive the shutdown command or the indoor temperature reaches the set value In the case of temperature, the working mode of the multi-line system is obtained, and according to the working mode, the first four-way valve, the second four-way valve, the outdoor throttle valve, the indoor throttle valve and the thermal storage throttle valve are controlled.
  • the system can use the heat storage module to perform standby operation when the user stops the machine by mistake, so as to respond quickly after the user corrects the error and improve the user's comfort, or the indoor temperature can reach the set temperature Afterwards, the heat storage module is used to continue to run, reducing the number of start and stop of the compressor and improving the reliability of the system.
  • Fig. 10 is a flowchart of a control method of a multi-connection system according to an embodiment of the present disclosure. As shown in FIG. 10, the control method of the multi-connected system in the embodiment of the present disclosure includes:
  • the multi-split system when the multi-split system is operating in the normal cooling mode, if a shutdown command is received, the first four-way valve, the second four-way valve, the outdoor throttle valve, the indoor throttle valve, and the The heat storage throttle valve is controlled, including: if a shutdown command is received, the first four-way valve is powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is closed, and the heat storage throttle is controlled.
  • the valve is opened so that the multi-line system operates in the first standby mode; it is judged whether a start-up command is received within the first preset time; if the start-up command is received within the first preset time, the first four-way valve is controlled Power on, second four-way valve de-energized, outdoor throttle valve open, indoor throttle valve open and thermal storage throttle valve closed so that the multi-split system continues to operate in normal cooling mode; or, if in the first preset If no start-up command is received within the time, or the return air superheat degree of the multi-connected system is less than the first preset return air superheat degree, the compressor is controlled to stop.
  • the first four-way valve, the second four-way valve, the outdoor throttle valve, and the indoor throttle valve Control with heat storage throttle valve including: if a shutdown command is received, control the first four-way valve to power off, the second four-way valve to power on, the outdoor throttle valve to open, and the indoor throttle valve to open the first preset
  • the opening degree and the thermal storage throttle valve are opened so that the multi-split system operates in the second standby operation mode; it is judged whether a start-up command is received within the second preset time; if the start-up command is received within the second preset time, Then control the power off of the first four-way valve, power on of the second four-way valve, open the outdoor throttle valve, open the indoor throttle valve and close the thermal storage throttle valve, so that the multi-connected system continues to operate in the normal heating mode; Or, if no start-up instruction is received within the second preset time,
  • the multi-connected system when the multi-connected system is operating in normal cooling mode, if the indoor temperature reaches the set temperature, the first four-way valve, the second four-way valve, the outdoor throttle valve, and the indoor throttle valve control valve and heat storage throttle valve, including: if the indoor temperature reaches the set temperature, obtain the first time interval between the time when the current indoor temperature reaches the set temperature and the last time when the indoor temperature reaches the set temperature; When the first time interval is less than the first preset time interval, the first four-way valve is controlled to be powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is closed, and the heat storage throttle valve is opened, Make the multi-connected system operate in the first standby operation mode; or, when the first time interval is greater than or equal to the first preset time interval, control the compressor to stop.
  • the multi-connected system after the multi-connected system operates in the first standby operation mode, it further includes: obtaining the return air superheat degree of the multi-connected system; confirming that the return air superheat degree of the multi-connected system is less than the second preset return air If the temperature is higher, then control the compressor to stop; or, if it is confirmed that the return air superheat degree of the multi-connected system is greater than or equal to the second preset return air superheat degree, then continue to obtain the time when the current indoor temperature reaches the set temperature and the time when the last indoor temperature reached the set temperature.
  • the indoor temperature after confirming that the indoor temperature has not reached the set temperature, it further includes: obtaining the first cumulative time of the multi-connected system operating in the normal cooling mode; judging whether the first cumulative time reaches the first preset cumulative time; If the first cumulative time is greater than or equal to the first preset cumulative time, control the first four-way valve to be powered on, the second four-way valve to be powered on, the outdoor throttle valve to be closed, the indoor throttle valve to be opened, and the heat storage throttle valve to be controlled Open to refrigerate through the accumulated cold in the heat accumulator; or, if the first cumulative time is less than the first preset cumulative time, control the first four-way valve to be powered on, the second four-way valve to be powered off, and the outdoor throttling The valve opens, the indoor throttle valve opens and the thermal storage throttle valve closes, so that the multi-split system continues to operate in normal cooling mode.
  • the heat accumulator after cooling by the cold stored in the heat accumulator, it also includes: obtaining the discharge side pressure of the multi-connected system; when the exhaust side pressure of the multi-connected system is greater than or equal to the second preset When the exhaust side is under pressure, the first four-way valve is powered on, the second four-way valve is powered off, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-line system continues to operate normally.
  • the multi-split system when the multi-split system is operating in normal heating mode, if the indoor temperature reaches the set temperature, the first four-way valve, the second four-way valve, the outdoor throttle valve, the indoor throttle
  • the throttling valve and heat storage throttle valve are controlled, including: if the indoor temperature reaches the set temperature, obtain the second time interval between the time when the current indoor temperature reaches the set temperature and the last time when the indoor temperature reaches the set temperature ; When the second time interval is less than the second preset time interval, control the first four-way valve to power off, the second four-way valve to power on, the outdoor throttle valve to open, and the indoor throttle valve to open the first preset opening degree and The thermal storage throttle valve is opened, so that the multi-connected system operates in the second standby operation mode; or, when the second time interval is greater than or equal to the second preset time interval, the compressor is controlled to stop.
  • the multi-connected system after the multi-connected system is operated in the second standby operation mode, it further includes: obtaining the exhaust side pressure of the multi-connected system; confirming that the exhaust side pressure of the multi-connected system is greater than or equal to the third preset row If the pressure on the gas side is lower than the pressure on the gas side, then control the compressor to stop; or, if it is confirmed that the pressure on the discharge side of the multi-line system is lower than the third preset pressure on the discharge side, then continue to obtain the time when the current indoor temperature reaches the set temperature and the time when the last indoor temperature reached the set temperature. Second time interval between temperature setting times.
  • the indoor temperature after determining that the indoor temperature has not reached the set temperature, further comprising: acquiring a second accumulated time for the multi-connected system to operate in a normal heating operation mode; judging whether the second accumulated time reaches the second preset accumulated time time; if the second cumulative time is greater than or equal to the second preset cumulative time, then control the power off of the first four-way valve, the power off of the second four-way valve, the closing of the outdoor throttle valve, the opening of the indoor throttle valve and the heat storage section
  • the flow valve is opened to generate heat by the heat accumulated in the accumulator; or, if the second cumulative time is less than the second preset cumulative time, control the first four-way valve to be powered off, the second four-way valve to be powered on, and the outdoor
  • the throttle valve is opened, the indoor throttle valve is opened and the thermal storage throttle valve is closed so that the multi-split system continues to operate in normal heating mode.
  • the heat accumulator after heating by using the heat stored in the heat accumulator, it also includes: obtaining the superheat degree of the return air of the multi-connected system; the superheat degree of the return air in the multi-connected system is less than the third preset return air
  • the first four-way valve is powered off, the second four-way valve is powered on, the outdoor throttle valve is opened, the indoor throttle valve is opened, and the heat storage throttle valve is closed, so that the multi-connected system continues to heat normally.
  • the control method of the multi-connected system in the embodiment of the present disclosure, when the stop command is received or the indoor temperature reaches the set temperature, the working mode of the multi-connected system is acquired, and the first four-way valve, the second The four-way valve, the outdoor throttle valve, the indoor throttle valve and the heat storage throttle valve in the heat storage module are controlled. Therefore, by adding a heat storage module, the method can use the heat storage module to perform standby operation when the user stops the machine by mistake, so as to respond quickly after the user corrects the error and improve the comfort of the user, or the indoor temperature can reach the set temperature Afterwards, the heat storage module is used to continue to run, reducing the number of start and stop of the compressor and improving the reliability of the system.
  • embodiments of the present disclosure also provide a computer-readable storage medium having instructions stored therein.
  • the multi-connection system executes the above-mentioned control method of the multi-connection system.
  • the non-transitory computer-readable storage medium of the embodiment of the present disclosure can use the heat storage module to perform standby operation when the user stops the machine by mistake by executing the above-mentioned control method of the multi-connected system, so as to respond quickly after the user corrects the error and improve the user's performance.
  • the heat storage module can be used to continue to run, reducing the number of start-up and stop of the compressor, and improving the reliability of the system.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机***及其控制方法,所述多联机***包括室外机、至少一个室内机和蓄热模块,室外机包括压缩机(11)、第一四通阀(13)、第二四通阀(14)、室外换热器(15)、室外节流阀(17),每个室内机包括室内换热器(32、35)和室内节流阀(31、34),蓄热模块包括蓄热器(18)和蓄热节流阀(19),所述控制方法包括:确认接收到停机指令或室内温度达到设定温度,则获取多联机***的工作模式;根据工作模式,对第一四通阀(13)、第二四通阀(14)、室外节流阀(17)、室内节流阀(31、34)和蓄热节流阀(19)进行控制。由此,通过增加蓄热模块,在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,或在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机(11)的启停次数,提升用户的舒适性和***的可靠性。

Description

多联机***及其控制方法
相关申请的交叉引用
本公开基于申请号为202110610086.X,申请日为2021年06月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及空调技术领域,特别涉及一种多联机***的控制方法和一种多联机***。
背景技术
随着多联机***技术的不断发展,用户对舒适性和智能化需求越来越高。在多联机***运转时,如果用户在操作空调时误关机了,则会导致压缩机立即停机,由于多联机***会设定停机后再次开机的时间间隔,如一般会设在5分钟以上,特别是在多联机***低温制热时发生误停机,多联机***的响应速度很慢,这样便会影响用户的舒适性。同时,由于现在建筑物的保温效果越来越好,所以室内侧在负荷较小时容易出现室内温度达到设定温度压缩机停机的情况,如果频繁的达温停机,则会使压缩机缺油,这样便会影响***可靠性。
因此,如何解决上述问题以提升用户的舒适性和***的可靠性是目前亟待解决的问题。
发明内容
本公开旨在至少从一定程度上解决上述技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种多联机***的控制方法,通过增加蓄热模块,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
本公开的第二个目的在于提出一种非临时性计算机可读存储介质。
本公开的第三个目的在于提出一种多联机***。
为达到上述目的,本公开第一方面实施例提出了一种多联机***的控制方法,所述多联机***包括室外机、至少一个室内机和蓄热模块,所述室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,每个所述室内机包括室内换热器和室内节流阀,所述蓄热模块包括蓄热器和蓄热节流阀,其中,所述第一四通阀的第一端口与所述压缩机 的排气口相连,所述第一四通阀的第二端口与每个所述室内换热器的一端相连,所述第一四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第一端口与所述压缩机的排气口相连,所述第二四通阀的第二端口与所述室外换热器的一端相连,所述室外换热器的另一端通过所述室外节流阀与每个所述室内节流阀的一端相连,每个所述室内节流阀的另一端分别与对应的每个所述室内换热器的另一端相连,所述第二四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第四端口与所述蓄热器的一端相连,所述蓄热器的另一端通过所述蓄热节流阀与每个所述室内节流阀的一端相连,所述控制方法包括以下步骤:确认接收到停机指令或室内温度达到设定温度,则获取所述多联机***的工作模式;根据所述工作模式,对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制。
根据本公开实施例的多联机***的控制方法,在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式,根据工作模式,对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热模块中的蓄热节流阀进行控制。由此,该方法通过增加蓄热模块,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
另外,根据本公开上述实施例提出的多联机***的控制方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述多联机***以正常制冷模式运转过程中,接收到停机指令,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:确认接收到停机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;确认在所述第一预设时间内接收到所述开机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认在所述第一预设时间内未接收到所述开机指令,或所述多联机***的回气过热度小于第一预设回气过热度,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以正常制热模式运转过程中,接收到停机指令,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:确认接收到停机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转;确认在第二预设时间内接收 到开机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认在第二预设时间内未接收到开机指令,或所述多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以正常制冷模式运转过程中,室内温度达到设定温度,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:确认所述室内温度达到所述设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔;确认所述第一时间间隔小于第一预设时间间隔,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;或,确认所述第一时间间隔大于或等于第一预设时间间隔,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以第一待机运转模式运转之后,还包括:获取所述多联机***的回气过热度;确认所述多联机***的回气过热度小于第二预设回气过热度,则控制所述压缩机停机;或,确认所述多联机***的回气过热度大于或等于第二预设回气过热度,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。
根据本公开的一个实施例,确认所述室内温度未达到所述设定温度之后,还包括:获取所述多联机***以正常制冷模式运转的第一累计时间;确认所述第一累计时间大于或等于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷;或,确认所述第一累计时间小于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转。
根据本公开的一个实施例,所述通过所述蓄热器中蓄积的冷量制冷之后,还包括:获取所述多联机***的排气侧压力;确认所述多联机***的排气侧压力大于或等于第二预设排气侧压力,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认所述多联机***的排气侧压力小于第二预设排气侧压力,则继续控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷。
根据本公开的一个实施例,所述多联机***以正常制热模式运转过程中,室内温度达 到设定温度,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:确认室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔;确认所述第二时间间隔小于第二预设时间间隔,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转;或,确认所述第二时间间隔大于或等于第二预设时间间隔,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以第二待机运转模式运转之后,还包括:获取所述多联机***的排气侧压力;确认所述多联机***的排气侧压力大于或等于第三预设排气侧压力,则控制所述压缩机停机;或,确认所述多联机***的排气侧压力小于所述第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。
根据本公开的一个实施例,确定所述室内温度未达到所述设定温度之后,还包括:获取所述多联机***以所述正常制热运转模式运转的第二累计时间;确认所述第二累计时间大于或等于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热;或,确认所述第二累计时间小于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转。
根据本公开的一个实施例,所述通过所述蓄热器中蓄积的热量制热之后,还包括:获取所述多联机***的回气过热度;确认所述多联机***的回气过热度小于第三预设回气过热度,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认所述多联机***的回气过热度大于或等于所述第三预设回气过热度,则继续控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热。
为达到上述目的,本公开第二方面实施例提出了一种非临时性计算机可读存储介质,具有存储于其中的指令,当所述指令被执行时,所述多联机***执行上述的多联机***的控制方法。
本公开实施例的非临时性计算机可读存储介质,通过执行上述的多联机***的控制方法,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少 压缩机的启停次数,提升***的可靠性。
为达到上述目的,本公开第三方面实施例提出了一种多联机***,包括:至少一个室内机,每个所述室内机包括室内换热器和室内节流阀;蓄热模块,所述蓄热模块包括蓄热器和蓄热节流阀;室外机,所述室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,其中,所述第一四通阀的第一端口与所述压缩机的排气口相连,所述第一四通阀的第二端口与每个所述室内换热器的一端相连,所述第一四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第一端口与所述压缩机的排气口相连,所述第二四通阀的第二端口与所述室外换热器的一端相连,所述室外换热器的另一端通过所述室外节流阀与每个所述室内节流阀的一端相连,每个所述室内节流阀的另一端分别与对应的每个所述室内换热器的另一端相连,所述第二四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第四端口与所述蓄热器的一端相连,所述蓄热器的另一端通过所述蓄热节流阀与每个所述室内节流阀的一端相连;控制器,所述控制器用于确认接收到停机指令或室内温度达到设定温度,则获取所述多联机***的工作模式,并根据所述工作模式,对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制。
根据本公开实施例的多联机***,由至少一个室内机、室外机和蓄热模块构成,每个室内机包括室内换热器和室内节流阀,蓄热模块包括蓄热器和蓄热节流阀,室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,其中,第一四通阀的第一端口与压缩机的排气口相连,第一四通阀的第二端口与每个室内换热器的一端相连,第一四通阀的第三端口与压缩机的回气口相连,第二四通阀的第一端口与压缩机的排气口相连,第二四通阀的第二端口与室外换热器的一端相连,室外换热器的另一端通过室外节流阀与每个室内节流阀的一端相连,每个室内节流阀的另一端分别与对应的每个室内换热器的另一端相连,第二四通阀的第三端口与压缩机的回气口相连,第二四通阀的第四端口与蓄热器的一端相连,蓄热器的另一端通过蓄热节流阀与每个室内节流阀的一端相连;控制器,控制器用于在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式,并根据工作模式,对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制。由此,该***通过增加蓄热模块,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
另外,根据本公开上述实施例提出的多联机***还可以具有如下附加的技术特征:
根据本公开的一个实施例,在所述多联机***以正常制冷模式运转过程中,接收到停机指令,则所述控制器,具体用于:确认接收到停机指令,则控制所述第一四通阀上电、 所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转,并确认在所述第一预设时间内接收到所述开机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认在所述第一预设时间内未接收到所述开机指令,或所述多联机***的回气过热度小于第一预设回气过热度,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以正常制热模式运转过程中,接收到停机指令,则所述控制器,具体用于:确认接收到停机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转,并确认在所述第二预设时间内接收到所述开机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认在所述第二预设时间内未接收到所述开机指令,或所述多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制所述压缩机停机。
根据本公开的一个实施例,所述多联机***以正常制冷模式运转过程中,室内温度达到设定温度,则所述控制器,具体用于:确认室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔,并确认所述第一时间间隔小于第一预设时间间隔,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;或,确认所述第一时间间隔大于或等于第一预设时间间隔,则控制所述压缩机停机。
根据本公开的一个实施例,所述控制器,还用于:所述多联机***以第一待机运转模式运转之后,获取所述多联机***的回气过热度,确认所述多联机***的回气过热度小于第二预设回气过热度,则控制所述压缩机停机;或,确认所述多联机***的回气过热度大于或等于第二预设回气过热度,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。
根据本公开的一个实施例,所述控制器,还用于:确认所述室内温度未达到所述设定温度之后,获取所述多联机***以正常制冷模式运转的第一累计时间,确认所述第一累计时间大于或等于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷;或,确认所述第一累计时间小于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和 所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转。
根据本公开的一个实施例,所述控制器,还用于:通过所述蓄热器中蓄积的冷量制冷之后,获取所述多联机***的排气侧压力,并确认所述多联机***的排气侧压力大于或等于第二预设排气侧压力,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认所述多联机***的排气侧压力小于第二预设排气侧压力,则继续控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷。
根据本公开的一个实施例,所述多联机***以正常制热模式运转过程中,室内温度达到设定温度,则所述控制器,具体用于:确认室内温度达到设定温度,获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔,并确认所述第二时间间隔小于第二预设时间间隔,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转;或,确认所述第二时间间隔大于或等于第二预设时间间隔,则控制所述压缩机停机。
根据本公开的一个实施例,所述控制器,还用于:多联机***以第二待机运转模式运转之后,获取所述多联机***的排气侧压力,确认所述多联机***的排气侧压力大于或等于第三预设排气侧压力,则控制所述压缩机停机;或,确认所述多联机***的排气侧压力小于所述第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。
根据本公开的一个实施例,所述控制器,还用于:确定所述室内温度未达到所述设定温度之后,获取所述多联机***以所述正常制热运转模式运转的第二累计时间,确认所述第二累计时间大于或等于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热;或,确认所述第二累计时间小于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转。
根据本公开的一个实施例,所述控制器,还用于:通过所述蓄热器中蓄积的热量制热之后,获取所述多联机***的回气过热度,确认所述多联机***的回气过热度小于第三预设回气过热度,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认所述多联机***的回气过热度大于或等于所述第三预设回气过热度,则 继续控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的多联机***的结构示意图;
图2是根据本公开一个实施例的多联机***以正常制冷模式运转的冷媒流向图;
图3是根据本公开一个实施例的多联机***以正常制热模式运转的冷媒流向图;
图4是根据本公开一个实施例的多联机***正常制冷模式误停机待机和室内机达到设定温度时待机的冷媒流向图;
图4a是根据本公开一个实施例的多联机***在以正常制冷模式运转时接收到停机指令的控制方法的流程图;
图5是根据本公开一个实施例的多联机***在正常制热模式误停机待机和室内机达到设定温度时待机的冷媒流向图;
图5a是根据本公开一个实施例的多联机***在以正常制热模式运转时接收到停机指令的控制方法的流程图;
图6是根据本公开一个实施例的多联机***在以正常制冷模式运转、且室内机进入正常制冷模式运转时利用蓄热冷量制冷的冷媒流向图;
图7是根据本公开一个实施例的多联机***在以正常制冷模式运转、且室内机进入正常制冷模式运转时控制方法的流程图;
图8是根据本公开一个实施例的多联机***在以正常制热模式运转、且室内机进入正常制热模式运转时利用蓄热热量制热的冷媒流向图;
图9是根据本公开一个实施例的多联机***以正常制热模式运转、且室内机进入正常制热模式运转时控制方法的流程图;
图10是根据本公开实施例的多联机***的控制方法的流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例提出的多联机***的控制方法和多联机***。
在本公开的实施例中,多联机***包括室外机、至少一个室内机、蓄热模块和控制器,室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,每个室内机包括室内换热器和室内节流阀,蓄热模块包括蓄热器和蓄热节流阀,其中,第一四通阀的第一端口与压缩机的排气口相连,第一四通阀的第二端口与每个室内换热器的一端相连,第一四通阀的第三端口与压缩机的回气口相连,第二四通阀的第一端口与压缩机的排气口相连,第二四通阀的第二端口与室外换热器的一端相连,室外换热器的另一端通过室外节流阀与每个室内节流阀的一端相连,每个室内节流阀的另一端分别与对应的每个室内换热器的另一端相连,第二四通阀的第三端口与压缩机的回气口相连,第二四通阀的第四端口与蓄热器的一端相连,蓄热器的另一端通过蓄热节流阀与每个室内节流阀的一端相连。
具体地,如图1所示,多联机***包括室外机、至少一个室内机如可以为两个室内机、蓄热模块和控制器(图中未示出),其中,室外机包括压缩机11、第一四通阀13、第二四通阀14、室外换热器15、室外风机16、室外节流阀17和气液分离器21,第一室内机包括室内换热器35和室内节流阀34,第二室内机包括室内换热器32和室内节流阀31,蓄热模块包括蓄热器18和蓄热节流阀19。其中,第一四通阀13的第一端口a13与压缩机11的排气口相连,第一四通阀13的第二端口b13与气侧截止阀的一端相连,第一四通阀13的第三端口c13与气液分离器21的一端相连,气液分离器21的另一端与压缩机11的回气口相连,第一四通阀13的第四端口d13与旁通毛细管相连。第二四通阀14的第一端口a14与压缩机11的排气口相连,第二四通阀14的第二端口b14与室外换热器15的一端相连,室外换热器15的另一端与室外节流阀17的一端相连,室外节流阀17的另一端与液侧截止阀的一端相连,第二四通阀14的第三端口c14分别与气液分离器21的第一端和第一四通阀13的第三端口c13相连,第二四通阀14的第四端口d14与蓄热器18的一端相连,蓄热器18的另一端与蓄热节流阀19的一端相连,蓄热节流阀19的另一端与液侧截止阀的一端相连。液侧截止阀的另一端和气测截止阀的另一端之间并联有多个室内机,每个室内机中有串联连接的室内换热器和室内节流阀。例如,可以包括第一室内机和第二室内机,其中,第一室内机中包括串联的室内换热器35和室内节流阀34,第二室内机中包括串联的室内换热器32和室内节流阀31。控制器用于在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式,并根据工作模式,对第一四通阀13、第二四通阀14、室外节流阀17、室内节流阀34和蓄热节流阀19进行控制。
需要说明的是,蓄热器18中带有换热盘管,其内部的蓄热材料为相变蓄能材料,该相变蓄热材料可为石蜡或脂酸类有机物、乙二醇、盐水、醋酸钠溶液等蓄热量大的物质;可 以在多联机***上设置多个传感器,例如,在压缩机11的排气口处设置排气压力传感器12,以获取压缩机11的排气压力;在气液分离器21的第一端设置回气压力传感器20,以获取压缩机11的回气压力;在室外换热器15的外部设置室外环境温度传感器22,以获取室外环境温度;在室外换热器15的另一端设置室外换热器出口温度传感器,以获取室外换热器的出口温度;在蓄热器18的中间位置设置蓄热器的温度传感器,以获取蓄热器的温度;在蓄热器18的另一端设置温度传感器,以获取蓄热器18的出口温度;在室内换热器35上设置温度传感器36,以获取室内换热器35的管道温度;在室内换热器32上设置温度传感器33,以获取室内换热器32的管道温度。
下面以第一室内机开启运转,第二室内机不运转(室内节流阀31关闭)为例进行说明。
在多联机***的第一室内机开启正常制冷模式时,控制器控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开如以固定较大开度(3/4~全开)打开、室内节流阀34打开如按照目标过热度控制(1~5℃)、蓄热节流阀19关闭。冷媒流向如图2所示:冷媒从压缩机11的排气口排出→第二四通阀14的第一端口a14→第二四通阀14的第二端口b14→室外换热器15→室外节流阀17→室内节流阀34→室内换热器35→第一四通阀13的第二端口b13→第一四通阀13的第三端口c13→气液分离器21→压缩机11的回气口。
在多联机***的第一室内机开启正常制热模式时,控制器控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开如按照目标过热度控制(1~5℃)、室内节流阀34打开如以固定较大开度(3/4~全开)打开、蓄热节流阀19关闭。冷媒流向如图3所示:冷媒从压缩机11的排气口排出→第一四通阀13的第一端口a13→第一四通阀13的第二端口b13→室内换热器35→室内节流阀34→室外节流阀17→室外换热器15→第二四通阀14的第二端口b14→第二四通阀14的第三端口b14→气液分离器21→压缩机11的回气口。
在多联机***以正常制冷模式或正常制热模式运转过程中,用户可能在操作空调如调节温度时误关机,如果用户在操作空调时误关机了,则会导致压缩机立即停机,由于多联机***会设定停机后再次开机的时间间隔,如一般会设在5分钟以上,特别是在多联机***低温制热时发生误停机,多联机***的响应速度很慢,这样便会影响用户的舒适性。
为此,本公开实施例的控制器通过对第一四通阀13、第二四通阀14、室外节流阀17、室内节流阀34和蓄热节流阀19进行控制,以在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性。
根据本公开的一个实施例,在多联机***以正常制冷模式运转过程中,如果接收到停机指令,则控制器,具体用于:在接收到停机指令时,控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀34关闭和蓄热节流阀19打开,以使多联机***以第一待机运转模式运转,并判断在第一预设时间内是否接收到开机指令,如果在第 一预设时间内接收到开机指令,则控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制冷模式运转;或,如果在第一预设时间内未接收到开机指令,或多联机***的回气过热度小于第一预设回气过热度,则控制压缩机11停机。其中,第一预设时间和第一预设回气过热度均可根据实际情况进行设置,例如,第一预设时间可以为10s~60s,第一预设回气过热度可以为0℃~5℃。
具体地,在多联机***以正常制冷模式运转过程(冷媒流向如图2所示)中,如果第一室内机接收到停机指令,则控制器控制第一四通阀13保持上电状态、第二四通阀14保持断电状态不换向、室外节流阀17保持打开状态、室内节流阀34关闭和蓄热节流阀19打开,以使多联机***以第一待机运转模式运转,其中,第一待机运转模式运转的冷媒流向如图4所示:冷媒从压缩机11的排气口排出→第二四通阀14的第一端口a14→第二四通阀14的第二端口b14→室外换热器15→室外节流阀17→蓄热节流阀19→蓄热器18(通过该蓄热器18进行蒸发)→第二四通阀14的第四端口d14→第二四通阀14的第三端口c14→气液分离器21→压缩机11的回气口。此时,压缩机11的输出可以维持最低频率运行,以节约能源。
在多联机***以第一待机运转模式运转后,实时判断在第一预设时间内是否接收到开机指令,如果在第一预设时间内重新接收到室内机的开机指令,则控制第一四通阀13保持上电状态、第二四通阀14保持断电状态不换向、室外节流阀17保持打开状态、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制冷模式运转,其中,正常制冷模式运转的冷媒流向如图2所示,这样可以使得室内机迅速响应;如果超过第一预设时间还未接收到开机指令,或多联机***的回气过热度小于第一预设回气过热度,则控制压缩机11再停机。
为使本领域技术人员更清楚地了解本公开,图4a是根据本公开一个实施例的多联机***在以正常制冷模式运转时接收到停机指令的控制方法的流程图,如图4a所示,该控制方法包括以下步骤:
S4a01,室内机正常制冷(冷媒流向如图2所示)。
S4a02,判断是否接收到关机指令。如果是,执行步骤S4a03;如果否,返回步骤S4a01。
S4a03,进入第一待机运转模式(冷媒流向如图4所示)。
S4a04,判断室内机是否接收到重新开机指令。如果是,返回执行步骤S4a01;如果否,执行步骤S4a05。
S4a05,判断持续时间是否大于第一预设时间。如果是,执行步骤S4a07;如果否,执行步骤S4a06。
S4a06,判断回气过热度T SH<第一预设回气过热度Ts1是否成立。如果是,执行步骤S4a07;如果否,返回执行步骤S4a01。
S4a07,控制压缩机停机。
由此,本公开的多联机***增加了蓄热模块,以便在多联机***以正常制冷模式运转时用户误停机的情况下,通过利用蓄热模块进行待机运行,这样能够在用户修正错误操作后快速响应。
根据本公开的一个实施例,在多联机***以正常制热模式运转过程中,如果接收到停机指令,则控制器,具体用于:在接收到停机指令时,控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开第一预设开度和蓄热节流阀19打开,以使多联机***以第二待机运转模式运转,并判断在第二预设时间内是否接收到开机指令,如果在第二预设时间内接收到开机指令,则控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制热模式运转;或,如果在第二预设时间内未接收到开机指令,或多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制压缩机11停机。其中,第二预设时间和第一预设排气侧压力均可根据实际情况进行设置,例如,第二预设时间可以为10s~60s,第一预设排气侧压力可以为3.0MP~3.5MPa。
具体地,在多联机***以正常制热模式运转过程(冷媒流向如图3所示)中,如果第一室内机接收到停机指令,则控制器控制第一四通阀13保持断电状态不换向、第二四通阀14保持上电状态、室外节流阀17保持打开状态、室内节流阀34打开第一预设开度(如打开0~1/5开度以防止冷媒存积在室内换热器35中)和蓄热节流阀19以固定较大开度打开(如3/4~全开),以使多联机***以第二待机运转模式运转,其中,第二待机运转模式运转的冷媒流向如图5所示:冷媒从压缩机11的排气口排出→第二四通阀14的第一端口a14→第二四通阀14的第四端口d14→蓄热器18(压缩机11排出的冷媒通过该蓄热器18进行冷凝)→蓄热节流阀19→室外节流阀17→室外换热器15→第二四通阀14的第二端口b14→第二四通阀14的第三端口c14→气液分离器21→压缩机11的回气口。此时,压缩机11的输出可以维持最低频率运行,以节约能源。
在多联机***以第二待机运转模式运转后,实时判断在第二预设时间内是否接收到开机指令,如果在第二预设时间内重新接收到室内机的开机指令,则控制第一四通阀13保持断电状态、第二四通阀14保持上电状态、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制热模式运转,其中,正常制热模式运转的冷媒流向如图3所示,这样可以使得室内机迅速响应;如果超过第二预设时间还未接收到开机指令,或多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制压缩机11再 停机。
为使本领域技术人员更清楚地了解本公开,图5a是根据本公开一个实施例的多联机***在以正常制热模式运转时接收到停机指令的控制方法的流程图,如图5a所示,该控制方法包括以下步骤:
S5a01,室内机正常制热(冷媒流向如图3所示)。
S5a02,判断是否接收到关机指令。如果是,执行步骤S5a03;如果否,返回执行步骤S5a01。
S5a03,进入第二待机运转模式(冷媒流向如图5所示)。
S5a04,判断室内机是否接收到重新开机指令。如果是,返回步骤S5a01;如果否,执行步骤S5a05。
S5a05,判断持续时间是否大于第二预设时间。如果是,执行步骤S5a07;如果否,执行步骤S5a06。
S5a06,判断排气压力P1≥第一预设排气压力Ps1是否成立。如果是,执行步骤S5a07;如果否,返回执行步骤S5a01。
S5a07,控制压缩机停机。
由此,本公开的多联机***增加了蓄热模块,以便在多联机***以正常制热模式运转时用户误停机的情况下,通过利用蓄热模块进行待机运行,这样能够在用户修正错误操作后快速响应。
在多联机***以正常制冷模式或正常制热模式运转过程中,由于现在建筑物的保温效果越来越好,所以室内侧在负荷较小时容易出现室内温度达到设定温度压缩机停机的情况,如果频繁的达温停机,则会使压缩机缺油,这样便会影响***可靠性。
为此,本公开实施例的控制器通过对第一四通阀13、第二四通阀14、室外节流阀17、室内节流阀34和蓄热节流阀19进行控制,以在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
根据本公开的一个实施例中,在多联机***以正常制冷模式运转过程中,如果室内温度达到设定温度,则控制器,具体用于:在室内温度达到设定温度时,获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔,并在第一时间间隔小于第一预设时间间隔时,控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀关闭34和蓄热节流阀19打开,以使多联机***以第一待机运转模式运转;或,在第一时间间隔大于或等于第一预设时间间隔时,控制压缩机11停机。
进一步地,控制器,还用于:多联机***以第一待机运转模式运转之后,获取多联机***的回气过热度;在多联机***的回气过热度小于第二预设回气过热度时,控制压缩机 11停机;或,在多联机***的回气过热度大于或等于第二预设回气过热度时,继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。其中,第二预设回气过热度可以根据实际需要进行设置,例如,可以为0℃~5℃。
进一步地,控制器,还用于:确认所述室内温度未达到所述设定温度之后,获取多联机***以正常制冷模式运转的第一累计时间,以及判断第一累计时间是否达到第一预设累计时间,如果第一累计时间大于或等于第一预设累计时间,则控制第一四通阀13上电、第二四通阀14上电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器18中蓄积的冷量制冷;或,如果第一累计时间小于第一预设累计时间,则控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制冷模式运转。
更进一步地,控制器,还用于:通过蓄热器中蓄积的冷量制冷之后,获取多联机***的排气侧压力,并在多联机***的排气侧压力大于或等于第二预设排气侧压力时,控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制冷模式运转;或,在多联机***的排气侧压力小于第二预设排气侧压力时,则继续控制第一四通阀13上电、第二四通阀14上电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器中蓄积的冷量制冷。其中,第二预设排气侧压力可以根据实际需要进行设置,例如,可以为3.0MP~3.5MPa。
具体地,在多联机***以正常制冷模式运转过程(冷媒流向如图2所示)中,如果室内温度达到设定温度,控制器则记录当前室内温度达到设定温度的时间距离上次室内温度达到设定温度的时间之间的第一时间间隔TA。如果第一时间间隔TA<TAS1(TAS1为第一预设时间间隔,一般取值为5分钟~10分钟),则控制第一四通阀13保持上电状态、第二四通阀14保持断电状态不换向、室外节流阀17保持打开状态、室内节流阀34关闭和蓄热节流阀19打开,以使多联机***以第一待机运转模式运转(冷媒流向如图4所示),即,冷媒流向由图2转为图4;如果第一时间间隔TA≥TAS1,则控制压缩机11再停机。
在多联机***以第一待机运转模式运转之后,获取多联机***的回气过热度T SH,并在多联机***的回气过热度T SH<T s2时,控制压缩机11停机;在多联机***的回气过热度T SH≥T s2时,继续记录当前室内温度达到设定温度的时间距离上次室内温度达到设定温度的时间之间的第一时间间隔TA。
确认室内温度未达到设定温度之后,检测多联机***以正常制冷模式运转的第一累计时间Tst,并继续判断是否满足第一累计时间Tst≥ΔT1(ΔT1为第一预设累计时间,取值范围可以在5~20分钟)。其中,如果满足此条件(Tst≥ΔT1),则判定蓄热模块已蓄积了一定的冷量,并控制控制第一四通阀13保持上电状态、第二四通阀14上电、室外节流阀 17关闭、室内节流阀34按照目标过热度控制开度、室内节流阀31以固定小开度打开(0~1/5开度,以防止冷媒在室内换热器33中积压)和蓄热节流阀19打开,以通过蓄热器18中蓄积的冷量制冷,冷媒流向由图4转为图6,图6的冷媒流向如下:冷媒从压缩机11的排气口排出→第二四通阀14的第一端口a14→第二四通阀14的第四端口d14→蓄热器18(压缩机11排出的冷媒通过该蓄热器18进行冷凝)→蓄热节流阀19→室内节流阀34(如室内节流阀34的开度按照目标过热度1~5℃控制)→室内换热器35→第一四通阀13的第二端口b13→第一四通阀13的第三端口c13→气液分离器21→压缩机11的回气口。需要说明的是,第一累计时间Tst在冷媒流向由图4转为图6后清零,如果在上次第一待机运转模式运转过程中未进入图6运转,则第一累计时间Tst不清零。否则(Tst<ΔT1)时,控制第一四通阀13上电、第二四通阀14断电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以制冷模式运转,即冷媒流向由图4转为图2。
在转为图6的流向运转后,检测多联机***的排气侧压力P1,当P1≥第二预设排气侧压力Ps2(Ps2为第二预设排气侧压力,其取值范围可以处于3.0MPa~3.5MPa内)时,控制第一四通阀13保持上电状态、第二四通阀14断电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制冷模式运转,即冷媒流向由图6转为图2。否则(即当P1<第二预设排气侧压力Ps2时),继续控制第一四通阀13上电、第二四通阀14上电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器中蓄积的冷量制冷,即多联机***继续使用图6所示的冷媒流向进行运转。
为使本领域技术人员更清楚地了解本公开,图7是根据本公开一个实施例的多联机***以正常制冷模式运转、且室内温度达到设定温度时的控制方法的流程图,如图7所示,该控制方法包括以下步骤:
S701,室内机正常制冷(冷媒流向如图2所示)。
S702,判断室内温度达到设定温度。如果是,执行步骤S703;如果否,执行步骤S707。
S703,控制压缩机停机。
S704,判断该次达温距离上次达温的第一时间间隔TA是否小于第一预设时间间隔TAS1。如果是,执行步骤S705;如果否,执行步骤S704。
S705,进入第一待机运转模式(冷媒流向如图4所示)。
S706,判断***的回气过热度T SH<T s2(T s2为第二预设回气过热度,其取值范围可以处于0℃~5℃内)是否成立。如果是,执行步骤S704;如果否,执行步骤S703。
S707,检测多联机***以正常制冷模式运转的第一累计时间Tst,并判断Tst≥ΔT1(ΔT1为第一预设累计时间,取值范围可以在5~20分钟)。如果是,执行步骤S708;如果否,返回执行步骤S701。
S708,进入制冷运转(冷媒流向如图6所示)。
S709,判断***的排气压力P1≥Ps2(Ps2为第二预设排气侧压力,其取值范围可以处于3.0MPa~3.5MPa内)是否成立。如果是,返回执行步骤S701;如果否,返回执行步骤S708。
由此,在正常制冷模式室内侧负荷较小时,通过利用蓄热模块作为冷凝器和蒸发器使用,以使***继续运行足够的时间,减少压缩机的启停次数,提升用户的舒适性和***的可靠性。
根据本公开的一个实施例,在多联机***以正常制热模式运转过程中,如果室内温度达到设定温度,则控制器,具体用于:在室内温度达到设定温度时,获取当期室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔,并在第二时间间隔小于第二预设时间间隔,控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开第一预设开度和蓄热节流阀19打开,以使多联机***以第二待机运转模式运转;或,在第二时间间隔大于或等于第二预设时间间隔,控制压缩机11停机。
进一步地,控制器,还用于:多联机***以第二待机运转模式运转之后,获取多联机***的排气侧压力,并在多联机***的排气侧压力大于或等于第三预设排气侧压力时,控制压缩机11停机;或,确认多联机***的排气侧压力小于第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。其中,第三预设排气侧压力可以根据实际需要进行设置,例如,可以3.0MP~3.5MPa。
进一步地,控制器,还用于:确定室内温度未达到设定温度之后,获取多联机***以正常制热运转模式预转的第二累计时间,并判断第二累计时间是否达到第二预设累计时间,如果第二累计时间大于或等于第二预设累计时间,则控制第一四通阀13断电、第二四通阀14断电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器18中蓄积的热量制热;或,如果第二累计时间小于第二预设累计时间,则控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制热模式运转。
更进一步地,控制器,还用于:获取多联机***的回气过热度,并在多联机***的回气过热度大于或等于第三预设回气过热度时,控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以正常制热模式运转;或,确认多联机***的回气过热度大于或等于第三预设回气过热度,则继续控制第一四通阀13断电、第二四通阀14断电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器中蓄积的热量制热。其中,第三预设回气过 热度可以根据实际需要进行设置,例如,可以为0℃~5℃。
具体地,在多联机***以正常制热模式运转过程(冷媒流向如图3所示)中,如果室内温度达到设定温度,控制器则记录当前室内温度达到设定温度的时间距离上次室内温度达到设定温度的时间之间的第二时间间隔TB。如果第二时间间隔TB<TBS1(TBS1为第二预设时间间隔,一般取值为5分钟~10分钟),则控制第一四通阀13保持断电状态不换向、第二四通阀14保持上电状态、室外节流阀17保持打开状态、室内节流阀34打开第一预设开度和蓄热节流阀19打开,以使多联机***以第二待机运转模式运转(冷媒流向如图5所示),即,冷媒流向由图3转为图5;如果第二时间间隔TB≥TBS1,则控制压缩机11再停机。
多联机***以第二待机运转模式运转之后,获取多联机***的排气侧压力,并在多联机***的排气侧压力P 1大于或等于第三预设排气侧压力Ps3时,控制压缩机11停机;或,在多联机***的排气侧压力P 1小于第三预设排气侧压力Ps3时,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔TB。
确定室内温度未达到设定温度之后,获取多联机***以正常制热模式运转的第二累计时间Tst2,并继续判断是否满足第二累计时间Tst2≥ΔT2(ΔT2为第二预设累计时间,取值范围可以在5~20分钟)。其中,如果满足此条件(Tst2≥ΔT2),则判定蓄热模块已蓄积了一定的热量,并控制控制第一四通阀13保持断电状态、第二四通阀14断电、室外节流阀17关闭、室内节流阀34按照目标过热度控制开度、室内节流阀31以固定小开度打开(0~1/5开度,以防止冷媒在室内换热器33中积压)和蓄热节流阀19打开,以通过蓄热器18中蓄积的热量制热,冷媒流向由图5转为图8,图8的冷媒流向如下:冷媒从压缩机11的排气口排出→第一四通阀13的第一端口a13→第一四通阀13的第二端口b13→室内换热器35→室内节流阀34(如室内节流阀34的开度按照固定较大开度(3/4~全开)控制)→蓄热节流阀19→蓄热器18→第二四通阀14的第四端口d14→第二四通阀14的第三端口c14→气液分离器21→压缩机11的回气口。需要说明的是,第二累计时间Tst2在冷媒流向由图5转为图8后清零,如果在上次第二待机运转模式运转过程中未进入图8运转,则第二累计时间Tst2不清零。否则(Tst2<ΔT2)时,控制第一四通阀13断电、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以制热模式运转,即冷媒流向由图5转为图3。
在冷媒转为图8的流向运转后,检测多联机***的回气过热度TSH,当T SH<Ts3(Ts3为第三预设回气过热度,其取值范围可以处于0℃~5℃内)时,控制第一四通阀13保持断电状态、第二四通阀14上电、室外节流阀17打开、室内节流阀34打开和蓄热节流阀19关闭,以使多联机***继续以制热模式运转,即冷媒流向由图8转为图3。否则(当T SH ≥Ts3时),继续控制第一四通阀13断电、第二四通阀14断电、室外节流阀17关闭、室内节流阀34打开和蓄热节流阀19打开,以通过蓄热器中蓄积的热量制热,即多联机***继续使用图8所示的冷媒流向进行运转。
需要说明的是,多联机***中冷媒在以图5所示的流向工作时,蓄热节流阀19按照固定目标过冷度控制。
为使本领域技术人员更清楚地了解本公开,图9是根据本公开一个实施例的多联机***以正常制热模式运转、且室内温度达到设定温度时的控制方法的流程图,如图9所示,该控制方法包括以下步骤:
S901,室内机正常制热(冷媒流向如图3所示)。
S902,判断室内温度达到设定温度。如果是,执行步骤S903;如果否,执行步骤S907。
S903,判断该次达温距离上次达温的第二时间间隔TB是否小于第二预设时间间隔TBS1。如果是,执行步骤S905;如果否,执行步骤S904。
S904,控制压缩机停机。
S905,进入第二待机运转模式(冷媒流向如图5所示)。
S906,判断***的排气压力P1≥Ps3(Ps3为第三预设排气侧压力,其取值范围可以处于3.0MPa~3.5MPa内)是否成立。如果是,执行步骤S904;如果否,返回执行步骤S903
S907,获取多联机***以正常制热模式运转的第二累计时间Tst2,并判断Tst2≥ΔT2(ΔT2为第一预设累计时间,取值范围可以在5~20分钟)。如果是,执行步骤S908;如果否,返回执行步骤S901。
S908,进入制热运转(冷媒流向如图6所示)。
S909,判断***的回气过热度TSH<Ts3(Ts3为第三预回气过热度,其取值范围可以处于0℃~5℃内)是否成立。如果是,返回执行步骤S901;如果否,返回执行步骤S908。
由此,在正常制热模式室内侧负荷较小时,通过利用蓄热模块作为冷凝器和蒸发器使用,以使***继续运行足够的时间,减少压缩机的启停次数,提升用户的舒适性和***的可靠性。
综上所述,根据本公开实施例的多联机***,由至少一个室内机、室外机和蓄热模块构成,每个室内机包括室内换热器和室内节流阀,蓄热模块包括蓄热器和蓄热节流阀,室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,其中,第一四通阀的第一端口与压缩机的排气口相连,第一四通阀的第二端口与每个室内换热器的一端相连,第一四通阀的第三端口与压缩机的回气口相连,第二四通阀的第一端口与压缩机的排气口相连,第二四通阀的第二端口与室外换热器的一端相连,室外换热器的另一端通过室外节流阀与每个室内节流阀的一端相连,每个室内节流阀的另一端分别与对应的每个室内 换热器的另一端相连,第二四通阀的第三端口与压缩机的回气口相连,第二四通阀的第四端口与蓄热器的一端相连,蓄热器的另一端通过蓄热节流阀与每个室内节流阀的一端相连;控制器,控制器用于在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式,并根据工作模式,对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制。由此,该***通过增加蓄热模块,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
图10是根据本公开实施例的多联机***的控制方法的流程图。如图10所示,本公开实施例的多联机***的控制方法,包括:
S1,在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式。
S2,根据工作模式,对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制。
根据本公开的一个实施例,在多联机***以正常制冷模式运转过程中,如果接收到停机指令,则对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制,包括:如果接收到停机指令,则控制第一四通阀上电、第二四通阀断电、室外节流阀打开、室内节流阀关闭和蓄热节流阀打开,以使多联机***以第一待机运转模式运转;判断在第一预设时间内是否接收到开机指令;如果在第一预设时间内接收到开机指令,则控制第一四通阀上电、第二四通阀断电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制冷模式运转;或,如果在第一预设时间内未接收到开机指令,或多联机***的回气过热度小于第一预设回气过热度,则控制压缩机停机。
根据本公开的一个实施例,在多联机***以正常制热模式运转过程中,如果接收到停机指令,则对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制,包括:如果接收到停机指令,则控制第一四通阀断电、第二四通阀上电、室外节流阀打开、室内节流阀打开第一预设开度和蓄热节流阀打开,以使多联机***以第二待机运转模式运转;判断在第二预设时间内是否接收到开机指令;如果在第二预设时间内接收到开机指令,则控制第一四通阀断电、第二四通阀上电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制热模式运转;或,如果在第二预设时间内未接收到开机指令,或多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制压缩机停机。
根据本公开的一个实施例,在多联机***以正常制冷模式运转过程中,如果室内温度 达到设定温度,则对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制,包括:如果室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔;在第一时间间隔小于第一预设时间间隔时,控制第一四通阀上电、第二四通阀断电、室外节流阀打开、室内节流阀关闭和蓄热节流阀打开,以使多联机***以第一待机运转模式运转;或,在第一时间间隔大于或等于第一预设时间间隔时,控制压缩机停机。
根据本公开的一个实施例,多联机***以第一待机运转模式运转之后,还包括:获取多联机***的回气过热度;确认多联机***的回气过热度小于第二预设回气过热度,则控制压缩机停机;或,确认多联机***的回气过热度大于或等于第二预设回气过热度,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。
根据本公开的一个实施例,确认室内温度未达到设定温度之后,还包括:获取多联机***以正常制冷模式运转的第一累计时间;判断第一累计时间是否达到第一预设累计时间;如果第一累计时间大于或等于第一预设累计时间,则控制第一四通阀上电、第二四通阀上电、室外节流阀关闭、室内节流阀打开和蓄热节流阀打开,以通过蓄热器中蓄积的冷量制冷;或,如果第一累计时间小于第一预设累计时间,则控制第一四通阀上电、第二四通阀断电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制冷模式运转。
根据本公开的一个实施例,在通过蓄热器中蓄积的冷量制冷之后,还包括:获取多联机***的排气侧压力;在多联机***的排气侧压力大于或等于第二预设排气侧压力时,控制第一四通阀上电、第二四通阀断电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制冷模式运转;或,确认多联机***的排气侧压力小于第二预设排气侧压力,则继续控制第一四通阀上电、第二四通阀上电、室外节流阀关闭、室内节流阀打开和蓄热节流阀打开,以通过蓄热器中蓄积的冷量制冷。
根据本公开的一个实施例,在多联机***以正常制热模式运转过程中,如果室内温度达到设定温度,则对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热节流阀进行控制,包括:如果室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔;在第二时间间隔小于第二预设时间间隔时,控制第一四通阀断电、第二四通阀上电、室外节流阀打开、室内节流阀打开第一预设开度和蓄热节流阀打开,以使多联机***以第二待机运转模式运转;或,在第二时间间隔大于或等于第二预设时间间隔时,控制压缩机停机。
根据本公开的一个实施例,多联机***以第二待机运转模式运转之后,还包括:获取 多联机***的排气侧压力;确认多联机***的排气侧压力大于或等于第三预设排气侧压力,则控制压缩机停机;或,确认多联机***的排气侧压力小于第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。
根据本公开的一个实施例,确定室内温度未达到设定温度之后,还包括:获取多联机***以正常制热运转模式运转的第二累计时间;判断第二累计时间是否达到第二预设累计时间;如果第二累计时间大于或等于第二预设累计时间,则控制第一四通阀断电、第二四通阀断电、室外节流阀关闭、室内节流阀打开和蓄热节流阀打开,以通过蓄热器中蓄积的热量制热;或,如果第二累计时间小于第二预设累计时间,则控制第一四通阀断电、第二四通阀上电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制热模式运转。
根据本公开的一个实施例,在通过蓄热器中蓄积的热量制热之后,还包括:获取多联机***的回气过热度;在多联机***的回气过热度小于第三预设回气过热度时,控制第一四通阀断电、第二四通阀上电、室外节流阀打开、室内节流阀打开和蓄热节流阀关闭,以使多联机***继续以正常制热模式运转;或,确认多联机***的回气过热度大于或等于第三预设回气过热度,则继续控制第一四通阀断电、第二四通阀断电、室外节流阀关闭、室内节流阀打开和蓄热节流阀打开,以通过蓄热器中蓄积的热量制热。
需要说明的是,本公开实施例的多联机***的控制方法中未披露的细节,请参考本公开实施例的多联机***中所披露的细节,具体这里不再详述。
根据本公开实施例的多联机***的控制方法,在接收到停机指令或室内温度达到设定温度的情况下,获取多联机***的工作模式,根据工作模式,对第一四通阀、第二四通阀、室外节流阀、室内节流阀和蓄热模块中的蓄热节流阀进行控制。由此,该方法通过增加蓄热模块,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
另外,本公开的实施例还提出了一种计算机可读存储介质,具有存储于其中的指令,当指令被执行时,所述多联机***执行上述的多联机***的控制方法。
本公开实施例的非临时性计算机可读存储介质,通过执行上述的多联机***的控制方法,能够在用户误停机时利用蓄热模块进行待机运行,以便在用户修正错误后快速响应,提升用户的舒适性,或者,能够在室内温度达到设定温度后利用蓄热模块继续运行,减少压缩机的启停次数,提升***的可靠性。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实 施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
另外,在本公开的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种多联机***的控制方法,其特征在于,所述多联机***包括室外机、至少一个室内机和蓄热模块,所述室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,每个所述室内机包括室内换热器和室内节流阀,所述蓄热模块包括蓄热器和蓄热节流阀,其中,所述第一四通阀的第一端口与所述压缩机的排气口相连,所述第一四通阀的第二端口与每个所述室内换热器的一端相连,所述第一四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第一端口与所述压缩机的排气口相连,所述第二四通阀的第二端口与所述室外换热器的一端相连,所述室外换热器的另一端通过所述室外节流阀与每个所述室内节流阀的一端相连,每个所述室内节流阀的另一端分别与对应的每个所述室内换热器的另一端相连,所述第二四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第四端口与所述蓄热器的一端相连,所述蓄热器的另一端通过所述蓄热节流阀与每个所述室内节流阀的一端相连,所述控制方法包括以下步骤:
    确认接收到停机指令或室内温度达到设定温度,则获取所述多联机***的工作模式;
    根据所述工作模式,对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制。
  2. 根据权利要求1所述的多联机***的控制方法,其特征在于,所述多联机***以正常制冷模式运转过程中,接收到停机指令,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:
    确认接收到停机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;
    确认在所述第一预设时间内接收到所述开机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,
    确认在所述第一预设时间内未接收到所述开机指令,或所述多联机***的回气过热度小于第一预设回气过热度,则控制所述压缩机停机。
  3. 根据权利要求1或2所述的多联机***的控制方法,其特征在于,所述多联机***以正常制热模式运转过程中,接收到停机指令,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:
    确认接收到停机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机 ***以第二待机运转模式运转;
    确认在第二预设时间内接收到开机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,
    确认在第二预设时间内未接收到开机指令,或所述多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制所述压缩机停机。
  4. 根据权利要求1或2所述的多联机***的控制方法,其特征在于,所述多联机***以正常制冷模式运转过程中,室内温度达到设定温度,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:
    确认所述室内温度达到所述设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔;
    确认所述第一时间间隔小于第一预设时间间隔,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;或,
    确认所述第一时间间隔大于或等于第一预设时间间隔,则控制所述压缩机停机。
  5. 根据权利要求4所述的多联机***的控制方法,其特征在于,所述多联机***以第一待机运转模式运转之后,还包括:
    获取所述多联机***的回气过热度;
    确认所述多联机***的回气过热度小于第二预设回气过热度,则控制所述压缩机停机;或,
    确认所述多联机***的回气过热度大于或等于第二预设回气过热度,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。
  6. 根据权利要求4所述的多联机***的控制方法,其特征在于,确认所述室内温度未达到所述设定温度之后,还包括:
    获取所述多联机***以正常制冷模式运转的第一累计时间;
    确认所述第一累计时间大于或等于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷;或,
    确认所述第一累计时间小于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转。
  7. 根据权利要求6所述的多联机***的控制方法,其特征在于,所述通过所述蓄热器 中蓄积的冷量制冷之后,还包括:
    获取所述多联机***的排气侧压力;
    确认所述多联机***的排气侧压力大于或等于第二预设排气侧压力,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,
    确认所述多联机***的排气侧压力小于第二预设排气侧压力,则继续控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷。
  8. 根据权利要求1或3所述的多联机***的控制方法,其特征在于,所述多联机***以正常制热模式运转过程中,室内温度达到设定温度,则所述对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制,包括:
    确认室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔;
    确认所述第二时间间隔小于第二预设时间间隔,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转;或,
    确认所述第二时间间隔大于或等于第二预设时间间隔,则控制所述压缩机停机。
  9. 根据权利要求8所述的多联机***的控制方法,其特征在于,所述多联机***以第二待机运转模式运转之后,还包括:
    获取所述多联机***的排气侧压力;
    确认所述多联机***的排气侧压力大于或等于第三预设排气侧压力,则控制所述压缩机停机;或,
    确认所述多联机***的排气侧压力小于所述第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。
  10. 根据权利要求8所述的多联机***的控制方法,其特征在于,确定所述室内温度未达到所述设定温度之后,还包括:
    获取所述多联机***以所述正常制热运转模式运转的第二累计时间;
    确认所述第二累计时间大于或等于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热;或,
    确认所述第二累计时间小于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭, 以使所述多联机***继续以所述正常制热模式运转。
  11. 根据权利要求10所述的多联机***的控制方法,其特征在于,所述通过所述蓄热器中蓄积的热量制热之后,还包括:
    获取所述多联机***的回气过热度;
    确认所述多联机***的回气过热度小于第三预设回气过热度,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,
    确认所述多联机***的回气过热度大于或等于所述第三预设回气过热度,则继续控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热。
  12. 一种非临时性计算机可读存储介质,其特征在于,具有存储于其中的指令,当所述指令被执行时,所述多联机***执行如权利要求1-11中任一项所述的多联机***的控制方法。
  13. 一种多联机***,其特征在于,包括:
    至少一个室内机,每个所述室内机包括室内换热器和室内节流阀;
    蓄热模块,所述蓄热模块包括蓄热器和蓄热节流阀;
    室外机,所述室外机包括压缩机、第一四通阀、第二四通阀、室外换热器、室外节流阀,其中,所述第一四通阀的第一端口与所述压缩机的排气口相连,所述第一四通阀的第二端口与每个所述室内换热器的一端相连,所述第一四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第一端口与所述压缩机的排气口相连,所述第二四通阀的第二端口与所述室外换热器的一端相连,所述室外换热器的另一端通过所述室外节流阀与每个所述室内节流阀的一端相连,每个所述室内节流阀的另一端分别与对应的每个所述室内换热器的另一端相连,所述第二四通阀的第三端口与所述压缩机的回气口相连,所述第二四通阀的第四端口与所述蓄热器的一端相连,所述蓄热器的另一端通过所述蓄热节流阀与每个所述室内节流阀的一端相连;
    控制器,所述控制器用于确认接收到停机指令或室内温度达到设定温度,则获取所述多联机***的工作模式,并根据所述工作模式,对所述第一四通阀、所述第二四通阀、所述室外节流阀、所述室内节流阀和所述蓄热节流阀进行控制。
  14. 根据权利要求13所述的多联机***,其特征在于,在所述多联机***以正常制冷模式运转过程中,接收到停机指令,则所述控制器,具体用于:
    确认接收到停机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待 机运转模式运转,并确认在所述第一预设时间内接收到所述开机指令,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认在所述第一预设时间内未接收到所述开机指令,或所述多联机***的回气过热度小于第一预设回气过热度,则控制所述压缩机停机。
  15. 根据权利要求13或14所述的多联机***,其特征在于,所述多联机***以正常制热模式运转过程中,接收到停机指令,则所述控制器,具体用于:
    确认接收到停机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转,并确认在所述第二预设时间内接收到所述开机指令,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认在所述第二预设时间内未接收到所述开机指令,或所述多联机***的排气侧压力大于或等于第一预设排气侧压力,则控制所述压缩机停机。
  16. 根据权利要求13或14中任一项所述的多联机***,其特征在于,所述多联机***以正常制冷模式运转过程中,室内温度达到设定温度,则所述控制器,具体用于:
    确认室内温度达到设定温度,则获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔,并确认所述第一时间间隔小于第一预设时间间隔,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀关闭和所述蓄热节流阀打开,以使所述多联机***以第一待机运转模式运转;或,确认所述第一时间间隔大于或等于第一预设时间间隔,则控制所述压缩机停机。
  17. 根据权利要求16所述的多联机***,其特征在于,所述控制器,还用于:
    所述多联机***以第一待机运转模式运转之后,获取所述多联机***的回气过热度,确认所述多联机***的回气过热度小于第二预设回气过热度,则控制所述压缩机停机;或,确认所述多联机***的回气过热度大于或等于第二预设回气过热度,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第一时间间隔。
  18. 根据权利要求16所述的多联机***,其特征在于,所述控制器,还用于:
    确认所述室内温度未达到所述设定温度之后,获取所述多联机***以正常制冷模式运转的第一累计时间,确认所述第一累计时间大于或等于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷;或,确认所述第一累计时间小于所述第一预设累计时间,则控制所述第一四通阀上电、所述第二四通阀断电、所述室 外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转。
  19. 根据权利要求17所述的多联机***,其特征在于,所述控制器,还用于:
    通过所述蓄热器中蓄积的冷量制冷之后,获取所述多联机***的排气侧压力,并确认所述多联机***的排气侧压力大于或等于第二预设排气侧压力,则控制所述第一四通阀上电、所述第二四通阀断电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制冷模式运转;或,确认所述多联机***的排气侧压力小于第二预设排气侧压力,则继续控制所述第一四通阀上电、所述第二四通阀上电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的冷量制冷。
  20. 根据权利要求13或15所述的多联机***,其特征在于,所述多联机***以正常制热模式运转过程中,室内温度达到设定温度,则所述控制器,具体用于:
    确认室内温度达到设定温度,获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔,并确认所述第二时间间隔小于第二预设时间间隔,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开第一预设开度和所述蓄热节流阀打开,以使所述多联机***以第二待机运转模式运转;或,确认所述第二时间间隔大于或等于第二预设时间间隔,则控制所述压缩机停机。
  21. 根据权利要求20所述的多联机***,其特征在于,所述控制器,还用于:
    多联机***以第二待机运转模式运转之后,获取所述多联机***的排气侧压力,确认所述多联机***的排气侧压力大于或等于第三预设排气侧压力,则控制所述压缩机停机;或,确认所述多联机***的排气侧压力小于所述第三预设排气侧压力,则继续获取当前室内温度达到设定温度的时间与上次室内温度达到设定温度的时间之间的第二时间间隔。
  22. 根据权利要求20所述的多联机***,其特征在于,所述控制器,还用于:
    确定所述室内温度未达到所述设定温度之后,获取所述多联机***以所述正常制热运转模式运转的第二累计时间,确认所述第二累计时间大于或等于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热;或,确认所述第二累计时间小于所述第二预设累计时间,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转。
  23. 根据权利要求22所述的多联机***的控制装置,其特征在于,所述控制器,还用 于:
    通过所述蓄热器中蓄积的热量制热之后,获取所述多联机***的回气过热度,确认所述多联机***的回气过热度小于第三预设回气过热度,则控制所述第一四通阀断电、所述第二四通阀上电、所述室外节流阀打开、所述室内节流阀打开和所述蓄热节流阀关闭,以使所述多联机***继续以所述正常制热模式运转;或,确认所述多联机***的回气过热度大于或等于所述第三预设回气过热度,则继续控制所述第一四通阀断电、所述第二四通阀断电、所述室外节流阀关闭、所述室内节流阀打开和所述蓄热节流阀打开,以通过所述蓄热器中蓄积的热量制热。
PCT/CN2021/134215 2021-06-01 2021-11-30 多联机***及其控制方法 WO2022252523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21943875.1A EP4321821A1 (en) 2021-06-01 2021-11-30 Multi-split air conditioning system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110610086.X 2021-06-01
CN202110610086.XA CN115420028B (zh) 2021-06-01 2021-06-01 多联机***及其控制方法

Publications (1)

Publication Number Publication Date
WO2022252523A1 true WO2022252523A1 (zh) 2022-12-08

Family

ID=84230531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134215 WO2022252523A1 (zh) 2021-06-01 2021-11-30 多联机***及其控制方法

Country Status (3)

Country Link
EP (1) EP4321821A1 (zh)
CN (1) CN115420028B (zh)
WO (1) WO2022252523A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115854529A (zh) * 2022-12-22 2023-03-28 珠海格力电器股份有限公司 一种冷热量回收利用装置、空调***及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221371A (ja) * 2001-01-24 2002-08-09 Tokyo Gas Co Ltd 空調機
JP2004279005A (ja) * 2003-03-19 2004-10-07 Hitachi Ltd 蓄熱式空気調和機
CN104879843A (zh) * 2015-06-12 2015-09-02 广东美的暖通设备有限公司 空调器控制装置、一拖多空调器及空调器控制方法
CN107110570A (zh) * 2014-12-26 2017-08-29 大金工业株式会社 蓄热式空调机
CN112815414A (zh) * 2019-10-29 2021-05-18 广东美的制冷设备有限公司 空调器、定频空调器的控制方法和计算机可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515322B (zh) * 2013-09-30 2017-06-06 珠海格力电器股份有限公司 可实现连续制热的空调***
CN104567074B (zh) * 2013-10-28 2017-11-14 珠海格力电器股份有限公司 空调循环装置及其控制方法
CN104634008B (zh) * 2013-11-14 2017-06-06 珠海格力电器股份有限公司 空调装置的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221371A (ja) * 2001-01-24 2002-08-09 Tokyo Gas Co Ltd 空調機
JP2004279005A (ja) * 2003-03-19 2004-10-07 Hitachi Ltd 蓄熱式空気調和機
CN107110570A (zh) * 2014-12-26 2017-08-29 大金工业株式会社 蓄热式空调机
CN104879843A (zh) * 2015-06-12 2015-09-02 广东美的暖通设备有限公司 空调器控制装置、一拖多空调器及空调器控制方法
CN112815414A (zh) * 2019-10-29 2021-05-18 广东美的制冷设备有限公司 空调器、定频空调器的控制方法和计算机可读存储介质

Also Published As

Publication number Publication date
CN115420028A (zh) 2022-12-02
EP4321821A1 (en) 2024-02-14
CN115420028B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2020191976A1 (zh) 空调器的控制方法、装置及空调器
CN111854204B (zh) 一种冷柜设备、制冷***及其控制方法
CN112212467B (zh) 空调控制方法、装置及空调机组
CN111442510B (zh) 多联机空调***及其控制方法、控制装置和存储介质
CN109945389B (zh) 空调器的控制方法、装置及空调器
CN112594824B (zh) 一种不停机除霜多联机热水***及其控制方法
JP2014031981A (ja) 二元冷凍装置
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
WO2015032293A1 (zh) 制冷、制热蓄液方法及制冷、制热防霜方法和空调***
WO2022252523A1 (zh) 多联机***及其控制方法
WO2016016918A1 (ja) 空気調和装置
CN210801680U (zh) 冷暖两用空气源热泵***
CN114234468A (zh) 热泵装置控制方法、装置、机组、计算机设备及存储介质
CN114110920A (zh) 一种空调器的控制方法及空调器
CN117940706A (zh) 空气源热泵***
US20230013910A1 (en) Multi-split system with partitioned control and selfidentification control method thereof
CN114413416A (zh) 一种多联机空调除霜控制方法、存储介质及多联机空调
CN114322220A (zh) 一种空气调节装置及其控制方法
JP2002364937A (ja) 冷蔵庫
CN112432404A (zh) 热泵空调机组的化霜控制方法、装置、控制器和空调***
CN104566866A (zh) 一种空调综合防冻方法
JP2014134321A (ja) 複合型空調システム
WO2023103968A1 (zh) 空气源热泵***
CN216308067U (zh) 空调机组
WO2022193596A1 (zh) 空调器的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557957

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021943875

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021943875

Country of ref document: EP

Effective date: 20231109

NENP Non-entry into the national phase

Ref country code: DE