WO2022246771A1 - 一种充放电电路及终端设备 - Google Patents

一种充放电电路及终端设备 Download PDF

Info

Publication number
WO2022246771A1
WO2022246771A1 PCT/CN2021/096554 CN2021096554W WO2022246771A1 WO 2022246771 A1 WO2022246771 A1 WO 2022246771A1 CN 2021096554 W CN2021096554 W CN 2021096554W WO 2022246771 A1 WO2022246771 A1 WO 2022246771A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
charging
voltage
circuit
control signal
Prior art date
Application number
PCT/CN2021/096554
Other languages
English (en)
French (fr)
Inventor
张啸诚
杨令
贾立刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/096554 priority Critical patent/WO2022246771A1/zh
Priority to CN202180087066.7A priority patent/CN116670967A/zh
Publication of WO2022246771A1 publication Critical patent/WO2022246771A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electronic technology, in particular to a charging and discharging circuit and terminal equipment.
  • mobile terminal devices such as notebook computers, tablet computers, mobile phones, vehicle-mounted devices, and wearable devices need to discharge the battery in the terminal device to provide energy for the load of the terminal device when there is no external power supply.
  • it is necessary to obtain energy from an external power source to provide energy for the load of the terminal device and to charge the battery in the terminal device at the same time. Therefore, a charging and discharging circuit is needed to maintain the operation of the terminal equipment.
  • the prior art provides the following two charging and discharging circuits.
  • the first kind of charging and discharging circuit is shown in Figure 1, and this charging and discharging circuit comprises buck-boost conversion circuit, charge and discharge transistor M15 and controller, and the input end of this buck-boost conversion circuit is used as the input end of this charging and discharging circuit
  • the output terminal of the buck-boost conversion circuit is used as the first output terminal of the charge-discharge circuit for connecting with the load
  • the output terminal of the buck-boost conversion circuit is also connected with the charge-discharge circuit
  • the transistor M 15 is connected, the charging and discharging transistor M 15 is used for charging and discharging the battery pack, and the controller is used for controlling the buck-boost conversion circuit and the charging and discharging transistor M 15 .
  • the buck-boost conversion circuit includes 4 transistors (denoted as M 11 to M 14 ) and an inductor L 1 .
  • the APT provides the input voltage VI
  • the controller controls M 11 and M 13 to be turned on at time T 1 to store the energy of the input voltage VI in L 1 , and at time T 2
  • the controller controls M 12 , M 14 and M 15 to turn on to convert the stored energy into output voltage VO, VO is used to supply power to the load and charge the battery pack through M 15 ; during the discharge process, the controller controls M 15 When it is turned on, the energy released by the battery pack supplies power to the load through M15 .
  • the second charging and discharging circuit is shown in Figure 2, and the charging and discharging circuit includes a direct circuit, a step-down conversion circuit, a charge and discharge transistor M25 and a controller, and the input terminal of the direct circuit is used as the input terminal of the charging and discharging circuit.
  • the output terminal of the direct circuit is used as the first output terminal of the charging and discharging circuit for connecting with the load, and the output terminal of the direct circuit is also connected with the input terminal of the step-down conversion circuit and the charging and discharging transistor M25 , the output terminal of the step-down conversion circuit is used as the second output terminal of the charging and discharging circuit to connect with the charging and discharging transistor M 25 , the charging and discharging transistor M 25 is used for charging and discharging the battery pack, and the controller is used for controlling the A direct circuit, a step-down conversion circuit and a charging and discharging transistor M 25 .
  • the pass-through circuit includes 2 transistors (denoted as M 21 and M 22 ), and the step-down conversion circuit includes 2 transistors (denoted as M 23 and M 24 ) and an inductor L 2 .
  • the APT provides the input voltage VI
  • the controller controls M 21 , M 22 , and M 23 to be turned on at time T 1 , and part of the energy of the input voltage VI directly supplies power to the load, while the other part of the energy Stored in L2, the controller controls M 24 to turn on at T2 to convert the stored energy into output voltage VO to charge the battery pack; during the discharge process, the controller controls M 25 to turn on, and the energy released by the battery pack passes through M 25 supplies power to the load.
  • the above two charging and discharging circuits can support power adapters with different output voltages, and provide energy to the load in the presence or absence of an external power supply to maintain the operation of the load.
  • the voltage provided to the load in the first charging and discharging circuit must be approximately equal to the voltage of the battery pack, thus limiting the voltage and power of the load.
  • the output voltage of the power adapter directly supplies power to the load after passing through the through circuit, so the output voltage of the power adapter must be higher than the voltage of the load, thus putting forward higher requirements for the power adapter.
  • Embodiments of the present application provide a charging and discharging circuit and a terminal device, the charging and discharging circuit can support adapters with different output voltages, and can solve the problem of limited load voltage and power in the prior art.
  • a charging and discharging circuit includes: an overvoltage protection circuit, a boost conversion circuit, and a buck conversion circuit; wherein, the input terminal of the overvoltage protection circuit and the input of the boost conversion circuit Both ends are coupled to the input end of the charging and discharging circuit, the output end of the overvoltage protection circuit, the output end of the boost conversion circuit and the first end of the step-down conversion circuit are all coupled to the first node, and the first node is the first output terminal of the charging and discharging circuit, the first terminal of the step-up conversion circuit is coupled to the ground terminal, the second terminal of the step-down converting circuit is coupled to the second output terminal of the charging and discharging circuit, and the step-down converting circuit A third terminal of the circuit is coupled to the ground terminal.
  • the input terminal of the charging and discharging circuit when the input terminal of the charging and discharging circuit receives different input voltages such as fixed high voltage, adjustable high voltage or low voltage, different circuit modules in the charging and discharging circuit are in working state, so that the input The voltage is correspondingly converted into a load voltage that meets the load demand, and at the same time realizes charging of the battery pack. Since the input terminal of the charging and discharging circuit can receive different input voltages such as fixed high voltage, adjustable high voltage or low voltage, the charging and discharging circuit can support power adapters with different output voltages, thus solving the problem of limited power adapters .
  • the overvoltage protection circuit can be directly used to output the load voltage according to the fixed high voltage or the adjustable high voltage.
  • the boost conversion circuit can be used to boost convert the low voltage and then output the load voltage, so that under the above-mentioned different input voltage conditions, the load voltage received by the load is high Voltage, thus solving the problem of limited voltage and power of the load, and further improving the efficiency of power supply.
  • the charge and discharge circuit further includes: a charge and discharge transistor, one pole of the charge and discharge transistor is coupled to the first output terminal, and the other pole of the charge and discharge transistor is coupled to the first output terminal. Two output terminals are coupled.
  • the charge and discharge transistor since the charge and discharge transistor is in the process of charging, the charge and discharge transistor can output the charging voltage according to the load voltage, and the charge and discharge transistor can also output the load voltage according to the discharge voltage during the discharge process of the charge and discharge transistor The electric energy loss during charging and discharging through the charging and discharging transistor is minimal, thereby improving the charging and discharging efficiency of the charging and discharging circuit.
  • the charge and discharge circuit further includes: a control circuit, the control circuit is used to respectively control the overvoltage protection circuit, the step-up conversion circuit, the step-down conversion circuit and the charging discharge transistor.
  • the control circuit controls whether the overvoltage protection circuit, the step-up conversion circuit, the step-down conversion circuit and the charging and discharging transistor are in operation state, to convert the input voltage into a load voltage that meets the load demand, and at the same time realize the charging of the battery pack.
  • the input terminal of the charging and discharging circuit is used to receive an input voltage
  • the first output terminal is used to provide a load voltage
  • the second output terminal is used to provide a charging voltage or receive a discharge voltage. Voltage.
  • the charging and discharging circuit performs voltage conversion on the input voltage received by the input terminal, thereby outputting the load voltage at the first output terminal, and outputting the load voltage at the second output terminal.
  • the terminal outputs the charging voltage, and then completes the power supply to the load and the charging of the battery pack; when there is no input voltage at the input terminal of the charging and discharging circuit, the second output terminal can be used to receive the discharging voltage, and the charging and discharging circuit will discharge the discharged voltage Converted to the load voltage to complete the power supply to the load.
  • the overvoltage protection circuit includes a first transistor and a second transistor; wherein, one pole of the first transistor is coupled to the input terminal of the overvoltage protection circuit, and the second transistor One pole of the transistor is coupled to the output terminal of the overvoltage protection circuit, the other pole of the first transistor and the other pole of the second transistor are the same pole and coupled together, the gate of the first transistor and the second transistor The gates are respectively used to receive the first control signal.
  • a simple overvoltage protection circuit is provided to realize overvoltage protection.
  • the first control signal is used for: Turn on the first transistor and the second transistor.
  • the first control signal is used to turn on the first transistor and the second transistor, and the first The first transistor and the second transistor output the load circuit according to the first voltage, so as to realize the power supply to the load, and further realize the overvoltage protection of the charging and discharging circuit.
  • the boost conversion circuit includes a third transistor, a fourth transistor, a fifth transistor, and a first inductor; wherein, one pole of the third transistor is connected to the boost conversion circuit The other end of the third transistor is coupled to one end of the first inductance, the other end of the first inductance is coupled to one end of the fourth transistor and one end of the fifth transistor, and the fourth The other pole of the transistor is coupled to the output terminal of the boost conversion circuit, the other pole of the fifth transistor is coupled to the ground terminal, the gate of the third transistor, the gate of the fourth transistor and the fifth transistor The gates of the gates are respectively used to receive the second control signal, the third control signal and the fourth control signal.
  • a simple boost conversion circuit is provided, so as to realize boost conversion.
  • the second control signal and the first are respectively used to turn on the third transistor and the fifth transistor and the third control signal is used to turn off the fourth transistor, or the second control signal and the third control signal are used to turn on the first transistor The fourth transistor and the third transistor and the fourth control signal are respectively used to turn off the fifth transistor.
  • the second control signal, the third control signal and the fourth control signal are respectively used for Turning on or off the third transistor, the fourth transistor and the fifth transistor, so as to convert the second voltage into a load voltage meeting the load demand, thereby realizing the power supply to the load, thereby improving the charging and discharging circuit power supply efficiency.
  • the step-down conversion circuit includes a sixth transistor, a seventh transistor, and a second inductor; wherein, one pole of the sixth transistor is connected to the first terminal coupling, the other pole of the sixth transistor is coupled to one pole of the seventh transistor, the other pole of the seventh transistor is coupled to the ground terminal, one terminal of the second inductor is coupled to the other pole of the sixth transistor pole coupling, the other end of the second inductor is coupled to the second end of the step-down conversion circuit, the gate of the sixth transistor and the gate of the seventh transistor are respectively used to receive the fifth control signal and the sixth control signal Signal.
  • a simple step-down conversion circuit is provided, so as to realize step-down conversion.
  • the fifth control signal is used to turn on the sixth transistor and the sixth control signal is used to turn off the seventh transistor, or the fifth control signal is used to turn off the sixth transistor and the sixth control signal is used to turning on the seventh transistor; and/or, during the discharge process of the charging and discharging circuit, the fifth control signal is used to turn off the sixth transistor and the sixth control signal is used to turn on the seventh transistor, Or the fifth control signal is used to turn on the sixth transistor and the sixth control signal is used to turn off the seventh transistor.
  • the fifth control signal and the sixth control signal are used to turn on or turn off the sixth transistor and the seventh transistor respectively, so that the fixed
  • the voltage is stepped down and converted into the charging voltage, so as to realize the charging of the battery pack; and/or, the charging voltage is converted into the load voltage, so as to realize the power supply to the load.
  • the step-down conversion circuit includes a sixth transistor, a seventh transistor, an eighth transistor, a ninth transistor, a first capacitor, a second capacitor, and a second inductor; wherein, the The sixth transistor, the seventh transistor, the eighth transistor and the ninth transistor are coupled in series between the first terminal and the third terminal of the step-down conversion circuit, and the sixth transistor and the seventh transistor
  • the coupling point is the second node
  • the coupling point of the seventh transistor and the eighth transistor is the third node
  • the coupling point of the eighth transistor and the ninth transistor is the fourth node
  • the first capacitor is coupled to the second node and the fourth node
  • the second capacitive coupling is between the third node and the ground terminal
  • one end of the second inductor is connected to one of the second node, the third node or the fourth node coupling
  • the other end of the second inductor is coupled to the second end of the step-down conversion circuit
  • a step-down conversion circuit is provided to realize step-down conversion, and the electric energy during the step-down conversion process is reduced through the first capacitor, the second capacitor and the second inductance in the step-down conversion circuit.
  • the loss further improves the conversion efficiency.
  • the fifth control signal and the seventh control signal are used to turn on the sixth transistor and the eighth transistor respectively, and the sixth control signal and the eighth control signal are used to turn off the seventh transistor and the eighth transistor respectively
  • the sixth control signal and the eighth control signal are used to turn off the seventh transistor and the eighth transistor respectively
  • Nine transistors, or the fifth control signal and the seventh control signal are used to turn off the sixth transistor and the eighth transistor respectively and the sixth control signal and the eighth control signal are used to turn on the seventh transistor respectively and the ninth transistor
  • the sixth control signal and the eighth control signal are used to turn on the seventh transistor and the ninth transistor respectively and the fifth control signal and the seventh control signal are used to turn off the sixth transistor and the eighth transistor respectively, or the fifth control signal and the seventh control signal are used to turn on the sixth transistor and the eighth transistor and the The sixth control signal and the eighth control signal are used to turn off
  • the fifth control signal, the sixth control signal, the seventh control signal and the eighth control signal are used to turn on or off the sixth transistor, the seventh transistor, and the eighth transistor respectively. and the ninth transistor, to step down convert the fixed voltage received by the input terminal of the step-down conversion circuit into a load voltage, thereby realizing charging of the battery pack; and/or convert the charging voltage into a load voltage, thereby realizing
  • the power supply to the load is reduced by the first capacitor, the second capacitor and the second inductor in the step-down conversion circuit to reduce the loss of electric energy during the step-down conversion process, and further improve the conversion efficiency.
  • the overvoltage protection circuit is used to output the load voltage according to the first voltage; the step-down conversion circuit is used to convert the load voltage into a charging voltage.
  • the fixed voltage can directly supply power to the load through the overvoltage protection circuit, thereby realizing the power supply to the load, and further improving the efficiency of power supply.
  • the charging voltage can be used to charge the battery pack, thereby realizing Charging the battery pack.
  • the overvoltage protection circuit is used to output a load voltage according to the first voltage; the charging and discharging transistor is used to convert the load voltage into a charging voltage.
  • the adjustable voltage can directly supply power to the load through the overvoltage protection circuit, thereby realizing the power supply to the load and improving the efficiency of power supply.
  • the load voltage can directly supply power to the battery pack through the charging and discharging transistor. Charging, thereby realizing the charging of the battery pack, further improving the charging efficiency.
  • the boost conversion circuit is used to output the load voltage according to the second voltage; the charging and discharging transistor is used to convert the load voltage into a charging voltage.
  • the second voltage is boosted and converted by the boost conversion circuit into a load voltage that meets the load demand, thereby realizing the power supply to the load, thereby improving the efficiency of power supply.
  • the transistor directly charges the battery pack, thereby realizing the charging of the battery pack and further improving the charging efficiency.
  • the step-down conversion circuit is also used to convert the discharge voltage into a load voltage.
  • the step-down conversion circuit converts the discharge voltage into a load voltage, thereby realizing the discharge of the battery pack.
  • the charge and discharge transistor is also used to convert the discharge voltage into a load voltage.
  • the charge and discharge transistor converts the discharge voltage into a load voltage to realize the discharge of the battery pack, and the discharge voltage directly supplies power to the load through the charge and discharge transistor, thereby reducing the loss of electric energy and further improving the discharge efficiency.
  • a second aspect provides a power chip, the power chip includes a charging and discharging circuit, and the charging and discharging circuit is the charging and discharging circuit provided in the first aspect or any possible implementation manner of the first aspect.
  • a third aspect provides a terminal device, the terminal device includes a load, a battery pack, and a charging and discharging circuit, and the charging and discharging circuit is the charging and discharging circuit provided in the first aspect or any possible implementation of the first aspect , the first output end of the charging and discharging circuit is coupled to the load, and the second output end of the charging and discharging circuit is coupled to the battery pack.
  • any of the devices provided above can be used to implement the corresponding method provided above, therefore, the beneficial effects it can achieve can refer to the beneficial effects in the corresponding method provided above, here No longer.
  • Fig. 1 is a schematic structural diagram of a charging and discharging circuit provided by the prior art
  • FIG. 2 is a schematic structural diagram of another charging and discharging circuit provided by the prior art
  • FIG. 3 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a charging and discharging circuit provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another charging and discharging circuit provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another charging and discharging circuit provided in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a working state of a step-down conversion circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the working state of another step-down conversion circuit provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of the working state of another step-down conversion circuit provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a charging and discharging circuit provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another charging and discharging circuit provided in the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another charging and discharging circuit provided in the embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • Coupled is used to indicate an electrical connection, including direct connection through wires or terminals or indirect connection through other devices. "Coupling” should therefore be viewed as an electronic communication connection in a broad sense.
  • the transistor in the embodiment of the present application may refer to a metal oxide semiconductor (MOS), and the type of the transistor may include an N-type metal oxide semiconductor (NMOS) tube and a P-type metal An oxide semiconductor (P-type metal oxide semiconductor, PMOS) transistor, the transistor may also be other types of transistors, such as gallium nitride transistors, and the transistors in the embodiments of the present application are all described using NMOS as an example.
  • the transistor can be a switching tube or a power tube. The difference between the two is that the power tube is a MOS tube with a small on-resistance. MOS tube.
  • the two transistors coupled in series herein may mean that the source of the first transistor is connected to the drain of the second transistor among the two transistors, and the drain of the first transistor is connected to the source of the second transistor. Both are connected to the meaning of the external circuit.
  • the technical solutions provided by the embodiments of the present application can be applied to various terminal devices including charging and discharging circuits.
  • the terminal devices may include but not limited to personal computers, server computers, mobile devices (such as mobile phones, tablet computers, media players, etc.), wearable devices, vehicle-mounted devices, consumer terminal devices, mobile robots and drones, etc.
  • mobile devices such as mobile phones, tablet computers, media players, etc.
  • wearable devices such as mobile phones, tablet computers, media players, etc.
  • vehicle-mounted devices consumer terminal devices, mobile robots and drones, etc.
  • the specific structure of the terminal device will be described below.
  • FIG. 3 is a schematic structural diagram of a terminal device provided in an embodiment of the present application, and the terminal device is described by taking a notebook computer as an example.
  • the terminal device may include: a memory 101 , a processor 102 , a sensor component 103 , a multimedia component 104 , a power supply 105 and an input/output interface 106 .
  • memory 101 can be used for storing data, software program and software module; It mainly includes storage program area and storage data area, wherein, storage program area can store operating system and at least one function required application program, such as sound playing function or image Play function, etc.; the storage data area can store data created according to the use of the terminal equipment, such as audio data, image data, or table data, etc.
  • the terminal device may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 102 is the control center of the terminal equipment, which uses various interfaces and lines to connect various parts of the entire equipment, runs or executes the software programs and/or software modules stored in the memory 101, and calls the data stored in the memory 101 , execute various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 102 may include one or more processing units, for example, the processor 102 may include a central processing unit (central processing unit, CPU), an application processor (application processor, AP), a modem processor , graphics processing unit (graphics processing unit, GPU), image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor and/or Neural-network processing unit (NPU), etc.
  • a central processing unit central processing unit, CPU
  • an application processor application processor
  • AP application processor
  • modem processor graphics processing unit
  • graphics processing unit graphics processing unit
  • image signal processor image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU Neural-network processing unit
  • the sensor component 103 includes one or more sensors, which are used to provide status assessments of various aspects for the terminal device.
  • the sensor component 103 may include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor, and the sensor component 103 can detect the acceleration/deceleration, orientation, opening/closing status, relative positioning of components or terminal Equipment temperature changes, etc.
  • the sensor component 103 may also include a light sensor.
  • the sensor component 103 may also include a light sensor for detecting lights in the surrounding environment.
  • the multimedia component 104 provides an output interface screen between the terminal device and the user.
  • the screen may be a touch panel, and when the screen is a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 104 also includes at least one camera, for example, the multimedia component 104 includes a front camera and/or a rear camera. When the terminal device is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the power supply 105 is used to provide power to various components of the terminal device, and the power supply 105 may include a power management system, one or more power supplies, or other components associated with the terminal device to generate, manage and distribute power.
  • the power supply 105 may include the charging and discharging circuit provided herein, and the power supply 105 may also include a battery pack.
  • the charging and discharging circuit can be used to supply power to the above-mentioned components, and can also be used to charge the battery pack.
  • the battery pack can also be Used to power the above components.
  • the input/output interface 106 provides an interface between the processor 102 and the peripheral interface module.
  • the peripheral interface module can be a keyboard, a mouse, or a universal serial bus (universal serial bus, USB) device, etc.
  • the terminal device may also include an audio component and a communication component.
  • the audio component includes a microphone
  • the communication component includes a wireless fidelity (wireless fidelity, WiFi) module or a Bluetooth module. repeat.
  • the structure of the terminal device shown in Figure 3 does not constitute a limitation to the terminal device, and may include more or less components than those shown in the figure, or combine some components, or arrange different components .
  • Fig. 4 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • the charging system includes: a power adapter and a terminal device.
  • the terminal device includes a charging and discharging circuit, a load, and a battery pack, and the load may specifically be the processor, memory, and multimedia components mentioned above.
  • the charging and discharging circuit has an input terminal, a first output terminal and a second output terminal, the output terminal of the power adapter can be used to connect with the input terminal of the charging and discharging circuit, and the first output terminal of the charging and discharging circuit can be used to connect with the load connected, the second output end of the charging and discharging circuit can be used to connect with the battery pack.
  • the power adapter can be used to provide an input voltage for the terminal equipment, the charging and discharging circuit can be used to convert the input voltage provided by the power adapter into an output voltage, and the battery pack can be used to store and release electric energy.
  • the charging and discharging circuit can convert the input voltage into an output voltage, and the output voltage can be used to supply power to the load and charge the battery pack; when the charging and discharging circuit
  • the battery pack can provide a discharge voltage, and the discharge voltage can supply power to the load through the charging and discharging circuit.
  • FIG. 5 is a schematic structural diagram of a charging and discharging circuit provided in an embodiment of the present application, and the charging and discharging circuit can be applied to the terminal device provided above.
  • the charging and discharging circuit includes: an overvoltage protection circuit 201 , a boost conversion circuit 202 and a buck conversion circuit 203 .
  • the charging and discharging circuit has an input terminal, a first output terminal and a second output terminal.
  • the input end of the overvoltage protection circuit 201 and the input end of the boost conversion circuit 202 are both coupled to the input end of the charging and discharging circuit, the output end of the overvoltage protection circuit 201, the output end of the boost conversion circuit 202 and
  • the first end of the step-down conversion circuit 203 is coupled to the first node P1, the first node P1 is the first output end of the charge-discharge circuit, the first end of the step-up conversion circuit 202 is connected to the ground terminal (GND) Coupling, the second terminal of the step-down conversion circuit 203 is coupled to the second output terminal of the charging and discharging circuit, and the third terminal of the step-down conversion circuit 203 is coupled to the ground terminal (GND).
  • the input terminal of the charging and discharging circuit can be used to receive the input voltage
  • the input voltage can be provided by the power adapter of the terminal equipment
  • the first output terminal can be used to provide the load voltage
  • the load voltage can be used for the terminal equipment
  • the second output end can be used to provide a charging voltage
  • the charging voltage can be used to charge the battery pack
  • the second output end can also be used to receive the discharge voltage provided by the battery pack.
  • the power adapter can be used to provide an input voltage for the charging and discharging circuit, and the charging and discharging circuit can convert the input voltage into a load voltage and a charging voltage, and the load voltage can be used to supply power to the load, and the charging voltage can be used for Charge the battery pack.
  • the power adapter no longer provides input voltage.
  • the input terminal of the charging and discharging circuit has no input voltage, and the battery pack provides discharging voltage, which supplies power to the load through the charging and discharging circuit.
  • the input terminal of the charging and discharging circuit provided above can receive different input voltages. According to the different input voltages received by the input terminal, the charging mode of the charging and discharging circuit can be divided into three types. The following three types of charging The working status of different circuit modules in the charging and discharging circuit in the mode is described in detail.
  • the overvoltage Both the protection circuit 201 and the step-down conversion circuit 203 are in working state, and the boost conversion circuit 202 is not working.
  • the input terminal of the overvoltage protection circuit 201 can be used to receive the fixed high voltage
  • the output terminal of the overvoltage protection circuit 201 can be used to output a load voltage according to the fixed high voltage
  • the load voltage can be used to supply power to the load.
  • the first end of the step-down conversion circuit 203 can be used to receive the load voltage, the step-down conversion circuit 203 can be used to step-down convert the load voltage into a charging voltage, and the second end of the step-down conversion circuit 203 can be used to output the charging voltage.
  • voltage which can be used to charge the battery pack.
  • the fixed high voltage directly supplies power to the load through the overvoltage protection circuit 201. At this time, the power supply efficiency of the charging and discharging circuit is the highest, thereby ensuring the voltage and power required by the load.
  • the first threshold can be set in advance, and the specific value of the first threshold can be set according to the voltage of the battery pack. For example, when the voltage of the battery pack is 12V, the specific value of the first threshold is 12V, and when the voltage of the battery pack is 16V, the specific value of the first threshold is 16V.
  • the first voltage can be referred to as an adjustable high voltage for short
  • the Both the overvoltage protection circuit 201 and the step-down conversion circuit 203 are in working state, and the boost conversion circuit 202 is not working.
  • the input terminal of the overvoltage protection circuit 201 can be used to receive the adjustable high voltage
  • the output terminal of the overvoltage protection circuit 201 can be used to output the load voltage according to the adjustable high voltage
  • the load voltage can be used to supply power to the load
  • the first end of the step-down conversion circuit 203 can be used to receive the load voltage
  • the step-down conversion circuit 203 can be used to step-down convert the load voltage into a charging voltage
  • the second end of the step-down conversion circuit 203 can be used to output This charging voltage, this charging voltage can be used to charge the battery pack.
  • the adjustable high voltage directly supplies power to the load through the overvoltage protection circuit 201 .
  • the power supply efficiency of the charging and discharging circuit is the highest, thereby ensuring the voltage and power required by the load.
  • the first voltage when the first voltage is a fixed voltage, it may be called a fixed high voltage, and when the first voltage is an adjustable voltage, it may be called an adjustable high voltage.
  • the adjustable high voltage can change with the change of the battery pack voltage, for example, when the battery pack voltage changes from 12V to 16V, the adjustable high voltage can also be changed from 12V to 16V, and the fixed high voltage does not change with Changes in battery pack voltage.
  • the high voltage of the fixed high voltage and the adjustable high voltage received by the input terminal of the charging and discharging circuit is relative to the battery pack voltage, and the high voltage may be a voltage greater than the battery pack voltage.
  • the boost conversion circuit 202 and the buck conversion circuit In the third charging mode, when the input terminal of the charging and discharging circuit receives a second voltage (at this time, the second voltage can be called a low voltage) that is less than the second threshold value, the boost conversion circuit 202 and the buck conversion circuit The circuit 203 is in the working state, and the overvoltage protection circuit 201 is not working.
  • the input terminal of the boost conversion circuit 202 is used to receive the low voltage
  • the boost conversion circuit 202 is used to boost the low voltage to obtain the load voltage
  • the output terminal of the boost conversion circuit 202 is used for
  • the load voltage can be used to supply power to the load
  • the first terminal of the step-down conversion circuit 203 can be used to receive the load voltage
  • the step-down conversion circuit 203 can be used to step-down convert the load voltage into a charging voltage
  • the second terminal of the step-down conversion circuit 203 can be used to output the charging voltage
  • the charging voltage can be used to charge the battery pack.
  • the boost conversion circuit 202 can be used to boost convert the low voltage after receiving the low voltage, and supply power to the load through the boost converted load voltage, thereby ensuring the voltage and power required by the load .
  • the second threshold is less than or equal to the first threshold, and the second voltage is less than or equal to the first voltage.
  • the second voltage may include a fixed low voltage and an adjustable low voltage.
  • the adjustable low voltage changes with the battery pack voltage, for example, when the battery pack voltage changes from 12V to 10V, the adjustable low voltage also changes from 12V to 10V, and the fixed low voltage does not change with the battery pack voltage Change to change.
  • the lower voltage of the fixed low voltage and the adjustable lower voltage received by the input terminal of the charging and discharging circuit is relative to the battery pack voltage, and the low voltage may be a voltage less than or equal to the battery pack voltage.
  • the charging and discharging circuit can also discharge through the battery pack.
  • the mode in which the charging and discharging circuit discharges through the step-down conversion circuit 203 is called the first discharge mode, and in the first discharge mode, neither the overvoltage protection circuit 201 nor the boost conversion circuit 202 work, the step-down protection circuit 203 is in the working state.
  • the second end of the step-down conversion circuit 203 can be used to receive the discharge voltage provided by the battery pack, and the step-down conversion circuit 203 can be used to convert the discharge voltage into a load voltage.
  • the first end of the step-down conversion circuit 203 Can be used to output this load voltage, which can be used to power the load.
  • the overvoltage protection circuit 201 , boost conversion circuit 202 and buck conversion circuit 203 provided above can all be controlled by the control circuit 204 .
  • the control circuit 204 can be used to control different circuit modules in the charging and discharging circuit to be in different working states. For example, when the input terminal of the charging and discharging circuit receives a fixed high voltage, the control circuit 204 can be used to control the overvoltage protection circuit 201 and the step-down conversion circuit 203 to be in the working state, and control the boost conversion circuit 202 to not work.
  • the control circuit 204 can be used to control the overvoltage protection circuit 201 and the step-down conversion circuit 203 to be in the working state, and control the boost conversion circuit 202 to not work ;
  • the control circuit 204 can be used to control the boost conversion circuit 202 and the buck conversion circuit 203 to be in the working state, and control the overvoltage protection circuit 201 to not work.
  • the charging and discharging circuit may include the control circuit 204, or may not include the control circuit 204, which is not specifically limited in this embodiment of the present application.
  • FIG. 6 is illustrated by taking the charging and discharging circuit including the control circuit 204 as an example.
  • the control circuit 204 can be used to control the charging and discharging circuit in the charging and discharging circuit.
  • Different circuit modules are in working state to convert the input voltage into a load voltage that meets the load requirements, and at the same time realize the charging of the battery pack. Since the input terminal of the charging and discharging circuit can receive different input voltages such as fixed high voltage, adjustable high voltage or low voltage, the charging and discharging circuit can support power adapters with different output voltages, thus solving the problem of limited power adapters .
  • the overvoltage protection circuit 201 can be directly used to output the load voltage according to the fixed high voltage or the adjustable high voltage.
  • the boost conversion circuit 202 can be used to boost convert the low voltage and then output the load voltage, so that in the case of the above-mentioned different input voltages, the load voltage received by the load is uniform. It is a high voltage, which solves the problem of limited voltage and power of the load, and further improves the efficiency of power supply.
  • the charging and discharging circuit further includes a charging and discharging transistor M0.
  • One pole (eg, drain) of the charging and discharging transistor is coupled to the first output terminal, and the other pole (eg, source) of the charging and discharging transistor is coupled to the second output terminal.
  • the on and off of the charging and discharging transistor can be specifically controlled by the control circuit 204 .
  • the control circuit 204 can control the charge and discharge transistor M0 to be turned on and off through a control signal.
  • the charging and discharging circuit includes the charging and discharging transistor M0
  • the second charging mode and the third charging mode provided above can be replaced by the fourth charging mode and the fifth charging mode, and the fourth charging mode is described below respectively The charging mode and this fifth charging mode are described in detail.
  • the fourth charging mode when the input end of the charging and discharging circuit receives an adjustable high voltage, the control circuit 204 can be used to control the overvoltage protection circuit 201 to be in the working state, the charging and discharging transistor M0 is in the working state, and the booster Both the voltage conversion circuit 202 and the step-down conversion circuit 203 do not work.
  • the input terminal of the overvoltage protection circuit 201 is used to receive the adjustable high voltage
  • the output terminal of the overvoltage protection circuit 201 is used to output the load voltage according to the adjustable high voltage
  • the load voltage can be used to supply power to the load
  • the drain of the charging and discharging transistor M0 can be used to receive the load voltage
  • the source of the charging and discharging transistor M0 can be used to output a charging voltage according to the load voltage
  • the charging voltage can be used to charge the battery pack.
  • the adjustable high voltage directly supplies power to the load after passing through the overvoltage protection circuit 201, and the load voltage directly charges the battery pack through the charging and discharging transistor M0, so that compared with the above-mentioned second charging mode,
  • the fourth charging mode has higher charging efficiency, and at this time, the power supply efficiency and charging efficiency of the charging and discharging circuit are the highest.
  • the fifth charging mode when the input end of the charging and discharging circuit receives a low voltage, the control circuit 204 can be used to control the boost conversion circuit 202 to be in the working state, the charging and discharging transistor M0 is in the working state, the overvoltage protection Neither the circuit 201 nor the step-down conversion circuit 203 works.
  • the input terminal of the boost conversion circuit 202 is used to receive the low voltage
  • the boost conversion circuit 202 is used to boost convert the low voltage into a load voltage
  • the output terminal of the boost conversion circuit 202 is used to output
  • the load voltage can be used to supply power to the load
  • the drain of the charging and discharging transistor M0 can be used to receive the load voltage
  • the source of the charging and discharging transistor M0 can be used to output the charging voltage according to the load voltage
  • the charging voltage can be used for charging the battery pack.
  • the low voltage is boosted by the boost conversion circuit 202 to supply power for the load, and the load voltage directly charges the battery pack through the charging and discharging transistor M0, so that compared with the third charging mode above, the The fifth charging mode has higher charging efficiency.
  • the charge and discharge circuit may also include a second discharge mode.
  • the control circuit 204 can be used to control the charging and discharging transistor M0 to be in the working state, and the overvoltage protection circuit 201 , the boost conversion circuit 202 and the buck protection circuit 203 are not working.
  • the source of the charge and discharge transistor M0 can be used to receive the discharge voltage provided by the battery pack, and the drain of the charge and discharge transistor M0 can be used to output a load voltage according to the discharge voltage, and the load voltage can be used to supply power to the load.
  • the second discharge mode is that the discharge voltage provided by the battery pack directly supplies power to the load through the charge and discharge transistor M0 without conversion by other circuits, thereby improving the discharge efficiency and reducing the discharge voltage. power loss.
  • the first end of the step-down conversion circuit 203 can be used to receive the load voltage
  • the second end of the step-down conversion circuit 203 can be used to receive the load voltage. end can be used to output the charging voltage, so the first end of the step-down conversion circuit 203 can also be referred to as the input end of the step-down conversion circuit 203, and the second end of the step-down conversion circuit 203 can also be referred to as the step-down conversion circuit 203
  • the output terminal of the conversion circuit 203 is not limited to receive the load voltage.
  • the first end of the step-down conversion circuit 203 can be used to output the load voltage, and the second end of the step-down conversion circuit 203 can be used to receive the discharge voltage, so that the step-down
  • the first terminal of the voltage conversion circuit 203 may also be referred to as the output terminal of the buck conversion circuit 203
  • the second terminal of the voltage conversion circuit 203 may also be referred to as the input terminal of the voltage conversion circuit 203 .
  • the charging and discharging circuit includes the control circuit 204 and the gate of the charging and discharging transistor M0 is used to receive the zeroth control signal S0 as an example for illustration.
  • the overvoltage protection circuit 201 includes a first transistor M1 and a second transistor M2.
  • the drain of M1 is coupled to the input terminal of the overvoltage protection circuit 201
  • the source of M1 is coupled to the source of M2
  • the drain of M2 is coupled to the output terminal of the overvoltage protection circuit 201
  • the gate of M1 is coupled to the output terminal of the overvoltage protection circuit 201.
  • the gate of M2 is coupled to node OVP1, which is coupled to the control circuit 204 and is operable to receive the first control signal S1.
  • the overvoltage protection circuit 201 if the overvoltage protection circuit 201 is in the working state, during the charging process, the first control signal S1 turns on the first transistor M1 and the second transistor M2, and during the discharging process, The first control signal S1 turns off the first transistor M1 and the second transistor M2.
  • the boost conversion circuit 202 includes a third transistor M3, a fourth transistor M4, and a fifth transistor M5, and a first inductor L1.
  • the drain of M3 is coupled to the input terminal of the buck-boost conversion circuit 203
  • the source of M3 is coupled to the first terminal of L1
  • the second terminal of L1 is coupled to the source of M4 and the drain of M5
  • the source of M4 is coupled to the drain of M4.
  • the drain is coupled to the output terminal of the buck-boost conversion circuit 203
  • the source of M5 is coupled to the ground terminal (GND).
  • the gate of M3 and the control circuit 204 are coupled to the node OVP2 and can be used to receive the second control signal S2 through the node OVP2, the gate of M4 can be used to receive the third control signal S3, and the gate of M5 can be used to receive the fourth Control signal S4.
  • state 1 is specifically: the second control signal S2 and the fourth control signal S4 are used to turn on the third transistor M3 and the fifth transistor M5 respectively, and the third control signal S3 is used to turn off the fourth transistor M5.
  • Transistor M4 the input voltage received by the input terminal of the boost conversion circuit 202 is stored in the first inductor L1 through the third transistor M3 and the fifth transistor M5; state 2 is specifically: the second control signal S2 and The third control signal S3 is used to turn on the third transistor M3 and the fourth transistor M4 respectively, and the fourth control signal S4 is used to turn off the fifth transistor M5, so as to store in the first inductor L1
  • the electrical energy converted into load voltage is output from the output terminal of the boost conversion circuit 202 .
  • the boost conversion circuit 202 does not work.
  • the step-down conversion circuit 203 includes a sixth transistor M6 , a seventh transistor M7 and a second inductor L2 .
  • the drain of the M6 is coupled to the first end of the step-down conversion circuit 203
  • the source of M6 is coupled to the drain of M7
  • the source of M7 is coupled to the ground terminal (GND)
  • the first end of L2 is coupled to the M6
  • the source of L2 is coupled to the second terminal of the step-down conversion circuit 203 .
  • the gate of M6 can be used to receive the fifth control signal S5, and the gate of M7 can be used to receive the sixth control signal S6.
  • the working mode of the step-down conversion circuit 203 is divided into two states (respectively represented as state 3 and state 4), the step-down conversion circuit 203 These two states are alternately switched during the charge and discharge process to complete the charge process or discharge process.
  • state 3 is specifically: the fifth control signal S5 is used to turn on the sixth transistor M6, the sixth control signal S6 is used to turn off the seventh transistor M7, the first terminal of the step-down conversion circuit 203
  • the input voltage is stored in the second inductor L2 through the sixth transistor M6
  • state 4 is specifically: the fifth control signal S5 is used to turn off the sixth transistor M6, and the sixth control signal S6 is used to turn on the
  • the seventh transistor M7 is used to convert the electric energy stored in the second inductor L2 into a charging voltage and output it from the second terminal of the step-down conversion circuit 203 .
  • the step-down conversion circuit 203 includes a sixth transistor M6 , a seventh transistor M7 , an eighth transistor M8 , a ninth transistor M9 , a first capacitor C1 and a second inductor L2 .
  • M6, M7, M8 and M9 are coupled in series between the first end and the third end of the step-down conversion circuit 203 and the coupling point of M6 and M7 is the second node P2, and the coupling point of M7 and M8 is the second node
  • the point where the three nodes P3, M8 and M9 are coupled is the fourth node P4, C1 is coupled between the point P2 and the point P4, the first end of L2 is coupled with a node in P2, P3 and P4, and the second end of L2 is coupled with The second end of the step-down conversion circuit 203 is coupled.
  • the gate of M6 can be used to receive the fifth control signal S5, the gate of M7 can be used to receive the sixth control signal S6, the gate of M8 can be used to receive the seventh control signal S7, and the gate of M9 can be used to receive the eighth control signal S8.
  • the step-down conversion circuit 203 may further include a second capacitor C2, and the second capacitor C2 is coupled between the third node P3 and the ground terminal (GND).
  • the step-down conversion circuit 203 includes 4 transistors as an example for illustration.
  • the step-down conversion circuit 203 includes four transistors, according to the connection position of the first end of the second inductor L2 in the step-down conversion circuit 203, the step-down conversion circuit 203 There may be multiple working modes. Specifically, in the schematic design stage, the connection position of the first end of the second inductor L2 is determined according to the magnitude of the input voltage provided by the power adapter and the voltage of the battery pack.
  • the first end of the second inductor L2 is connected to the fourth node P4 to achieve the highest efficiency, and at this time, the first capacitor C1,
  • the RMS (root mean square) current of the second capacitor C2 and the second inductor L2 is the smallest, and the loss of electric energy is the smallest.
  • the voltage of the battery pack is greater than 25% of the power adapter voltage and less than 75% of the power adapter voltage
  • the first end of the second inductor L2 is connected to the third node P3 to achieve the highest efficiency.
  • the RMS (root mean square) current of the first capacitor C1, the second capacitor C2 and the second inductor L2 is the smallest, and the loss of electric energy is the smallest.
  • the voltage of the battery pack is greater than or equal to 75% of the power adapter voltage
  • the first end of the second inductance L2 is connected to the second node P2 to achieve the highest efficiency.
  • the first capacitor C1 and the second The RMS (root mean square) current of the inductor L2 is the smallest, and the loss of electric energy is the smallest.
  • the working mode includes two states (respectively denoted as state 11 and state 12), and the step-down conversion circuit 203 alternately switches between these two states during the charging and discharging process to complete charging process or discharge process.
  • state 11 is shown in (a) in FIG. 9 and (a) in FIG.
  • the fifth control signal S5 and the seventh control signal S7 are used to turn on the sixth transistor M6 and the The eighth transistor M8, the sixth control signal S6 and the eighth control signal S8 are respectively used to disconnect the seventh transistor M7 and the ninth transistor M9, and the load input by the first terminal of the step-down conversion circuit 203
  • the voltage is stored in the first capacitor C1, the second capacitor C2 and the second inductor L2 after passing through the sixth transistor M6 and the eighth transistor M8.
  • State 12 is shown in (b) in FIG. 9 and (b) in FIG.
  • the fifth control signal S5 and the seventh control signal S7 are used to disconnect the sixth transistor M6 and the second Eight transistors M8, the sixth control signal S6 and the eighth control signal S8 are respectively used to turn on the seventh transistor M7 and the ninth transistor M9 to store in the first capacitor C1, the second capacitor C2 and the The voltage in the second inductor L2 is converted into a charging voltage and output from the second terminal.
  • the step-down conversion circuit 203 if the step-down conversion circuit 203 is in the working state and the first end of the second inductor L2 is connected to the third node P3, according to the voltage of the battery pack and the power adapter The magnitude relationship of the output voltage, the step-down conversion circuit 203 has two working modes, as shown in FIG. 11 .
  • the step-down conversion circuit 203 when the voltage of the battery pack is greater than or equal to 0.5 times the output voltage of the power adapter, the step-down conversion circuit 203 is in the first mode of operation, as shown in (a) in Figure 11; when the voltage of the battery pack When the voltage of the power adapter is less than 0.5 times, the step-down conversion circuit 203 is in the second working mode, as shown in (b) in FIG. 11 .
  • the two working modes are described in detail below respectively.
  • the first working mode includes 4 states and can be represented as state 21 to state 24 respectively.
  • the step-down conversion circuit 203 switches these 4 states alternately during the charging and discharging process to complete the charging process and the discharging process. Specifically, in state 21, the fifth control signal S5 and the sixth control signal S6 are used to turn on the sixth transistor M6 and the seventh transistor M7 respectively, and the seventh control signal S7 and the eighth control signal S8 is used to turn off the eighth transistor M8 and the ninth transistor M9 respectively, and the load voltage received by the first end of the step-down conversion circuit 203 passes through the sixth transistor M6 and the seventh transistor M7 and is stored in the second Inductor L2.
  • the fifth control signal S5 and the seventh control signal S7 are used to turn on the sixth transistor M6 and the eighth transistor M8 respectively, and the sixth control signal S6 and the eighth control signal S8 are respectively used for
  • the seventh transistor M7 and the ninth transistor M9 are turned off, the load voltage received by the first end of the step-down conversion circuit 203 is stored in the first capacitor C1, and the voltage stored in the second inductor L2 Converted to a charging voltage that can be used to charge the battery pack.
  • the state 23 is the same as the above state 21, which will not be repeated here.
  • the sixth control signal S6 and the eighth control signal S8 are used to turn on the seventh transistor M7 and the ninth transistor M9 respectively, and the fifth control signal S5 and the seventh control signal S7 are respectively used for Then turn off the sixth transistor M6 and the eighth transistor M8 to convert the voltage stored in the second inductor L2 and the first capacitor C2 into a charging voltage, which can be used to charge the battery pack.
  • the second working mode includes 4 states and can be represented as state 31 to state 34 respectively.
  • the step-down conversion circuit 203 alternately switches these 4 states in order to complete the charging process and the discharging process during the charging and discharging process.
  • the state 31 is the same as the above-mentioned state 22, which will not be repeated here.
  • the seventh control signal S7 and the eighth control signal S8 are used to turn on the eighth transistor M8 and the ninth transistor M9 respectively, and the fifth control signal S5 and the sixth control signal S6 are used for turning on the eighth transistor M8 and the ninth transistor M9 respectively.
  • the voltage stored in the second inductor L2 is converted into a charging voltage, which can be used to charge the battery pack.
  • the state 33 is the same as the above state 24, which will not be repeated here.
  • the state 34 is the same as the above state 32, which will not be repeated here.
  • the working process of the first charging and discharging mode, the fourth charging and discharging mode and the fifth charging and discharging mode described above will be described in detail below.
  • the one end of the second inductor L2 in the charging and discharging circuit is coupled to the second node P2 as an example for illustration.
  • both the overvoltage protection circuit 201 and the step-down conversion circuit 203 are in working state, and the boost conversion circuit 202 and the charge-discharge transistor M0 are not working.
  • the input terminal of the overvoltage protection circuit 201 receives the fixed high voltage, and the first control signal S1 is used to turn on the first transistor M1 and the second transistor M2 to Convert this fixed high voltage to the load voltage.
  • the step-down conversion circuit 203 it alternately switches between the state 11 and the state 12 shown in FIG.
  • the sixth transistor M6 and the eighth transistor M8, the sixth control signal S6 and the eighth control signal S8 are respectively used to turn off the seventh transistor M7 and the ninth transistor M9, the first step-down conversion circuit 203
  • the load voltage input from terminal is stored in the first capacitor C1, the second capacitor C2 and the second inductor L2 after passing through the sixth transistor M6 and the eighth transistor M8; in state 12, the fifth control signal S5 and the seventh control signal S7 are used to turn off the sixth transistor M6 and the eighth transistor M8 respectively, and the sixth control signal S6 and the eighth control signal S8 are used to turn on the seventh transistor M7 and the eighth transistor M8 respectively.
  • the overvoltage protection circuit 201 is in the working state, the charging and discharging transistor M0 is in the working state, and the boost conversion circuit 202 and the buck conversion circuit 203 are not working.
  • the input terminal of the overvoltage protection circuit 201 receives the adjustable high voltage, and the first control signal S1 is used to turn on the first transistor M1 and the second transistor M2, to convert this adjustable high voltage to the load voltage.
  • the zeroth control signal S0 is used to turn on the charging and discharging transistor M0 to output a charging voltage according to the load voltage.
  • both the boost conversion circuit 202 and the charging and discharging transistor M0 are in working state, and neither the overvoltage protection circuit 201 nor the buck conversion circuit 203 is working.
  • the input terminal of the boost conversion circuit 202 receives the low voltage, and operates according to the alternate switching between the above-mentioned state 1 and state 2, that is, in state 1, the second control signal S2 and the fourth control signal S4 are used to turn on the third transistor M3 and the fifth transistor M5 respectively, the third control signal S3 is used to turn off the fourth transistor M4, and the input terminal of the boost conversion circuit 202 receives
  • the received low voltage is stored in the first inductor L1 through the third transistor M3 and the fifth transistor M5; in state 2, the second control signal S2 and the third control signal S3 are used to turn on the first inductor L1 respectively.
  • the third transistor M3 and the fourth transistor M4, the fourth control signal S4 is used to turn off the fifth transistor M5, so as to convert the electric energy stored in the first inductor L1 into a load voltage from the boost conversion circuit 202
  • the output terminal outputs, for the charging and discharging transistor M0, the zeroth control signal S0 is used to turn on the charging and discharging transistor M0, so as to output a charging voltage according to the load voltage.
  • the working process of the first discharge mode and the second discharge mode described above will be described in detail below based on the specific structure of the charge and discharge circuit provided by the embodiment of the present application.
  • the one end of the second inductor L2 in the charging and discharging circuit is coupled to the second node P2 as an example for illustration.
  • the step-down conversion circuit 203 In the first discharge mode, when the input terminal of the charging and discharging circuit receives no input voltage, the step-down conversion circuit 203 is in the working state, the overvoltage protection circuit 201, the boost conversion circuit 202 and the charging and discharging transistor M0 Neither work. Specifically, for the step-down conversion circuit 203 , it alternately switches between the state 11 and the state 12 shown in FIG. 9 above, and the specific process is as described above, and will not be repeated here.
  • the charge and discharge transistor M0 works, and the overvoltage protection circuit 201, the boost conversion circuit 202 and the step down conversion circuit 203 are all Not working.
  • the zeroth control signal S0 is used to turn on the charging and discharging transistor M0, so as to output the load voltage according to the discharging voltage.
  • the different control signals in the embodiments of the present application may be pulse signals, and the pulse signals may include Pulse Width Modulation (Pulse Width Modulation, PWM for short) signals and Pulse Frequency Modulation (Pulse Frequency Modulation, PFM for short) signals, etc. .
  • Pulse Width Modulation Pulse Width Modulation, PWM for short
  • Pulse Frequency Modulation Pulse Frequency Modulation, PFM for short
  • an embodiment of the present application further provides a power chip, and the power chip may include any charging and discharging circuit provided above.
  • the power chip may include any charging and discharging circuit provided above.
  • the transistor in the charging and discharging circuit can be integrated on the power chip, and the inductor and capacitor other than the transistor can be used without integrated in the power chip.
  • the sixth transistor M6, the seventh transistor M7, the eighth transistor M8 and the ninth transistor M9 in 203, and the charging and discharging transistor M0 can all be integrated in the power supply chip; the first inductor L1 in the boost conversion circuit 202 , and the second inductor L2, the first capacitor C1 and the second capacitor C2 in the step-down conversion circuit 203 may not be integrated in the power chip.
  • An embodiment of the present application also provides a terminal device, where the terminal device includes a load, a battery pack, and a charging and discharging circuit, and the charging and discharging circuit may include any charging and discharging circuit provided above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供一种充放电电路及终端设备,涉及电子技术领域,用于解决电源适配器和负载的电压以及功率受限制的问题。本申请提供的充放电电路包括过压保护电路、升压转换电路和降压转换电路。其中,该过压保护电路的输入端和该升压转换电路的输入端均与该充放电电路的输入端耦合,该过压保护电路的输出端、该升压转换电路的输出端和该降压转换电路的第一端均耦合于第一节点,该第一节点为该充放电电路的第一输出端,该升压转换电路的第一端与接地端耦合,该降压转换电路的第二端与该充放电电路的第二输出端耦合,该降压转换电路的第三端与该接地端耦合。

Description

一种充放电电路及终端设备 技术领域
本申请涉及电子技术领域,尤其涉及一种充放电电路及终端设备。
背景技术
目前笔记本电脑、平板电脑、手机、车载设备和可穿戴设备等移动类的终端设备,在没有外部电源的使用场景下,需要终端设备内的电池放电为终端设备的负载提供能量,在有外部电源的使用场景下,需要从外部电源获取能量为终端设备的负载提供能量,并同时为终端设备内的电池充电。因此,需要一种充放电电路,用来维持终端设备的运行。现有技术提供了以下两种充放电电路。
第一种充放电电路如图1所示,该充放电电路包括升降压转化电路、充放电晶体管M 15和控制器,该升降压转化电路的输入端作为该充放电电路的输入端用于与电源适配器(adapter,APT)连接,该升降压转化电路的输出端作为该充放电电路的第一输出端用于与负载连接,该升降压转化电路的输出端还与该充放电晶体管M 15连接,该充放电晶体管M 15用于为电池组充放电,该控制器用于控制该升降压转化电路和充放电晶体管M 15。其中,该升降压转化电路包括4个晶体管(表示为M 11至M 14)和一个电感L 1。具体的,该充放电电路在充电过程中,APT提供输入电压VI,在T 1时刻控制器控制M 11和M 13导通,以将输入电压VI的能量储存在L 1中,在T 2时刻控制器控制M 12、M 14和M 15导通,以将存储的能量转换为输出电压VO,VO用于为负载供电以及通过M 15为电池组充电;在放电过程中,控制器控制M 15导通,电池组释放的能量通过M 15为负载供电。
第二种充放电电路如图2所示,该充放电电路包括直通电路、降压转化电路、充放电晶体管M 25和控制器,该直通电路的输入端作为该充放电电路的输入端用于与APT连接,该直通电路的输出端作为该充放电电路的第一输出端用于与负载连接,该直通电路的输出端还与该降压转化电路的输入端和该充放电晶体管M 25连接,该降压转化电路的输出端作为该充放电电路的第二输出端用于与该充放电晶体管M 25连接,该充放电晶体管M 25用于为电池组充放电,该控制器用于控制该直通电路、降压转化电路和充放电晶体管M 25。其中,该直通电路包括2个晶体管(表示为M 21和M 22),该降压转化电路包括2个晶体管(表示为M 23和M 24)和一个电感L 2。具体的,该充放电电路在充电过程中,APT提供输入电压VI,在T 1时刻控制器控制M 21、M 22和M 23导通,输入电压VI的一部分能量直接为负载供电,另一部分能量储存在L2中,在T2时刻控制器控制M 24导通,以将存储的能量转换为输出电压VO为电池组充电;在放电过程中,控制器控制M 25导通,电池组释放的能量通过M 25为负载供电。
上述两种充放电电路均可以支持不同输出电压的电源适配器,并在有无外部电源的场景下为负载提供能量,以维持负载的运行。但是,第一种充放电电路中提供给负载的电压必须与电池组的电压保持大致相等,从而限制了负载的电压和功率。第二种充放电电路中电源适配器的输出电压是经过直通电路后直接为负载供电,导致电源适配器的输出电压必须高于负载的电压,从而对电源适配器提出了较高要求。
发明内容
本申请实施例提供一种充放电电路及终端设备,该充放电电路可以支持不同输出电压的适配器,且能够解决现有技术中负载的电压和功率受限制的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种充放电电路,该充放电电路包括:过压保护电路、升压转换电路和降压转换电路;其中,该过压保护电路的输入端和该升压转换电路的输入端均与该充放电电路的输入端耦合,该过压保护电路的输出端、该升压转换电路的输出端和该降压转换电路的第一端均耦合于第一节点,该第一节点为该充放电电路的第一输出端,该升压转换电路的第一端与接地端耦合,该降压转换电路的第二端与该充放电电路的第二输出端耦合,该降压转换电路的第三端与该接地端耦合。
上述技术方案中,当该充放电电路的输入端接收到固定高电压、可调高电压或者低电压等不同的输入电压时,该充放电电路中的不同电路模块处于工作状态,以将该输入电压相应的转换为满足负载需求的负载电压,并同时实现对电池组的充电。由于该充放电电路的输入端可以接收固定高电压、可调高电压或者低电压等不同的输入电压,因此该充放电电路可以支持不同输出电压的电源适配器,从而解决了电源适配器受限制的问题。此外,当该充放电电路的输入端接收到固定高电压或可调高电压时,该过压保护电路可直接用于根据该固定高电压或该可调高电压输出负载电压,当该充放电电路的输入端接收到低电压时,该升压转换电路可用于将该低电压进行升压转换后输出负载电压,从而在上述不同输入电压的情况下,该负载接收到的负载电压均为高电压,从而解决了负载的电压和功率受限制的问题,进一步提高了供电的效率。
在第一方面的一种可能的实现方式中,该充放电电路还包括:充放电晶体管,该充放电晶体管的一极与该第一输出端耦合,该充放电晶体管的另一极与该第二输出端耦合。上述技术方案中,由于该充放电晶体管在充电的过程中,该充放电晶体管可以根据负载电压输出充电电压,该充放电晶体管在放电的过程中,该充放电晶体管还可以根据放电电压输出负载电压,通过该充放电晶体管进行充电和放电时的电能损耗最小,从而提高了该充放电电路的充电和放电的效率。
在第一方面的一种可能的实现方式中,该充放电电路还包括:控制电路,该控制电路分别用于控制该过压保护电路、该升压转换电路、该降压转换电路和该充放电晶体管。上述技术方案中,当该充放电电路的输入端接收到不同的输入电压时,该控制电路控制该过压保护电路、该升压转换电路、该降压转换电路和该充放电晶体管是否处于工作状态,以将该输入电压相应的转换为满足负载需求的负载电压,并同时实现对电池组的充电。
在第一方面的一种可能的实现方式中,该充放电电路的输入端用于接收输入电压,该第一输出端用于提供负载电压,该第二输出端用于提供充电电压或者接收放电电压。上述技术方案中,当该充放电电路的输入端有输入电压时,该充放电电路对该输入端接收的输入电压进行电压转换,从而在该第一输出端输出负载电压,在该第二输出端输出充电电压,进而完成对负载的供电以及对电池组的充电;当该充放电电路的输入端没有输入电压时,该第二输出端可用于接收放电电压,该充放电电路将该放电电压转换为负载电压,从而完成对负载的供电。
在第一方面的一种可能的实现方式中,该过压保护电路包括第一晶体管和第二晶体管;其中,该第一晶体管的一极与该过压保护电路的输入端耦合,该第二晶体管的一极与该过压保护电路的输出端耦合,该第一晶体管的另一极和该第二晶体管的另一极为同一极且相耦合,该第一晶体管的栅极和该第二晶体管的栅极分别用于接收第一控制信号。上述技术方案中,提供了一种简易的过压保护电路,从而实现过压保护。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中且该充放电电路的输入端接收到大于第一阈值的第一电压时,该第一控制信号用于:导通该第一晶体管和该第二晶体管。上述技术方案中,在该充放电电路的充电过程中且该充放电电路的输入端接收到第一电压时,该第一控制信号用于导通该第一晶体管和该第二晶体管,该第一晶体管和该第二晶体管根据该第一电压输出负载电路,从而实现对负载的供电,进而实现对该充放电电路的过压保护。
在第一方面的一种可能的实现方式中,该升压转换电路包括第三晶体管、第四晶体管、第五晶体管和第一电感;其中,该第三晶体管的一极与该升压转换电路的输入端耦合,该第三晶体管的另一极与该第一电感的一端耦合,该第一电感的另一端与该第四晶体管的一极和该第五晶体管的一极耦合,该第四晶体管的另一极与该升压转换电路的输出端耦合,该第五晶体管的另一极与该接地端耦合,该第三晶体管的栅极、该第四晶体管的栅极和该第五晶体管的栅极分别用于接收第二控制信号、第三控制信号和第四控制信号。上述技术方案中,提供了一种简易的升压转换电路,从而实现升压转换。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中且该充放电电路的输入端接收到小于第二阈值的第二电压时,该第二控制信号和该第四控制信号分别用于导通该第三晶体管和该第五晶体管且该第三控制信号用于断开该第四晶体管,或者该第二控制信号和该第三控制信号用于导通该第四晶体管和该第三晶体管且该第四控制信号分别用于断开该第五晶体管。上述技术方案中,在该充放电电路的充电过程中且该充放电电路的输入端接收到该第二电压时,该第二控制信号、该第三控制信号和该第四控制信号分别用于导通或断开该第三晶体管、第四晶体管和该第五晶体管,以将该第二电压升压转换为满足负载需求的负载电压,从而实现对负载的供电,进而提升了该充放电电路的供电效率。
在第一方面的一种可能的实现方式中,该降压转换电路包括第六晶体管、第七晶体管和第二电感;其中,该第六晶体管的一极与该降压转换电路的该第一端耦合,该第六晶体管的另一极与该第七晶体管的一极耦合,该第七晶体管的另一极与该接地端耦合,该第二电感的一端与该第六晶体管的该另一极耦合,该第二电感的另一端与该降压转换电路的该第二端耦合,该第六晶体管的栅极和该第七晶体管的栅极分别用于接收第五控制信号和第六控制信号。上述技术方案中,提供了一种简易的降压转换电路,从而实现降压转换。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中且该充放电电路的输入端接收到大于第一阈值的第一电压,且该第一电压为固定电压时,该第五控制信号用于导通该第六晶体管且该第六控制信号用于断开该第七晶体管,或者该第五控制信号用于断开该第六晶体管且该第六控制信号用于导通该第七晶体管;和/或, 在该充放电电路的放电过程中,该第五控制信号用于断开该第六晶体管且该第六控制信号用于导通该第七晶体管,或者该第五控制信号用于导通该第六晶体管且该第六控制信号用于断开该第七晶体管。上述技术方案中,该第五控制信号和该第六控制信号分别用于导通或断开该第六晶体管和该第七晶体管,以将该降压转换电路的该输入端接收到的该固定电压降压转换为充电电压,从而实现对电池组的充电;和/或,将充电电压转换为负载电压,从而实现对负载的供电。
在第一方面的一种可能的实现方式中,该降压转换电路包括第六晶体管、第七晶体管、第八晶体管、第九晶体管、第一电容、第二电容和第二电感;其中,该第六晶体管、该第七晶体管、该第八晶体管和该第九晶体管串联耦合在该降压转换电路的该第一端与该第三端之间,且该第六晶体管和该第七晶体管的耦合点为第二节点,该第七晶体管和该第八晶体管的耦合点为第三节点,该第八晶体管和该第九晶体管耦合点为第四节点,该第一电容耦合在该第二节点与该第四节点之间,该第二电容耦合在该第三节点与该接地端之间,该第二电感的一端与该第二节点、该第三节点或者该第四节点中的一个节点耦合,该第二电感的另一端与该降压转换电路的该第二端耦合,该第六晶体管的栅极、该第七晶体管的栅极、该第八晶体管的栅极和该第九晶体管的栅极分别用于接收第五控制信号、第六控制信号、第七控制信号和第八控制信号。上述技术方案中,提供了一种降压转化电路,从而实现降压转换,通过该降压转换电路中的该第一电容、该第二电容和该第二电感降低了降压转换过程中电能的损耗,进一步提升了转换的效率。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中且该充放电电路的输入端接收到大于第一阈值的第一电压,且该第一电压为固定电压时,该第五控制信号和该第七控制信号分别用于导通该第六晶体管和该第八晶体管且该第六控制信号和该第八控制信号分别用于断开该第七晶体管和该第九晶体管,或者该第五控制信号和该第七控制信号分别用于断开该第六晶体管和该第八晶体管且该第六控制信号和该第八控制信号分别用于导通该第七晶体管和该第九晶体管;和/或,在该充放电电路的放电过程中,该第六控制信号和该第八控制信号分别用于导通该第七晶体管和该第九晶体管且该第五控制信号和该第七控制信号分别用于断开该第六晶体管和该第八晶体管,或者该第五控制信号和该第七控制信号分别用于导通该第六晶体管和该第八晶体管且该第六控制信号和该第八控制信号分别用于断开该第七晶体管和该第九晶体管。上述技术方案中,该第五控制信号、该第六控制信号、该第七控制信号和该第八控制信号分别用于导通或断开该第六晶体管、该第七晶体管、该第八晶体管和该第九晶体管,以将该降压转换电路的输入端接收到的固定电压降压转换为负载电压,从而实现对电池组的充电;和/或,将充电电压转换为负载电压,从而实现对负载的供电,此外,通过该降压转换电路中的该第一电容、该第二电容和该第二电感降低了降压转换过程中电能的损耗,进一步提升了转换的效率。。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中,当该充放电电路的输入端接收到大于第一阈值的第一电压,且该第一电压为固定电压时,该过压保护电路,用于根据该第一电压输出负载电压;该降压转换电路,用于将该负载电压转换为充电电压。上述技术方案中,该固定电压通过该过压保护电路可以直接为负 载供电,从而实现了对负载的供电,进而提高了供电的效率,此外,该充电电压可用于为电池组充电,从而实现了对电池组的充电。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中,当该充放电电路的输入端接收到大于第一阈值的第一电压,且该第一电压为可调电压时,该过压保护电路,用于根据该第一电压输出负载电压;该充放电晶体管,用于将该负载电压转换为充电电压。上述技术方案中,该可调电压通过该过压保护电路可以直接为负载供电,从而实现了对负载的供电,进而提高了供电的效率,此外,该负载电压通过该充放电晶体管直接为电池组充电,从而实现了对电池组的充电,进一步提高了充电效率。
在第一方面的一种可能的实现方式中,在该充放电电路的充电过程中,当该充放电电路的输入端接收到小于第二阈值的第二电压(该第二电压可以包括固定低电压和可调低电压)时,该升压转换电路,用于根据该第二电压输出负载电压;该充放电晶体管,用于将该负载电压转换为充电电压。上述技术方案中,该第二电压通过该升压转换电路升压转换为满足负载需求的负载电压,从而实现了对负载的供电,进而提高了供电的效率,此外,该负载电压通过该充放电晶体管直接为电池组充电,从而实现了对电池组的充电,进一步提高了充电效率。
在第一方面的一种可能的实现方式中,在该充放电电路的放电过程中,该降压转换电路还用于将放电电压转换为负载电压。上述技术方案中,该降压转换电路将放电电压转换为负载电压,从而实现了电池组的放电。
在第一方面的一种可能的实现方式中,在该充放电电路的放电过程中,该充放电晶体管还用于将放电电压转换为负载电压。上述技术方案中,该充放电晶体管将放电电压转换为负载电压,实现了电池组的放电,放电电压通过该充放电晶体管直接为负载供电,从而减少了电能的损耗,进一步提高了放电的效率。
在第二方面提供一种电源芯片,该电源芯片包括充放电电路,该充放电电路为上述第一方面或第一方面的任一种可能的实现方式所提供的充放电电路。
在第三方面提供一种终端设备,该终端设备包括负载、电池组和充放电电路,该充放电电路为上述第一方面或第一方面的任一种可能的实现方式所提供的充放电电路,该充放电电路的第一输出端与该负载耦合,该充放电电路的第二输出端与该电池组耦合。
可以理解地,上述提供的任一种装置均可用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种充放电电路的结构示意图;
图2为现有技术提供的另一种充放电电路的结构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例提供的一种充电***的结构示意图;
图5为本申请实施例提供的一种充放电电路的结构示意图;
图6为本申请实施例提供的另一种充放电电路的结构示意图;
图7为本申请实施例提供的又一种充放电电路的结构示意图;
图8为本申请实施例提供的另一种充放电电路的结构示意图;
图9为本申请实施例提供的一种降压转换电路的工作状态的示意图;
图10为本申请实施例提供的另一种降压转换电路的工作状态的示意图;
图11为本申请实施例提供的又一种降压转换电路的工作状态的示意图;
图12为本申请实施例提供的一种充放电电路的结构示意图;
图13为本申请实施例提供的另一种充放电电路的结构示意图;
图14为本申请实施例提供的又一种充放电电路的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
本申请的实施例采用了“第一”和“第二”等字样对名称或功能或作用类似的对象进行区分,本领域技术人员可以理解“第一”和“第二”等字样并不对数量和执行次序进行限定。“耦合”一词用于表示电性连接,包括通过导线或连接端直接相连或通过其他器件间接相连。因此“耦合”应被视为是一种广义上的电子通信连接。
在本申请实施例中的晶体管可以是指金属氧化物半导体(metal oxide semiconductor,MOS),该晶体管的类型可以包括N型金属氧化物半导体(N-type metal oxide semiconductor,NMOS)管和P型金属氧化物半导体(P-type metal oxide semiconductor,PMOS)管,该晶体管也可以是其他类型的晶体管,比如氮化镓型晶体管,本申请实施例中的晶体管均以NMOS为例进行说明。该晶体管可以是开关管,也可以是功率管,二者的区别在于,该功率管是指导通阻抗较小的MOS管,比如,该功率管可以是导通阻抗在毫欧姆(mΩ)级的MOS管。另外,本文中串联耦合的两个晶体管可以是指这两个晶体管中第一个晶体管的源极与第二个晶体管的漏极相连,第一个晶体管的漏极和第二个晶体管的源极均与外部电路相连的意思。
本申请实施例提供的技术方案可应用于各种包括充放电电路的终端设备中。该终端设备可以包括但不限于个人计算机、服务器计算机、移动设备(比如手机、平板电脑、媒体播放器等)、可穿戴设备、车载设备、消费型终端设备、移动机器人和无人机等。下面对该终端设备的具体结构进行介绍说明。
图3为本申请实施例提供的一种终端设备的结构示意图,该终端设备以笔记本电脑为例进行说明。如图3所示,该终端设备可以包括:存储器101、处理器102、传感器组件103、多媒体组件104、电源105以及输入\输出接口106。
其中,存储器101可用于存储数据、软件程序以及软件模块;主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***和至少一个功能所需的应用程序,比如声音播放功能或图像播放功能等;存储数据区可存储根据终端设备的使用所创建的数据,比如音频数据、图像数据、或表格数据等。此外,终端设备可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、 或其他易失性固态存储器件。
处理器102是终端设备的控制中心,利用各种接口和线路连接整个设备的各个部分,通过运行或执行存储在存储器101内的软件程序和/或软件模块,以及调用存储在存储器101内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选地,处理器102可以包括一个或多个处理单元,比如,上述处理器102可以包括中央处理器(central processing unit,CPU)、应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
传感器组件103包括一个或多个传感器,用于为终端设备提供各个方面的状态评估。其中,传感器组件103可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器,通过传感器组件103可以检测到终端设备的加速/减速、方位、打开/关闭状态、组件的相对定位或终端设备的温度变化等。此外,传感器组件103还可以包括光传感器,此外,传感器组件103还可以包括光传感器,用于检测周围环境的灯光。
多媒体组件104在终端设备和用户之间的提供一个输出接口的屏幕,该屏幕可以为触摸面板,且当该屏幕为触摸面板时,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。此外,多媒体组件104还包括至少一个摄像头,比如,多媒体组件104包括一个前置摄像头和/或后置摄像头。当终端设备处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
电源105用于为该终端设备的各个组件提供电源,电源105可以包括电源管理***,一个或多个电源,或其他与该终端设备生成、管理和分配电力相关联的组件。在本申请实施例中,电源105可以包括本文所提供的充放电电路,电源105还可以包括电池组,该充放电电路可用于为上述组件供电,还可用于为电池组充电,电池组也可以用于为上述组件供电。
输入\输出接口106为处理器102和***接口模块之间提供接口,比如,***接口模块可以键盘、鼠标、或通用串行总线(universal serial bus,USB)设备等。
尽管未示出,终端设备还可以包括音频组件和通信组件等,比如,音频组件包括麦克风,通信组件包括无线保真(wireless fidelity,WiFi)模块或蓝牙模块等,本申请实施例在此不再赘述。本领域技术人员可以理解,图3中示出的终端设备结构并不构成对该终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图4为本申请实施例提供的一种充电***的结构示意图,该充电***包括:电源 适配器和终端设备。其中,该终端设备包括充放电电路、负载和电池组,该负载具体可以是上文提到的处理器、存储器和多媒体组件等。该充放电电路具有输入端、第一输出端和第二输出端,该电源适配器的输出端可用于与该充放电电路的输入端连接,该充放电电路的第一输出端可用于与该负载连接,该充放电电路的第二输出端可用于与该电池组连接。该电源适配器可用于为该终端设备提供输入电压,该充放电电路可用于将该电源适配器提供的该输入电压转换为输出电压,该电池组可用于储存和释放电能。当该电源适配器为该终端设备提供输入电压时,该充放电电路可以将该输入电压转换为输出电压,该输出电压可用于为该负载供电、以及为该电池组充电;当该充放电电路的输入端接收不到输入电压时,该电池组可以提供放电电压,该放电电压通过该充放电电路可以为该负载供电。
图5为本申请实施例提供的一种充放电电路的结构示意图,该充放电电路可应用于上文提供的终端设备中。如图5所示,该充放电电路包括:过压保护电路201、升压转换电路202和降压转换电路203。
在本申请实施例中,该充放电电路具有输入端、第一输出端和第二输出端。该过压保护电路201的输入端和该升压转换电路202的输入端均与该充放电电路的输入端耦合,该过压保护电路201的输出端、该升压转换电路202的输出端和该降压转换电路203的第一端均耦合于第一节点P1,该第一节点P1为该充放电电路的第一输出端,该升压转换电路202的第一端与接地端(GND)耦合,该降压转换电路203的第二端与该充放电电路的第二输出端耦合,该降压转换电路203的第三端与该接地端(GND)耦合。
其中,该充放电电路的输入端可用于接收输入电压,该输入电压可以是由该终端设备的电源适配器提供的,该第一输出端可用于提供负载电压,该负载电压可用于为该终端设备的负载供电,该第二输出端可用于提供充电电压,该充电电压可用于为电池组充电,该第二输出端还可用于接收该电池组提供的放电电压。
在充电过程中,该电源适配器可用于为该充放电电路提供输入电压,该充放电电路可以将该输入电压转换为负载电压和充电电压,该负载电压可用于为负载供电,该充电电压可用于为电池组充电。在放电过程中,该电源适配器不再提供输入电压,此时该充放电电路的输入端没有输入电压,该电池组提供放电电压,该放电电压通过该充放电电路为负载供电。
上文中提供的充放电电路的输入端可以接收不同的输入电压,根据该输入端接收到的输入电压的不同,可以将该充放电电路的充电模式分为3种,下面分别对这3种充电模式中该充放电电路中的不同电路模块的工作状态进行详细的说明。
第一种充电模式,当该充放电电路的输入端接收到大于第一阈值的第一电压且该第一电压为固定电压(此时第一电压可以简称为固定高电压)时,该过压保护电路201和该降压转换电路203均处于工作状态,该升压转换电路202不工作。具体的,该过压保护电路201的输入端可用于接收该固定高电压,该过压保护电路201的输出端可用于根据该固定高电压输出负载电压,该负载电压可用于为负载供电,该降压转换电路203的第一端可用于接收该负载电压,该降压转换电路203可用于将该负载电压降压转换为充电电压,该降压转换电路203的第二端可用于输出该充电电压,该充电电压可用于为电池组充电。在该充电模式中,该固定高电压通过该过压保护电路201直 接为负载供电,此时该充放电电路的供电效率最高,从而保证了负载需要的电压和功率。
其中,该第一阈值是可以事先设置的,该第一阈值的具体数值可以根据该电池组电压的大小进行设置。比如,该电池组的电压为12V时,该第一阈值的具体数值为12V,该电池组的电压为16V时,该第一阈值的具体数值为16V。
第二种充电模式,当该充放电电路的输入端接收到大于第一阈值的第一电压且该第一电压为可调电压(此时第一电压可以简称为可调高电压)时,该过压保护电路201和该降压转换电路203均处于工作状态,该升压转换电路202不工作。具体的,该过压保护电路201的输入端可用于接收该可调高电压,该过压保护电路201的输出端可用于根据该可调高电压输出负载电压,该负载电压可用于为负载供电,该降压转换电路203的第一端可用于接收该负载电压,该降压转换电路203可用于将该负载电压降压转换为充电电压,该降压转换电路203的第二端可用于输出该充电电压,该充电电压可用于为电池组充电。在该充电模式中,该可调高电压通过该过压保护电路201直接为负载供电,此时该充放电电路的供电效率最高,从而保证了负载需要的电压和功率。
需要说明的是,在上述两种充电模式中,当第一电压为固定电压时可以称为固定高电压,当第一电压为可调电压时可以称为可调高电压。其中,该可调高电压可以随着电池组电压的变化而改变,例如,当电池组电压从12V变为16V时,该可调高电压也可以从12V变为16V,该固定高电压不随着电池组电压的变化而改变。另外,该充放电电路的输入端接收到的该固定高电压和该可调高电压中的高电压是相对于该电池组电压而言的,该高电压可以是大于该电池组电压的电压。
第三种充电模式,当该充放电电路的输入端接收到小于第二阈值的第二电压(此时,第二电压可以称为低电压)时,该升压转换电路202和该降压转换电路203处于工作状态,该过压保护电路201不工作。具体的,该升压转换电路202的输入端用于接收该低电压,该升压转换电路202用于对该低电压进行升压处理以得到负载电压,该升压转换电路202的输出端用于输出该负载电压,该负载电压可用于为负载供电,该降压转换电路203的第一端可用于接收该负载电压,该降压转换电路203可用于将该负载电压降压转换为充电电压,该降压转换电路203的第二端可用于输出该充电电压,该充电电压可用于为电池组充电。在该充电模式中,该升压转换电路202接收到该低电压后可用于对该低电压进行升压转换,通过升压转换后的负载电压为负载供电,从而保证了负载需要的电压和功率。
需要说明的是,该第二阈值小于或等于该第一阈值,该第二电压小于或等于该第一电压。比如,该第一阈值是12V时,该第二阈值小于或等于12V,该第一电压为14V时,该第二电压为10V。其中,该第二电压可以包括固定低电压和可调低电压。该可调低电压随着电池组电压的变化而改变,例如,当电池组电压从12V变为10V时,该可调低电压也从12V变为10V,该固定低电压不随着电池组电压的变化而改变。该充放电电路的输入端接收到的该固定低电压和该可调低电压中的低电压是相对于该电池组电压而言的,该低电压可以是小于或者等于该电池组电压的电压。
进一步的,在该充放电电路的输入端接收不到输入电压时,该充放电电路还可以 通过电池组进行放电。下文中将该充放电电路通过该降压转换电路203进行放电的模式称为第一种放电模式,在该第一种放电模式中,该过压保护电路201和该升压转换电路202均不工作,该降压保护电路203处于工作状态。具体的,该降压转换电路203的第二端可用于接收电池组提供的放电电压,该降压转换电路203可用于将该放电电压转换为负载电压,该降压转换电路203的第一端可用于输出该负载电压,该负载电压可用于为负载供电。
进一步的,上文中提供的过压保护电路201、升压转换电路202和降压转换电路203均可以由控制电路204来控制。在该充放电电路的输入端接收到不同的输入电压时,该控制电路204可用于控制该充放电电路中的不同电路模块处于不同的工作状态。例如,当该充放电电路的输入端接收到固定高电压时,该控制电路204可用于控制该过压保护电路201和该降压转换电路203处于工作状态,控制该升压转换电路202不工作;当该充放电电路的输入端接收到可调高电压时,该控制电路204可用于控制该过压保护电路201和该降压转换电路203处于工作状态,控制该升压转换电路202不工作;当该充放电电路的输入端接收到低电压时,该控制电路204可用于控制该升压转换电路202和该降压转换电路203处于工作状态,控制该过压保护电路201不工作。
需要说明的是,该充放电电路可以包括控制电路204,也可以不包括控制电路204,本申请实施例对此不做具体限制。图6以该充放电电路包括控制电路204为例进行说明。
本申请实施例提供的充放电电路,当该充放电电路的输入端接收到固定高电压、可调高电压或者低电压等不同的输入电压时,该控制电路204可用于控制该充放电电路中的不同电路模块处于工作状态,以将该输入电压相应的转换为满足负载需求的负载电压,并同时实现对电池组的充电。由于该充放电电路的输入端可以接收固定高电压、可调高电压或者低电压等不同的输入电压,因此该充放电电路可以支持不同输出电压的电源适配器,从而解决了电源适配器受限制的问题。此外,当该充放电电路的输入端接收到固定高电压或可调高电压时,该过压保护电路201可直接用于根据该固定高电压或该可调高电压输出负载电压,当该充放电电路的输入端接收到低电压时,该升压转换电路202可用于将该低电压进行升压转换后输出负载电压,从而在上述不同输入电压的情况下,该负载接收到的负载电压均为高电压,从而解决了负载的电压和功率受限制的问题,进一步提高了供电的效率。
进一步的,如图6所示,该充放电电路还包括充放电晶体管M0。该充放电晶体管的一极(比如,漏极)与该第一输出端耦合,该充放电晶体管的另一极(比如,源极)与该第二输出端耦合。该充放电晶体管的导通与断开具体可以通过该控制电路204来控制。比如,该控制电路204可以通过控制信号来控制该充放电晶体管M0的导通与断开。
当该充放电电路包括该充放电晶体管M0时,上文中提供的第二种充电模式和第三种充电模式可以替换为第四种充电模式和第五种充电模式,下面分别对该第四种充电模式和该第五种充电模式进行详细说明。
第四种充电模式,当该充放电电路的输入端接收到可调高电压时,该控制电路204可用于控制该过压保护电路201处于工作状态,该充放电晶体管M0处于工作状态,该升压转换电路202和该降压转换电路203均不工作。具体的,该过压保护电路201的 输入端用于接收该可调高电压,该过压保护电路201的输出端用于根据该可调高电压输出负载电压,该负载电压可用于为负载供电;该充放电晶体管M0的漏极可用于接收该负载电压,该充放电晶体管M0的源极可用于根据该负载电压输出充电电压,该充电电压可用于为电池组充电。在该充电模式中,该可调高电压通过该过压保护电路201后直接为负载供电,该负载电压通过该充放电晶体管M0直接为电池组充电,从而与上述第二种充电模式相比,该第四种充电模式具有较高的充电效率,此时该充放电电路的供电效率和充电效率最高。
第五种充电模式,当该充放电电路的输入端接收到低电压时,该控制电路204可用于控制该升压转换电路202处于工作状态,该充放电晶体管M0处于工作状态,该过压保护电路201和该降压转换电路203均不工作。具体的,该升压转换电路202的输入端用于接收该低电压,该升压转换电路202用于将该低电压升压转换为负载电压,该升压转换电路202的输出端用于输出该负载电压,该负载电压可用于为负载供电,该充放电晶体管M0的漏极可用于接收该负载电压,该充放电晶体管M0的源极用于根据该负载电压输出充电电压,该充电电压可用于为电池组充电。在该模式中,该低电压通过该升压转换电路202进行升压转换为负载供电,该负载电压通过该充放电晶体管M0直接为电池组充电,从而与上述第三种充电模式相比,该第五种充电模式具有较高的充电效率。
当该充放电电路包括该充放电晶体管M0时,该充放电电路还可以包括第二种放电模式。在第二种放电模式中,该控制电路204可用于控制该充放电晶体管M0处于工作状态,该过压保护电路201、该升压转换电路202和该降压保护电路203均不工作。具体的,该充放电晶体管M0的源极可用于接收电池组提供的放电电压,该充放电晶体管M0的漏极可用于根据该放电电压输出负载电压,该负载电压可用于为负载供电。该第二种放电模式与上述第一种放电模式相比,该电池组提供的放电电压直接通过该充放电晶体管M0为负载供电,不需要经过其他电路的转换,从而提高了放电的效率,降低了电能的损耗。
需要说明的是,在该充放电电路的充电过程中,当该降压转换电路203工作时,该降压转换电路203的第一端可用于接收负载电压,该降压转换电路203的第二端可用于输出该充电电压,从而该降压转换电路203的第一端也可以称为该降压转换电路203的输入端,该降压转换电路203的第二端也可以称为该降压转换电路203的输出端。在放电过程中,当该降压转换电路203工作时,该降压转换电路203的第一端可用于输出负载电压,该降压转换电路203的第二端可用于接收放电电压,从而该降压转换电路203的第一端也可以称为该降压转换电路203的输出端,该降压转换电路203的第二端也可以称为该降压转换电路203的输入端。
下面通过图7和图8所示的充放电电路为例,对上文中提供的充放电电路中不同的电路模块的具体结构进行介绍说明。图7和图8中以该充放电电路中包括控制电路204,该充放电晶体管M0的栅极用于接收第零控制信号S0为例进行说明。
在一种可能的实施例中,该过压保护电路201包括第一晶体管M1和第二晶体管M2。其中,M1的漏极与该过压保护电路201的输入端耦合,M1的源极与M2的源极耦合,M2的漏极与该过压保护电路201的输出端耦合,M1的栅极与M2的栅极耦合 于节点OVP1,该节点OVP1与该控制电路204耦合且可用于接收第一控制信号S1。上述充放电电路在充放电过程中,若该过压保护电路201处于工作状态,在充电过程中,该第一控制信号S1导通该第一晶体管M1和第二晶体管M2,在放电过程中,该第一控制信号S1断开该第一晶体管M1和第二晶体管M2。
在另一种可能的实施例中,该升压转换电路202包括第三晶体管M3、第四晶体管M4和第五晶体管M5和第一电感L1。其中,M3的漏极与该升降压转换电路203的输入端耦合,M3的源极与L1的第一端耦合,L1的第二端与M4的源极和M5的漏极耦合,M4的漏极与该升降压转换电路203的输出端耦合,M5的源极与接地端(GND)耦合。其中,M3的栅极与该控制电路204耦合于节点OVP2且可用于通过节点OVP2接收第二控制信号S2,M4的栅极可用于接收第三控制信号S3,M5的栅极可用于接收第四控制信号S4。
上述充放电电路在充放电过程中,若该升压转换电路202处于工作状态,在充电过程中,该升压转换电路202的工作模式分为两个状态(分别表示为状态1和状态2),该升压转换电路202在充电过程中交替切换这2个状态以完成充电过程。其中,状态1具体为:该第二控制信号S2和该第四控制信号S4分别用于导通该第三晶体管M3和该第五晶体管M5,该第三控制信号S3用于断开该第四晶体管M4,该升压转换电路202的输入端接收到的输入电压通过该第三晶体管M3和该第五晶体管M5储存在该第一电感L1中;状态2具体为:该第二控制信号S2和该第三控制信号S3分别用于导通该第三晶体管M3和该第四晶体管M4,该第四控制信号S4用于断开该第五晶体管M5,以将储存在该第一电感L1中的电能转换为负载电压从该升压转换电路202的输出端输出。在放电过程中,该升压转换电路202不工作。
在又一种可能的实施例中,如图7所示,该降压转换电路203包括第六晶体管M6、第七晶体管M7和第二电感L2。其中,该M6的漏极和该降压转换电路203的第一端耦合,M6的源极和M7的漏极耦合,M7的源极与接地端(GND)耦合,L2的第一端与M6的源极耦合,L2的第二端与该降压转换电路203的第二端耦合。M6的栅极可用于接收第五控制信号S5、M7的栅极可用于接收第六控制信号S6。
上述充放电电路在充放电过程中,若该降压转换电路203工作,该降压转换电路203的工作模式分为两个状态(分别表示为状态3和状态4),该降压转换电路203在充放电过程中交替切换这2个状态以完成充电过程或放电过程。其中,状态3具体为:该第五控制信号S5用于导通该第六晶体管M6,该第六控制信号S6用于断开该第七晶体管M7,该降压转换电路203的该第一端输入的电压通过该第六晶体管M6储存在该第二电感L2中;状态4具体为:该第五控制信号S5用于断开该第六晶体管M6,该第六控制信号S6用于导通该第七晶体管M7,以将储存在该第二电感L2中的电能转换为充电电压从该降压转换电路203的该第二端输出。
或者,如图8所示,该降压转换电路203包括第六晶体管M6、第七晶体管M7、第八晶体管M8、第九晶体管M9、第一电容C1和第二电感L2。其中M6、M7、M8和M9串联耦合在该降压转换电路203的该第一端与该第三端之间且M6和M7的耦合点为第二节点P2,M7和M8耦合的点为第三节点P3,M8和M9耦合的点为第四节点P4,C1耦合在点P2与点P4之间,L2的第一端与P2、P3和P4中的一个节点耦合, L2的第二端与该降压转换电路203的第二端耦合。M6的栅极可用于接收第五控制信号S5,M7的栅极可用于接收第六控制信号S6,M8的栅极可用于接收第七控制信号S7,M9的栅极可用于接收第八控制信号S8。可选的,该降压转换电路203还可以包括第二电容C2,该第二电容C2耦合在第三节点P3与接地端(GND)之间。以下实施例中以该降压转换电路203包括4个晶体管为例进行说明。
需要说明的是,当该降压转换电路203中包括四个晶体管时,根据该降压转换电路203中的该第二电感L2的该第一端的连接位置的不同,该降压转换电路203可以有多种工作模式,具体在原理图设计阶段,根据电源适配器提供的输入电压的大小和电池组电压的大小决定该第二电感L2的该第一端的连接位置。具体的,当电池组的电压小于等于25%的电源适配器电压时,将该第二电感L2的该第一端连接到该第四节点P4以达到最高效率,此时流过第一电容C1、第二电容C2和第二电感L2的RMS(均方根)电流最小,电能的损耗最小。当电池组的电压大于25%的电源适配器电压且小于75%的电源适配器电压时,将该第二电感L2的该第一端连接到该第三节点P3以达到最高的效率,此时流过第一电容C1、第二电容C2和第二电感L2的RMS(均方根)电流最小,电能的损耗最小。当电池组的电压大于等于75%的电源适配器电压时,将该第二电感L2的该第一端连接到该第二节点P2以达到最高的效率,此时流过第一电容C1和第二电感L2的RMS(均方根)电流最小,电能的损耗最小。
在该充放电电路的充电和放电过程中,若该降压转换电路203处于工作状态且该第二电感L2的该第一端连接到该第二节点P2和该第四节点P4时的工作模式分别如图9所示和图10所示,该工作模式包括2个状态(分别表示为状态11和状态12),该降压转换电路203在充放电过程中交替切换这2个状态以完成充电过程或放电过程。其中,状态11如图9中的(a)和图10中的(a)所示,具体为:该第五控制信号S5和该第七控制信号S7分别用于导通该第六晶体管M6和该第八晶体管M8,该第六控制信号S6和该第八控制信号S8分别用于断开该第七晶体管M7和该第九晶体管M9,该降压转换电路203的该第一端输入的负载电压通过该第六晶体管M6和该第八晶体管M8后储存在该第一电容C1、该第二电容C2和该第二电感L2中。状态12如图9中的(b)和图10中的(b)所示,具体为:该第五控制信号S5和该第七控制信号S7分别用于断开该第六晶体管M6和该第八晶体管M8,该第六控制信号S6和该第八控制信号S8分别用于导通该第七晶体管M7和该第九晶体管M9,以将储存在第一电容C1、该第二电容C2和该第二电感L2中的电压转化为充电电压从该第二端输出。
在该充放电电路的充电过程和放电过程中,若该降压转换电路203处于工作状态且该第二电感L2的该第一端连接到该第三节点P3时,根据电池组电压与电源适配器的输出电压的大小关系,该降压转换电路203有两种工作模式,如图11所示。具体的,当电池组的电压大于或等于0.5倍的电源适配器的输出电压时,该降压转换电路203处于第一种工作模式,如图11中的(a)所示;当电池组的电压小于0.5倍的电源适配器电压时,该降压转换电路203处于第二种工作模式,如图11中的(b)所示。下面分别对这两种工作模式进行详细说明。
第一种工作模式,包括4个状态且可以分别表示为状态21至状态24,该降压转换电路203在充放电过程中依次交替切换这4个状态以完成充电过程和放电过程。具 体的,在状态21下,该第五控制信号S5和该第六控制信号S6分别用于导通该第六晶体管M6和该第七晶体管M7,该第七控制信号S7和该第八控制信号S8分别用于断开该第八晶体管M8和该第九晶体管M9,该降压转换电路203的该第一端接收到的负载电压通过第六晶体管M6和该第七晶体管M7后储存在第二电感L2中。在状态22下,该第五控制信号S5和该第七控制信号S7分别用于导通该第六晶体管M6和该第八晶体管M8,该第六控制信号S6和该第八控制信号S8分别用于断开该第七晶体管M7和该第九晶体管M9,该降压转换电路203的该第一端接收到的负载电压储存在第一电容C1中,且将储存在第二电感L2中的电压转换为充电电压,该充电电压可用于为电池组充电。在状态23下,该状态23与上述状态21相同,此处不再赘述。在状态24下,该第六控制信号S6和该第八控制信号S8分别用于导通该第七晶体管M7和该第九晶体管M9,该第五控制信号S5和该第七控制信号S7分别用于断开该第六晶体管M6和该第八晶体管M8,以将储存在第二电感L2和第一电容C2中的电压转换为充电电压,该充电电压可用于为该电池组充电。
第二种工作模式,包括4个状态且可以分别表示为状态31至状态34,该降压转换电路203在充放电过程中依次交替切换这4个状态以完成充电过程和放电过程。具体的,在状态31下,该状态31与上述状态22相同,此处不再赘述。在状态32下,该第七控制信号S7和该第八控制信号S8分别用于导通该第八晶体管M8和该第九晶体管M9,该第五控制信号S5和该第六控制信号S6分别用于断开该第六晶体管M6和该第七晶体管M7,将储存在该第二电感L2中的电压转换为充电电压,该充电电压可用于为电池组充电。在状态33下,该状态33与上述状态24相同,此处不再赘述。在状态34下,该状态34与上述状态32相同,此处不再赘述。
下面基于本申请实施例提供的充放电电路的具体结构,对上文中所描述的第一种充放电模式、第四种充放电模式和第五种充放电模式的工作过程进行详细说明。下文中均以该充放电电路中的该第二电感L2的该一端与第二节点P2耦合为例进行说明。
第一种充电模式,如图12所示,该过压保护电路201和该降压转换电路203均处于工作状态,该升压转换电路202和该充放电晶体管M0均不工作。具体的,对于该过压保护电路201,该过压保护电路201的输入端接收到该固定高电压,该第一控制信号S1用于导通该第一晶体管M1和该第二晶体管M2,以将该固定高电压转换为负载电压。对于降压转换电路203,按照在上述图9所示的状态11和状态12交替切换工作,即在状态11下,该第五控制信号S5和该第七控制信号S7分别用于导通该第六晶体管M6和该第八晶体管M8,该第六控制信号S6和该第八控制信号S8分别用于断开该第七晶体管M7和该第九晶体管M9,该降压转换电路203的该第一端输入的负载电压通过该第六晶体管M6和该第八晶体管M8后储存在该第一电容C1、该第二电容C2和该第二电感L2中;在状态12下,该第五控制信号S5和该第七控制信号S7分别用于断开该第六晶体管M6和该第八晶体管M8,该第六控制信号S6和该第八控制信号S8分别用于导通该第七晶体管M7和该第九晶体管M9,以将储存在第一电容C1、该第二电容C2和该第二电感L2中的电压转化为充电电压从该第二端输出。
第四种充电模式,如图13所示,该过压保护电路201处于工作状态,该充放电晶体管M0处于工作状态,该升压转换电路202和该降压转换电路203均不工作。具体的, 对于该过压保护电路201,该过压保护电路201的输入端接收到该可调高电压,该第一控制信号S1用于导通该第一晶体管M1和该第二晶体管M2,以将该可调高电压转换为负载电压。对于该充放电晶体管M0,第零控制信号S0用于导通该充放电晶体管M0,以根据该负载电压输出充电电压。
第五种充电模式,如图14所示,该升压转换电路202和该充放电晶体管M0均处于工作状态,该过压保护电路201和该降压转换电路203均不工作。具体的,对于该升压转换电路202,该升压转换电路202的输入端接收到该低电压,按照在上述状态1和状态2交替切换工作,即在状态1下,该第二控制信号S2和该第四控制信号S4分别用于导通该第三晶体管M3和该第五晶体管M5,该第三控制信号S3用于断开该第四晶体管M4,该升压转换电路202的输入端接收到的该低电压通过该第三晶体管M3和该第五晶体管M5储存在该第一电感L1中;状态2下,该第二控制信号S2和该第三控制信号S3分别用于导通该第三晶体管M3和该第四晶体管M4,该第四控制信号S4用于断开该第五晶体管M5,以将储存在该第一电感L1中的电能转换为负载电压从该升压转换电路202的输出端输出,对于该充放电晶体管M0,第零控制信号S0用于导通该充放电晶体管M0,以根据该负载电压输出充电电压。
下面基于本申请实施例提供的充放电电路的具体结构,对上文中所描述的第一种放电模式和第二种放电模式的工作过程进行详细说明。下文中均以该充放电电路中的该第二电感L2的该一端与第二节点P2耦合为例进行说明。
第一种放电模式,当该充放电电路的输入端接收不到输入电压时,该降压转换电路203处于工作状态,该过压保护电路201、该升压转换电路202和该充放电晶体管M0均不工作。具体的,对于该降压转换电路203,按照在上述图9所示的状态11和状态12交替切换工作,具体过程如上文所述,此处不再赘述。
第二种充放电模式,当该充放电电路的输入端接收不到输入电压时,该充放电晶体管M0工作,该过压保护电路201、该升压转换电路202和该降压转换电路203均不工作。具体的,对于该充放电晶体管M0,第零控制信号S0用于导通该充放电晶体管M0,以根据放电电压输出负载电压。
需要说明的是,本申请实施例中的不同控制信号可以为脉冲信号,该脉冲信号可以包括脉冲宽度调制(Pulse Width Modulation,简称PWM)信号和脉冲频率调制(Pulse Frequency Modulation,简称PFM)信号等。
基于此,本申请实施例还提供一种电源芯片,该电源芯片可以包括上文所提供的任一种充放电电路。进一步的,当该充放电电路中的每个电路模块通过不同的晶体管、电感或电容实现时,该充放电电路中的晶体管可以集成在该电源芯片上,除晶体管之外的电感和电容可以不集成在该电源芯片中。示例性的,该过压保护电路201中的第一晶体管M1和第二晶体管M2,该升压转换电路202中的第三晶体管M3、第四晶体管M4和第五晶体管M5,该降压转换电路203中的第六晶体管M6、第七晶体管M7、第八晶体管M8和第九晶体管M9,以及该充放电晶体管M0均可以集成在该电源芯片中;该升压转换电路202中的第一电感L1,以及该降压转换电路203中的第二电感L2、第一电容C1和第二电容C2可以不集成在该电源芯片中。
本申请实施例还提供一种终端设备,该终端设备包括负载、电池组和充放电电路, 该充放电电路可包括上文所提供的任一种充放电电路。
需要说明的是,关于充放电电路的相关描述可以参见上文所提供的充放电电路的相关描述,本申请实施例在此不再赘述。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种充放电电路,其特征在于,所述充放电电路包括:过压保护电路、升压转换电路和降压转换电路;
    其中,所述过压保护电路的输入端和所述升压转换电路的输入端均与所述充放电电路的输入端耦合,所述过压保护电路的输出端、所述升压转换电路的输出端和所述降压转换电路的第一端均耦合于第一节点,所述第一节点为所述充放电电路的第一输出端,所述升压转换电路的第一端与接地端耦合,所述降压转换电路的第二端与所述充放电电路的第二输出端耦合,所述降压转换电路的第三端与所述接地端耦合。
  2. 根据权利要求1所述的充放电电路,其特征在于,所述充放电电路还包括:充放电晶体管,所述充放电晶体管的一极与所述第一输出端耦合,所述充放电晶体管的另一极与所述第二输出端耦合。
  3. 根据权利要求2所述的充放电电路,其特征在于,所述充放电电路还包括:控制电路,所述控制电路分别用于控制所述过压保护电路、所述升压转换电路、所述降压转换电路和所述充放电晶体管。
  4. 根据权利要求1-3任一项所述的充放电电路,其特征在于,所述充放电电路的输入端用于接收输入电压,所述第一输出端用于提供负载电压,所述第二输出端用于提供充电电压或者接收放电电压。
  5. 根据权利要求1-4任一项所述的充放电电路,其特征在于,所述过压保护电路包括第一晶体管和第二晶体管;其中,所述第一晶体管的一极与所述过压保护电路的输入端耦合,所述第二晶体管的一极与所述过压保护电路的输出端耦合,所述第一晶体管的另一极和所述第二晶体管的另一极为同一极且相耦合,所述第一晶体管的栅极和所述第二晶体管的栅极分别用于接收第一控制信号。
  6. 根据权利要求5所述的充放电电路,其特征在于,在所述充放电电路的充电过程中且所述充放电电路的输入端接收到大于第一阈值的第一电压时,所述第一控制信号用于:
    导通所述第一晶体管和所述第二晶体管。
  7. 根据权利要求1-6任一项所述的充放电电路,其特征在于,所述升压转换电路包括第三晶体管、第四晶体管、第五晶体管和第一电感;其中,所述第三晶体管的一极与所述升压转换电路的输入端耦合,所述第三晶体管的另一极与所述第一电感的一端耦合,所述第一电感的另一端与所述第四晶体管的一极和所述第五晶体管的一极耦合,所述第四晶体管的另一极与所述升压转换电路的输出端耦合,所述第五晶体管的另一极与所述接地端耦合,所述第三晶体管的栅极、所述第四晶体管的栅极和所述第五晶体管的栅极分别用于接收第二控制信号、第三控制信号和第四控制信号。
  8. 根据权利要求7所述的充放电电路,其特征在于,在所述充放电电路的充电过程中且所述充放电电路的输入端接收到小于第二阈值的第二电压时,所述第二控制信号和所述第四控制信号分别用于导通所述第三晶体管和所述第五晶体管且所述第三控制信号用于断开所述第四晶体管,或者所述第二控制信号和所述第三控制信号用于导通所述第四晶体管和所述第三晶体管且所述第四控制信号分别用于断开所述第五晶体管。
  9. 根据权利要求1-8任一项所述的充放电电路,其特征在于,所述降压转换电路包括第六晶体管、第七晶体管和第二电感;其中,所述第六晶体管的一极与所述降压转换电路的所述第一端耦合,所述第六晶体管的另一极与所述第七晶体管的一极耦合,所述第七晶体管的另一极与所述接地端耦合,所述第二电感的一端与所述第六晶体管的所述另一极耦合,所述第二电感的另一端与所述降压转换电路的所述第二端耦合,所述第六晶体管的栅极和所述第七晶体管的栅极分别用于接收第五控制信号和第六控制信号。
  10. 根据权利要求9所述的充放电电路,其特征在于,在所述充放电电路的充电过程中且所述充放电电路的输入端接收到大于第一阈值的第一电压,且所述第一电压为固定电压时,所述第五控制信号用于导通所述第六晶体管且所述第六控制信号用于断开所述第七晶体管,或者所述第五控制信号用于断开所述第六晶体管且所述第六控制信号用于导通所述第七晶体管;和/或,
    在所述充放电电路的放电过程中,所述第五控制信号用于断开所述第六晶体管且所述第六控制信号用于导通所述第七晶体管,或者所述第五控制信号用于导通所述第六晶体管且所述第六控制信号用于断开所述第七晶体管。
  11. 根据权利要求1-8任一项所述的充放电电路,其特征在于,所述降压转换电路包括第六晶体管、第七晶体管、第八晶体管、第九晶体管、第一电容、第二电容和第二电感;其中,所述第六晶体管、所述第七晶体管、所述第八晶体管和所述第九晶体管串联耦合在所述降压转换电路的所述第一端与所述第三端之间,且所述第六晶体管和所述第七晶体管的耦合点为第二节点,所述第七晶体管和所述第八晶体管的耦合点为第三节点,所述第八晶体管和所述第九晶体管耦合点为第四节点,所述第一电容耦合在所述第二节点与所述第四节点之间,所述第二电容耦合在所述第三节点与所述接地端之间,所述第二电感的一端与所述第二节点、所述第三节点或者所述第四节点中的一个节点耦合,所述第二电感的另一端与所述降压转换电路的所述第二端耦合,所述第六晶体管的栅极、所述第七晶体管的栅极、所述第八晶体管的栅极和所述第九晶体管的栅极分别用于接收第五控制信号、第六控制信号、第七控制信号和第八控制信号。
  12. 根据权利要求11所述的充放电电路,其特征在于,在所述充放电电路的充电过程中且所述充放电电路的输入端接收到大于第一阈值的第一电压,且所述第一电压为固定电压时,所述第五控制信号和所述第七控制信号分别用于导通所述第六晶体管和所述第八晶体管且所述第六控制信号和所述第八控制信号分别用于断开所述第七晶体管和所述第九晶体管,或者所述第五控制信号和所述第七控制信号分别用于断开所述第六晶体管和所述第八晶体管且所述第六控制信号和所述第八控制信号分别用于导通所述第七晶体管和所述第九晶体管;和/或,
    在所述充放电电路的放电过程中,所述第六控制信号和所述第八控制信号分别用于导通所述第七晶体管和所述第九晶体管且所述第五控制信号和所述第七控制信号分别用于断开所述第六晶体管和所述第八晶体管,或者所述第五控制信号和所述第七控制信号分别用于导通所述第六晶体管和所述第八晶体管且所述第六控制信号和所述第八控制信号分别用于断开所述第七晶体管和所述第九晶体管。
  13. 根据权利要求1-12任一项所述的充放电电路,其特征在于,在所述充放电电路的充电过程中,当所述充放电电路的输入端接收到大于第一阈值的第一电压,且所述第一电压为固定电压时:
    所述过压保护电路,用于根据所述第一电压输出负载电压;
    所述降压转换电路,用于将所述负载电压转换为充电电压。
  14. 根据权利要求2-12任一项所述的充放电电路,其特征在于,在所述充放电电路的充电过程中,当所述充放电电路的输入端接收到大于第一阈值的第一电压,且所述第一电压为可调电压时:
    所述过压保护电路,用于根据所述第一电压输出负载电压;
    所述充放电晶体管,用于将所述负载电压转换为充电电压。
  15. 根据权利要求2-12任一项所述的充放电电路,其特征在于,在所述充放电电路的充电过程中,当所述充放电电路的输入端接收到小于第二阈值的第二电压时:
    所述升压转换电路,用于根据所述第二电压输出负载电压;
    所述充放电晶体管,用于将所述负载电压转换为充电电压。
  16. 根据权利要求1-15任一项所述的充放电电路,其特征在于,在所述充放电电路的放电过程中:
    所述降压转换电路,还用于将放电电压转换为负载电压。
  17. 根据权利要求1-15任一项所述的充放电电路,其特征在于,在所述充放电电路的放电过程中:
    所述充放电晶体管,还用于将放电电压转换为负载电压。
  18. 一种电源芯片,其特征在于,所述电源芯片包括权利要求1-17任一项所述的充放电电路。
  19. 一种终端设备,其特征在于,所述终端设备包括负载、电池组和充放电电路,所述充放电电路如权利要求1-17任一项所述的充放电电路,所述充放电电路的第一输出端与所述负载耦合,所述充放电电路的第二输出端与所述电池组耦合。
PCT/CN2021/096554 2021-05-27 2021-05-27 一种充放电电路及终端设备 WO2022246771A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/096554 WO2022246771A1 (zh) 2021-05-27 2021-05-27 一种充放电电路及终端设备
CN202180087066.7A CN116670967A (zh) 2021-05-27 2021-05-27 一种充放电电路及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096554 WO2022246771A1 (zh) 2021-05-27 2021-05-27 一种充放电电路及终端设备

Publications (1)

Publication Number Publication Date
WO2022246771A1 true WO2022246771A1 (zh) 2022-12-01

Family

ID=84229455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096554 WO2022246771A1 (zh) 2021-05-27 2021-05-27 一种充放电电路及终端设备

Country Status (2)

Country Link
CN (1) CN116670967A (zh)
WO (1) WO2022246771A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120618A (zh) * 2005-02-02 2008-02-06 Cap-Xx有限公司 电源
CN103580216A (zh) * 2012-07-26 2014-02-12 英特希尔美国公司 能够操作在不同配置中的电池充电***和方法
CN105745812A (zh) * 2013-12-27 2016-07-06 英特尔公司 用于电子设备的功率递送***
CN106605356A (zh) * 2014-09-02 2017-04-26 苹果公司 利用升压旁路的多相电池充电
CN107689663A (zh) * 2016-08-05 2018-02-13 安华高科技通用Ip(新加坡)公司 电池充电架构
CN112152282A (zh) * 2016-10-12 2020-12-29 Oppo广东移动通信有限公司 待充电设备和充电方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120618A (zh) * 2005-02-02 2008-02-06 Cap-Xx有限公司 电源
CN103580216A (zh) * 2012-07-26 2014-02-12 英特希尔美国公司 能够操作在不同配置中的电池充电***和方法
CN105745812A (zh) * 2013-12-27 2016-07-06 英特尔公司 用于电子设备的功率递送***
CN106605356A (zh) * 2014-09-02 2017-04-26 苹果公司 利用升压旁路的多相电池充电
CN107689663A (zh) * 2016-08-05 2018-02-13 安华高科技通用Ip(新加坡)公司 电池充电架构
CN112152282A (zh) * 2016-10-12 2020-12-29 Oppo广东移动通信有限公司 待充电设备和充电方法

Also Published As

Publication number Publication date
CN116670967A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
TWI747896B (zh) 用於可重新組態狄克生星形切換電容式電壓調節器之裝置、系統與方法
US20150069958A1 (en) Battery charger with buck-boost operation
TWI594555B (zh) 電壓轉換器裝置與系統及用於電壓轉換的方法
TWI482391B (zh) 用於一電子裝置之充電電路及其相關充電方法
KR102214243B1 (ko) 전하 재활용 스위치드 커패시터 레귤레이터
USRE49184E1 (en) DC-DC converter
US10615696B2 (en) Electronic circuit performing buck-boost conversion using single inductive element
WO2020224467A1 (zh) 一种充电控制电路及电子设备
US10305308B2 (en) Power supply module and power supply method using the same
TWI773261B (zh) 具有多個Type-C介面的系統及其控制方法
WO2020172869A1 (zh) 电子设备的充电电路及方法、设备、存储介质
WO2024016616A1 (zh) 折叠电子设备
WO2023207706A1 (zh) 一种充电电路及电子设备
WO2022246771A1 (zh) 一种充放电电路及终端设备
WO2022194085A1 (zh) 电压变换电路、充电管理模块和电子设备
WO2022120788A1 (zh) 一种开关电源、芯片及设备
US20230253814A1 (en) Power delivery architecture using an intermediate bus converter with target voltage tracking capability
WO2024087672A1 (zh) 一种充放电电路及电子设备
WO2023272538A1 (zh) 一种谐振电源的控制方法及控制器
WO2023001034A1 (zh) 一种放电电路及终端设备
CN112703653B (zh) 充电***和方法
US20230213957A1 (en) Voltage regulation circuit, device, and method
CN115086562B (zh) 供电电路、供电控制方法及电子设备
CN219107087U (zh) 充电模组和充电装置
WO2022266819A1 (zh) 电压变换电路及其控制方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087066.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942347

Country of ref document: EP

Kind code of ref document: A1