WO2022244293A1 - Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit - Google Patents

Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit Download PDF

Info

Publication number
WO2022244293A1
WO2022244293A1 PCT/JP2021/048865 JP2021048865W WO2022244293A1 WO 2022244293 A1 WO2022244293 A1 WO 2022244293A1 JP 2021048865 W JP2021048865 W JP 2021048865W WO 2022244293 A1 WO2022244293 A1 WO 2022244293A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
reset
signal
digital
reset code
Prior art date
Application number
PCT/JP2021/048865
Other languages
French (fr)
Japanese (ja)
Inventor
尚人 長城
宣明 遠藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022244293A1 publication Critical patent/WO2022244293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type

Definitions

  • This technology relates to analog-to-digital conversion circuits.
  • the present invention relates to an analog-to-digital conversion circuit that performs processing for suppressing noise, a solid-state imaging device, and a control method for the analog-to-digital conversion circuit.
  • ADCs Analog to Digital Converters
  • pixel signals output from pixels into digital signals.
  • an imaging device has been proposed in which an ADC is arranged for each column and different random noise is applied for each column to a reset level before AD (Analog to Digital) conversion (see, for example, Patent Document 1).
  • random noise is applied to each column to suppress fixed pattern noise caused by quantization errors and linearity deterioration.
  • the conventional technology described above may not be able to sufficiently suppress noise.
  • the random noise applied to the analog reset level must be generated by an analog circuit, and a certain fixed pattern noise may occur in the row direction or the like due to manufacturing variations. This noise may degrade the signal quality of the pixel signal.
  • This technology was created in view of this situation, and aims to suppress deterioration in signal quality in circuits that perform AD conversion.
  • the present technology has been made to solve the above-described problems, and a first aspect thereof includes a comparator that generates a comparison result from an input analog signal and a predetermined reference signal, and a comparator that generates the reference signal.
  • a digital-to-analog converter to supply a digital-to-analog converter, a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result, and a reset control that controls the value of the reset code. and a control method thereof. This brings about the effect of reducing fixed pattern noise.
  • a pixel array section in which a plurality of pixels each generating the analog signal are arranged in a two-dimensional lattice, and rows in the pixel array section are sequentially driven to output the analog signal.
  • the reset control unit may update the reset code to a value different from the previous value each time the vertical scanning circuit drives the row. This has the effect of further reducing fixed pattern noise.
  • the reset control section may control the reset code to a value different from the previous value each time the analog signal is input. This has the effect of further reducing fixed pattern noise.
  • a plurality of SARADCs (Successive Approximation Register Analog to Digital Converter) are arranged, and the comparator, the digital-to-analog converter and the successive approximation logic circuit are arranged in each of the plurality of SARADCs,
  • the reset control unit may control reset codes of the plurality of SAR ADCs to different values. This has the effect of further reducing fixed pattern noise.
  • the first aspect may further include a capacitive multiplexer that holds a plurality of analog signals in capacitive elements, sequentially selects one of the held plurality of analog signals, and inputs the analog signals to the comparator. This has the effect of allowing multiple columns to share a capacitive multiplexer.
  • the first aspect may further include a column amplifier that obtains a difference between a predetermined reset level and a signal level corresponding to the amount of exposure and supplies it as the analog signal. This brings about the effect of reducing noise at the time of resetting.
  • a pre-processing unit that obtains a correction amount based on the reset code
  • a reset code processing unit that performs reset code processing on the digital signal from the successive approximation logic circuit based on the correction amount.
  • the reset control unit supplies a code obtained by performing a predetermined operation on a code of a predetermined initial value as the reset code
  • the pre-processing unit calculates the correction amount according to the reset code.
  • the digital signal may be supplied to the reset code processing unit, and the successive approximation logic circuit may generate the digital signal based on a predetermined number of the comparison results. This brings about the effect of processing the reset code of the digital signal.
  • the calculation may include addition of dither signals. This brings about the effect of applying a dither signal.
  • the above calculation may include a process of adding or subtracting a predetermined value to or from the previous value. This brings about the effect of simplifying the calculation.
  • a second aspect of the present technology includes a pixel that generates an analog signal, a comparator that generates a comparison result from the analog signal and a predetermined reference signal, a digital-to-analog converter that supplies the reference signal, a predetermined
  • a solid-state imaging device comprising: a successive approximation logic circuit that initializes the reference signal by the reset code of and then updates the reference signal based on the comparison result; and a reset control unit that controls the value of the reset code be.
  • 5 is a timing chart showing an example of control of a capacitance multiplexer and SARADC in a comparative example; It is a figure for explaining reset code processing in a 1st embodiment of this art.
  • 6 is a graph showing noise characteristics in a comparative example and the first embodiment of the present technology; It is a flow chart which shows an example of operation of a solid-state image sensing device in a 1st embodiment of this art. It is a block diagram showing an example of composition of an analog digital conversion part and a digital signal processing part in a 2nd embodiment of this art.
  • 9 is a timing chart showing a control example of a reset code of SAR ADC in the second embodiment of the present technology
  • 9 is a timing chart showing an example of control of reset codes of adjacent SAR ADCs in the second embodiment of the present technology
  • It is a figure showing an example of the noise characteristic in a 2nd embodiment of this art.
  • 9 is a timing chart showing another control example of the reset code according to the second embodiment of the present technology
  • 1 is a block diagram showing a schematic configuration example of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit
  • FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology.
  • This imaging device 100 is a device for capturing image data, and includes an optical section 110 , a solid-state imaging device 200 and a DSP (Digital Signal Processing) circuit 120 .
  • the imaging device 100 further includes a display section 130 , an operation section 140 , a bus 150 , a frame memory 160 , a storage section 170 and a power supply section 180 .
  • a digital camera such as a digital still camera, a smart phone, a personal computer, an in-vehicle camera, and the like having an imaging function are assumed.
  • the optical unit 110 collects light from a subject and guides it to the solid-state imaging device 200 .
  • the solid-state imaging device 200 generates image data by photoelectric conversion in synchronization with the vertical synchronization signal VSYNC.
  • the vertical synchronizing signal VSYNC is a periodic signal with a predetermined frequency that indicates the timing of imaging.
  • the solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209 .
  • the DSP circuit 120 executes predetermined signal processing on the image data from the solid-state imaging device 200 .
  • the DSP circuit 120 outputs the processed image data to the frame memory 160 or the like via the bus 150 .
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal according to user's operation.
  • the bus 150 is a common path through which the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 exchange data with each other.
  • the frame memory 160 holds image data.
  • the storage unit 170 stores various data such as image data.
  • the power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
  • FIG. 2 is a diagram showing an example of the layered structure of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • This solid-state imaging device 200 comprises a circuit chip 202 and a light receiving chip 201 laminated on the circuit chip 202 . These chips are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection.
  • FIG. 3 is a block diagram showing one configuration example of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • This solid-state imaging device 200 includes a vertical scanning circuit 211 , a timing control circuit 212 , a pixel array section 220 , an analog-to-digital conversion section 300 and a digital signal processing section 240 .
  • a plurality of pixels 230 are arranged in a two-dimensional grid in the pixel array section 220 .
  • a set of pixels 230 arranged in the horizontal direction will be referred to as a "row”
  • a set of pixels 230 arranged in the direction perpendicular to the row will be referred to as a "column”.
  • the pixel array section 220 is arranged in the light receiving chip 201, for example. Also, the vertical scanning circuit 211, the timing control circuit 212, the analog-to-digital converter 300, and the digital signal processor 240 are arranged on the circuit chip 202, for example.
  • the vertical scanning circuit 211 sequentially selects and drives rows to output pixel signals.
  • the pixels 230 generate analog pixel signals and output them to the analog-to-digital converter 300 .
  • the analog-to-digital conversion section 300 performs AD conversion on the pixel signal of each column and supplies the digital signal to the digital signal processing section 240 .
  • the digital signal processing section 240 performs predetermined signal processing on the digital signal. Data obtained by arranging the digital signals after signal processing is supplied to the DSP circuit 120 as image data.
  • FIG. 4 is a circuit diagram showing one configuration example of the pixel 230 according to the first embodiment of the present technology.
  • This pixel 230 includes a photoelectric conversion element 231 , a transfer transistor 232 , a reset transistor 233 , a floating diffusion layer 234 , an amplification transistor 235 and a selection transistor 236 .
  • the photoelectric conversion element 231 generates charges by photoelectric conversion of incident light.
  • the transfer transistor 232 transfers charges from the photoelectric conversion element 231 to the floating diffusion layer 234 according to the transfer signal TRG from the vertical scanning circuit 211 .
  • the reset transistor 233 initializes the floating diffusion layer 234 according to the reset signal RST from the vertical scanning circuit 211 .
  • the floating diffusion layer 234 generates a voltage corresponding to the transferred charge amount.
  • the amplification transistor 235 amplifies the voltage of the floating diffusion layer 234 .
  • the selection transistor 236 outputs the amplified voltage analog signal as the pixel signal VSL to the analog-to-digital converter 300 via the vertical signal line 229 in accordance with the selection signal SEL from the vertical scanning circuit 211 .
  • the pixel signal VSL of the m-th (m is an integer) column is hereinafter referred to as VSLm.
  • the level of the pixel signal VSLm when the floating diffusion layer 234 is initialized by the reset signal RST is called “reset level” or “P phase”.
  • the level of the pixel signal VSLm when the charge is transferred by the transfer signal TRG is referred to as “signal level” or "D phase”.
  • FIG. 5 is a block diagram showing a configuration example of the analog-to-digital converter 300 according to the first embodiment of the present technology.
  • This analog-to-digital converter 300 includes a plurality of column amplifiers 310 , a plurality of capacitive multiplexers 400 and a plurality of SAR ADCs 320 .
  • a column amplifier 310 is arranged for each column. When the number of columns is M (M is an integer), M column amplifiers 310 are arranged. Multiple columns also share one capacitive multiplexer 400 . When the capacitance multiplexers 400 are shared by two columns, M/2 capacitance multiplexers 400 are arranged. Also, multiple columns share one SAR ADC 320 . When the SAR ADC 320 is shared by 8 columns, M/8 SAR ADCs 320 are arranged.
  • the number of columns that share the capacitive multiplexer 400 and the SAR ADC 320 is not limited to 2 columns or 8 columns. However, the number of columns sharing the SAR ADC 320 is greater than or equal to the number of columns sharing the capacitance multiplexer 400 . Note that the SARADC 320 can also be arranged for each column. In this case, the capacitive multiplexer 400 may not be provided.
  • the column amplifier 310 performs analog CDS processing to obtain the difference between the reset level and the signal level of the pixel signal VSLm of the corresponding column. Analog CDS processing provides a net signal level.
  • the column amplifier 310 supplies the pixel signal after analog CDS processing to the capacitance multiplexer 400 .
  • the pixel signals VSL0 and VSL4 of the 0th and 4th columns are input to the 0th capacitance multiplexer 400 .
  • Pixel signals VSL1 and VSL5 of the first and fifth columns are input to the first capacitive multiplexer 400 .
  • Pixel signals VSL2 and VSL6 of the second and sixth columns are input to the second capacitive multiplexer 400 .
  • Pixel signals VSL3 and VSL7 of the third and seventh columns are input to the third capacitive multiplexer 400 .
  • Pixel signals for two columns are similarly input to the capacitance multiplexer 400 for the eighth column and beyond.
  • These pixel signals VSLm are single-ended signals.
  • the column amplifier 310 performs analog CDS processing
  • a circuit subsequent to the SAR ADC 320 can perform digital CDS processing instead of analog CDS processing. In this case, the column amplifier 310 does not need to perform analog CDS processing.
  • the capacitive multiplexer 400 holds pixel signals of a plurality of columns in capacitive elements (not shown), selects those pixel signals in order, and inputs them to the SAR ADC 320 .
  • the SAR ADC 320 converts an analog pixel signal into a digital signal Dout by a successive approximation method, and supplies the digital signal Dout to the digital signal processing section 240 .
  • the SAR ADC 320 also includes a CDAC (Capacitor DAC), and performs AD conversion after initializing the CDAC according to a reset code RC from the digital signal processing unit 240 .
  • CDAC Capacitor DAC
  • FIG. 6 is a circuit diagram showing a configuration example of the column amplifier 310 according to the first embodiment of the present technology.
  • This column amplifier 310 includes an amplifier 311 , switches 312 , 313 and 316 , and capacitive elements 314 and 315 .
  • a non-inverting input terminal (+) of the amplifier 311 is connected to the vertical signal line 229 and receives the pixel signal VSLm from the pixel array section 220 . Also, the output terminal of the amplifier 311 is connected to the capacitance multiplexer 400 .
  • the switch 312 opens and closes the path between the output terminal of the amplifier 311 and the inverting input terminal ( ⁇ ) according to the control signal Sp from the timing control circuit 212 .
  • the switch 313 opens and closes the path between the output terminal of the amplifier 311 and the capacitive element 314 according to the control signal SD from the timing control circuit 212 .
  • Capacitive elements 314 and 315 are connected in series between switch 313 and a reference potential (eg, ground), and their connection node is connected to the inverting input terminal ( ⁇ ) of amplifier 311 .
  • the switch 316 operates between the connection node of the switch 313 and the capacitive element 314 and the local reference voltage VR that defines the zero voltage of the output of the column amplifier 310 at the reference potential. It opens and closes the path of
  • the timing control circuit 212 controls only the switches 312 and 316 to the closed state to cause the capacitive elements 314 and 315 to hold the reset level.
  • the timing control circuit 212 also closes only the switch 313 when the signal level is input. Feedback is applied so that the voltage at the connection node of capacitive elements 314 and 315 has the same value as the signal level.
  • the amplifier 311 outputs a signal obtained by amplifying the difference between the reset level and the signal level as the pixel signal VSLm'. In this manner, the column amplifier 310 performs analog CDS processing for obtaining the difference between the reset level (P phase) and the signal level (D phase).
  • FIG. 7 is a circuit diagram showing a configuration example of the capacitive multiplexer 400 according to the first embodiment of the present technology.
  • This capacitive multiplexer 400 comprises sample and hold blocks 410 , 430 and 450 .
  • the sample and hold block 410 includes switches 411 to 418 and capacitive elements 419 and 420 .
  • the sample and hold block 430 includes switches 431 to 438 and capacitive elements 439 and 440 .
  • the sample and hold block 450 includes switches 451 to 458 and capacitive elements 459 and 460 .
  • the switch 411 opens and closes the path between the column amplifier 310 of the 0th column that supplies the pixel signal VSL0′ and the capacitive element 419 according to the control signal SIN0A from the timing control circuit 212 .
  • the switch 412 opens and closes the path between the column amplifier 310 of the fourth column that supplies the pixel signal VSL4′ and the capacitive element 419 according to the control signal SIN1A from the timing control circuit 212 .
  • the switch 413 opens and closes the path between the local reference voltage VR and the capacitive element 420 according to the control signal SINA from the timing control circuit 212 .
  • the switch 414 opens and closes the path between the connection node of the switch 411 and the capacitance element 419 and the connection node of the switch 413 and the capacitance element 420 according to the control signal SVMIA[n] from the timing control circuit 212 .
  • the subscript n in the control signal S VMIA[n] indicates the n (n is an integer from 0 to N) out of the N (eg, 4) capacitive multiplexers 400 that share the SAR ADC 320 . The same applies to the following control signals.
  • a capacitive element 419 is inserted between switches 411 and 417 .
  • a capacitive element 420 is inserted between switches 413 and 418 .
  • Switches 415 and 416 are connected in series between the connection node of capacitive element 419 and switch 417 and the connection node of capacitive element 420 and switch 418 . These switches 415 and 416 open and close according to the control signal SVMA from the timing control circuit 212 .
  • a connection node of switches 415 and 416 is connected to SAR ADC 320 and receives common voltage VCR.
  • the switch 417 opens and closes the path between the capacitive element 419 and the SAR ADC 320 according to the control signal SSUMA[n] from the timing control circuit 212 .
  • An analog positive signal SH+ is output to SAR ADC 320 when switch 417 is closed.
  • the switch 418 opens and closes the path between the capacitive element 420 and the SAR ADC 320 according to the control signal SSUMA[n] from the timing control circuit 212 .
  • An analog negative signal SH ⁇ is output to SAR ADC 320 when switch 418 is closed.
  • sample and hold blocks 430 and 450 are similar to sample and hold block 410 .
  • control signals S IN0B , S IN1B , S INB , S VMIB[n] , S VMB and S SUMB[n] are input to the sample hold block 430 .
  • control signals S IN0C , S IN1C , S INC , S VMIC[n] , S VMC and S SUMC[n] are input to the sample hold block 450 .
  • Sample and hold blocks 410, 430 and 450 are also referred to as blocks A, B and C hereinafter.
  • the capacitive multiplexer 400 converts the pixel signals VSLm' (in other words, single-ended signals) of the corresponding two columns into differential signals and holds them. Then, the capacitive multiplexer 400 sequentially outputs the held pixel signals for two columns (in other words, differential signals) to the SAR ADC 320 .
  • the capacitive multiplexer 400 performs differential conversion, it is also possible to hold and output a single-ended signal without performing differential conversion. In this case, the number of capacitive elements can be reduced by half.
  • FIG. 8 is a block diagram showing one configuration example of the SAR ADC 320 and the digital signal processing unit 240 according to the first embodiment of the present technology.
  • SAR ADC 320 comprises autozero switches 321 and 322 , preamplifier 323 , comparator 324 , CDACs 325 and 326 and SAR logic circuit 327 .
  • a positive side signal SH+ from the capacitance multiplexer 400 is input to the non-inverting input terminal (+) of the preamplifier 323 .
  • the negative side signal SH- from the capacitance multiplexer 400 is input to the inverting input terminal (-) of the preamplifier 323 .
  • the common voltage VCR from the capacitance multiplexer 400 is used as the positive side and negative side common voltages in the preamplifier 323 .
  • the preamplifier 323 amplifies a differential signal composed of the positive side signal SH+ and the negative side signal SH ⁇ and differentially outputs it to the comparator 324 . This differential signal corresponds to a differentially converted pixel signal, as described above.
  • the auto-zero switch 321 opens and closes the path between the non-inverting input terminal (+) and the non-inverting output terminal of the preamplifier 323 according to the control signal SAZ from the timing control circuit 212 .
  • the auto-zero switch 322 opens and closes the path between the inverting input terminal (-) and the inverting output terminal of the preamplifier 323 according to the control signal SAZ .
  • the auto-zero switches 321 and 322 are closed at the timing indicated by the control signal SAZ , and auto-zero is performed.
  • the comparator 324 compares the potential of the non-inverting output terminal and the potential of the inverting output terminal of the preamplifier 323 in synchronization with the clock signal CKI from the timing control circuit 212 . This comparator 324 supplies the comparison result to the SAR logic circuit 327 .
  • the CDAC 325 generates a positive side reference signal under the control of the SAR logic circuit 327 and supplies it to the non-inverting input terminal (+) of the preamplifier 323 .
  • the CDAC 326 generates a negative side reference signal under the control of the SAR logic circuit 327 and supplies it to the inverting input terminal (-) of the preamplifier 323 .
  • These reference signals increase or decrease the value of the pixel signal (that is, the differential signal).
  • the comparison result of comparator 324 is obtained from the differential signal and the reference signal. For example, the comparison result indicates whether or not the value obtained by increasing or decreasing the differential signal with the reference signal is higher than a predetermined level (such as "0").
  • the CDACs 325 and 326 are an example of the digital-analog converter described in the claims.
  • the SAR logic circuit 327 receives the control signal SAZ and the clock signal CK from the timing control circuit 212 , the reset code RC from the digital signal processing section 240 , and the comparison result from the comparator 324 .
  • Reset code RC is a code indicating the initial value of the reference signal from CDACs 325 and 326 .
  • the SAR logic circuit 327 initializes the reference signal with the reset code RC at the auto-zero timing indicated by the control signal SAZ . After initialization, the SAR logic circuit 327 updates the positive or negative side reference signal to increase or decrease the differential signal based on the comparison result. The incrementing or decrementing value is controlled to be smaller than the previous value for each comparison. This implements a binary search. The successive approximation is executed in synchronization with the clock signal CKI, and a digital signal in which comparison results for a predetermined number of times are arranged is output to the digital signal processing section 240 as Dout.
  • the SAR logic circuit 327 is an example of the successive approximation logic circuit described in the claims.
  • the digital signal processing section 240 includes a reset control section 241 , a pre-processing section 242 , a plurality of reset code processing sections 243 and a post-processing section 244 .
  • the reset code processing unit 243 is arranged for each SAR ADC 320 .
  • the reset control unit 241 controls the value of the reset code RC.
  • the reset control unit 241 updates the reset code RC to a value different from the previous value every time the vertical scanning circuit 211 drives the row.
  • the reset control unit 241 executes, for example, a predetermined calculation and updates to the calculation result.
  • Arithmetic at the time of updating includes addition of the reset code of the initial value and the dither signal.
  • the reset control unit 241 generates a dither signal each time an update is performed, and sets the result of adding the dither signal to the reset code of the initial value as a new reset code.
  • the computation at the time of updating may include processing for adding or subtracting a predetermined value (such as "1") from the previous value.
  • a predetermined value such as "1”
  • the reset control unit 241 increments or decrements the previous reset code at each update, and uses the result as a new reset code.
  • the reset control unit 241 supplies the updated reset code RC to the pre-processing unit 242 at the end of the AD conversion.
  • the pre-processing unit 242 decodes the digital signal Dout from the SAR ADC 320 and supplies it to the reset code processing unit 243 .
  • decoding includes processing to convert it into decimal numbers. Note that linearity correction can be performed simultaneously with decoding of the digital signal Dout.
  • the pre-processing unit 242 also decodes the updated reset code RC to obtain a correction amount, and supplies it to the reset code processing unit 243 .
  • the reset code processing unit 243 performs reset code processing on the decoded digital signal Dout based on the correction amount from the pre-processing unit 242 .
  • the correction amount in other words, reset code
  • the reset code processing unit 243 supplies the corrected digital signal to the post-processing unit 244 .
  • the post-processing unit 244 performs various post-processing on the digital signal from the reset code processing unit 243 as necessary.
  • the post-processing section 244 supplies the processed digital signal to the DSP circuit 120 .
  • the SAR ADC 320 AD converts differential signals, but can also AD convert single-ended signals. In this case, the previous-stage capacitive multiplexer 400 does not perform differential conversion. Also, one of the CDACs 325 and 326 is reduced and the comparator 324 compares the pixel signal with the reference signal.
  • the SAR ADC 320 and the digital signal processing unit 240 are arranged in the solid-state imaging device 200, the configuration is not limited to this.
  • the SAR ADC 320 and the digital signal processing unit 240 can be arranged in a circuit other than the solid-state imaging device 200 as long as it is a circuit that performs AD conversion.
  • the circuit in which the SAR ADC 320 and the digital signal processing unit 240 are arranged is an example of the analog-to-digital conversion circuit described in the claims.
  • FIG. 9 is a block diagram showing one configuration example of the analog-to-digital converter 300 and the digital signal processor 240 according to the first embodiment of the present technology.
  • the column amplifier 310 is omitted in FIG.
  • the SAR ADC 320 When the SAR ADC 320 is shared by 8 columns, the SAR ADC 320 is provided every 8 columns.
  • the reset control unit 241 supplies the same reset code RC to each of the SAR ADCs 320 . However, every time the vertical scanning circuit 211 drives a row, the reset control unit 241 controls the reset code RC to a value different from the previous value by a dither signal. Similarly, the same value is supplied to each of the reset code processing units 243 for the correction amount, and the correction amount is updated each time the row is driven.
  • FIG. 10 is a timing chart showing an example of control of the pixels 230, the column amplifiers 310 and the capacitance multiplexer 400 according to the first embodiment of the present technology.
  • the vertical scanning circuit 211 supplies the transfer signal TRG to the selected row to cause the pixels 230 in the row to generate signal levels.
  • the timing control circuit 212 supplies a high-level control signal SD for a certain period of time to cause the column amplifier 310 to perform analog CDS processing.
  • Timing control circuit 212 also provides high level control signals S IN , S IN0A , S IN1B , S VMA and S VMB for a certain period of time.
  • the control signal S IN shall include S INA , S INB and S INC . These control signals cause the capacitive multiplexer 400 to hold pixel signals for the corresponding two columns in the block A and block B.
  • the first of the four capacitive multiplexers 400 that share the SARADC 320 holds, for example, pixel signals for columns 0 and 4, and the second capacitive multiplexer 400 holds, for example, columns 1 and 5. holds the pixel signals of A third capacitive multiplexer 400 holds, for example, the pixel signals of the second and sixth columns, and a fourth capacitive multiplexer 400 holds, for example, the pixel signals of the third and seventh columns. The same applies to the eighth and subsequent columns. Thus, pixel signals for one row are held.
  • the vertical scanning circuit 211 supplies the reset signal RST to the selected row, causing the pixels 230 in the row to generate the reset level.
  • the timing control circuit 212 supplies high-level control signals SP and SVR for a certain period of time to cause the column amplifier 310 to hold the reset level.
  • the control contents of the pixels 230 and the column amplifiers 310 during the D-phase settling period from timings T2 to T3 are the same as those during the previous D-phase settling period.
  • the timing control circuit 212 supplies the high level control signals S IN , S IN1A , S IN0C , S VMA and S VMC to the capacitive multiplexer 400 for a certain period of time. These control signals cause the capacitive multiplexer 400 to hold pixel signals for two corresponding columns in blocks A and C.
  • the control contents of the P-phase settling period of the next timings T3 to T4 are the same as the previous P-phase settling period.
  • the control contents of the pixels 230 and the column amplifiers 310 during the D-phase settling period from timings T4 to T5 are the same as those during the previous D-phase settling period.
  • the timing control circuit 212 supplies the high level control signals S IN , S IN0B , S IN1C , S VMB and S VMC to the capacitive multiplexer 400 for a certain period of time. These control signals cause the capacitance multiplexer 400 to hold the pixel signals for the corresponding two columns in the blocks B and C. As shown in FIG.
  • timing T5 Similar control is repeatedly executed until all rows are selected.
  • FIG. 11 is a timing chart showing an example of control of the capacitance multiplexer 400 and the SAR ADC 320 according to the first embodiment of the present technology.
  • the four capacitive multiplexers 400 sharing the SAR ADC 320 hold pixel signals for eight columns.
  • the timing control circuit 212 sequentially supplies control signals S SUMA[0] , S SUMA[1] , S SUMA[2] and S SUMA[3] .
  • Control signals S-- VMIA[0] , S-- VMIA[1] , S-- VMIA[2] and S-- VMIA[3] are also provided in sequence.
  • the pixel signals held in the respective blocks A of the four capacitive multiplexers 400 sharing the SAR ADC 320 are sequentially output.
  • the SAR ADC 320 AD-converts each of the four pixel signals from the block A in sequence in synchronization with the clock signal CK.
  • a high-level control signal SAZ is supplied while the clock signal CK is at a low level, and the SAR ADC 320 performs auto-zeroing using the reset code RC during that period. While the clock signal CK is at high level, a clock signal CKI having a frequency higher than that of the clock signal CK is supplied, and the SAR ADC 320 performs successive approximation in synchronization with the clock signal CKI.
  • the timing control circuit 212 sequentially supplies the control signals S SUMB[0] , S SUMB[1] , S SUMB[2] and S SUMB[3] .
  • Control signals S-- VMIB[0] , S-- VMIB[1] , S-- VMIB[2] and S-- VMIB[3] are also provided in sequence.
  • the pixel signals held in the respective blocks B of the four capacitive multiplexers 400 sharing the SAR ADC 320 are sequentially output.
  • the SAR ADC 320 sequentially AD-converts each of the four pixel signals from the block B in synchronization with the clock signal CK. During the period from timings T1 to T3, pixel signals for eight columns held during the period from timings T0 to T1 are AD-converted. A plurality of SDRADCs 320 operate in parallel to AD-convert pixel signals for eight columns, thereby reading pixel signals for one row. Therefore, a period consisting of the P-phase settling period and the immediately following D-phase settling period corresponds to an AD conversion period for one row.
  • the SAR ADC 320 AD-converts each of the four pixel signals from block C in turn.
  • the SAR ADC 320 AD-converts each of the four pixel signals from block A in turn.
  • the SAR ADC 320 AD-converts each of the four pixel signals from block B in turn.
  • the SAR ADC 320 AD-converts each of the four pixel signals from block C in turn. After that, similar control is repeatedly executed.
  • the reset control unit 241 updates the reset code RC to a value different from the previous value every time the AD conversion period for one row passes (in other words, the row is driven). For example, during the AD conversion period of timings T1 to T3, the reset control unit 241 updates to RC_b different from the previous RC_a. The reset control unit 241 updates to RC_c different from the previous RC_b in the AD conversion period of the next timings T3 to T5. Below, the reset code is updated each time a row is driven. This sets a different reset code for each row.
  • FIG. 12 is a timing chart showing an example of control of the capacitance multiplexer 400 and SARADC 320 in the comparative example. As illustrated in the figure, in the comparative example, the reset code is not updated, and the same reset code is set for each row.
  • FIG. 13 is a diagram for explaining reset code processing in the first embodiment of the present technology.
  • the vertical axis in the figure indicates the value of the digital signal Dout, and the horizontal axis indicates the level of the analog pixel signal VSL.
  • a is a diagram showing linearity characteristics when no dither signal is applied.
  • b in the same figure is a diagram showing the linearity characteristic before the dither signal is applied and the reset code process is performed.
  • c is a diagram showing linearity characteristics after applying a dither signal and performing reset code processing.
  • the relationship between the input pixel signal and the output digital signal may not be linear.
  • VSLm a certain pixel signal
  • Dout a digital signal Dout indicating "64".
  • the reset control unit 241 applies a dither signal to the reset code of the initial value to generate a new reset code RC.
  • the initial value is set to "0" in decimal number. Due to the application of the dither signal, the reset code RC after application of the dither signal changes to a value different from the initial value (“0”), as illustrated by b in FIG. , which deviates greatly from "64". Note that the initial value may be a value other than "0".
  • the reset code processing unit 243 performs reset code processing on the digital signal Dout using the correction amount Cd corresponding to the reset code RC after application of the dither signal.
  • this correction makes the value corresponding to the pixel signal VSLm "66", and the deviation from "64" can be reduced.
  • AD conversion can be performed in portions with different linearities according to the dither signal, it is possible to reduce the influence of linearity breakdown.
  • FIG. 14 is a graph showing noise characteristics in the comparative example and the first embodiment of the present technology.
  • the vertical axis indicates fixed pattern noise (FPN) in the vertical direction
  • the horizontal axis indicates the digital signal Dout.
  • a indicates the noise characteristics of the comparative example
  • b indicates the noise characteristics of the first embodiment.
  • fixed pattern noise can also be reduced to some extent by arranging a single-slope ADC for each column and applying random noise to the reset level.
  • this method assumes the use of a single-slope ADC and cannot be applied to a configuration in which a SAR ADC is arranged.
  • analog CDS processing for obtaining the difference between the reset level and the signal level cannot be performed.
  • the random noise must be generated by analog circuitry, which is subject to imperfections such as manufacturing variations, which can result in constant, fixed-pattern noise.
  • FIG. 15 is a flow chart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
  • the vertical scanning circuit 211 selects a row to read (step S901). Also, the reset control unit 241 sets a different reset code for each row (step S902).
  • the SAR ADC 320 performs auto zero, and initializes the CDSC with a reset code (step S903). The SAR ADC 320 then performs successive approximation and generates a digital signal (step S904).
  • step S905 the digital signal processing unit 240 corrects the digital signal using the reset code (step S905).
  • SARADC 320 determines whether the last row has been read (step S906). If the last line has not been read (step S906: No), the solid-state imaging device 200 repeatedly executes step S901 and subsequent steps. If the last line has been read (step S906: Yes), the solid-state imaging device 200 ends the operation for imaging.
  • steps S901 to S906 are repeatedly executed in synchronization with the vertical synchronization signal.
  • the reset control unit 241 controls the reset code to a different value for each row, so fixed pattern noise can be suppressed. Thereby, the signal quality of the pixel signal can be improved.
  • the reset code is controlled to have a different value for each row, but with this configuration, there is a possibility that fixed pattern noise in the row direction cannot be sufficiently suppressed.
  • the solid-state imaging device 200 of the second embodiment differs from the first embodiment in that the reset code is controlled to have different values for each row and each column.
  • FIG. 16 is a block diagram showing one configuration example of the analog-to-digital converter 300 and the digital signal processor 240 according to the second embodiment of the present technology.
  • the reset control unit 241 of the second embodiment supplies reset codes of different values to each of the plurality of SAR ADCs 320 .
  • the reset control unit 241 supplies the reset code RC_A to the k-th (k is an integer) SAR ADC 320 . Also, the reset control unit 241 generates a reset code RC_B different from the reset code RC_A by applying a dither signal or the like, and supplies it to the k+1 th SAR ADC 320 .
  • FIG. 17 is a timing chart showing an example of reset code control of the k-th SAR ADC 320 according to the second embodiment of the present technology.
  • the reset control unit 241 controls the reset code to a value different from the previous value in synchronization with the control signal SAZ indicating the auto-zero timing. Since auto-zeroing is performed each time a pixel signal is input to the SAR ADC 320 (in other words, for each column), a different reset code is set for each column.
  • the reset control unit 241 supplies the reset code RC_A0 when the 0th column among the plurality of columns sharing the kth SAR ADC 320 is auto-zeroed. At the time of auto-zeroing of the next first column, the reset control unit 241 generates a reset code RC_A1 different from the reset code RC_A0 by applying a dither signal or the like, and supplies it to the SAR ADC 320 . Also, as in the first embodiment, a different reset code is set for each row.
  • FIG. 18 is a timing chart showing an example of reset code control of the k+1th SAR ADC 320 in the second embodiment of the technology.
  • the reset control unit 241 controls the reset code to different values for each row and each column.
  • the reset control unit 241 supplies the reset code RC_B0 during auto-zeroing of the 0th column among the plurality of columns sharing the k+1th SAR ADC 320 .
  • the reset control unit 241 At the next auto-zeroing of the first column, the reset control unit 241 generates a reset code RC_B1 different from the reset code RC_B0 by applying a dither signal or the like, and supplies it to the SAR ADC 320 .
  • the reset code RC_B0 in the 0th column of the k+1 SAR ADC 320 is different from the reset code RC_A0 in the 0th column of the k th SAR ADC 320 .
  • the first column reset code RC_B1 of the k+1 th SAR ADC 320 is different from the first column reset code RC_A1 of the k th SAR ADC 320 . The same applies to subsequent columns.
  • the reset control unit 241 controls the reset code so that it has different values for each row, each column, and each SAR ADC 320 .
  • FIG. 19 is a diagram showing an example of noise characteristics in the second embodiment of the present technology. Readout noise in the second embodiment is the same as in the first embodiment.
  • the pixel FPN in the second embodiment is approximately the same as in the first embodiment.
  • the FPN level in the row direction in the second embodiment is lowered (improved) compared to the first embodiment.
  • the FPN maximum value in the row direction in the second embodiment is also improved compared to the first embodiment.
  • the FPN level in the column direction and the FPN maximum value in the column direction are approximately the same as in the first embodiment.
  • the temporary noise level in the row direction in the second embodiment is reduced (improved) compared to the first embodiment.
  • the row-wise transient noise maximum in the second embodiment is also improved compared to the first embodiment.
  • the column-direction temporal noise level and the column-direction temporal noise maximum value are the same as in the first embodiment.
  • the reset control unit 241 can also set the same reset code for each column, and set a different reset code for each row and for each SAR ADC 320, as exemplified by a in FIG.
  • the reset control unit 241 can set the same reset code to a plurality of SAR ADCs 320, and set different reset codes for each row and each column.
  • the reset control unit 241 controls the reset code to a different value for each row and for each column, so fixed pattern noise can be further suppressed.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 22 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 22 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging apparatus 100 in FIG. 1 applies the technology according to the present disclosure to the imaging unit 12031 that can be applied to the imaging unit 12031, thereby suppressing fixed pattern noise and producing a more viewable captured image. can be obtained, it becomes possible to reduce the fatigue of the driver.
  • the present technology can also have the following configuration. (1) a comparator that generates a comparison result from an input analog signal and a predetermined reference signal; a digital-to-analog converter that provides the reference signal; a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result; and a reset control unit that controls the value of the reset code.
  • a plurality of SAR ADCs (Successive Approximation Register Analog to Digital Converters) are arranged, The comparator, the digital-to-analog converter, and the successive approximation logic circuit are arranged in each of the plurality of SAR ADCs;
  • a pixel that produces an analog signal; a comparator that generates a comparison result from the analog signal and a predetermined reference signal; a digital-to-analog converter that provides the reference signal; a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result; and a reset control unit that controls the value of the reset code.
  • (11) a comparison procedure for generating a comparison result from the input analog signal and a predetermined reference signal; a digital-to-analog conversion procedure providing said reference signal; a successive approximation procedure for initializing the reference signal with a predetermined reset code and then updating the reference signal based on the comparison result; and a reset control procedure for controlling the value of the reset code.
  • imaging device 110 optical unit 120 DSP circuit 130 display unit 140 operation unit 150 bus 160 frame memory 170 storage unit 180 power supply unit 200 solid-state imaging device 201 light receiving chip 202 circuit chip 211 vertical scanning circuit 212 timing control circuit 220 pixel array unit 230 pixels 231 photoelectric conversion element 232 transfer transistor 233 reset transistor 234 floating diffusion layer 235 amplification transistor 236 selection transistor 240 digital signal processing section 241 reset control section 242 pre-processing section 243 reset code processing section 244 post-processing section 300 analog-to-digital conversion section 310 column amplifier 311 amplifier 312, 313, 316, 411 to 418, 431 to 438, 451 to 458 switch 314, 315, 419, 420, 439, 440, 459, 460 capacitive element 320 SARADC 321, 322 auto-zero switch 323 preamplifier 324 comparator 325, 326 CDAC 327 SAR logic circuit 400 capacitance multiplexer 410, 430, 450 sample hold block 12031 imaging unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

The present invention suppresses the degradation of signal quality in a circuit that performs A/D conversion. This analog/digital conversion circuit comprises a comparator, a digital/analog converter, a sequential conversion logic circuit, and a reset control unit. The comparator generates a comparison result from an analog signal and a predetermined reference signal both inputted thereto. The digital/analog converter supplies the reference signal. The sequential comparison logic circuit uses a predetermined reset code to initialize the reference signal and thereafter causes the reference signal to be updated on the basis of the comparison result. The reset control unit controls the value of the reset code.

Description

アナログデジタル変換回路、固体撮像素子、および、アナログデジタル変換回路の制御方法Analog-to-digital conversion circuit, solid-state imaging device, and control method for analog-to-digital conversion circuit
 本技術は、アナログデジタル変換回路に関する。詳しくは、ノイズを抑制するための処理を行うアナログデジタル変換回路、固体撮像素子、および、アナログデジタル変換回路の制御方法に関する。 This technology relates to analog-to-digital conversion circuits. Specifically, the present invention relates to an analog-to-digital conversion circuit that performs processing for suppressing noise, a solid-state imaging device, and a control method for the analog-to-digital conversion circuit.
 従来より、撮像装置などの装置には、画素から出力されるアナログ信号(画素信号)をデジタル信号に変換するADC(Analog to Digital Converter)が搭載されている。例えば、カラムごとにADCを配置し、AD(Analog to Digital)変換前のリセットレベルに対してカラムごとに異なるランダムノイズを印加する撮像装置が提案されている(例えば、特許文献1参照)。 Conventionally, devices such as imaging devices are equipped with ADCs (Analog to Digital Converters) that convert analog signals (pixel signals) output from pixels into digital signals. For example, an imaging device has been proposed in which an ADC is arranged for each column and different random noise is applied for each column to a reset level before AD (Analog to Digital) conversion (see, for example, Patent Document 1).
国際公開第2014/132822号WO2014/132822
 上述の従来技術では、カラムごとのランダムノイズの印加により、量子化誤差やリニアリティ劣化などによる固定パターンノイズの抑制を図ってる。しかし、上述の従来技術では、ノイズを十分に抑制することができないおそれがある。アナログのリセットレベルに印加するランダムノイズは、アナログ回路により生成する必要があり、製造ばらつきにより行方向などに一定の固定パターンノイズが生じることがある。このノイズにより、画素信号の信号品質が低下するおそれがある。 In the conventional technology described above, random noise is applied to each column to suppress fixed pattern noise caused by quantization errors and linearity deterioration. However, the conventional technology described above may not be able to sufficiently suppress noise. The random noise applied to the analog reset level must be generated by an analog circuit, and a certain fixed pattern noise may occur in the row direction or the like due to manufacturing variations. This noise may degrade the signal quality of the pixel signal.
 本技術はこのような状況に鑑みて生み出されたものであり、AD変換を行う回路において、信号品質の低下を抑制することを目的とする。 This technology was created in view of this situation, and aims to suppress deterioration in signal quality in circuits that perform AD conversion.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、入力されたアナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、上記参照信号を供給するデジタルアナログ変換器と、所定のリセットコードにより上記参照信号を初期化させた後に上記比較結果に基づいて上記参照信号を更新させる逐次比較ロジック回路と、上記リセットコードの値を制御するリセット制御部とを具備するアナログデジタル変換回路、および、その制御方法である。これにより、固定パターンノイズが低減するという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect thereof includes a comparator that generates a comparison result from an input analog signal and a predetermined reference signal, and a comparator that generates the reference signal. a digital-to-analog converter to supply a digital-to-analog converter, a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result, and a reset control that controls the value of the reset code. and a control method thereof. This brings about the effect of reducing fixed pattern noise.
 また、この第1の側面において、それぞれが上記アナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部と、上記画素アレイ部内の行を順に駆動して上記アナログ信号を出力させる垂直走査回路とをさらに具備し、上記リセット制御部は、上記垂直走査回路が行を駆動するたびに上記リセットコードを前回値と異なる値に更新してもよい。これにより、固定パターンノイズがさらに低減するという作用をもたらす。 Further, in the first aspect, a pixel array section in which a plurality of pixels each generating the analog signal are arranged in a two-dimensional lattice, and rows in the pixel array section are sequentially driven to output the analog signal. The reset control unit may update the reset code to a value different from the previous value each time the vertical scanning circuit drives the row. This has the effect of further reducing fixed pattern noise.
 また、この第1の側面において、上記リセット制御部は、上記アナログ信号が入力されるたびに上記リセットコードを前回値と異なる値に制御してもよい。これにより、固定パターンノイズがさらに低減するという作用をもたらす。 Further, in this first aspect, the reset control section may control the reset code to a value different from the previous value each time the analog signal is input. This has the effect of further reducing fixed pattern noise.
 また、この第1の側面において、複数のSARADC(Successive Approximation Register Analog to Digital Converter)が配列され、上記複数のSARADCのそれぞれに上記コンパレータ、上記デジタルアナログ変換器および上記逐次比較ロジック回路が配置され、上記リセット制御部は、上記複数のSARADCのそれぞれのリセットコードを異なる値に制御してもよい。これにより、固定パターンノイズがさらに低減するという作用をもたらす。 Further, in this first aspect, a plurality of SARADCs (Successive Approximation Register Analog to Digital Converter) are arranged, and the comparator, the digital-to-analog converter and the successive approximation logic circuit are arranged in each of the plurality of SARADCs, The reset control unit may control reset codes of the plurality of SAR ADCs to different values. This has the effect of further reducing fixed pattern noise.
 また、この第1の側面において、複数のアナログ信号を容量素子に保持して上記保持した複数のアナログ信号のいずれかを順に選択して上記コンパレータに入力する容量マルチプレクサをさらに具備してもよい。これにより、複数列が容量マルチプレクサを共有するという作用をもたらす。 In addition, the first aspect may further include a capacitive multiplexer that holds a plurality of analog signals in capacitive elements, sequentially selects one of the held plurality of analog signals, and inputs the analog signals to the comparator. This has the effect of allowing multiple columns to share a capacitive multiplexer.
 また、この第1の側面において、所定のリセットレベルと露光量に応じた信号レベルとの差分を求めて上記アナログ信号として供給するカラムアンプをさらに具備してもよい。これにより、リセット時のノイズが低減するという作用をもたらす。 In addition, the first aspect may further include a column amplifier that obtains a difference between a predetermined reset level and a signal level corresponding to the amount of exposure and supplies it as the analog signal. This brings about the effect of reducing noise at the time of resetting.
 また、この第1の側面において、上記リセットコードに基づいて補正量を求める前段処理部と、上記補正量に基づいて上記逐次比較ロジック回路からのデジタル信号に対するリセットコード処理を行うリセットコード処理部をさらに具備し、上記リセット制御部は、所定の初期値のコードに対して所定の演算を行ったコードを上記リセットコードとして供給し、上記前段処理部は、上記リセットコードに応じた上記補正量を上記リセットコード処理部に供給し、上記逐次比較ロジック回路は、所定数の上記比較結果に基づいて上記デジタル信号を生成してもよい。これにより、デジタル信号のリセットコードが処理されるという作用をもたらす。 Further, in this first aspect, a pre-processing unit that obtains a correction amount based on the reset code, and a reset code processing unit that performs reset code processing on the digital signal from the successive approximation logic circuit based on the correction amount. Further, the reset control unit supplies a code obtained by performing a predetermined operation on a code of a predetermined initial value as the reset code, and the pre-processing unit calculates the correction amount according to the reset code. The digital signal may be supplied to the reset code processing unit, and the successive approximation logic circuit may generate the digital signal based on a predetermined number of the comparison results. This brings about the effect of processing the reset code of the digital signal.
 また、この第1の側面において、上記演算は、ディザ信号の加算を含むものであってもよい。これにより、ディザ信号が印加されるという作用をもたらす。 In addition, in this first aspect, the calculation may include addition of dither signals. This brings about the effect of applying a dither signal.
 また、この第1の側面において、上記演算は、前回値に所定値を加算または減算する処理を含むものであってもよい。これにより、演算が簡易化されるという作用をもたらす。 Also, in the first aspect, the above calculation may include a process of adding or subtracting a predetermined value to or from the previous value. This brings about the effect of simplifying the calculation.
 また、本技術の第2の側面は、アナログ信号を生成する画素と、上記アナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、上記参照信号を供給するデジタルアナログ変換器と、所定のリセットコードにより上記参照信号を初期化させた後に上記比較結果に基づいて上記参照信号を更新させる逐次比較ロジック回路と、上記リセットコードの値を制御するリセット制御部とを具備する固体撮像素子である。これにより、画像データの固定パターンノイズが低減するという作用をもたらす。 A second aspect of the present technology includes a pixel that generates an analog signal, a comparator that generates a comparison result from the analog signal and a predetermined reference signal, a digital-to-analog converter that supplies the reference signal, a predetermined A solid-state imaging device comprising: a successive approximation logic circuit that initializes the reference signal by the reset code of and then updates the reference signal based on the comparison result; and a reset control unit that controls the value of the reset code be. This brings about the effect of reducing the fixed pattern noise of the image data.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of an imaging device in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の積層構造の一例を示す図である。It is a figure showing an example of lamination structure of a solid-state image sensor in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a solid-state image sensing device in a 1st embodiment of this art. 本技術の第1の実施の形態における画素の一構成例を示す回路図である。It is a circuit diagram showing a configuration example of a pixel in the first embodiment of the present technology. 本技術の第1の実施の形態におけるアナログデジタル変換部の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the analog-digital-conversion part in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるカラムアンプの一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a column amplifier in a 1st embodiment of this art. 本技術の第1の実施の形態における容量マルチプレクサの一構成例を示す回路図である。It is a circuit diagram showing a configuration example of a capacitive multiplexer in the first embodiment of the present technology. 本技術の第1の実施の形態におけるSARADCおよびデジタル信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of composition of SARADC and a digital signal processing part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるアナログデジタル変換部およびデジタル信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of composition of an analog digital conversion part and a digital signal processing part in a 1st embodiment of this art. 本技術の第1の実施の形態における画素、カラムアンプおよび容量マルチプレクサの制御の一例を示すタイミングチャートである。4 is a timing chart showing an example of control of pixels, column amplifiers, and capacitive multiplexers according to the first embodiment of the present technology; 本技術の第1の実施の形態における容量マルチプレクサおよびSARADCの制御の一例を示すタイミングチャートである。It is a timing chart showing an example of control of a capacity multiplexer and SARADC in a 1st embodiment of this art. 比較例における容量マルチプレクサおよびSARADCの制御の一例を示すタイミングチャートである。5 is a timing chart showing an example of control of a capacitance multiplexer and SARADC in a comparative example; 本技術の第1の実施の形態におけるリセットコード処理を説明するための図である。It is a figure for explaining reset code processing in a 1st embodiment of this art. 比較例と本技術の第1の実施の形態とにおけるノイズ特性を示すグラフである。6 is a graph showing noise characteristics in a comparative example and the first embodiment of the present technology; 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation of a solid-state image sensing device in a 1st embodiment of this art. 本技術の第2の実施の形態におけるアナログデジタル変換部およびデジタル信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of composition of an analog digital conversion part and a digital signal processing part in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるSARADCのリセットコードの制御例を示すタイミングチャートである。9 is a timing chart showing a control example of a reset code of SAR ADC in the second embodiment of the present technology; 本技術の第2の実施の形態における、隣接するSARADCのリセットコードの制御例を示すタイミングチャートである。9 is a timing chart showing an example of control of reset codes of adjacent SAR ADCs in the second embodiment of the present technology; 本技術の第2の実施の形態におけるノイズ特性の一例を示す図である。It is a figure showing an example of the noise characteristic in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるリセットコードの別の制御例を示すタイミングチャートである。9 is a timing chart showing another control example of the reset code according to the second embodiment of the present technology; 車両制御システムの概略的な構成例を示すブロック図である。1 is a block diagram showing a schematic configuration example of a vehicle control system; FIG. 撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit;
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(行毎に異なる値にリセットコードを制御する例)
 2.第2の実施の形態(行毎、列毎に異なる値にリセットコードを制御する例)
 3.移動体への応用例
Hereinafter, a form for carrying out the present technology (hereinafter referred to as an embodiment) will be described. Explanation will be given in the following order.
1. First embodiment (example of controlling the reset code to a different value for each row)
2. Second Embodiment (Example of controlling the reset code to a different value for each row and each column)
3. Example of application to mobile objects
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびDSP(Digital Signal Processing)回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
<1. First Embodiment>
[Configuration example of imaging device]
FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology. This imaging device 100 is a device for capturing image data, and includes an optical section 110 , a solid-state imaging device 200 and a DSP (Digital Signal Processing) circuit 120 . The imaging device 100 further includes a display section 130 , an operation section 140 , a bus 150 , a frame memory 160 , a storage section 170 and a power supply section 180 . As the imaging device 100, for example, in addition to a digital camera such as a digital still camera, a smart phone, a personal computer, an in-vehicle camera, and the like having an imaging function are assumed.
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して、光電変換により画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子200は、生成した画像データをDSP回路120に信号線209を介して供給する。 The optical unit 110 collects light from a subject and guides it to the solid-state imaging device 200 . The solid-state imaging device 200 generates image data by photoelectric conversion in synchronization with the vertical synchronization signal VSYNC. Here, the vertical synchronizing signal VSYNC is a periodic signal with a predetermined frequency that indicates the timing of imaging. The solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209 .
 DSP回路120は、固体撮像素子200からの画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データをバス150を介してフレームメモリ160などに出力する。 The DSP circuit 120 executes predetermined signal processing on the image data from the solid-state imaging device 200 . The DSP circuit 120 outputs the processed image data to the frame memory 160 or the like via the bus 150 .
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。 The display unit 130 displays image data. As the display unit 130, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed. The operation unit 140 generates an operation signal according to user's operation.
 バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。 The bus 150 is a common path through which the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 exchange data with each other.
 フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。 The frame memory 160 holds image data. The storage unit 170 stores various data such as image data. The power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この固体撮像素子200は、回路チップ202と、その回路チップ202に積層された受光チップ201とを備える。これらのチップは、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプにより接続することもできる。
[Configuration example of solid-state imaging device]
FIG. 2 is a diagram showing an example of the layered structure of the solid-state imaging device 200 according to the first embodiment of the present technology. This solid-state imaging device 200 comprises a circuit chip 202 and a light receiving chip 201 laminated on the circuit chip 202 . These chips are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection.
 図3は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、垂直走査回路211、タイミング制御回路212、画素アレイ部220、アナログデジタル変換部300およびデジタル信号処理部240を備える。画素アレイ部220には、複数の画素230が二次元格子状に配列される。以下、水平方向に配列された画素230の集合を「行」と称し、行に垂直な方向に配列された画素230の集合を「列」と称する。 FIG. 3 is a block diagram showing one configuration example of the solid-state imaging device 200 according to the first embodiment of the present technology. This solid-state imaging device 200 includes a vertical scanning circuit 211 , a timing control circuit 212 , a pixel array section 220 , an analog-to-digital conversion section 300 and a digital signal processing section 240 . A plurality of pixels 230 are arranged in a two-dimensional grid in the pixel array section 220 . Hereinafter, a set of pixels 230 arranged in the horizontal direction will be referred to as a "row", and a set of pixels 230 arranged in the direction perpendicular to the row will be referred to as a "column".
 画素アレイ部220は、例えば、受光チップ201に配置される。また、垂直走査回路211、タイミング制御回路212、アナログデジタル変換部300およびデジタル信号処理部240は、例えば、回路チップ202に配置される。 The pixel array section 220 is arranged in the light receiving chip 201, for example. Also, the vertical scanning circuit 211, the timing control circuit 212, the analog-to-digital converter 300, and the digital signal processor 240 are arranged on the circuit chip 202, for example.
 垂直走査回路211は、行を順に選択して駆動し、画素信号を出力させるものである。画素230は、アナログの画素信号を生成してアナログデジタル変換部300に出力するものである。アナログデジタル変換部300は、各列の画素信号に対してAD変換を行い、デジタル信号をデジタル信号処理部240に供給するものである。デジタル信号処理部240は、デジタル信号に対して所定の信号処理を行うものである。信号処理後のデジタル信号を配列したデータは、画像データとしてDSP回路120に供給される。 The vertical scanning circuit 211 sequentially selects and drives rows to output pixel signals. The pixels 230 generate analog pixel signals and output them to the analog-to-digital converter 300 . The analog-to-digital conversion section 300 performs AD conversion on the pixel signal of each column and supplies the digital signal to the digital signal processing section 240 . The digital signal processing section 240 performs predetermined signal processing on the digital signal. Data obtained by arranging the digital signals after signal processing is supplied to the DSP circuit 120 as image data.
 [画素回路の構成例]
 図4は、本技術の第1の実施の形態における画素230の一構成例を示す回路図である。この画素230は、光電変換素子231、転送トランジスタ232、リセットトランジスタ233、浮遊拡散層234、増幅トランジスタ235および選択トランジスタ236を備える。
[Configuration example of pixel circuit]
FIG. 4 is a circuit diagram showing one configuration example of the pixel 230 according to the first embodiment of the present technology. This pixel 230 includes a photoelectric conversion element 231 , a transfer transistor 232 , a reset transistor 233 , a floating diffusion layer 234 , an amplification transistor 235 and a selection transistor 236 .
 光電変換素子231は、入射光に対する光電変換により電荷を生成するものである。転送トランジスタ232は、垂直走査回路211からの転送信号TRGに従って、光電変換素子231から浮遊拡散層234に電荷を転送するものである。リセットトランジスタ233は、垂直走査回路211からのリセット信号RSTに従って、浮遊拡散層234を初期化するものである。浮遊拡散層234は、転送された電荷量に応じた電圧を生成するものである。 The photoelectric conversion element 231 generates charges by photoelectric conversion of incident light. The transfer transistor 232 transfers charges from the photoelectric conversion element 231 to the floating diffusion layer 234 according to the transfer signal TRG from the vertical scanning circuit 211 . The reset transistor 233 initializes the floating diffusion layer 234 according to the reset signal RST from the vertical scanning circuit 211 . The floating diffusion layer 234 generates a voltage corresponding to the transferred charge amount.
 増幅トランジスタ235は、浮遊拡散層234の電圧を増幅するものである。選択トランジスタ236は、垂直走査回路211からの選択信号SELに従って、増幅された電圧のアナログ信号を画素信号VSLとして垂直信号線229を介してアナログデジタル変換部300に出力するものである。第m(mは、整数)列の画素信号VSLを以下、VSLmとする。 The amplification transistor 235 amplifies the voltage of the floating diffusion layer 234 . The selection transistor 236 outputs the amplified voltage analog signal as the pixel signal VSL to the analog-to-digital converter 300 via the vertical signal line 229 in accordance with the selection signal SEL from the vertical scanning circuit 211 . The pixel signal VSL of the m-th (m is an integer) column is hereinafter referred to as VSLm.
 ここで、リセット信号RSTにより浮遊拡散層234が初期化された際の画素信号VSLmのレベルを「リセットレベル」または「P相」と称する。また、転送信号TRGにより電荷が転送された際の画素信号VSLmのレベルを「信号レベル」または「D相」と称する。 Here, the level of the pixel signal VSLm when the floating diffusion layer 234 is initialized by the reset signal RST is called "reset level" or "P phase". Also, the level of the pixel signal VSLm when the charge is transferred by the transfer signal TRG is referred to as "signal level" or "D phase".
 [アナログデジタル変換部の構成例]
 図5は、本技術の第1の実施の形態におけるアナログデジタル変換部300の一構成例を示すブロック図である。このアナログデジタル変換部300は、複数のカラムアンプ310と、複数の容量マルチプレクサ400と、複数のSARADC320とを備える。
[Configuration example of analog-to-digital converter]
FIG. 5 is a block diagram showing a configuration example of the analog-to-digital converter 300 according to the first embodiment of the present technology. This analog-to-digital converter 300 includes a plurality of column amplifiers 310 , a plurality of capacitive multiplexers 400 and a plurality of SAR ADCs 320 .
 カラムアンプ310は、列毎に配置される。列数がM(Mは、整数)である場合、M個のカラムアンプ310が配置される。また、複数の列は、1つの容量マルチプレクサ400を共有する。容量マルチプレクサ400を2列で共有する場合、M/2個の容量マルチプレクサ400が配置される。また、複数の列は、1つのSARADC320を共有する。SARADC320を8列で共有する場合、M/8個のSARADC320が配列される。 A column amplifier 310 is arranged for each column. When the number of columns is M (M is an integer), M column amplifiers 310 are arranged. Multiple columns also share one capacitive multiplexer 400 . When the capacitance multiplexers 400 are shared by two columns, M/2 capacitance multiplexers 400 are arranged. Also, multiple columns share one SAR ADC 320 . When the SAR ADC 320 is shared by 8 columns, M/8 SAR ADCs 320 are arranged.
 容量マルチプレクサ400、SARADC320のそれぞれを共有する列数は、2列や8列に限定されない。ただし、SARADC320を共有する列数は、容量マルチプレクサ400を共有する列数以上である。なお、列ごとにSARADC320を配置することもできる。この場合には容量マルチプレクサ400を設けなくてもよい。 The number of columns that share the capacitive multiplexer 400 and the SAR ADC 320 is not limited to 2 columns or 8 columns. However, the number of columns sharing the SAR ADC 320 is greater than or equal to the number of columns sharing the capacitance multiplexer 400 . Note that the SARADC 320 can also be arranged for each column. In this case, the capacitive multiplexer 400 may not be provided.
 カラムアンプ310は、対応する列の画素信号VSLmのリセットレベルと信号レベルとの差分を求めるアナログCDS処理を行うものである。アナログCDS処理により、正味の信号レベルが得られる。カラムアンプ310は、アナログCDS処理後の画素信号を容量マルチプレクサ400に供給する。例えば、第0列および第4列の画素信号VSL0およびVSL4が0個目の容量マルチプレクサ400に入力される。第1列および第5列の画素信号VSL1およびVSL5が1個目の容量マルチプレクサ400に入力される。第2列および第6列の画素信号VSL2およびVSL6が2個目の容量マルチプレクサ400に入力される。第3列および第7列の画素信号VSL3およびVSL7が3個目の容量マルチプレクサ400に入力される。第8列以降も同様に2列分の画素信号が容量マルチプレクサ400に入力される。これらの画素信号VSLmはシングルエンド信号である。 The column amplifier 310 performs analog CDS processing to obtain the difference between the reset level and the signal level of the pixel signal VSLm of the corresponding column. Analog CDS processing provides a net signal level. The column amplifier 310 supplies the pixel signal after analog CDS processing to the capacitance multiplexer 400 . For example, the pixel signals VSL0 and VSL4 of the 0th and 4th columns are input to the 0th capacitance multiplexer 400 . Pixel signals VSL1 and VSL5 of the first and fifth columns are input to the first capacitive multiplexer 400 . Pixel signals VSL2 and VSL6 of the second and sixth columns are input to the second capacitive multiplexer 400 . Pixel signals VSL3 and VSL7 of the third and seventh columns are input to the third capacitive multiplexer 400 . Pixel signals for two columns are similarly input to the capacitance multiplexer 400 for the eighth column and beyond. These pixel signals VSLm are single-ended signals.
 なお、カラムアンプ310がアナログCDS処理を行っているが、アナログCDS処理の代わりに、SARADC320の後段の回路がデジタルCDS処理を行うこともできる。この場合にはカラムアンプ310は、アナログCDS処理を実行しなくてもよい。 Although the column amplifier 310 performs analog CDS processing, a circuit subsequent to the SAR ADC 320 can perform digital CDS processing instead of analog CDS processing. In this case, the column amplifier 310 does not need to perform analog CDS processing.
 容量マルチプレクサ400は、複数列の画素信号を容量素子(不図示)に保持し、それらの画素信号を順に選択してSARADC320に入力するものである。 The capacitive multiplexer 400 holds pixel signals of a plurality of columns in capacitive elements (not shown), selects those pixel signals in order, and inputs them to the SAR ADC 320 .
 SARADC320は、逐次比較方式によりアナログの画素信号をデジタル信号Doutに変換し、デジタル信号処理部240に供給するものである。また、SARADC320は、CDAC(Capacitor DAC)を備え、デジタル信号処理部240からのリセットコードRCに従って、CDACを初期化してからAD変換を行う。 The SAR ADC 320 converts an analog pixel signal into a digital signal Dout by a successive approximation method, and supplies the digital signal Dout to the digital signal processing section 240 . The SAR ADC 320 also includes a CDAC (Capacitor DAC), and performs AD conversion after initializing the CDAC according to a reset code RC from the digital signal processing unit 240 .
 [カラムアンプの構成例]
 図6は、本技術の第1の実施の形態におけるカラムアンプ310の一構成例を示す回路図である。このカラムアンプ310は、アンプ311と、スイッチ312、313および316と、容量素子314および315とを備える。
[Configuration example of column amplifier]
FIG. 6 is a circuit diagram showing a configuration example of the column amplifier 310 according to the first embodiment of the present technology. This column amplifier 310 includes an amplifier 311 , switches 312 , 313 and 316 , and capacitive elements 314 and 315 .
 アンプ311の非反転入力端子(+)は、垂直信号線229に接続され、画素アレイ部220からの画素信号VSLmが入力される。また、アンプ311の出力端子は、容量マルチプレクサ400に接続される。 A non-inverting input terminal (+) of the amplifier 311 is connected to the vertical signal line 229 and receives the pixel signal VSLm from the pixel array section 220 . Also, the output terminal of the amplifier 311 is connected to the capacitance multiplexer 400 .
 スイッチ312は、タイミング制御回路212からの制御信号Spに従ってアンプ311の出力端子と、反転入力端子(-)との間の経路を開閉するものである。スイッチ313は、タイミング制御回路212からの制御信号Sに従ってアンプ311の出力端子と容量素子314との間の経路を開閉するものである。容量素子314および315は、スイッチ313と基準電位(例えば、グランド)との間において直列に接続され、それらの接続ノードは、アンプ311の反転入力端子(-)に接続される。 The switch 312 opens and closes the path between the output terminal of the amplifier 311 and the inverting input terminal (−) according to the control signal Sp from the timing control circuit 212 . The switch 313 opens and closes the path between the output terminal of the amplifier 311 and the capacitive element 314 according to the control signal SD from the timing control circuit 212 . Capacitive elements 314 and 315 are connected in series between switch 313 and a reference potential (eg, ground), and their connection node is connected to the inverting input terminal (−) of amplifier 311 .
 また、スイッチ316は、タイミング制御回路212からの制御信号SVRに従って、スイッチ313および容量素子314の接続ノードと、基準電位のカラムアンプ310の出力のゼロ電圧を規定するローカル基準電圧VRとの間の経路を開閉するものである。 In addition, according to the control signal SVR from the timing control circuit 212, the switch 316 operates between the connection node of the switch 313 and the capacitive element 314 and the local reference voltage VR that defines the zero voltage of the output of the column amplifier 310 at the reference potential. It opens and closes the path of
 スイッチを閉状態にする際に、対応する制御信号にハイレベルが設定されるものとする。以下の回路についても同様である。  When the switch is closed, the corresponding control signal is set to a high level. The same applies to the following circuits.
 タイミング制御回路212は、リセットレベルが入力された際にスイッチ312およびスイッチ316のみを閉状態に制御して容量素子314および315にリセットレベルを保持させる。また、タイミング制御回路212は、信号レベルが入力された際にスイッチ313のみを閉状態に制御する。容量素子314および315の接続ノードの電圧は、信号レベルと同じ値となるようにフィードバックがかかる。これにより、アンプ311は、リセットレベルと信号レベルとの差分を増幅した信号を画素信号VSLm'として出力する。このように、カラムアンプ310により、リセットレベル(P相)と信号レベル(D相)との差分を求めるアナログCDS処理が行われる。 When the reset level is input, the timing control circuit 212 controls only the switches 312 and 316 to the closed state to cause the capacitive elements 314 and 315 to hold the reset level. The timing control circuit 212 also closes only the switch 313 when the signal level is input. Feedback is applied so that the voltage at the connection node of capacitive elements 314 and 315 has the same value as the signal level. As a result, the amplifier 311 outputs a signal obtained by amplifying the difference between the reset level and the signal level as the pixel signal VSLm'. In this manner, the column amplifier 310 performs analog CDS processing for obtaining the difference between the reset level (P phase) and the signal level (D phase).
 [容量マルチプレクサの構成例]
 図7は、本技術の第1の実施の形態における容量マルチプレクサ400の一構成例を示す回路図である。この容量マルチプレクサ400は、サンプルホールドブロック410、430および450を備える。サンプルホールドブロック410は、スイッチ411乃至418と、容量素子419および420を備える。サンプルホールドブロック430は、スイッチ431乃至438と、容量素子439および440を備える。サンプルホールドブロック450は、スイッチ451乃至458と、容量素子459および460を備える。
[Configuration example of capacitive multiplexer]
FIG. 7 is a circuit diagram showing a configuration example of the capacitive multiplexer 400 according to the first embodiment of the present technology. This capacitive multiplexer 400 comprises sample and hold blocks 410 , 430 and 450 . The sample and hold block 410 includes switches 411 to 418 and capacitive elements 419 and 420 . The sample and hold block 430 includes switches 431 to 438 and capacitive elements 439 and 440 . The sample and hold block 450 includes switches 451 to 458 and capacitive elements 459 and 460 .
 スイッチ411は、タイミング制御回路212からの制御信号SIN0Aに従って、画素信号VSL0'を供給する第0列のカラムアンプ310と容量素子419との間の経路を開閉するものである。スイッチ412は、タイミング制御回路212からの制御信号SIN1Aに従って、画素信号VSL4'を供給する第4列のカラムアンプ310と容量素子419との間の経路を開閉するものである。 The switch 411 opens and closes the path between the column amplifier 310 of the 0th column that supplies the pixel signal VSL0′ and the capacitive element 419 according to the control signal SIN0A from the timing control circuit 212 . The switch 412 opens and closes the path between the column amplifier 310 of the fourth column that supplies the pixel signal VSL4′ and the capacitive element 419 according to the control signal SIN1A from the timing control circuit 212 .
 スイッチ413は、タイミング制御回路212からの制御信号SINAに従って、ローカル基準電圧VRと容量素子420との間の経路を開閉するものである。スイッチ414は、タイミング制御回路212からの制御信号SVMIA[n]に従って、スイッチ411および容量素子419の接続ノードと、スイッチ413および容量素子420の接続ノードとの間の経路を開閉するものである。制御信号SVMIA[n]における添え字内のnは、SARADC320を共有するN(例えば、4)個の容量マルチプレクサ400のうちn(nは、0乃至Nの整数)個目を示す。以下の制御信号についても同様である。 The switch 413 opens and closes the path between the local reference voltage VR and the capacitive element 420 according to the control signal SINA from the timing control circuit 212 . The switch 414 opens and closes the path between the connection node of the switch 411 and the capacitance element 419 and the connection node of the switch 413 and the capacitance element 420 according to the control signal SVMIA[n] from the timing control circuit 212 . . The subscript n in the control signal S VMIA[n] indicates the n (n is an integer from 0 to N) out of the N (eg, 4) capacitive multiplexers 400 that share the SAR ADC 320 . The same applies to the following control signals.
 容量素子419は、スイッチ411および417の間に挿入される。容量素子420は、スイッチ413および418の間に挿入される。 A capacitive element 419 is inserted between switches 411 and 417 . A capacitive element 420 is inserted between switches 413 and 418 .
 スイッチ415および416は、容量素子419およびスイッチ417の接続ノードと、容量素子420およびスイッチ418の接続ノードとの間において、直列に接続される。これらのスイッチ415および416は、タイミング制御回路212からの制御信号SVMAに従って、開閉する。また、スイッチ415および416の接続ノードはSARADC320に接続され、コモン電圧VCRが印加される。 Switches 415 and 416 are connected in series between the connection node of capacitive element 419 and switch 417 and the connection node of capacitive element 420 and switch 418 . These switches 415 and 416 open and close according to the control signal SVMA from the timing control circuit 212 . A connection node of switches 415 and 416 is connected to SAR ADC 320 and receives common voltage VCR.
 スイッチ417は、タイミング制御回路212からの制御信号SSUMA[n]に従って、容量素子419とSARADC320との間の経路を開閉するものである。スイッチ417が閉状態の際に、アナログの正側信号SH+がSARADC320へ出力される。 The switch 417 opens and closes the path between the capacitive element 419 and the SAR ADC 320 according to the control signal SSUMA[n] from the timing control circuit 212 . An analog positive signal SH+ is output to SAR ADC 320 when switch 417 is closed.
 スイッチ418は、タイミング制御回路212からの制御信号SSUMA[n]に従って、容量素子420とSARADC320との間の経路を開閉するものである。スイッチ418が閉状態の際に、アナログの負側信号SH-がSARADC320へ出力される。 The switch 418 opens and closes the path between the capacitive element 420 and the SAR ADC 320 according to the control signal SSUMA[n] from the timing control circuit 212 . An analog negative signal SH− is output to SAR ADC 320 when switch 418 is closed.
 サンプルホールドブロック430および450の回路構成は、サンプルホールドブロック410と同様である。ただし、サンプルホールドブロック430には、制御信号SIN0B、SIN1B、SINB、SVMIB[n]、SVMB、SSUMB[n]が入力される。また、サンプルホールドブロック450には、制御信号SIN0C、SIN1C、SINC、SVMIC[n]、SVMC、SSUMC[n]が入力される。 The circuit configurations of sample and hold blocks 430 and 450 are similar to sample and hold block 410 . However, the control signals S IN0B , S IN1B , S INB , S VMIB[n] , S VMB and S SUMB[n] are input to the sample hold block 430 . Also, the control signals S IN0C , S IN1C , S INC , S VMIC[n] , S VMC and S SUMC[n] are input to the sample hold block 450 .
 上述の回路のスイッチの制御方法の詳細については後述する。また、以下、サンプルホールドブロック410、430および450をブロックA、BおよびCと称する。 The details of the method of controlling the switches in the circuit described above will be described later. Sample and hold blocks 410, 430 and 450 are also referred to as blocks A, B and C hereinafter.
 同図に例示した回路構成により、容量マルチプレクサ400は、対応する2列のそれぞれの画素信号VSLm'(言い換えれば、シングルエンド信号)を差動信号に変換して保持する。そして、容量マルチプレクサ400は、保持した2列分の画素信号(言い換えれば、差動信号)を順にSARADC320に出力する。 With the circuit configuration illustrated in the figure, the capacitive multiplexer 400 converts the pixel signals VSLm' (in other words, single-ended signals) of the corresponding two columns into differential signals and holds them. Then, the capacitive multiplexer 400 sequentially outputs the held pixel signals for two columns (in other words, differential signals) to the SAR ADC 320 .
 なお、容量マルチプレクサ400は、差動変換を行っているが、差動変換を行わずにシングルエンド信号のままで保持し、出力することもできる。この場合には、容量素子を半分に削減することができる。 Although the capacitive multiplexer 400 performs differential conversion, it is also possible to hold and output a single-ended signal without performing differential conversion. In this case, the number of capacitive elements can be reduced by half.
 [SARADCおよびデジタル信号処理部の構成例]
 図8は、本技術の第1の実施の形態におけるSARADC320およびデジタル信号処理部240の一構成例を示すブロック図である。SARADC320は、オートゼロスイッチ321および322と、プリアンプ323と、コンパレータ324と、CDAC325および326と、SARロジック回路327とを備える。
[Configuration example of SAR ADC and digital signal processing unit]
FIG. 8 is a block diagram showing one configuration example of the SAR ADC 320 and the digital signal processing unit 240 according to the first embodiment of the present technology. SAR ADC 320 comprises autozero switches 321 and 322 , preamplifier 323 , comparator 324 , CDACs 325 and 326 and SAR logic circuit 327 .
 プリアンプ323の非反転入力端子(+)には、容量マルチプレクサ400からの正側信号SH+が入力される。プリアンプ323の反転入力端子(-)には、容量マルチプレクサ400からの負側信号SH-が入力される。また、プリアンプ323内の正側、負側のコモン電圧として、容量マルチプレクサ400からのコモン電圧VCRが用いられる。プリアンプ323は、正側信号SH+および負側信号SH-からなる差動信号を増幅し、コンパレータ324に差動出力する。この差動信号は、前述したように、差動変換された画素信号に該当する。 A positive side signal SH+ from the capacitance multiplexer 400 is input to the non-inverting input terminal (+) of the preamplifier 323 . The negative side signal SH- from the capacitance multiplexer 400 is input to the inverting input terminal (-) of the preamplifier 323 . Further, the common voltage VCR from the capacitance multiplexer 400 is used as the positive side and negative side common voltages in the preamplifier 323 . The preamplifier 323 amplifies a differential signal composed of the positive side signal SH+ and the negative side signal SH− and differentially outputs it to the comparator 324 . This differential signal corresponds to a differentially converted pixel signal, as described above.
 オートゼロスイッチ321は、タイミング制御回路212からの制御信号SAZに従って、プリアンプ323の非反転入力端子(+)と非反転出力端子との間の経路を開閉するものである。オートゼロスイッチ322は、制御信号SAZに従って、プリアンプ323の反転入力端子(-)と反転出力端子との間の経路を開閉するものである。制御信号SAZの示すタイミングでオートゼロスイッチ321および322が閉状態に移行し、オートゼロが実行される。 The auto-zero switch 321 opens and closes the path between the non-inverting input terminal (+) and the non-inverting output terminal of the preamplifier 323 according to the control signal SAZ from the timing control circuit 212 . The auto-zero switch 322 opens and closes the path between the inverting input terminal (-) and the inverting output terminal of the preamplifier 323 according to the control signal SAZ . The auto-zero switches 321 and 322 are closed at the timing indicated by the control signal SAZ , and auto-zero is performed.
 コンパレータ324は、タイミング制御回路212からのクロック信号CKIに同期して、プリアンプ323の非反転出力端子の電位と反転出力端子の電位とを比較するものである。このコンパレータ324は、比較結果をSARロジック回路327に供給する。 The comparator 324 compares the potential of the non-inverting output terminal and the potential of the inverting output terminal of the preamplifier 323 in synchronization with the clock signal CKI from the timing control circuit 212 . This comparator 324 supplies the comparison result to the SAR logic circuit 327 .
 CDAC325は、SARロジック回路327の制御に従って正側の参照信号を生成し、プリアンプ323の非反転入力端子(+)に供給するものである。CDAC326は、SARロジック回路327の制御に従って負側の参照信号を生成し、プリアンプ323の反転入力端子(-)に供給するものである。これらの参照信号により、画素信号(すなわち、差動信号)の値が増減する。このように、コンパレータ324の比較結果は、差動信号と参照信号とから得られたものである。例えば、比較結果は、差動信号を参照信号により増減した値が所定レベル(「0」など)より高いか否かを示す。なお、CDAC325および326は、特許請求の範囲に記載のデジタルアナログ変換部の一例である。 The CDAC 325 generates a positive side reference signal under the control of the SAR logic circuit 327 and supplies it to the non-inverting input terminal (+) of the preamplifier 323 . The CDAC 326 generates a negative side reference signal under the control of the SAR logic circuit 327 and supplies it to the inverting input terminal (-) of the preamplifier 323 . These reference signals increase or decrease the value of the pixel signal (that is, the differential signal). Thus, the comparison result of comparator 324 is obtained from the differential signal and the reference signal. For example, the comparison result indicates whether or not the value obtained by increasing or decreasing the differential signal with the reference signal is higher than a predetermined level (such as "0"). Note that the CDACs 325 and 326 are an example of the digital-analog converter described in the claims.
 SARロジック回路327には、タイミング制御回路212からの制御信号SAZおよびクロック信号CKと、デジタル信号処理部240からのリセットコードRCと、コンパレータ324からの比較結果とが入力される。リセットコードRCは、CDAC325および326からの参照信号の初期値を示すコードである。 The SAR logic circuit 327 receives the control signal SAZ and the clock signal CK from the timing control circuit 212 , the reset code RC from the digital signal processing section 240 , and the comparison result from the comparator 324 . Reset code RC is a code indicating the initial value of the reference signal from CDACs 325 and 326 .
 SARロジック回路327は、制御信号SAZの示すオートゼロのタイミングでリセットコードRCにより参照信号を初期化する。初期化の後にSARロジック回路327は、比較結果に基づいて、正側または負側の参照信号を更新して差動信号を増減させる。増減する値は、比較のたびに前回値よりも小さくなるように制御される。これにより、二分探索が実現される。逐次比較は、クロック信号CKIに同期して実行され、所定回数分の比較結果を配列したデジタル信号がDoutとしてデジタル信号処理部240に出力される。なお、SARロジック回路327は、特許請求の範囲に記載の逐次比較ロジック回路の一例である。 The SAR logic circuit 327 initializes the reference signal with the reset code RC at the auto-zero timing indicated by the control signal SAZ . After initialization, the SAR logic circuit 327 updates the positive or negative side reference signal to increase or decrease the differential signal based on the comparison result. The incrementing or decrementing value is controlled to be smaller than the previous value for each comparison. This implements a binary search. The successive approximation is executed in synchronization with the clock signal CKI, and a digital signal in which comparison results for a predetermined number of times are arranged is output to the digital signal processing section 240 as Dout. The SAR logic circuit 327 is an example of the successive approximation logic circuit described in the claims.
 デジタル信号処理部240は、リセット制御部241と、前段処理部242と、複数のリセットコード処理部243と、後段処理部244とを備える。リセットコード処理部243は、SARADC320ごとに配置される。 The digital signal processing section 240 includes a reset control section 241 , a pre-processing section 242 , a plurality of reset code processing sections 243 and a post-processing section 244 . The reset code processing unit 243 is arranged for each SAR ADC 320 .
 リセット制御部241は、リセットコードRCの値を制御するものである。このリセット制御部241は、垂直走査回路211により行が駆動されるたびにリセットコードRCを前回値と異なる値に更新する。リセットコードRCを更新する場合、リセット制御部241は、例えば、所定の演算を実行し、その演算結果に更新する。 The reset control unit 241 controls the value of the reset code RC. The reset control unit 241 updates the reset code RC to a value different from the previous value every time the vertical scanning circuit 211 drives the row. When updating the reset code RC, the reset control unit 241 executes, for example, a predetermined calculation and updates to the calculation result.
 更新時の演算は、初期値のリセットコードとディザ信号との加算を含む。例えば、リセット制御部241は、更新のたびにディザ信号を生成し、初期値のリセットコードにディザ信号を加算した結果を新たなリセットコードとする。  Arithmetic at the time of updating includes addition of the reset code of the initial value and the dither signal. For example, the reset control unit 241 generates a dither signal each time an update is performed, and sets the result of adding the dither signal to the reset code of the initial value as a new reset code.
 なお、更新時の演算は、前回値に所定値(「1」など)を加算または減算する処理を含むものであってもよい。この場合、例えば、リセット制御部241は、更新のたびに前回のリセットコードに対するインクリメントやデクリメントを行い、その結果を新たなリセットコードとする。 Note that the computation at the time of updating may include processing for adding or subtracting a predetermined value (such as "1") from the previous value. In this case, for example, the reset control unit 241 increments or decrements the previous reset code at each update, and uses the result as a new reset code.
 また、リセット制御部241は、AD変換の終了時に、更新後のリセットコードRCを前段処理部242に供給する。前段処理部242は、SARADC320からのデジタル信号Doutをデコードしてリセットコード処理部243に供給する。デコードは、例えば、デジタル信号Doutがバイナリデータの場合、10進数に変換する処理を含む。なお、デジタル信号Doutのデコードの際にリニアリティ補正を同時に行うこともできる。また、前段処理部242は、更新後のリセットコードRCをデコードして補正量を求め、リセットコード処理部243に供給する。 Also, the reset control unit 241 supplies the updated reset code RC to the pre-processing unit 242 at the end of the AD conversion. The pre-processing unit 242 decodes the digital signal Dout from the SAR ADC 320 and supplies it to the reset code processing unit 243 . For example, when the digital signal Dout is binary data, decoding includes processing to convert it into decimal numbers. Note that linearity correction can be performed simultaneously with decoding of the digital signal Dout. The pre-processing unit 242 also decodes the updated reset code RC to obtain a correction amount, and supplies it to the reset code processing unit 243 .
 リセットコード処理部243は、前段処理部242からの補正量に基づいて、デコード後のデジタル信号Doutに対するリセットコード処理を行うものである。例えば、デジタル信号Doutから補正量(言い換えれば、リセットコード)が減算される。リセットコード処理部243は、補正後のデジタル信号を後段処理部244に供給する。 The reset code processing unit 243 performs reset code processing on the decoded digital signal Dout based on the correction amount from the pre-processing unit 242 . For example, the correction amount (in other words, reset code) is subtracted from the digital signal Dout. The reset code processing unit 243 supplies the corrected digital signal to the post-processing unit 244 .
 後段処理部244は、リセットコード処理部243からのデジタル信号に対して、各種の後段処理を必要に応じて実行するものである。この後段処理部244は、処理後のデジタル信号をDSP回路120に供給する。 The post-processing unit 244 performs various post-processing on the digital signal from the reset code processing unit 243 as necessary. The post-processing section 244 supplies the processed digital signal to the DSP circuit 120 .
 なお、SARADC320は、差動信号をAD変換しているが、シングルエンド信号をAD変換することもできる。この場合、前段の容量マルチプレクサ400が差動変換を行わない。また、CDAC325および326の一方が削減され、コンパレータ324は、画素信号と参照信号とを比較する。 The SAR ADC 320 AD converts differential signals, but can also AD convert single-ended signals. In this case, the previous-stage capacitive multiplexer 400 does not perform differential conversion. Also, one of the CDACs 325 and 326 is reduced and the comparator 324 compares the pixel signal with the reference signal.
 また、SARADC320およびデジタル信号処理部240を固体撮像素子200内に配置しているが、この構成に限定されない。AD変換を行う回路であれば、固体撮像素子200以外の回路にSARADC320およびデジタル信号処理部240を配置することもできる。なお、SARADC320およびデジタル信号処理部240を配置した回路は、特許請求の範囲に記載のアナログデジタル変換回路の一例である。 Also, although the SAR ADC 320 and the digital signal processing unit 240 are arranged in the solid-state imaging device 200, the configuration is not limited to this. The SAR ADC 320 and the digital signal processing unit 240 can be arranged in a circuit other than the solid-state imaging device 200 as long as it is a circuit that performs AD conversion. The circuit in which the SAR ADC 320 and the digital signal processing unit 240 are arranged is an example of the analog-to-digital conversion circuit described in the claims.
 図9は、本技術の第1の実施の形態におけるアナログデジタル変換部300およびデジタル信号処理部240の一構成例を示すブロック図である。同図においてカラムアンプ310は省略されている。 FIG. 9 is a block diagram showing one configuration example of the analog-to-digital converter 300 and the digital signal processor 240 according to the first embodiment of the present technology. The column amplifier 310 is omitted in FIG.
 8列でSARADC320を共有する場合、8列毎にSARADC320が設けられる。リセット制御部241は、SARADC320のそれぞれに同一のリセットコードRCを供給する。ただし、リセット制御部241は、垂直走査回路211により行が駆動されるたびに、ディザ信号により、リセットコードRCを前回値と異なる値に制御する。補正量についても同様に、リセットコード処理部243のそれぞれに同一の値が供給され、行が駆動されるたびに補正量が更新される。 When the SAR ADC 320 is shared by 8 columns, the SAR ADC 320 is provided every 8 columns. The reset control unit 241 supplies the same reset code RC to each of the SAR ADCs 320 . However, every time the vertical scanning circuit 211 drives a row, the reset control unit 241 controls the reset code RC to a value different from the previous value by a dither signal. Similarly, the same value is supplied to each of the reset code processing units 243 for the correction amount, and the correction amount is updated each time the row is driven.
 行ごとにリセットコードRCを異なる値にすることにより、列方向に生じる固定パターンノイズを抑制することができる。 By setting the reset code RC to a different value for each row, fixed pattern noise occurring in the column direction can be suppressed.
 [固体撮像素子の動作例]
 図10は、本技術の第1の実施の形態における画素230、カラムアンプ310および容量マルチプレクサ400の制御の一例を示すタイミングチャートである。
[Operation example of solid-state imaging device]
FIG. 10 is a timing chart showing an example of control of the pixels 230, the column amplifiers 310 and the capacitance multiplexer 400 according to the first embodiment of the present technology.
 タイミングT0乃至T1のD相セトリング期間において、垂直走査回路211は、選択した行に転送信号TRGを供給し、行内の画素230に信号レベルを生成させる。 During the D-phase settling period from timing T0 to T1, the vertical scanning circuit 211 supplies the transfer signal TRG to the selected row to cause the pixels 230 in the row to generate signal levels.
 また、そのD相セトリング期間において、タイミング制御回路212は、一定期間に亘ってハイレベルの制御信号Sを供給し、カラムアンプ310にアナログCDS処理を実行させる。また、タイミング制御回路212は、一定期間に亘ってハイレベルの制御信号SIN、SIN0A、SIN1B、SVMAおよびSVMBを供給する。制御信号SINは、SINA、SINBおよびSINCを含むものとする。これらの制御信号により、容量マルチプレクサ400は、ブロックAおよびブロックBに、対応する2列分の画素信号を保持する。 Also, during the D-phase settling period, the timing control circuit 212 supplies a high-level control signal SD for a certain period of time to cause the column amplifier 310 to perform analog CDS processing. Timing control circuit 212 also provides high level control signals S IN , S IN0A , S IN1B , S VMA and S VMB for a certain period of time. The control signal S IN shall include S INA , S INB and S INC . These control signals cause the capacitive multiplexer 400 to hold pixel signals for the corresponding two columns in the block A and block B. FIG.
 SARADC320を共有する4つのうち1つ目の容量マルチプレクサ400は、例えば、第0列および第4列の画素信号を保持し、2つ目の容量マルチプレクサ400は、例えば、第1列および第5列の画素信号を保持する。3つ目の容量マルチプレクサ400は、例えば、第2列および第6列の画素信号を保持し、4つ目の容量マルチプレクサ400は、例えば、第3列および第7列の画素信号を保持する。8列目以降も同様である。これにより、1行分の画素信号が保持される。 The first of the four capacitive multiplexers 400 that share the SARADC 320 holds, for example, pixel signals for columns 0 and 4, and the second capacitive multiplexer 400 holds, for example, columns 1 and 5. holds the pixel signals of A third capacitive multiplexer 400 holds, for example, the pixel signals of the second and sixth columns, and a fourth capacitive multiplexer 400 holds, for example, the pixel signals of the third and seventh columns. The same applies to the eighth and subsequent columns. Thus, pixel signals for one row are held.
 タイミングT1乃至T2のP相セトリング期間において、垂直走査回路211は、選択した行にリセット信号RSTを供給し、行内の画素230にリセットレベルを生成させる。 During the P-phase settling period from timings T1 to T2, the vertical scanning circuit 211 supplies the reset signal RST to the selected row, causing the pixels 230 in the row to generate the reset level.
 また、そのP相セトリング期間において、タイミング制御回路212は、一定期間に亘ってハイレベルの制御信号SおよびSVRを供給し、カラムアンプ310にリセットレベルを保持させる。 During the P -phase settling period, the timing control circuit 212 supplies high-level control signals SP and SVR for a certain period of time to cause the column amplifier 310 to hold the reset level.
 次のタイミングT2乃至T3のD相セトリング期間の画素230およびカラムアンプ310の制御内容は、前回のD相セトリング期間と同様である。一方、容量マルチプレクサ400に対してタイミング制御回路212は、一定期間に亘ってハイレベルの制御信号SIN、SIN1A、SIN0C、SVMAおよびSVMCを供給する。これらの制御信号により、容量マルチプレクサ400は、ブロックAおよびブロックCに、対応する2列分の画素信号を保持する。 The control contents of the pixels 230 and the column amplifiers 310 during the D-phase settling period from timings T2 to T3 are the same as those during the previous D-phase settling period. On the other hand, the timing control circuit 212 supplies the high level control signals S IN , S IN1A , S IN0C , S VMA and S VMC to the capacitive multiplexer 400 for a certain period of time. These control signals cause the capacitive multiplexer 400 to hold pixel signals for two corresponding columns in blocks A and C. FIG.
 次のタイミングT3乃至T4のP相セトリング期間の制御内容は、前回のP相セトリング期間と同様である。 The control contents of the P-phase settling period of the next timings T3 to T4 are the same as the previous P-phase settling period.
 次のタイミングT4乃至T5のD相セトリング期間の画素230およびカラムアンプ310の制御内容は、前回のD相セトリング期間と同様である。一方、容量マルチプレクサ400に対してタイミング制御回路212は、一定期間に亘ってハイレベルの制御信号SIN、SIN0B、SIN1C、SVMBおよびSVMCを供給する。これらの制御信号により、容量マルチプレクサ400は、ブロックBおよびブロックCに、対応する2列分の画素信号を保持する。 The control contents of the pixels 230 and the column amplifiers 310 during the D-phase settling period from timings T4 to T5 are the same as those during the previous D-phase settling period. On the other hand, the timing control circuit 212 supplies the high level control signals S IN , S IN0B , S IN1C , S VMB and S VMC to the capacitive multiplexer 400 for a certain period of time. These control signals cause the capacitance multiplexer 400 to hold the pixel signals for the corresponding two columns in the blocks B and C. As shown in FIG.
 タイミングT5以降は、全行が選択されるまで同様の制御が繰り返し実行される。 After timing T5, similar control is repeatedly executed until all rows are selected.
 図11は、本技術の第1の実施の形態における容量マルチプレクサ400およびSARADC320の制御の一例を示すタイミングチャートである。 FIG. 11 is a timing chart showing an example of control of the capacitance multiplexer 400 and the SAR ADC 320 according to the first embodiment of the present technology.
 前述したように、タイミングT0乃至T1のD相セトリング期間において、SARADC320を共有する4つの容量マルチプレクサ400は、8列分の画素信号を保持する。 As described above, during the D-phase settling period from timing T0 to T1, the four capacitive multiplexers 400 sharing the SAR ADC 320 hold pixel signals for eight columns.
 タイミングT1乃至T2のP相セトリング期間において、タイミング制御回路212は、制御信号SSUMA[0]、SSUMA[1]、SSUMA[2]およびSSUMA[3]を順に供給する。また、制御信号SVMIA[0]、SVMIA[1]、SVMIA[2]およびSVMIA[3]も順に供給される。これにより、SARADC320を共有する4つの容量マルチプレクサ400のそれぞれのブロックAに保持された画素信号が順に出力される。 During the P-phase settling period of timings T1 to T2, the timing control circuit 212 sequentially supplies control signals S SUMA[0] , S SUMA[1] , S SUMA[2] and S SUMA[3] . Control signals S-- VMIA[0] , S-- VMIA[1] , S-- VMIA[2] and S-- VMIA[3] are also provided in sequence. As a result, the pixel signals held in the respective blocks A of the four capacitive multiplexers 400 sharing the SAR ADC 320 are sequentially output.
 また、SARADC320は、クロック信号CKに同期して、ブロックAからの4つの画素信号のそれぞれを順にAD変換する。 In addition, the SAR ADC 320 AD-converts each of the four pixel signals from the block A in sequence in synchronization with the clock signal CK.
 クロック信号CKがローレベルの期間内にハイレベルの制御信号SAZが供給され、その期間内にSARADC320は、リセットコードRCを用いてオートゼロを行う。クロック信号CKがハイレベルの期間内に、そのクロック信号CKより周波数の高いクロック信号CKIが供給され、SARADC320は、そのクロック信号CKIに同期して逐次比較を行う。 A high-level control signal SAZ is supplied while the clock signal CK is at a low level, and the SAR ADC 320 performs auto-zeroing using the reset code RC during that period. While the clock signal CK is at high level, a clock signal CKI having a frequency higher than that of the clock signal CK is supplied, and the SAR ADC 320 performs successive approximation in synchronization with the clock signal CKI.
 次のタイミングT2乃至T3のD相セトリング期間において、タイミング制御回路212は、制御信号SSUMB[0]、SSUMB[1]、SSUMB[2]およびSSUMB[3]を順に供給する。また、制御信号SVMIB[0]、SVMIB[1]、SVMIB[2]およびSVMIB[3]も順に供給される。これにより、SARADC320を共有する4つの容量マルチプレクサ400のそれぞれのブロックBに保持された画素信号が順に出力される。 During the D-phase settling period of the next timings T2 to T3, the timing control circuit 212 sequentially supplies the control signals S SUMB[0] , S SUMB[1] , S SUMB[2] and S SUMB[3] . Control signals S-- VMIB[0] , S-- VMIB[1] , S-- VMIB[2] and S-- VMIB[3] are also provided in sequence. As a result, the pixel signals held in the respective blocks B of the four capacitive multiplexers 400 sharing the SAR ADC 320 are sequentially output.
 また、SARADC320は、クロック信号CKに同期して、ブロックBからの4つの画素信号のそれぞれを順にAD変換する。タイミングT1乃至T3までの期間内に、タイミングT0乃至T1の期間内に保持された8列分の画素信号がAD変換される。複数のSDRADC320が並列に動作して、それぞれ8列分の画素信号をAD変換することにより、1行分の画素信号が読み出される。このため、P相セトリング期間と、その直後のD相セトリング期間とからなる期間は、1行分のAD変換期間に該当する。 In addition, the SAR ADC 320 sequentially AD-converts each of the four pixel signals from the block B in synchronization with the clock signal CK. During the period from timings T1 to T3, pixel signals for eight columns held during the period from timings T0 to T1 are AD-converted. A plurality of SDRADCs 320 operate in parallel to AD-convert pixel signals for eight columns, thereby reading pixel signals for one row. Therefore, a period consisting of the P-phase settling period and the immediately following D-phase settling period corresponds to an AD conversion period for one row.
 次のタイミングT3乃至T4のP相セトリング期間において、SARADC320は、ブロックCからの4つの画素信号のそれぞれを順にAD変換する。次のタイミングT4乃至T5のD相セトリング期間において、SARADC320は、ブロックAからの4つの画素信号のそれぞれを順にAD変換する。 In the next P-phase settling period from timing T3 to T4, the SAR ADC 320 AD-converts each of the four pixel signals from block C in turn. During the next D-phase settling period from timing T4 to T5, the SAR ADC 320 AD-converts each of the four pixel signals from block A in turn.
 次のタイミングT5乃至T6のP相セトリング期間において、SARADC320は、ブロックBからの4つの画素信号のそれぞれを順にAD変換する。次のタイミングT6からのD相セトリング期間において、SARADC320は、ブロックCからの4つの画素信号のそれぞれを順にAD変換する。以降は、同様の制御が繰り返し実行される。 In the next P-phase settling period from timings T5 to T6, the SAR ADC 320 AD-converts each of the four pixel signals from block B in turn. In the D-phase settling period from the next timing T6, the SAR ADC 320 AD-converts each of the four pixel signals from block C in turn. After that, similar control is repeatedly executed.
 また、リセット制御部241は、1行分のAD変換期間が経過する(言い換えれば、行が駆動される)たびに、リセットコードRCを前回値と異なる値に更新する。例えば、タイミングT1乃至T3のAD変換期間にリセット制御部241は、前回のRC_aと異なるRC_bに更新する。次のタイミングT3乃至T5のAD変換期間にリセット制御部241は、前回のRC_bと異なるRC_cに更新する。以下、行が駆動されるたびにリセットコードが更新される。これにより各行について異なるリセットコードが設定される。 Also, the reset control unit 241 updates the reset code RC to a value different from the previous value every time the AD conversion period for one row passes (in other words, the row is driven). For example, during the AD conversion period of timings T1 to T3, the reset control unit 241 updates to RC_b different from the previous RC_a. The reset control unit 241 updates to RC_c different from the previous RC_b in the AD conversion period of the next timings T3 to T5. Below, the reset code is updated each time a row is driven. This sets a different reset code for each row.
 ここで、各行のリセットコードRCを一定とする構成を比較例として想定する。 Here, as a comparative example, assume a configuration in which the reset code RC of each row is constant.
 図12は、比較例における容量マルチプレクサ400およびSARADC320の制御の一例を示すタイミングチャートである。同図に例示するように比較例では、リセットコードが更新されず、各行について同一のリセットコードが設定される。 FIG. 12 is a timing chart showing an example of control of the capacitance multiplexer 400 and SARADC 320 in the comparative example. As illustrated in the figure, in the comparative example, the reset code is not updated, and the same reset code is set for each row.
 図13は、本技術の第1の実施の形態におけるリセットコード処理を説明するための図である。同図における縦軸は、デジタル信号Doutの値を示し、横軸は、アナログの画素信号VSLのレベルを示す。同図におけるaは、ディザ信号を印加しない場合のリニアリティ特性を示す図である。同図におけるbは、ディザ信号を印加し、リセットコード処理を行う前のリニアリティ特性を示す図である。同図におけるcは、ディザ信号を印加し、リセットコード処理を行った後のリニアリティ特性を示す図である。 FIG. 13 is a diagram for explaining reset code processing in the first embodiment of the present technology. The vertical axis in the figure indicates the value of the digital signal Dout, and the horizontal axis indicates the level of the analog pixel signal VSL. In the figure, a is a diagram showing linearity characteristics when no dither signal is applied. b in the same figure is a diagram showing the linearity characteristic before the dither signal is applied and the reset code process is performed. In the same figure, c is a diagram showing linearity characteristics after applying a dither signal and performing reset code processing.
 同図におけるaに例示するように、CDACを用いるSARADC320では、入力の画素信号と、出力のデジタル信号との関係が直線的にならないことがある。この場合に、ある画素信号VSLmが、「64」を示すデジタル信号Doutに変換されるものとする。 As exemplified by a in the figure, in the SAR ADC 320 using the CDAC, the relationship between the input pixel signal and the output digital signal may not be linear. In this case, it is assumed that a certain pixel signal VSLm is converted into a digital signal Dout indicating "64".
 前述したように固定パターンノイズを抑制するためにリセット制御部241は、ディザ信号を初期値のリセットコードに印加して新たなリセットコードRCとする。同図において、初期値は、10進数で「0」の値に設定されたものとする。ディザ信号の印加により、同図におけるbに例示するように、ディザ信号印加後のリセットコードRCが初期値(「0」)と異なる値になるため、画素信号VSLmに対応する値は、「96」となり、「64」から、大きくずれてしまう。なお、初期値は、「0」以外の値であってもよい。 As described above, in order to suppress fixed pattern noise, the reset control unit 241 applies a dither signal to the reset code of the initial value to generate a new reset code RC. In the figure, it is assumed that the initial value is set to "0" in decimal number. Due to the application of the dither signal, the reset code RC after application of the dither signal changes to a value different from the initial value (“0”), as illustrated by b in FIG. , which deviates greatly from "64". Note that the initial value may be a value other than "0".
 そこで、リセットコード処理部243は、ディザ信号印加後のリセットコードRCに対応する補正量Cdによりデジタル信号Doutに対するリセットコード処理を行う。同図におけるcに例示するように、この補正により、画素信号VSLmに対応する値は、「66」となり、「64」からのずれを小さくすることができる。同図に例示したように、ディザ信号に応じて、リニアリティの異なる部分でAD変換を行うことができるため、リニアリティのくずれの影響を低減することができる。 Therefore, the reset code processing unit 243 performs reset code processing on the digital signal Dout using the correction amount Cd corresponding to the reset code RC after application of the dither signal. As exemplified by c in the figure, this correction makes the value corresponding to the pixel signal VSLm "66", and the deviation from "64" can be reduced. As illustrated in the figure, since AD conversion can be performed in portions with different linearities according to the dither signal, it is possible to reduce the influence of linearity breakdown.
 図14は、比較例と本技術の第1の実施の形態とにおけるノイズ特性を示すグラフである。同図における縦軸は、縦方向の固定パターンノイズ(FPN:Fixed Pattern Noise)を示し、横軸は、デジタル信号Doutを示す。同図におけるaは、比較例のノイズ特性を示し、同図におけるbは、第1の実施の形態のノイズ特性を示す。 FIG. 14 is a graph showing noise characteristics in the comparative example and the first embodiment of the present technology. In the figure, the vertical axis indicates fixed pattern noise (FPN) in the vertical direction, and the horizontal axis indicates the digital signal Dout. In the figure, a indicates the noise characteristics of the comparative example, and b indicates the noise characteristics of the first embodiment.
 同図に例示するように、ディザ信号を印加しない比較例と比較して、第1の実施の形態では、ディザ信号を印加したため、縦方向のFPNを抑制することができる。 As illustrated in the figure, compared to the comparative example in which no dither signal is applied, in the first embodiment, since the dither signal is applied, FPN in the vertical direction can be suppressed.
 なお、特許文献1に記載のように、シングルスロープ型のADCをカラムごとに配置し、リセットレベルにランダムノイズを印加する方法でも、ある程度は固定パターンノイズを低減することができる。しかし、この方法は、シングルスロープ型のADCを用いることを前提としており、SARADCを配置する構成に適用することができない。また、リセットレベルにランダムノイズを印加する必要があるため、リセットレベルと信号レベルとの差分を求めるアナログCDS処理を行うことができない。さらに、ランダムノイズをアナログ回路により生成する必要があり、その回路は不完全な製造ばらつきなどの影響を受けるため、一定の固定パターンノイズが生じるおそれがある。 As described in Patent Document 1, fixed pattern noise can also be reduced to some extent by arranging a single-slope ADC for each column and applying random noise to the reset level. However, this method assumes the use of a single-slope ADC and cannot be applied to a configuration in which a SAR ADC is arranged. Moreover, since it is necessary to apply random noise to the reset level, analog CDS processing for obtaining the difference between the reset level and the signal level cannot be performed. In addition, the random noise must be generated by analog circuitry, which is subject to imperfections such as manufacturing variations, which can result in constant, fixed-pattern noise.
 これに対して、第1の実施の形態では、SARADCを用いることを前提としている。また、リセットレベルにランダムノイズを印加する必要が無いため、アナログCDS処理を行うことができる。さらに、ディザ信号などを印加したリセットコードを用いるため、デジタル設定を元に確定的にノイズを印加することができ、製造ばらつきの影響を受けない。 On the other hand, in the first embodiment, it is assumed that SARADC is used. Also, since there is no need to apply random noise to the reset level, analog CDS processing can be performed. Furthermore, since a reset code to which a dither signal or the like is applied is used, noise can be applied deterministically based on digital settings, and is not affected by manufacturing variations.
 図15は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、画像データを撮像するための所定のアプリケーションが実行されたときに開始される。 FIG. 15 is a flow chart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
 垂直走査回路211は、読み出す行を選択する(ステップS901)。また、リセット制御部241は、行ごとに異なるリセットコードを設定する(ステップS902)。SARADC320は、オートゼロを行い、この際にリセットコードによりCDSCを初期化する(ステップS903)。そして、SARADC320は、逐次比較を行い、デジタル信号を生成する(ステップS904)。 The vertical scanning circuit 211 selects a row to read (step S901). Also, the reset control unit 241 sets a different reset code for each row (step S902). The SAR ADC 320 performs auto zero, and initializes the CDSC with a reset code (step S903). The SAR ADC 320 then performs successive approximation and generates a digital signal (step S904).
 また、デジタル信号処理部240は、リセットコードによりデジタル信号を補正する(ステップS905)。SARADC320は、最終行が読み出されたか否かを判断する(ステップS906)。最終行が読み出されていない場合(ステップS906:No)、固体撮像素子200は、ステップS901以降を繰り返し実行する。最終行が読み出された場合(ステップS906:Yes)、固体撮像素子200は、撮像のための動作を終了する。 Also, the digital signal processing unit 240 corrects the digital signal using the reset code (step S905). SARADC 320 determines whether the last row has been read (step S906). If the last line has not been read (step S906: No), the solid-state imaging device 200 repeatedly executes step S901 and subsequent steps. If the last line has been read (step S906: Yes), the solid-state imaging device 200 ends the operation for imaging.
 垂直同期信号に同期して複数枚の画像データを連続して撮像する場合、ステップS901乃至S906が垂直同期信号に同期して繰り返し実行される。 When continuously capturing a plurality of image data in synchronization with the vertical synchronization signal, steps S901 to S906 are repeatedly executed in synchronization with the vertical synchronization signal.
 このように、本技術の第1の実施の形態によれば、リセット制御部241が、行ごとに異なる値にリセットコードを制御するため、固定パターンノイズを抑制することができる。これにより、画素信号の信号品質を向上させることができる。 Thus, according to the first embodiment of the present technology, the reset control unit 241 controls the reset code to a different value for each row, so fixed pattern noise can be suppressed. Thereby, the signal quality of the pixel signal can be improved.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、リセットコードを行ごとに異なる値に制御していたが、この構成では、行方向の固定パターンノイズを十分に抑制することができないおそれがある。この第2の実施の形態の固体撮像素子200は、リセットコードを、行毎および列毎に異なる値に制御する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the reset code is controlled to have a different value for each row, but with this configuration, there is a possibility that fixed pattern noise in the row direction cannot be sufficiently suppressed. The solid-state imaging device 200 of the second embodiment differs from the first embodiment in that the reset code is controlled to have different values for each row and each column.
 図16は、本技術の第2の実施の形態におけるアナログデジタル変換部300およびデジタル信号処理部240の一構成例を示すブロック図である。この第2の実施の形態のリセット制御部241は複数のSARADC320のそれぞれに異なる値のリセットコードを供給する。 FIG. 16 is a block diagram showing one configuration example of the analog-to-digital converter 300 and the digital signal processor 240 according to the second embodiment of the present technology. The reset control unit 241 of the second embodiment supplies reset codes of different values to each of the plurality of SAR ADCs 320 .
 例えば、リセット制御部241は、k(kは、整数)個目のSARADC320にリセットコードRC_Aを供給する。また、リセット制御部241は、リセットコードRC_Aと異なるリセットコードRC_Bをディザ信号の印加などにより生成し、k+1個目のSARADC320に供給する。 For example, the reset control unit 241 supplies the reset code RC_A to the k-th (k is an integer) SAR ADC 320 . Also, the reset control unit 241 generates a reset code RC_B different from the reset code RC_A by applying a dither signal or the like, and supplies it to the k+1 th SAR ADC 320 .
 図17は、本技術の第2の実施の形態におけるk個目のSARADC320のリセットコードの制御例を示すタイミングチャートである。リセット制御部241は、オートゼロのタイミングを示す制御信号SAZに同期して前回値と異なる値にリセットコードを制御する。オートゼロは、画素信号がSARADC320に入力されるたび(言い換えれば、列毎)に実行されるため、列毎に異なるリセットコードが設定される。 FIG. 17 is a timing chart showing an example of reset code control of the k-th SAR ADC 320 according to the second embodiment of the present technology. The reset control unit 241 controls the reset code to a value different from the previous value in synchronization with the control signal SAZ indicating the auto-zero timing. Since auto-zeroing is performed each time a pixel signal is input to the SAR ADC 320 (in other words, for each column), a different reset code is set for each column.
 例えば、k個目のSARADC320を共有する複数列のうち第0列のオートゼロの際にリセット制御部241は、リセットコードRC_A0を供給する。次の第1列のオートゼロの際にリセット制御部241は、リセットコードRC_A0と異なるリセットコードRC_A1をディザ信号の印加などにより生成し、SARADC320に供給する。また、第1の実施の形態と同様に、行毎に異なるリセットコードが設定される。 For example, the reset control unit 241 supplies the reset code RC_A0 when the 0th column among the plurality of columns sharing the kth SAR ADC 320 is auto-zeroed. At the time of auto-zeroing of the next first column, the reset control unit 241 generates a reset code RC_A1 different from the reset code RC_A0 by applying a dither signal or the like, and supplies it to the SAR ADC 320 . Also, as in the first embodiment, a different reset code is set for each row.
 図18は、技術の第2の実施の形態におけるk+1個目のSARADC320のリセットコードの制御例を示すタイミングチャートである。リセット制御部241は、行毎および列毎に異なる値にリセットコードを制御する。 FIG. 18 is a timing chart showing an example of reset code control of the k+1th SAR ADC 320 in the second embodiment of the technology. The reset control unit 241 controls the reset code to different values for each row and each column.
 例えば、k+1個目のSARADC320を共有する複数列のうち第0列のオートゼロの際にリセット制御部241は、リセットコードRC_B0を供給する。次の第1列のオートゼロの際にリセット制御部241は、リセットコードRC_B0と異なるリセットコードRC_B1をディザ信号の印加などにより生成し、SARADC320に供給する。 For example, the reset control unit 241 supplies the reset code RC_B0 during auto-zeroing of the 0th column among the plurality of columns sharing the k+1th SAR ADC 320 . At the next auto-zeroing of the first column, the reset control unit 241 generates a reset code RC_B1 different from the reset code RC_B0 by applying a dither signal or the like, and supplies it to the SAR ADC 320 .
 また、k+1個目のSARADC320の第0列のリセットコードRC_B0は、k個目のSARADC320の第0列のリセットコードRC_A0と異なる。k+1個目のSARADC320の第1列のリセットコードRC_B1は、k個目のSARADC320の第1列のリセットコードRC_A1と異なる。以降の列についても同様である。 Also, the reset code RC_B0 in the 0th column of the k+1 SAR ADC 320 is different from the reset code RC_A0 in the 0th column of the k th SAR ADC 320 . The first column reset code RC_B1 of the k+1 th SAR ADC 320 is different from the first column reset code RC_A1 of the k th SAR ADC 320 . The same applies to subsequent columns.
 図16乃至図18に例示したように、リセット制御部241は、行毎、列毎、さらに、SARADC320毎に、異なる値となるようにリセットコードを制御する。 As illustrated in FIGS. 16 to 18, the reset control unit 241 controls the reset code so that it has different values for each row, each column, and each SAR ADC 320 .
 図19は、本技術の第2の実施の形態におけるノイズ特性の一例を示す図である。第2の実施の形態におけるリードアウトノイズは、第1の実施の形態と同一である。第2の実施の形態における画素のFPNは、第1の実施の形態と同程度である。 FIG. 19 is a diagram showing an example of noise characteristics in the second embodiment of the present technology. Readout noise in the second embodiment is the same as in the first embodiment. The pixel FPN in the second embodiment is approximately the same as in the first embodiment.
 第2の実施の形態における行方向のFPNレベルは、第1の実施の形態と比較して低下(改善)する。第2の実施の形態における行方向のFPN最大値も、第1の実施の形態と比較して改善する。また、第2の実施の形態において、列方向のFPNレベル、列方向のFPN最大値は、第1の実施の形態と同程度である。 The FPN level in the row direction in the second embodiment is lowered (improved) compared to the first embodiment. The FPN maximum value in the row direction in the second embodiment is also improved compared to the first embodiment. In the second embodiment, the FPN level in the column direction and the FPN maximum value in the column direction are approximately the same as in the first embodiment.
 第2の実施の形態における行方向の一時ノイズレベルは、第1の実施の形態と比較して低下(改善)する。第2の実施の形態における行方向の一時ノイズ最大値も、第1の実施の形態と比較して改善する。また、第2の実施の形態において、列方向の一時ノイズレベル、列方向の一時ノイズ最大値は、第1の実施の形態と同一である。 The temporary noise level in the row direction in the second embodiment is reduced (improved) compared to the first embodiment. The row-wise transient noise maximum in the second embodiment is also improved compared to the first embodiment. In the second embodiment, the column-direction temporal noise level and the column-direction temporal noise maximum value are the same as in the first embodiment.
 同図に例示したように、第2の実施の形態では、行毎、列毎、SARADC320毎に異なるリセットコードを設定するため、行方向のノイズがさらに低減する。 As illustrated in the figure, in the second embodiment, different reset codes are set for each row, each column, and for each SAR ADC 320, so noise in the row direction is further reduced.
 なお、図20におけるaに例示するように、リセット制御部241は、各列に同一のリセットコードを設定し、行毎、SARADC320毎に異なるリセットコードを設定することもできる。 Note that the reset control unit 241 can also set the same reset code for each column, and set a different reset code for each row and for each SAR ADC 320, as exemplified by a in FIG.
 また、同図におけるbに例示するように、リセット制御部241は、複数のSARADC320に同一のリセットコードを設定し、行毎、列毎に異なるリセットコードを設定することもできる。 Also, as exemplified by b in the figure, the reset control unit 241 can set the same reset code to a plurality of SAR ADCs 320, and set different reset codes for each row and each column.
 このように本技術の第2の実施の形態によれば、リセット制御部241が、行毎、列毎に異なる値にリセットコードを制御するため、固定パターンノイズをさらに抑制することができる。 As described above, according to the second embodiment of the present technology, the reset control unit 241 controls the reset code to a different value for each row and for each column, so fixed pattern noise can be further suppressed.
 <3.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<3. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 21, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 21, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図22は、撮像部12031の設置位置の例を示す図である。 FIG. 22 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図22では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 22, the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図22には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 22 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1の撮像装置100は、撮像部12031に適用することができる撮像部12031に本開示に係る技術を適用することにより、固定パターンノイズを抑制して、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the imaging apparatus 100 in FIG. 1 applies the technology according to the present disclosure to the imaging unit 12031 that can be applied to the imaging unit 12031, thereby suppressing fixed pattern noise and producing a more viewable captured image. can be obtained, it becomes possible to reduce the fatigue of the driver.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the scope of claims have corresponding relationships. Similarly, the matters specifying the invention in the scope of claims and the matters in the embodiments of the present technology with the same names have corresponding relationships. However, the present technology is not limited to the embodiments, and can be embodied by various modifications to the embodiments without departing from the scope of the present technology.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成もとることができる。
(1)入力されたアナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、
 前記参照信号を供給するデジタルアナログ変換器と、
 所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較ロジック回路と、
 前記リセットコードの値を制御するリセット制御部と
を具備するアナログデジタル変換回路。
(2)それぞれが前記アナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部と、
 前記画素アレイ部内の行を順に駆動して前記アナログ信号を出力させる垂直走査回路と
をさらに具備し、
 前記リセット制御部は、前記垂直走査回路が行を駆動するたびに前記リセットコードを前回値と異なる値に更新する
前記(1)記載のアナログデジタル変換回路。
(3)前記リセット制御部は、前記アナログ信号が入力されるたびに前記リセットコードを前回値と異なる値に制御する
前記(2)記載のアナログデジタル変換回路。
(4)複数のSARADC(Successive Approximation Register Analog to Digital Converter)が配列され、
 前記複数のSARADCのそれぞれに前記コンパレータ、前記デジタルアナログ変換器および前記逐次比較ロジック回路が配置され、
 前記リセット制御部は、前記複数のSARADCのそれぞれのリセットコードを異なる値に制御する
前記(2)または(3)に記載のアナログデジタル変換回路。
(5)複数のアナログ信号を容量素子に保持して前記保持した複数のアナログ信号のいずれかを順に選択して前記コンパレータに入力する容量マルチプレクサをさらに具備する
前記(1)から(4)のいずれかに記載のアナログデジタル変換回路。
(6)所定のリセットレベルと露光量に応じた信号レベルとの差分を求めて前記アナログ信号として供給するカラムアンプをさらに具備する
前記(1)から(5)のいずれかに記載のアナログデジタル変換回路。
(7)前記リセットコードに基づいて補正量を求める前段処理部と、
 前記補正量に基づいて前記逐次比較ロジック回路からのデジタル信号に対するリセットコード処理を行うリセットコード処理部をさらに具備し、
 前記リセット制御部は、所定の初期値のコードに対して所定の演算を行った演算結果を前記リセットコードとして供給し、
 前記前段処理部は、前記リセットコードに応じた前記補正量を前記リセットコード処理部に供給し、
 前記逐次比較ロジック回路は、所定数の前記比較結果に基づいて前記デジタル信号を生成する
前記(1)から(6)のいずれかに記載のアナログデジタル変換回路。
(8)前記演算は、ディザ信号の加算を含む
前記(7)記載のアナログデジタル変換回路。
(9)前記演算は、前回値に所定値を加算または減算する処理を含む
前記(7)記載のアナログデジタル変換回路。
(10)アナログ信号を生成する画素と、
 前記アナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、
 前記参照信号を供給するデジタルアナログ変換器と、
 所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較ロジック回路と、
 前記リセットコードの値を制御するリセット制御部と
を具備する固体撮像素子。
(11)入力されたアナログ信号と所定の参照信号とから比較結果を生成する比較手順と、
 前記参照信号を供給するデジタルアナログ変換手順と、
 所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較手順と、
 前記リセットコードの値を制御するリセット制御手順と
を具備するアナログデジタル変換回路の制御方法。
Note that the present technology can also have the following configuration.
(1) a comparator that generates a comparison result from an input analog signal and a predetermined reference signal;
a digital-to-analog converter that provides the reference signal;
a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result;
and a reset control unit that controls the value of the reset code.
(2) a pixel array section in which a plurality of pixels each generating the analog signal are arranged in a two-dimensional grid;
a vertical scanning circuit for sequentially driving rows in the pixel array unit to output the analog signal;
The analog-to-digital conversion circuit according to (1), wherein the reset control unit updates the reset code to a value different from the previous value each time the vertical scanning circuit drives a row.
(3) The analog-to-digital conversion circuit according to (2), wherein the reset control section controls the reset code to a value different from the previous value each time the analog signal is input.
(4) a plurality of SAR ADCs (Successive Approximation Register Analog to Digital Converters) are arranged,
The comparator, the digital-to-analog converter, and the successive approximation logic circuit are arranged in each of the plurality of SAR ADCs;
The analog-to-digital conversion circuit according to (2) or (3), wherein the reset control unit controls reset codes of the plurality of SAR ADCs to different values.
(5) Any one of (1) to (4) above, further comprising a capacitive multiplexer that holds a plurality of analog signals in a capacitive element, sequentially selects one of the held plurality of analog signals, and inputs it to the comparator. The analog-to-digital conversion circuit according to claim 1.
(6) The analog-to-digital conversion according to any one of (1) to (5), further comprising a column amplifier that obtains a difference between a predetermined reset level and a signal level corresponding to the amount of exposure and supplies the difference as the analog signal. circuit.
(7) a pre-processing unit that obtains a correction amount based on the reset code;
further comprising a reset code processing unit that performs reset code processing on the digital signal from the successive approximation logic circuit based on the correction amount;
The reset control unit supplies, as the reset code, a calculation result obtained by performing a predetermined calculation on a code of a predetermined initial value,
The pre-processing unit supplies the correction amount according to the reset code to the reset code processing unit,
The analog-to-digital conversion circuit according to any one of (1) to (6), wherein the successive approximation logic circuit generates the digital signal based on a predetermined number of comparison results.
(8) The analog-to-digital conversion circuit according to (7), wherein the calculation includes addition of dither signals.
(9) The analog-to-digital conversion circuit according to (7), wherein the calculation includes a process of adding or subtracting a predetermined value to or from the previous value.
(10) a pixel that produces an analog signal;
a comparator that generates a comparison result from the analog signal and a predetermined reference signal;
a digital-to-analog converter that provides the reference signal;
a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result;
and a reset control unit that controls the value of the reset code.
(11) a comparison procedure for generating a comparison result from the input analog signal and a predetermined reference signal;
a digital-to-analog conversion procedure providing said reference signal;
a successive approximation procedure for initializing the reference signal with a predetermined reset code and then updating the reference signal based on the comparison result;
and a reset control procedure for controlling the value of the reset code.
 100 撮像装置
 110 光学部
 120 DSP回路
 130 表示部
 140 操作部
 150 バス
 160 フレームメモリ
 170 記憶部
 180 電源部
 200 固体撮像素子
 201 受光チップ
 202 回路チップ
 211 垂直走査回路
 212 タイミング制御回路
 220 画素アレイ部
 230 画素
 231 光電変換素子
 232 転送トランジスタ
 233 リセットトランジスタ
 234 浮遊拡散層
 235 増幅トランジスタ
 236 選択トランジスタ
 240 デジタル信号処理部
 241 リセット制御部
 242 前段処理部
 243 リセットコード処理部
 244 後段処理部
 300 アナログデジタル変換部
 310 カラムアンプ
 311 アンプ
 312、313、316、411~418、431~438、451~458 スイッチ
 314、315、419、420、439、440、459、460 容量素子
 320 SARADC
 321、322 オートゼロスイッチ
 323 プリアンプ
 324 コンパレータ
 325、326 CDAC
 327 SARロジック回路
 400 容量マルチプレクサ
 410、430、450 サンプルホールドブロック
 12031 撮像部
100 imaging device 110 optical unit 120 DSP circuit 130 display unit 140 operation unit 150 bus 160 frame memory 170 storage unit 180 power supply unit 200 solid-state imaging device 201 light receiving chip 202 circuit chip 211 vertical scanning circuit 212 timing control circuit 220 pixel array unit 230 pixels 231 photoelectric conversion element 232 transfer transistor 233 reset transistor 234 floating diffusion layer 235 amplification transistor 236 selection transistor 240 digital signal processing section 241 reset control section 242 pre-processing section 243 reset code processing section 244 post-processing section 300 analog-to-digital conversion section 310 column amplifier 311 amplifier 312, 313, 316, 411 to 418, 431 to 438, 451 to 458 switch 314, 315, 419, 420, 439, 440, 459, 460 capacitive element 320 SARADC
321, 322 auto-zero switch 323 preamplifier 324 comparator 325, 326 CDAC
327 SAR logic circuit 400 capacitance multiplexer 410, 430, 450 sample hold block 12031 imaging unit

Claims (11)

  1.  入力されたアナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、
     前記参照信号を供給するデジタルアナログ変換器と、
     所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較ロジック回路と、
     前記リセットコードの値を制御するリセット制御部と
    を具備するアナログデジタル変換回路。
    a comparator that generates a comparison result from an input analog signal and a predetermined reference signal;
    a digital-to-analog converter that provides the reference signal;
    a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result;
    and a reset control unit that controls the value of the reset code.
  2.  それぞれが前記アナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部と、
     前記画素アレイ部内の行を順に駆動して前記アナログ信号を出力させる垂直走査回路と
    をさらに具備し、
     前記リセット制御部は、前記垂直走査回路が行を駆動するたびに前記リセットコードを前回値と異なる値に更新する
    請求項1記載のアナログデジタル変換回路。
    a pixel array section in which a plurality of pixels each generating the analog signal are arranged in a two-dimensional grid;
    a vertical scanning circuit for sequentially driving rows in the pixel array unit to output the analog signal;
    2. The analog-to-digital conversion circuit according to claim 1, wherein said reset control unit updates said reset code to a value different from the previous value each time said vertical scanning circuit drives a row.
  3.  前記リセット制御部は、前記アナログ信号が入力されるたびに前記リセットコードを前回値と異なる値に制御する
    請求項2記載のアナログデジタル変換回路。
    3. The analog-to-digital conversion circuit according to claim 2, wherein said reset control section controls said reset code to a value different from a previous value each time said analog signal is input.
  4.  複数のSARADC(Successive Approximation Register Analog to Digital Converter)が配列され、
     前記複数のSARADCのそれぞれに前記コンパレータ、前記デジタルアナログ変換器および前記逐次比較ロジック回路が配置され、
     前記リセット制御部は、前記複数のSARADCのそれぞれのリセットコードを異なる値に制御する
    請求項2記載のアナログデジタル変換回路。
    A plurality of SAR ADCs (Successive Approximation Register Analog to Digital Converter) are arranged,
    The comparator, the digital-to-analog converter, and the successive approximation logic circuit are arranged in each of the plurality of SAR ADCs;
    3. The analog-to-digital conversion circuit according to claim 2, wherein said reset control section controls reset codes of said plurality of SAR ADCs to different values.
  5.  複数のアナログ信号を容量素子に保持して前記保持した複数のアナログ信号のいずれかを順に選択して前記コンパレータに入力する容量マルチプレクサをさらに具備する
    請求項1記載のアナログデジタル変換回路。
    2. The analog-to-digital conversion circuit according to claim 1, further comprising a capacitive multiplexer that holds a plurality of analog signals in capacitive elements, sequentially selects one of the plurality of held analog signals, and inputs it to the comparator.
  6.  所定のリセットレベルと露光量に応じた信号レベルとの差分を求めて前記アナログ信号として供給するカラムアンプをさらに具備する
    請求項1記載のアナログデジタル変換回路。
    2. The analog-to-digital conversion circuit according to claim 1, further comprising a column amplifier that obtains a difference between a predetermined reset level and a signal level corresponding to the amount of exposure and supplies it as the analog signal.
  7.  前記リセットコードに基づいて補正量を求める前段処理部と、
     前記補正量に基づいて前記逐次比較ロジック回路からのデジタル信号に対するリセットコード処理を行うリセットコード処理部をさらに具備し、
     前記リセット制御部は、所定の初期値のコードに対して所定の演算を行った演算結果を前記リセットコードとして供給し、
     前記前段処理部は、前記リセットコードに応じた前記補正量を前記リセットコード処理部に供給し、
     前記逐次比較ロジック回路は、所定数の前記比較結果に基づいて前記デジタル信号を生成する
    請求項1記載のアナログデジタル変換回路。
    a pre-processing unit that obtains a correction amount based on the reset code;
    further comprising a reset code processing unit that performs reset code processing on the digital signal from the successive approximation logic circuit based on the correction amount;
    The reset control unit supplies, as the reset code, a calculation result obtained by performing a predetermined calculation on a code of a predetermined initial value,
    The pre-processing unit supplies the correction amount corresponding to the reset code to the reset code processing unit,
    2. The analog-to-digital conversion circuit according to claim 1, wherein said successive approximation logic circuit generates said digital signal based on a predetermined number of said comparison results.
  8.  前記演算は、ディザ信号の加算を含む
    請求項7記載のアナログデジタル変換回路。
    8. The analog-to-digital conversion circuit according to claim 7, wherein said calculation includes addition of dither signals.
  9.  前記演算は、前回値に所定値を加算または減算する処理を含む
    請求項7記載のアナログデジタル変換回路。
    8. The analog-to-digital conversion circuit according to claim 7, wherein said calculation includes a process of adding or subtracting a predetermined value to or from the previous value.
  10.  アナログ信号を生成する画素と、
     前記アナログ信号と所定の参照信号とから比較結果を生成するコンパレータと、
     前記参照信号を供給するデジタルアナログ変換器と、
     所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較ロジック回路と、
     前記リセットコードの値を制御するリセット制御部と
    を具備する固体撮像素子。
    a pixel that generates an analog signal;
    a comparator that generates a comparison result from the analog signal and a predetermined reference signal;
    a digital-to-analog converter that provides the reference signal;
    a successive approximation logic circuit that initializes the reference signal with a predetermined reset code and then updates the reference signal based on the comparison result;
    and a reset control unit that controls the value of the reset code.
  11.  入力されたアナログ信号と所定の参照信号とから比較結果を生成する比較手順と、
     前記参照信号を供給するデジタルアナログ変換手順と、
     所定のリセットコードにより前記参照信号を初期化させた後に前記比較結果に基づいて前記参照信号を更新させる逐次比較手順と、
     前記リセットコードの値を制御するリセット制御手順と
    を具備するアナログデジタル変換回路の制御方法。
    a comparison procedure for generating a comparison result from an input analog signal and a predetermined reference signal;
    a digital-to-analog conversion procedure providing said reference signal;
    a successive approximation procedure for initializing the reference signal with a predetermined reset code and then updating the reference signal based on the comparison result;
    and a reset control procedure for controlling the value of the reset code.
PCT/JP2021/048865 2021-05-20 2021-12-28 Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit WO2022244293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085054 2021-05-20
JP2021085054A JP2022178321A (en) 2021-05-20 2021-05-20 Analog-to-digital conversion circuit, solid-state imaging element, and control method for analog-to-digital conversion circuit

Publications (1)

Publication Number Publication Date
WO2022244293A1 true WO2022244293A1 (en) 2022-11-24

Family

ID=84140355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048865 WO2022244293A1 (en) 2021-05-20 2021-12-28 Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit

Country Status (2)

Country Link
JP (1) JP2022178321A (en)
WO (1) WO2022244293A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022990A (en) * 2012-07-19 2014-02-03 Denso Corp Ad conversion circuit
WO2020045373A1 (en) * 2018-08-30 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device
JP2021048571A (en) * 2019-09-20 2021-03-25 日本放送協会 Lamination type solid-state image pickup element and lamination type solid-state image pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022990A (en) * 2012-07-19 2014-02-03 Denso Corp Ad conversion circuit
WO2020045373A1 (en) * 2018-08-30 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device
JP2021048571A (en) * 2019-09-20 2021-03-25 日本放送協会 Lamination type solid-state image pickup element and lamination type solid-state image pickup device

Also Published As

Publication number Publication date
JP2022178321A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP7181868B2 (en) Analog-to-digital converter, solid-state imaging device, and analog-to-digital converter control method
WO2020235146A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2021090538A1 (en) Sensing device, electronic apparatus, and method for controlling sensing device
WO2019239661A1 (en) Solid-state imaging element, imaging device, and control method of solid-state imaging element
US11223791B2 (en) Signal processing circuit, solid-state imaging element, and method for controlling signal processing circuit
WO2020003646A1 (en) Solid-state imaging element, imaging apparatus, and control method for solid-state imaging element
WO2021256073A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2022172586A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022244293A1 (en) Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit
WO2022209126A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2021112059A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2021112058A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2021261375A1 (en) Imaging device and electronic apparatus
WO2021145033A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2019171686A1 (en) Amplification circuit, imaging device, and method for controlling amplification circuit
WO2023067924A1 (en) Photographing device and electronic apparatus
WO2023112480A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2023089958A1 (en) Solid-state imaging element
WO2024116605A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022249736A1 (en) Imaging device and electronic apparatus
WO2020149095A1 (en) Image capture device and image capture system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940903

Country of ref document: EP

Kind code of ref document: A1