WO2022239548A1 - 多孔性フィルム、二次電池用セパレータおよび二次電池 - Google Patents

多孔性フィルム、二次電池用セパレータおよび二次電池 Download PDF

Info

Publication number
WO2022239548A1
WO2022239548A1 PCT/JP2022/015373 JP2022015373W WO2022239548A1 WO 2022239548 A1 WO2022239548 A1 WO 2022239548A1 JP 2022015373 W JP2022015373 W JP 2022015373W WO 2022239548 A1 WO2022239548 A1 WO 2022239548A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
monomer
porous film
organic resin
less
Prior art date
Application number
PCT/JP2022/015373
Other languages
English (en)
French (fr)
Inventor
加門慶一
甲斐信康
西村直哉
久万琢也
佃明光
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280030604.3A priority Critical patent/CN117223165A/zh
Priority to KR1020237028343A priority patent/KR20240007116A/ko
Priority to JP2022521273A priority patent/JPWO2022239548A1/ja
Publication of WO2022239548A1 publication Critical patent/WO2022239548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous film, a secondary battery separator, and a secondary battery.
  • Secondary batteries such as lithium-ion batteries are used in automotive applications such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles, as well as portable applications such as smartphones, tablets, mobile phones, laptops, digital cameras, digital video cameras, and handheld game consoles. It is widely used in digital devices, electric tools, electric motorcycles, electric assist bicycles, etc.
  • Lithium ion batteries generally have a secondary battery separator and an electrolyte interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. have a configuration.
  • Polyolefin-based porous substrates are used as separators for secondary batteries.
  • the characteristics required for secondary battery separators are the ability to contain electrolyte in the porous structure and enable ion movement, and the ability to close the porous structure by melting when the lithium ion battery overheats. and a shutdown characteristic that stops the discharge by stopping ion migration.
  • the battery form is being replaced from the wound type to the laminated type.
  • the laminated type in the manufacturing process of a secondary battery using an electrode laminate in which a positive electrode, a separator, and a negative electrode are laminated, when the electrode laminate is transported, the laminate structure may be maintained, or the electrode laminate may be rolled into a cylinder. When inserting into a mold, square, etc.
  • a battery is required to have adhesiveness (dry adhesiveness) between the separator and the electrode before being impregnated with the electrolytic solution in order to prevent the shape from being deformed after being inserted into the outer packaging material. Therefore, in the above process, the electrode laminate may be subjected to hot pressing. On the other hand, it is necessary to prevent impregnation of the electrolyte into the electrode laminate after hot pressing, that is, deterioration of electrolyte pourability. Lithium-ion batteries are also required to have good battery characteristics such as adhesion (wet adhesion) to electrodes impregnated with electrolyte, high output, and long life.
  • Patent Document 1 In response to the above requirement for dry adhesion, in Patent Document 1, an adhesive layer formed on a heat-resistant layer is laminated to develop dry adhesion with the electrode.
  • Patent Document 2 the dry adhesion to the electrode is enhanced by satisfying a specific relationship between the particle size of the particulate polymer and the particle size of the inorganic particles. Further, it is known that the impregnability of the electrolytic solution is improved by roughening the outermost surface of the separator (Patent Document 3). In addition, by exhibiting both dry adhesiveness and wet adhesiveness, improvement of yield during battery production and during initial charge/discharge is being studied (Patent Document 4).
  • the hot press process in the manufacturing process of secondary batteries requires both the dry adhesion of the electrodes and the separator and the pourability of the electrolyte. Furthermore, due to the increase in size of batteries, there is a demand for larger electrode laminates and higher capacities, and it is necessary to improve not only dry adhesion to electrodes but also wet adhesion and electrolyte pourability. In addition, due to the increase in demand for laminated type batteries, productivity improvement is also required, and it is also necessary to shorten the heat press time for improving adhesiveness. In order to achieve both adhesion to the electrode and electrolyte pourability, it has been studied to appropriately adjust the amount of organic resin particles responsible for adhesion to the electrode. is decreased, and the battery resistance is increased, resulting in deterioration of rate characteristics and battery life. On the other hand, when the amount of organic resin is reduced, there is also a problem that the adhesiveness to the electrode is lowered.
  • the object of the present invention is to provide a porous film having excellent adhesion (dry adhesion, wet adhesion) with electrodes, electrolytic solution pourability, thermal dimensional stability, and low resistance. do.
  • the present inventors focused on the adhesiveness with the electrode by high pressure heat press for shortening the heat press time, and as a result of extensive studies, the arithmetic mean height of the porous substrate was set to a certain height. It has been found that organic resin particles are unevenly distributed on the surface layer and layer-separated from the inorganic particles, resulting in excellent dry adhesion to the electrode and electrolyte pourability. Furthermore, they have found that by appropriately selecting the composition of the organic resin particles, in addition to the properties described above, the wet adhesion is also excellent.
  • the porous film of the present invention has the following configuration.
  • the arithmetic mean height (Sa) in 2200 ⁇ m square of the surface on the side in contact with the porous layer is 0.01 ⁇ m or more and less than 0.09 ⁇ m, and the volume of the inorganic particles when the volume of all constituent components of the porous layer is 100% by volume
  • porous substrate according to any one of (1) to (4), wherein the surface in contact with the porous layer has an arithmetic mean roughness (Ra) of 10 nm or more and less than 80 nm in a 12 nm square. porous film.
  • the porous substrate has a protruding peak height (Spk) of 0.01 ⁇ m or more and less than 0.12 ⁇ m in a 2200 ⁇ m square on the surface on the side in contact with the porous layer.
  • Spk protruding peak height
  • the porous film according to any one of (1) to (7), wherein the porous substrate is a polyolefin microporous film (9)
  • the inorganic particles are an inorganic hydroxide, an inorganic oxide and an inorganic sulfuric acid
  • the porous film according to any one of (1) to (8) which is a particle composed of at least one selected from the group consisting of compounds.
  • the organic resin particles are fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylate monomers, styrene-based monomers, olefin-based monomers, and diene-based monomers.
  • the ratio of the (meth)acrylate monomer having a hydroxyl group is greater than 0% by mass and 7.0% by mass when the total constituent monomer components of the organic resin particles are 100% by mass.
  • the glass transition of the polymer when at least one of the monomers that are the raw materials of the polymer is polymerized only with that monomer.
  • the monomer having a glass transition temperature of ⁇ 100° C. or more and 0° C. or less when polymerized only by the monomer accounts for 100% by mass of the total constituent monomer components of the organic resin particles.
  • the porous film according to (16) which is greater than 0% by mass and 10.0% by mass or less.
  • a secondary battery separator comprising the porous film according to any one of (1) to (21).
  • a porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate,
  • the porous substrate is made of a polyolefin microporous membrane whose surface in contact with the porous layer has an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m in a 2200 ⁇ m square
  • the inorganic particles are particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates
  • the organic resin particles contain a fluorine-containing (meth)acrylate monomer, an unsaturated carboxylic acid monomer, a (meth)acrylic acid ester monomer, a styrene monomer, an olefin monomer, and a diene monomer.
  • the volume content ratio ⁇ of the inorganic particles is 30% by volume or more and 80% by volume or less,
  • the battery separator wherein the relationship between the volume content ⁇ of the inorganic particles and the occupation ratio ⁇ of the inorganic particles in the surface portion of the porous layer satisfies ⁇ >0 and ⁇ / ⁇ 1.
  • the present invention it is possible to provide a porous film having excellent adhesion (dry adhesion, wet adhesion) with electrodes, electrolytic solution pourability, thermal dimensional stability, and low resistance. In particular, when subjected to high-pressure heat pressing, excellent dry adhesion can be exhibited. Further, by using the porous film as a battery separator, it is possible to improve the yield in the battery manufacturing process and provide a secondary battery having excellent battery life and rate characteristics.
  • the porous film of the present invention is a porous film having a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate, wherein the porous
  • the base material has an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m in a 2200 ⁇ m square of the surface on the side in contact with the porous layer, and the volume of all constituent components of the porous layer is 100% by volume.
  • Sa arithmetic mean height
  • porous film of the present invention will be described in detail below.
  • the porous film of the present invention has an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer.
  • Sa arithmetic mean height
  • the adhesion to the electrode can be further improved.
  • the upper limit of the arithmetic mean height (Sa) to less than 0.09 ⁇ m, the electrode laminate in which the electrode and the porous film are adhered is easily impregnated with the electrolyte, and the electrolyte injection is improved. , the rate characteristics and battery life are improved when used as a battery separator.
  • the porous film of the present invention has an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer. It was found that both the performance and electrolyte injection performance can be compatible.
  • the arithmetic mean height (Sa) within the above range, the arithmetic mean height of the surface of the porous layer is also reduced, and during the dry adhesion step (heat press) with the electrode, the active material present in the electrode is affected.
  • the conformability to irregularities can be adjusted, and both dry adhesion to the electrode and electrolyte pourability can be achieved.
  • the dry adhesion to the electrode can be improved without increasing the amount of the organic resin particles, and the cost can be reduced. Therefore, a battery using the porous film of the present invention as a battery separator can achieve both rate characteristics and battery life.
  • the arithmetic mean height (Sa) in 2200 ⁇ m square of the porous substrate surface on the side in contact with the porous layer is determined by the type of resin of the porous substrate, the type of plasticizer, the presence or absence of cooling after sheet formation, and the stretching method. , the stretching ratio, the stretching temperature, and the dry re-stretching after stretching can be adjusted to achieve a predetermined range.
  • the porous layer in the present invention contains inorganic particles and organic resin particles.
  • the porous layer has a volume content rate ⁇ (% by volume) of inorganic particles when the volume of all constituent components of the porous layer is 100% by volume, and an occupation rate ⁇ ( area %) satisfies ⁇ / ⁇ 1.
  • ⁇ / ⁇ is less than 1, it means that the occupancy rate of the inorganic particles in the surface portion of the porous layer is lower than the content rate of the inorganic particles in the entire porous layer. It shows that it is unevenly distributed on the surface of the Since the organic resin particles are unevenly distributed on the surface portion of the porous layer, a large amount of organic resin particles are present on the surface portion, thereby exhibiting sufficient adhesiveness to the electrode.
  • volume content ⁇ of the inorganic particles and the occupation ratio ⁇ of the inorganic particles described above are obtained by the method described in the Examples section.
  • the porous film of the present invention uses a porous substrate having an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m at 2200 ⁇ m on the surface of the porous substrate on the side in contact with the porous layer. And, when the total constituent components of the porous layer are 100% by volume, the porous layer has a volume content rate ⁇ (% by volume) of the inorganic particles and an occupation rate ⁇ of the inorganic particles at the surface of the porous layer ( area %) satisfies ⁇ / ⁇ 1, high dry adhesion and wet adhesion to the electrode, and electrolyte pourability can be obtained especially when high-pressure heat pressing is performed.
  • Sa arithmetic mean height
  • ⁇ / ⁇ is more preferably 0.5 or less, still more preferably 0.3 or less.
  • the lower limit of ⁇ / ⁇ is not particularly limited, it is preferably 0.01 or more.
  • the lower limit of ⁇ / ⁇ is not particularly limited, it is preferably 0.01 or more.
  • a porous layer in which ⁇ / ⁇ is within the above range it may be formed through a two-step coating process using two types of coating liquids, or one step using one type of coating liquid. It is more preferable to form in the coating step of . If it can be formed by a one-stage coating process, the cost can be reduced by reducing the number of times of coating. For a one-stage coating process, for example, the surface free energy of the organic resin particles, the viscosity of the coating liquid, the solid content concentration, and the drying temperature can be adjusted appropriately to set ⁇ / ⁇ within a predetermined range. It becomes possible. Details will be described later.
  • the volume content ⁇ of the inorganic particles is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, when the volume of all constituent components of the porous layer is 100% by volume. and more preferably 50% by volume or more and 60% by volume or less.
  • the volume content ⁇ of the inorganic particles is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, when the volume of all constituent components of the porous layer is 100% by volume. and more preferably 50% by volume or more and 60% by volume or less.
  • the occupancy ⁇ of the inorganic particles on the surface of the porous layer is preferably greater than 0%. More preferably, it is 1% or more, and still more preferably 5% or more.
  • the cost can be reduced by reducing the number of times of coating by a one-step coating process or by reducing the cost of coating materials by reducing raw materials.
  • the upper limit is not particularly limited, it is preferably less than 50%. More preferably less than 30%, still more preferably less than 20%.
  • the surface portion of the porous layer is a surface layer having a depth that affects the adhesiveness between the outer surface of the porous layer and the electrode, and is shown in the image obtained using SEM-EDX, which will be described later. .
  • porous layer In the porous film of the present invention, a porous layer containing inorganic particles and organic resin particles is formed on at least one surface of a porous substrate which will be described later in detail.
  • the lower limit of the film thickness of the porous layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and still more preferably 4 ⁇ m or more.
  • the upper limit of the film thickness of the porous layer is preferably 8 ⁇ m or less, preferably 7 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the film thickness of the porous layer as used herein refers to the total thickness of the porous layers provided on the porous substrate.
  • the surface free energy of the porous layer is preferably 10 mN/m or more and 80 mN/m or less, more preferably 15 mN/m or more and 70 mN/m or less, and still more preferably 20 mN/m or more and 60 mN/m or less.
  • 10 mN/m or more the coating stability of the porous layer is improved.
  • 80 mN/m or less uneven surface distribution due to layer separation of the organic resin particles is likely to occur, and ⁇ / ⁇ can be easily controlled.
  • the porous layer preferably has a glass transition temperature of 20°C or more and less than 80°C.
  • the lower limit is more preferably 30°C or higher, still more preferably 40°C or higher.
  • the upper limit is more preferably 70° C. or lower, still more preferably 60° C. or lower.
  • Organic resin particles improve adhesion to electrodes.
  • the resin constituting the organic resin particles is preferably a resin having adhesiveness to the electrode, and by unevenly distributing the organic resin particles on the surface layer of the porous film, the ion permeability is improved and the rate characteristics are improved.
  • ⁇ / ⁇ can be lowered by lowering the surface free energy of the organic resin particles.
  • organic resin particles examples include fluorine-containing (meth)acrylate monomers, unsaturated carboxylic acid monomers, (meth)acrylic acid ester monomers, styrene monomers, olefin monomers, and diene monomers. It is preferable to have a polymer polymerized by using at least one monomer selected from the group consisting of monomers, acrylamide-based monomers, and vinylidene fluoride monomers.
  • the organic resin particles are a mixture of a polymer polymerized only with a fluorine-containing (meth)acrylate monomer and other polymers, or a polymer polymerized using a fluorine-containing (meth)acrylate monomer.
  • (meth)acrylate means both “acrylate” and “methacrylate”.
  • Polymers polymerized using fluorine-containing (meth)acrylate monomers contain repeating units obtained by polymerizing fluorine-containing (meth)acrylates.
  • Fluorine-containing (meth)acrylate monomers include 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3,3-pentafluoropropyl (meth)acrylate, 2-(perfluorobutyl ) ethyl (meth) acrylate, 3-(perfluorobutyl)-2-hydroxypropyl (meth) acrylate, 2-(perfluorohexyl) ethyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylates, 3-(perfluoro-3-methylbutyl)-2-hydroxypropyl (meth)acrylate, 1H,1H,3H-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, 1H,1H,7H-dodecafluoroheptyl (meth)acrylate, 1
  • the proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles is preferably greater than 20% by mass, more preferably 22%, based on 100% by mass of all constituent monomer components of the organic resin particles. % by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more. Also, it is preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, still more preferably 40% by mass or less, and most preferably 35% by mass or less. Within the above range, the organic resin particles are likely to be unevenly distributed on the surface layer, and sufficient adhesiveness to the electrode can be obtained.
  • the fluorine-containing (meth)acrylate monomer is used in the organic resin particles, and the proportion of the fluorine-containing (meth)acrylate monomer used in the organic resin particles are measured using a known method.
  • a known method can do. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • nuclear magnetic resonance spectroscopy 1 H-NMR, 19 F-NMR, 13 C-NMR
  • infrared absorption spectroscopy IR
  • X-ray photoelectron spectroscopy XPS
  • fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can.
  • the number of fluorine atoms contained in one molecule of the fluorine-containing (meth)acrylate monomer is preferably 3 or more and 13 or less.
  • the number of fluorine atoms is more preferably 3 or more and 11 or less, still more preferably 3 or more and 9 or less.
  • the number of fluorine atoms in the fluorine-containing (meth)acrylate can be measured using a known method. For example, first, the porous layer is removed from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting constituent components to dissolve only the organic resin component and separate it from the inorganic particles. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • an organic solvent such as water and alcohol
  • nuclear magnetic resonance spectroscopy 1 H-NMR, 19 F-NMR, 13 C-NMR
  • infrared absorption spectroscopy IR
  • XPS X-ray photoelectron spectroscopy
  • fluorescence It can be calculated from the intensity of the signal derived from the fluorine-containing (meth)acrylate monomer by X-ray analysis (EDX), elemental analysis, pyrolysis gas chromatograph mass spectrometer (pyrolysis GC/MS), etc. can.
  • pyrolysis GC/MS is particularly useful.
  • unsaturated carboxylic acid monomers examples include acrylic acid, methacrylic acid, and crotonic acid.
  • One type of unsaturated carboxylic acid monomer may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • (Meth)acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, and octyl acrylate.
  • a (meth)acrylate monomer having a hydroxyl group it is preferable to use a (meth)acrylate monomer having a hydroxyl group.
  • a (meth)acrylate monomer having a hydroxyl group By using a (meth)acrylate monomer having a hydroxyl group, the glass transition temperature of the organic resin particles can be adjusted and the dry adhesion to the electrode can be improved.
  • the (meth)acrylate monomers having a hydroxyl group may be used singly or in combination of two or more at any ratio. Hydroxyethyl acrylate (HEA), 4-hydroxybutyl acrylate (4-HBA), and 2-hydroxypropyl acrylate (2-HPA) are particularly preferred.
  • Styrenic monomers include styrene, ⁇ -methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, chloromethylstyrene, hydroxymethylstyrene and the like.
  • olefinic monomers include ethylene and propylene.
  • diene-based monomers include butadiene and isoprene.
  • acrylamide-based monomers examples include acrylamide.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the vinylidene fluoride monomer may be a homopolymer using a vinylidene fluoride monomer alone or a copolymer with other monomers.
  • Monomers copolymerizable with vinylidene fluoride include, for example, tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride, (meth)acrylic acid, methyl (meth)acrylate, (meth)acrylic acid (Meth)acrylic acid esters such as ethyl, vinyl acetate, vinyl chloride, acrylonitrile and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the organic resin particles are a mixture containing a polymer polymerized using a fluorine-containing (meth)acrylate monomer and a polymer polymerized using a (meth)acrylate monomer having a hydroxyl group, or It preferably contains a copolymer polymerized using a monomer mixture containing a fluorine-containing (meth)acrylate monomer and a hydroxyl group-containing (meth)acrylate monomer.
  • the content of the polymer or copolymer polymerized using a (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles is 0 when the total constituent components of the organic resin particles are 100% by mass. More than mass % and 7.0 mass % or less are preferable. It is more preferably 0.5% by mass or more and 5.0% by mass or less, and still more preferably 1.0% by mass or more and 3.0% by mass or less. When this content is greater than 0% by mass, the polymerization stability of the organic resin particles is improved. In addition, by making it 7.0% by mass or less, sufficient dry adhesion with the electrode can be obtained, and by suppressing swelling in the electrolytic solution, sufficient wet adhesion with the electrode can be obtained. , the distance between the electrodes becomes constant, and the decrease in capacity during initial charge/discharge can be suppressed, so that the yield during initial charge/discharge is improved.
  • the content of the polymer or copolymer polymerized using the (meth)acrylate monomer having a hydroxyl group contained in the organic resin particles can be measured using a known method. For example, first, the porous layer is detached from the porous film using an organic solvent such as water and alcohol, and then the organic solvent such as water and alcohol is sufficiently dried to obtain the constituents contained in the porous layer. An organic solvent capable of dissolving the organic resin component is added to the resulting component to dissolve only the organic resin component. Subsequently, the organic solvent is dried from the solution in which the organic resin component is dissolved, and only the organic resin component is extracted.
  • an organic solvent such as water and alcohol
  • a monomer having two or more reactive groups per molecule is used. It is preferred to carry out the polymerization using a monomer.
  • a monomer having two or more reactive groups per molecule it has excellent electrolyte resistance with suppressed swelling in the electrolyte, dry adhesion with the electrode, and electrode in the electrolyte. It is possible to obtain polymer particles having excellent wet adhesiveness with.
  • the monomer having two or more reactive groups per molecule for example, it is preferable to use a (meth)acrylate monomer having two or more reactive groups per molecule, and alkylene glycol di(meth) ) acrylates and urethane di(meth)acrylates are more preferred.
  • the polymer contained in the organic resin particles has a glass transition temperature of ⁇ It is preferable that a monomer having a temperature of 100° C. or higher and 0° C. or lower is used and polymerized.
  • the glass transition temperature range is more preferably -70°C or higher and -10°C or lower, more preferably -50°C or higher -20°C.
  • the glass transition temperature is the midpoint glass transition temperature measured by differential scanning calorimetry (DSC) according to JIS K7121:2012.
  • the midpoint glass transition temperature is defined as the temperature at the point where a straight line equidistant in the vertical axis direction from the extended straight line of each base line intersects with the curve of the stepwise change portion of the glass transition.
  • the ratio of the monomer having a glass transition temperature of ⁇ 100° C. or more and 0° C. or less when polymerized only with the monomer alone is 100% by mass of the total constituent components of the organic resin particles, It is preferably greater than 0 mass % and 10.0 mass % or less. This ratio is more preferably 1% by mass or more and 7.0% by mass or less, and still more preferably 3.0% by mass or more and 5.0% by mass or less.
  • the amount is greater than 0% by mass, the organic resin particles are softened and the adhesiveness is improved.
  • the amount is less than 10.0% by mass, the softening of the organic resin particles is less likely to occur, and the swelling of the organic resin particles in the electrolytic solution can be suppressed.
  • the porous layer of the porous film of the present invention may contain organic resin particles that impart different functions in addition to organic resin particles that have adhesiveness to electrodes. That is, the porous layer can contain at least two types of organic resin particles.
  • an emulsion binder is used to adhere the organic resin particles to each other or to adhere the organic resin particles and the inorganic particles to each other, or to provide a binder function to adhere the organic resin particles to the porous substrate. You can use it as Adhesion is improved by the binder function, and adhesion to the electrode can be further improved.
  • As the organic resin particles a resin that is electrochemically stable within the battery usage range is preferable.
  • the organic resin particles include, in addition to those having a particle shape, those partially formed into a film and fused with the surrounding particles and binder.
  • the shape is not particularly limited, and may be spherical, polygonal, flat, fibrous, or the like.
  • the average particle size of the organic resin particles is preferably 100 nm or more. It is more preferably 120 nm or more, still more preferably 150 nm or more, and most preferably 170 nm or more. Also, it is preferably 500 nm or less, more preferably 400 nm or less, still more preferably 300 nm or less, and most preferably 250 nm or less.
  • the average particle size is preferably 100 nm or more. It is more preferably 120 nm or more, still more preferably 150 nm or more, and most preferably 170 nm or more. Also, it is preferably 500 nm or less, more preferably 400 nm or less, still more preferably 300 nm or less, and most preferably 250 nm or less.
  • the average particle size of organic resin particles can be measured using the following method.
  • An image (image 1) obtained by imaging the surface of the porous layer at a magnification of 30,000 times using a field emission scanning electron microscope (S-3400N manufactured by Hitachi, Ltd.), and only inorganic particles are contained in the same field of view.
  • An EDX image (image 2) of the element is obtained.
  • the image size is 4.0 ⁇ m ⁇ 3.0 ⁇ m, the number of pixels is 1,280 pixels ⁇ 1,024 pixels, and the size of one pixel is 3.1 nm ⁇ 2.9 nm.
  • Particles that do not contain the element that only the inorganic particles in Image 2 have are defined as organic resin particles.
  • the organic resin particles are defined as those containing elemental fluorine by elemental analysis.
  • the particle diameters of all the organic resin particles found in Image 1 were measured, and the arithmetic average value was taken as the average particle diameter.
  • 50 organic resin particles are not observed in image 1, a plurality of images are taken, and the total number of particles of all the organic resin particles contained in the plurality of images reaches 50. I took a picture and found it.
  • the organic resin particles were measured, and the arithmetic average value was taken as the average particle size.
  • the porous layer of the porous film of the present invention contains inorganic particles.
  • the porous layer contains inorganic particles, it is possible to impart thermal dimensional stability and suppress short circuits due to foreign matter.
  • inorganic particles include inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide; inorganic nitride particles such as aluminum nitride and silicon nitride; calcium fluoride; Poorly soluble ionic crystal particles such as barium fluoride and barium sulfate may be used.
  • the inorganic particles are preferably particles composed of at least one selected from the group consisting of inorganic hydroxides, inorganic oxides and inorganic sulfates. Among them, aluminum oxide which is effective in increasing strength, and organic resins.
  • boehmite and barium sulfate which are effective in reducing wear of parts during the process of dispersing particles and inorganic particles.
  • one type of these inorganic particles may be used, or two or more types may be mixed and used.
  • the shape of the inorganic particles used may be spherical, plate-like, needle-like, rod-like, elliptical, etc. Any shape may be used. Among them, a spherical shape is preferable from the viewpoint of surface modification properties, dispersibility, and coatability.
  • Binder The porous layer of the porous film of the present invention is composed of: It may contain a binder.
  • a binder a resin that is electrochemically stable within the battery usage range is preferred.
  • binders include organic solvent-soluble binders, water-soluble binders, emulsion binders, and the like, and may be used alone or in combination.
  • the preferred viscosity of the binder itself is preferably 10000 mPa ⁇ s or less when the concentration is 15% by mass. It is more preferably 8000 mPa ⁇ s or less, still more preferably 5000 mPa ⁇ s or less. When the concentration is 15% by mass and the viscosity is 10,000 mPa s or less, the viscosity increase of the coating material can be suppressed, and the organic resin particles are unevenly distributed on the surface, thereby improving dry adhesion and wet adhesion with the electrode. .
  • the dispersant includes water and organic solvents such as alcohol solvents such as ethanol and ketone solvents such as acetone.
  • organic solvents such as alcohol solvents such as ethanol and ketone solvents such as acetone.
  • the particle size of the emulsion binder is 30-1000 nm, preferably 50-500 nm, more preferably 70-400 nm, still more preferably 80-300 nm.
  • Resins that can be used as binders include, for example, polyamide, polyamideimide, polyimide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, polysulfone, polyketone, polyetherketone, Resins such as polycarbonate, polyacetal, polyvinyl alcohol, polyethylene glycol, cellulose ether, acrylic resin, polyethylene, polypropylene, polystyrene, and urethane can be used. Among these, it is particularly preferable to use an acrylic resin because stronger adhesion can be obtained by interacting with the organic resin particles.
  • polyvinylidene fluoride resin vinylidene fluoride-hexafluoropropylene copolymer
  • the adhesiveness with the electrode in the electrolytic solution is further improved.
  • these resins may be used singly or in combination of two or more if necessary.
  • the vinylidene fluoride content of the polyvinylidene fluoride-based resin is preferably 80% by mass or more and less than 100% by mass of the components constituting the resin. More preferably, it is 85% by mass or more and 99% by mass or less. More preferably, it is 90% by mass or more and 98% by mass or less. If the vinylidene fluoride content is less than 80% by mass, sufficient mechanical strength cannot be obtained, and although the adhesiveness to the electrode is exhibited, the strength is weak and the adhesiveness may be easily peeled off. Moreover, when the vinylidene fluoride content is 100% by mass, the electrolytic solution resistance is lowered, and sufficient adhesiveness may not be obtained.
  • the content in the porous layer is preferably 0.5% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 1% by mass or more, still more preferably 1.5% by mass or more. Moreover, 10 mass % or less is preferable. More preferably 8% by mass or less, still more preferably 6% by mass or less.
  • the content in the porous layer is preferably 1% by mass or more with respect to the total amount of the organic resin particles and the inorganic particles. It is more preferably 5% by mass or more, still more preferably 7.5% by mass or more, and most preferably 10% by mass or more. Also, it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. Sufficient adhesion between the porous layer and the porous substrate can be obtained by setting the content of the emulsion binder to 1% by mass or more. Moreover, by making it 30% by mass or less, an increase in air permeability can be suppressed, and battery characteristics are improved.
  • the content of 7.5% by mass or more and 20% by mass or less not only promotes the adhesion of the organic resin particles and the inorganic particles and the adhesion of these particles to the substrate, but also interacts with the organic resin particles, and the electrodes. dry adhesion and wet adhesion are also improved.
  • Porous Layer A method for forming the porous layer will be described below.
  • the porous layer may be formed through a two-step coating process using two types of coating liquids, or may be formed through a one-step coating process using one type of coating liquid.
  • the two-step coating process involves preparing a coating liquid consisting of inorganic particles and a solvent, applying this onto a porous substrate, drying the solvent in the water-based dispersion coating liquid, and then applying organic resin particles and
  • a coating liquid containing a solvent is prepared, the coating liquid is applied onto the inorganic particle coating layer, and the solvent in the coating liquid is dried to form a porous layer, thereby obtaining a porous film.
  • Spray coating may be used as the coating method.
  • a coating solution comprising organic resin particles, inorganic particles and a solvent is prepared, the coating solution is applied onto a porous substrate, and the solvent of the coating solution is dried to form a porous layer. , a method of obtaining a porous film.
  • the coating method is not particularly limited, but the latter can reduce costs by reducing the number of coatings. Therefore, the method for forming the porous layer by the latter method will be described below.
  • a coating liquid is prepared by dispersing organic resin particles at a predetermined concentration.
  • the aqueous dispersion coating liquid is prepared by dispersing, suspending, or emulsifying organic resin particles in a solvent.
  • the solvent for the coating liquid is not necessarily limited, but is not particularly limited as long as it can disperse, suspend or emulsify the organic resin particles in a solid state. Examples include organic solvents such as methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, N-methylpyrrolidone, dimethylacetamide, dimethylformamide and dimethylformamide. From the viewpoints of low environmental load, safety, and economy, water-based emulsions in which an organic resin is emulsified in water or a mixture of water and alcohol are preferred. When water is used, a solvent other than water may be added.
  • the solid content concentration of the coating liquid is preferably 5% or more and 40% or less. By setting it to the predetermined range, both coating stability and uneven surface distribution during coating and drying can be achieved. Moreover, the solution viscosity of the coating liquid is preferably 5 mPa ⁇ s or more and 50 mPa ⁇ s or less. By setting it to the predetermined range, both the dispersibility of the coating liquid and the surface uneven distribution during coating and drying can be achieved. By adjusting the solid content concentration of the coating liquid to be low and the viscosity to be low within the above preferable range, the organic resin particles can be adjusted so as to be unevenly distributed in the outer layer.
  • film-forming aids may be added to the coating liquid as necessary.
  • Examples of methods for dispersing the coating liquid include ball mills, bead mills, sand mills, roll mills, homogenizers, ultrasonic homogenizers, high-pressure homogenizers, ultrasonic devices, and paint shakers.
  • a dispersing method (bead mill, sand mill) in which a high pressure is applied to the inorganic particles and the organic resin particles during dispersing, the dispersibility is improved and the surface uneven distribution of the organic resin particles is more likely to occur.
  • a plurality of these mixing and dispersing machines may be combined for stepwise dispersion.
  • Coating methods include, for example, dip coating, gravure coating, slit die coating, knife coating, comma coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet printing, and pad printing. , other types of printing, etc. are available.
  • the coating method is not limited to these, and the coating method may be selected according to preferable conditions such as the organic resin, binder, dispersant, leveling agent, solvent to be used, and base material.
  • the solvent of the coating liquid is dried to form a porous layer.
  • the drying temperature is preferably 40°C or higher and 100°C or lower.
  • the porous layer is uniformly dried, and the arithmetic mean height (Sa) in 2200 ⁇ m square of the porous film surface on the side in contact with the porous layer is the height of the porous substrate surface on the side in contact with the porous layer. It becomes susceptible to the arithmetic mean height (Sa) in 2200 ⁇ m square, and the adhesiveness with the electrode is improved. If the temperature is less than 40°C, the solvent in the coating liquid will not dry.
  • the drying temperature is higher than 100° C., the amount of heat during drying increases and the shape of the particles cannot be maintained, resulting in film formation. Therefore, it is possible to achieve both good adhesiveness with the electrode and cost reduction by improving the coating and drying speeds by setting the content to a predetermined range.
  • the porous substrate has a structure in which micropores are formed therein and these micropores are connected from one surface to the other surface.
  • porous substrates include microporous membranes, non-woven fabrics, and porous membrane sheets made of fibrous materials.
  • the porous base material is preferably a polyolefin microporous membrane because of ease of adjustment of the arithmetic mean roughness (Ra) in 2200 ⁇ m square and the height of protruding peaks (Spk) in 2200 ⁇ m square. That is, it is preferably a porous membrane made of polyolefin. Resins constituting the polyolefin microporous membrane include polyethylene, polypropylene, ethylene-propylene copolymers, and mixtures thereof.
  • the polyolefin microporous membrane may be a single membrane or a laminated membrane having a plurality of layers. Examples thereof include a single membrane containing 90% by mass or more of polyethylene and a laminated membrane made of polyethylene and polypropylene.
  • the lower limit of the arithmetic average roughness (Ra) of 12 nm square on the surface of the porous substrate on the side in contact with the porous layer is preferably 10 nm or more and less than 80 nm.
  • the average roughness is also improved, and since fine unevenness exists in a local area of 12 nm square, it becomes easier to follow the unevenness of the active material in the electrode, so dry adhesion and wet adhesion to the electrode can be further improved.
  • the upper limit of the arithmetic mean roughness (Ra) is preferably 60 nm or less, more preferably 40 nm or less.
  • the height (Spk) of protruding peaks in a 2200 ⁇ m square of the porous substrate on the surface of the porous substrate on the side in contact with the porous layer is preferably 0.01 ⁇ m or more and less than 0.12 ⁇ m, and the lower limit is 0.03 ⁇ m. 0.05 ⁇ m or more is more preferable.
  • the upper limit of the protruding peak height (Spk) is more preferably less than 0.12 ⁇ m, and still more preferably 0.10 ⁇ m or less.
  • the transportability of the porous base material when forming the porous layer is improved, so that a uniform layer can be formed.
  • the uneven distribution of the organic resin particles on the surface layer tends to occur, and the dry adhesion and wet adhesion to the electrode are improved.
  • the height (Spk) of the protruding peak portion is set to less than 0.12 ⁇ m, electrolyte pourability is improved, and favorable rate characteristics and battery life are obtained.
  • the thickness of the porous substrate is preferably 3 ⁇ m or more and 15 ⁇ m or less, more preferably 5 ⁇ m or more as the lower limit, and more preferably 12 ⁇ m or less as the upper limit.
  • the method for manufacturing the porous base material will be explained.
  • the method for producing the porous substrate is not particularly limited, but the method for producing the polyolefin microporous membrane will be described below.
  • a plasticizer is added to the polyolefin resin composition described above in a twin-screw extruder, and melt-kneaded to prepare a resin solution.
  • the polyolefin resin composition is composed of a polyolefin resin, and may be a single composition or a mixture of two or more polyolefin resins.
  • Polyolefin resins include, but are not limited to, polyethylene, polypropylene, and the like.
  • As the polyethylene resin ultra-high molecular weight polyethylene, high density polyethylene, and medium density polyethylene low density may be used as a single composition, or a mixture of different molecular weights may be used. It is preferable to use a mixture of two or more polyethylenes selected from the group consisting of ultra - high molecular weight polyethylene, high-density polyethylene, medium-density polyethylene and low-density polyethylene.
  • a mixture of A) and polyethylene (B) having an Mw of 1 ⁇ 10 4 or more and less than 9 ⁇ 10 4 is preferable, and it is more preferable to contain an ultra-high molecular weight polyethylene having an Mw of 1 ⁇ 10 6 or more.
  • the ratio of ultra high molecular weight polyethylene (A) and polyethylene (B) is 50% by mass, with the total of ultra high molecular weight polyethylene (A) and polyethylene (B) being 100% by mass. It is preferable that it is less than.
  • the plasticizer enables stretching at a relatively high magnification
  • the plasticizer is preferably liquid at room temperature.
  • Specific examples include aliphatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin.
  • the content of the polyolefin resin composition is preferably 50% by weight or more and 90% by weight or less.
  • the gel-like sheet is stretched.
  • the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretched area ratio is preferably 4 times or more and 100 times or less, more preferably 12 times or more and 64 times or less, and particularly preferably 25 times or more and 49 times or less.
  • the higher the draw ratio the smaller the arithmetic mean height (Sa) and protruding peak height (Spk) in 2200 ⁇ m square of the porous substrate, and the arithmetic mean roughness (Ra) in 12 nm square.
  • the plasticizer is removed using a washing solvent, and the polyolefin microporous membrane can be obtained by drying.
  • stretching also called dry re-stretching
  • the second stretching can be performed by a tenter method or the like while heating the polyolefin microporous membrane in the same manner as the stretching described above.
  • the re-stretching ratio is preferably 1.01 to 2.0 times in the case of uniaxial stretching, and preferably 1.01 to 2.0 times in the case of biaxial stretching.
  • the porous film of the present invention preferably has an arithmetic mean height (Sa) of 0.005 ⁇ m or more and less than 0.085 ⁇ m in a 2200 ⁇ m square on the surface on which the porous layer is provided. More preferably, it is 0.060 ⁇ m or less.
  • the arithmetic mean height (Sa) in a 2200 ⁇ m square of the surface on which the porous layer is provided is the arithmetic mean height (Sa) in a 2200 ⁇ m square on the surface of the porous substrate on which the porous layer is provided ( Sa) tends to be greatly affected, and the arithmetic mean height (Sa) in a 2200 ⁇ m square of the surface of the porous substrate on the side in contact with the porous layer is appropriately selected within the above preferable range. can be within
  • the porous film of the present invention can be suitably used as a separator for secondary batteries such as lithium ion batteries.
  • a lithium-ion battery has a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector.
  • the positive electrode is obtained by laminating a positive electrode material composed of an active material, a binder resin , and a conductive aid on a current collector.
  • Lithium-containing transition metal oxides having a layered structure, spinel-type manganese oxides such as LiMn 2 O 4 , and iron-based compounds such as LiFePO 4 can be used.
  • a resin having high oxidation resistance may be used as the binder resin. Specific examples include fluorine resins, acrylic resins, styrene-butadiene resins, and the like. Carbon materials such as carbon black and graphite are used as conductive aids.
  • a metal foil is suitable, and an aluminum foil is often used in particular.
  • the negative electrode is obtained by laminating a negative electrode material composed of an active material and a binder resin on a current collector, and the active material includes carbon materials such as artificial graphite, natural graphite, hard carbon and soft carbon, tin and silicon. , metal materials such as metallic lithium, and lithium titanate (Li 4 Ti 5 O 12 ).
  • a fluorine resin, an acrylic resin, a styrene-butadiene resin, or the like is used as the binder resin.
  • metal foil is suitable, and copper foil is often used in particular.
  • the electrolytic solution serves as a field for transferring ions between the positive electrode and the negative electrode in the secondary battery, and is made by dissolving the electrolyte in an organic solvent.
  • electrolytes include LiPF 6 , LiBF 4 , and LiClO 4 , and LiPF 6 is preferably used from the viewpoint of solubility in organic solvents and ionic conductivity.
  • organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, etc. Two or more of these organic solvents may be used in combination.
  • an active material and a conductive agent are dispersed in a solution of a binder resin to prepare a coating liquid for an electrode.
  • a positive electrode and a negative electrode are obtained by drying.
  • the film thickness of the coating film after drying is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • a secondary battery separator is placed between the obtained positive electrode and negative electrode so as to be in contact with the active material layer of each electrode, enclosed in an outer packaging material such as an aluminum laminate film, and after injecting an electrolytic solution, the negative electrode lead and the Install a safety valve and seal the exterior material.
  • the secondary battery thus obtained has high adhesion between the electrode and the secondary battery separator, has excellent rate characteristics and battery life, and can be manufactured at low cost.
  • volume content rate ⁇ of inorganic particles in the porous layer (volume content rate ⁇ ) A 10 cm ⁇ 10 cm sample cut out from the porous film was used to extract the porous layer using 40 g of water, and the water was sufficiently dried to obtain the constituent components of the porous layer.
  • an organic solvent such as alcohol may be used when water cannot be used to sufficiently desorb.
  • the constituent components were burned at a high temperature to melt and decompose the organic resin component, and after separating the organic resin component and the inorganic component, the mass of only the inorganic particles was measured. .
  • the content of the inorganic particles in the porous layer was calculated in % by mass from the formula (mass of inorganic particles/mass of total amount of constituent components) ⁇ 100.
  • the content of the organic resin component in the porous layer was calculated in mass % by the formula ((mass of the total amount of the constituent components ⁇ mass of the inorganic particles)/(mass of the total amount of the constituent ingredients)) ⁇ 100.
  • the specific gravity of each component was measured with a hydrometer.
  • the volume content of the inorganic particles in the porous layer was calculated in volume % from the mass content (% by mass) of the inorganic particles and the organic resin component obtained above and the density of the inorganic particles and the organic resin component. The above measurements were performed on five samples, and the measured values were averaged.
  • the threshold level of the threshold is set to 130 nm as a detection method
  • the area ratio (%) which is a parameter representing the area of the portion corresponding to the inorganic element of the inorganic particle with respect to the area of the image as a percentage, is the occupancy rate of the inorganic particle. ⁇ . The above measurements were performed on five samples, and the measured values were averaged.
  • Arithmetic mean roughness (Ra) of 12 nm square on the surface of the porous substrate on the side in contact with the porous layer 50 g of water was used to remove the porous layer from a sample cut out from the porous film to a size of 12 cm ⁇ 12 cm, and the water was sufficiently dried to obtain the target porous substrate.
  • an organic solvent such as alcohol is used, and after the desorption, it is sufficiently dried.
  • the porous substrate is fixed to the sample stage with carbon tape, the cantilever is SI-DF40, the measurement area is 12 ⁇ m square, and the amplitude attenuation rate is ⁇ 0.
  • Arithmetic mean roughness (Ra) was measured in DFM mode with a scanning frequency of 0.5 Hz.
  • Ra Arithmetic mean roughness
  • the interface was defined as a place where the inorganic particles were no longer observed in the region where the inorganic particles were present.
  • the above measurements were performed on five samples, and the measured values were arithmetically averaged.
  • Thermal shrinkage rate (%) [(length between midpoints before heat treatment - length between midpoints after heat treatment) / (length between midpoints before heat treatment)] x 100
  • Dry Adhesion with Electrode Active material is Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2
  • binder is vinylidene fluoride resin
  • conductive aid is acetylene black and graphite positive electrode 20 mm ⁇ 50 mm. and a porous film of 25 mm ⁇ 55 mm are placed so that the active material and the porous layer are in contact, and hot press is performed for 10 seconds at a pressure of 6 MPa in a heating environment of 75 ° C. to bond the electrode and the porous film. .
  • the adhesive strength between the porous film and the negative electrode in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive agent is carbon black is measured. It was determined as adhesive strength.
  • ⁇ Excellent adhesion strength The electrode and the porous film were separated with a stronger force.
  • Adhesive strength is "excellent”: The electrode and the porous film were separated with a strong force.
  • Good adhesion strength The electrode and the porous film were separated with a slightly strong force.
  • ⁇ Adhesion strength is “Fair”: The electrode and the porous film were peeled off with a weak force.
  • - “Poor” adhesive strength The electrode and the porous film were separated with very weak force.
  • a negative electrode (width 20 mm ⁇ length 70 mm) containing graphite as an active material, vinylidene fluoride resin as a binder, and carbon black as a conductive aid was used as an electrode.
  • a porous film (width 25 mm ⁇ length 80 mm) was placed so that the ends of the electrode and the porous film overlapped in the length direction, and the active material and the porous layer were in contact, and the condition a (70 C. for 6 seconds at a pressure of 5 MPa) to adhere the electrode and the porous film to prepare a test piece.
  • the test piece is placed in a bag-shaped aluminum laminate film with three pieces closed, and after the electrolytic solution injection process (1 g of electrolytic solution is impregnated from the porous film side of the test piece), the aluminum is sealed using a vacuum sealer. The remaining one side of the laminate film was enclosed.
  • the aluminum laminate film after enclosing this test piece was stored in a 60° C. environment for 17 hours under static conditions. The test piece was taken out from the aluminum laminate film, and the electrolytic solution on the surface of the test piece was wiped.
  • Electrolyte Pouring Properties Five negative electrodes each containing graphite as an active material, vinylidene fluoride resin as a binder, and carbon black as a conductive aid are cut out to a size of 8 cm ⁇ 8 cm. Also, 6 porous films are cut into 8.5 cm ⁇ 8.5 cm. After that, the negative electrode and the porous film were alternately placed so that the active material layer and the porous layer were in contact with each other, and hot pressing was performed at 75° C./6 MPa/10 seconds to form a laminate in which the negative electrode and the porous film were adhered. made.
  • the degree of impregnation of the electrolyte into the porous film was evaluated in the following five stages. ⁇ Excellent electrolyte pourability: 90% or more of the porous film was impregnated with the electrolyte. - “Excellent” electrolyte pourability: 75% or more and less than 90% of the porous film was impregnated with the electrolyte. - Electrolyte pourability is “good”: 60% or more and less than 75% of the porous film was impregnated with the electrolyte. ⁇ Electrolyte pourability is “good”: 45% or more and less than 60% of the porous film was impregnated with the electrolyte. - Electrolyte pourability is "improper”: Less than 45% of the porous film was impregnated with the electrolyte.
  • the positive electrode sheet contains 96 parts by mass of Li(Ni 5/10 Mn 2/10 Co 3/10 )O 2 as a positive electrode active material, and 1.0 parts by mass of acetylene black and graphite as positive electrode conductive aids.
  • Each positive electrode slurry was prepared by dispersing 2 parts by mass of polyvinylidene fluoride as a positive electrode binder in N-methyl-2-pyrrolidone using a planetary mixer. (Coating basis weight: 10.0 mg/cm 2 ).
  • This positive electrode sheet was cut into a size of 40 mm ⁇ 40 mm. At this time, a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm ⁇ 5 mm outside the active material surface.
  • An aluminum tab having a width of 5 mm and a thickness of 0.1 mm was ultrasonically welded to the tab bonding portion.
  • the negative electrode sheet 98 parts by mass of natural graphite as a negative electrode active material, 1 part by mass of carboxymethyl cellulose as a thickener, and 1 part by mass of a styrene-butadiene copolymer as a negative electrode binder are dispersed in water using a planetary mixer. The resulting negative electrode slurry was coated on a copper foil, dried, and rolled to prepare a negative electrode slurry (coating basis weight: 6.6 mg/cm 2 ). This negative electrode sheet was cut into a size of 45 mm ⁇ 45 mm.
  • a current-collecting tab bonding portion without an active material layer was cut out to a size of 5 mm ⁇ 5 mm outside the active material surface.
  • a copper tab having the same size as the positive electrode tab was ultrasonically welded to the tab bonding portion.
  • the porous film was cut into a size of 55 mm ⁇ 55 mm, and the positive electrode and the negative electrode were superimposed on both sides of the porous film so that the active material layer separated the porous film, and the positive electrode coated portion was entirely opposed to the negative electrode coated portion. Arranged to obtain an electrode group.
  • hot pressing was performed for 10 seconds at a pressure of 6 MPa in a heating environment of 75° C. to bond the positive electrode, the porous film, and the negative electrode.
  • the above positive electrode, porous film, and negative electrode were sandwiched between a sheet of aluminum laminate film of 90 mm ⁇ 200 mm.
  • 1.5 g of the electrolytic solution was poured into a bag-shaped aluminum laminate film, and the short sides of the aluminum laminate film were heat-sealed while being impregnated under reduced pressure to obtain a laminate type battery.
  • Discharge load characteristics were tested according to the following procedures and evaluated by the discharge capacity retention rate. Using the laminate type battery, the discharge capacity when discharged at 0.5 C at 25 ° C. and the discharge capacity when discharged at 10 C at 25 ° C. are measured, (discharge capacity at 7 C) / ( The discharge capacity retention rate (%) was calculated by the formula of (discharge capacity at 0.5 C) ⁇ 100.
  • the charging conditions were constant current charging at 0.5C and 4.3V, and the discharging conditions were constant current discharge at 2.7V.
  • Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate.
  • a discharge capacity retention rate of less than 40% was rated as "bad”, 45% or more and less than 50% as "good”, 50% or more and less than 55% as "excellent", and 55% or more as "excellent”.
  • Charging and discharging were set as one cycle, charging conditions were constant current charging at 2C and 4.3V, and discharging conditions were constant current discharging at 2C and 2.7V, and charging and discharging were repeated 300 times at 25°C.
  • the discharge capacity retention rate (%) was calculated by the formula of (discharge capacity at 300th cycle)/(discharge capacity at 1st cycle) ⁇ 100. Five laminate-type batteries were produced, and the average of the measurement results of the three batteries after removing the maximum and minimum discharge capacity retention rates was taken as the capacity retention rate. Life characteristics are "bad” when the discharge capacity retention rate is less than 50%, life characteristics are “good” when 50% or more and less than 60%, life characteristics are “excellent” when 60% or more and less than 70%, and life characteristics are 70% or more. said "excellent”.
  • Example 1 Dispersion A 120 parts of ion-exchanged water and 1 part of Adekaria Sorb SR-1025 (an emulsifier manufactured by Adeka Corporation) were charged into a reactor, and stirring was started. To this, 0.4 parts of 2,2′-azobis(2-(2-imidazolin-2-yl)propane) (manufactured by Wako Pure Chemical Industries, Ltd.) was added under a nitrogen atmosphere, and 2,2,2- Trifluoroethyl methacrylate (3FM) 24 parts, cyclohexyl acrylate (CHA) 56 parts, hydroxyethyl methacrylate (HEMA) 12 parts, alkylene glycol dimethacrylate (AGDMA) 9 parts, Adekaria Sorb SR-1025 (emulsifier, manufactured by Adeka Co., Ltd.) 8 and 115 parts of ion-exchanged water are continuously added dropwise at 70° C. over 1.5 hours. A dispersion A containing coalescence
  • Dispersion Z Using alumina particles (aluminum oxide) having an average particle size of 0.5 ⁇ m as inorganic particles, adding water in the same amount as the inorganic particles as a solvent, and carboxymethyl cellulose as a dispersant at 1% by mass relative to the inorganic particles, followed by bead milling. to prepare a dispersion liquid Z.
  • alumina particles aluminum oxide having an average particle size of 0.5 ⁇ m as inorganic particles
  • Coating liquid Dispersion liquid A and dispersion liquid Z are dispersed in water so that the volume content ⁇ of the inorganic particles contained in the porous layer is 50% by volume and the solid content concentration is 22% by mass, and mixed with a stirrer. did.
  • the resulting coating liquid had a viscosity of 13 mPa ⁇ s.
  • the obtained coating liquid was applied to a polyolefin microporous film (arithmetic mean height (Sa) 0.06 ⁇ m, protruding peak height (Spk) 0.06 ⁇ m, arithmetic average roughness (Ra) 40 nm, thickness 9 ⁇ m), dried for 1 minute in a hot air oven (drying set temperature 45 ° C.), and volatilizing the contained solvent to form a porous layer, A porous film was obtained.
  • Table 1 shows the arithmetic mean height (Sa) of the porous substrate surface on the side in contact with the porous layer used in Examples 1 to 30, the type of inorganic particles, the volume content ⁇ , the type of organic resin particles, Coating conditions are shown.
  • Table 2 shows the ⁇ / ⁇ of the porous films obtained in Examples 1 to 30, the occupation ratio ⁇ of the inorganic particles in the porous surface layer portion, and the arithmetic mean height of the surface of the porous film on the side having the porous layer.
  • (Sa) surface free energy, glass transition temperature (°C) of the porous film, and thickness of the porous layer.
  • Table 3 shows the thermal dimensional stability, peel strength, dry adhesion to electrodes, electrolyte pourability, rate characteristics, and life characteristics of the porous films obtained in Examples 1 to 30 and the batteries using them. shows the measurement results of
  • Example 2 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.04 ⁇ m.
  • Example 3 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.08 ⁇ m.
  • Example 4 A porous film of the present invention was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.01 ⁇ m.
  • Example 5 A porous film was obtained in the same manner as in Example 1, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 30% by volume.
  • Example 6 A porous film was obtained in the same manner as in Example 1, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 80% by volume.
  • Example 7 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 10% by mass and the viscosity was changed to 10 mPa ⁇ s.
  • Example 8 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 40% by mass and the viscosity was changed to 40 mPa ⁇ s.
  • Example 9 Dispersion liquid A and dispersion liquid Z were prepared in the same manner as in Example 1.
  • Dispersion B A dispersion liquid B was prepared comprising a polymer (polymer B) (particle size: 140 nm) composed of methyl acrylate as an acrylate monomer. After that, the dispersion liquid A, the dispersion liquid Z, and the dispersion liquid B were mixed in the porous layer so that the volume content ⁇ of the inorganic particles contained in the porous layer was 50% by volume, the content of the organic resin particles (polymer A) was 35% by volume, and the organic resin The particles (polymer B) were dispersed in water so that the content of the particles (polymer B) was 15% by volume and the solid concentration was 22% by mass, and mixed with a stirrer.
  • the resulting coating liquid had a viscosity of 13 mPa ⁇ s. Except that the organic resin particles are a mixture of two kinds of particles containing 90% by mass of a polymer A composed of a fluorine-containing methacrylate monomer and 10% by mass of a polymer B (average particle diameter 130 nm) composed of an acrylic acid ester monomer. obtained a porous film in the same manner as in Example 1.
  • Example 10 2,2,2-trifluoroethyl methacrylate (3FM) was replaced with 1H,1H,5H-octafluoropentyl acrylate (8FA), prepared in the same manner as dispersion A of Example 1 to contain polymer C Dispersion C was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 11 24 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 56 parts of cyclohexyl acrylate (CHA), 12 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer D forming the organic resin particles and 9 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of ethyl methacrylate as the methacrylic acid ester monomer. Dispersion D was prepared. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • 3FM 2,2,2-trifluoroethyl methacrylate
  • CHA cyclohexyl acrylate
  • HEMA hydroxyethyl methacrylate
  • ALDMA alkylene glycol dimethacrylate
  • Example 12 A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.08 ⁇ m.
  • Example 13 A porous film was obtained in the same manner as in Example 11, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.01 ⁇ m.
  • Example 14 24 parts of 2,2,2-trifluoroethyl methacrylate (3FM), 56 parts of cyclohexyl acrylate (CHA), 12 parts of hydroxyethyl methacrylate (HEMA) as monomers for constituting the polymer E forming the organic resin particles and 9 parts of alkylene glycol dimethacrylate (AGDMA) were replaced with 100 parts of a vinylidene fluoride monomer. manufactured. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • 3FM 2,2,2-trifluoroethyl methacrylate
  • CHA cyclohexyl acrylate
  • HEMA hydroxyethyl methacrylate
  • ALDMA alkylene glycol dimethacrylate
  • Example 15 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 75 nm.
  • Example 16 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 100 nm.
  • Example 17 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 500 nm.
  • Example 18 A porous film was obtained in the same manner as in Example 1, except that the average particle size of the organic resin particles was 700 nm.
  • Example 19 A porous film was obtained in the same manner as in Example 1, except that the inorganic particles were barium sulfate particles.
  • Example 20 A porous film was obtained in the same manner as in Example 1, except that boehmite particles were used as the inorganic particles.
  • Example 21 A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 5 ⁇ m.
  • Example 22 A porous film was obtained in the same manner as in Example 1, except that the film thickness of the porous layer was 8 ⁇ m.
  • Example 23 Polymer F was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing dispersion liquid A of Example 1, with 20 parts of 3FM. A porous film was obtained in the same manner.
  • Example 24 Polymer G was obtained by adjusting the amounts of CHA, HEMA, and AGDMA so that the glass transition temperature was 20° C. under the conditions for producing Dispersion A of Example 1, with the exception that 80 parts of 3FM was used. A porous film was obtained in the same manner.
  • Example 25 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 75°C.
  • Example 26 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 100°C.
  • Example 27 Using the same polyolefin microporous membrane as in Example 1 as the porous substrate, the dispersion liquid Z was coated on both sides of the polyolefin microporous membrane using a #9 wire bar, and dried in a hot air oven (drying set temperature 50 ° C.). The first porous layer was formed by drying in the chamber for 1 minute and volatilizing the contained solvent. After that, dispersion liquid A was dispersed in water so as to have a solid content concentration of 6% by mass, and mixed with a stirrer. The resulting coating liquid had a viscosity of 7 mPa ⁇ s.
  • the coating liquid is coated on both sides of the first coating layer using a #1.5 wire bar and dried in a hot air oven (drying temperature set at 50°C) for 1 minute to volatilize the contained solvent.
  • a porous film was obtained in the same manner as in Example 6, except that the second porous layer was formed by heating.
  • the occupation ratio ⁇ of the inorganic particles in the surface portion of the porous layer was 20%.
  • Example 28 A porous film was obtained in the same manner as in Example 27, except that polymer D was used.
  • Example 29 Polymer H obtained by selecting a methacrylic acid ester monomer (butyl methacrylate) suitable for constituting the polymer forming the organic resin particles so that the glass transition temperature of the porous layer is 20° C. A porous film was obtained in the same manner as in Example 28, except that it was used.
  • Example 30 Acrylic acid ester monomers containing fluorine-containing acrylate monomers (50 parts of methyl acrylate, 50 parts of methyl acrylate, A porous film was obtained in the same manner as in Example 1, except that Copolymer I obtained by selecting 50 parts of butyl acrylate was used.
  • Polymers in the table represent the following.
  • Polymer A A polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 30% by mass)
  • Polymer B A polymer polymerized using an acrylate monomer
  • Polymer C A polymer polymerized using a fluorine-containing acrylate monomer
  • Polymer D A methacrylic acid ester monomer
  • Polymer E polymer polymerized using a vinylidene fluoride monomer
  • Polymer F polymer polymerized using a fluorine-containing methacrylate monomer (total monomers used Proportion of fluorine-containing methacrylate monomer accounted for: 20% by mass)
  • Polymer G a polymer polymerized using a fluorine-containing methacrylate monomer (ratio of fluorine-containing methacrylate monomer to total monomers used: 80% by mass)
  • Polymer H polymer polymerized using me
  • Example 31 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 5 nm.
  • Example 32 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 10 nm.
  • Example 33 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 50 nm.
  • Example 34 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 70 nm.
  • Example 35 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean roughness (Ra) of the polyolefin microporous membrane was changed to 100 nm.
  • Example 36 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.01 ⁇ m.
  • Example 37 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.04 ⁇ m.
  • Example 38 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.09 ⁇ m.
  • Example 39 A porous film was obtained in the same manner as in Example 1, except that the height (Spk) of the protrusion peaks of the polyolefin microporous membrane was changed to 0.15 ⁇ m.
  • Tables 4 and 5 show the measurement results of peel strength, dry adhesion to electrodes, rate characteristics, and life characteristics of the film and the battery using it.
  • Example 40 Dispersion J containing polymer J was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 41 Dispersion K containing polymer K was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 42 Dispersion L containing polymer L was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 43 Dispersion M containing polymer M was prepared in the same manner as Dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 44 Dispersion N containing polymer N was prepared in the same manner as dispersion A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Thereafter, in the same manner as in Example 1, a porous film was obtained.
  • Example 45 Dispersion liquid O containing polymer O was produced in the same manner as dispersion liquid A of Example 1, except that the composition of the organic resin particles was changed as shown in Table 6. Then, in the same manner as in Example 1, a porous film was obtained.
  • Example 46 A porous film of the present invention was obtained in the same manner as in Example 42, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 30% by volume.
  • Example 47 A porous film of the present invention was obtained in the same manner as in Example 42, except that the volume content ⁇ of the inorganic particles contained in the porous layer was changed to 80% by volume.
  • Example 48 A porous film of the present invention was obtained in the same manner as in Example 42, except that the porous substrate was changed to a polyolefin microporous membrane having an arithmetic mean height (Sa) of 0.08 ⁇ m.
  • Example 49 A porous film of the present invention was obtained in the same manner as in Example 1, except that the porous substrate was changed to a polyolefin microporous membrane having an arithmetic mean height (Sa) of 0.01 ⁇ m.
  • Table 6 shows the arithmetic mean height (Sa) of the porous substrate used in Examples 40 to 49, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer
  • the glass transition temperature (° C.) of the polymer polymerized using only the monomer, the proportion (%) of each monomer used, and the glass transition temperature of the polymer polymerized only with the monomer are ⁇ 100. ° C. to 0 °C.
  • Table 7 shows the types of inorganic particles used in Examples 40 to 49, the volume content ⁇ , the resulting porous film ⁇ / ⁇ , the inorganic particle occupation ratio ⁇ in the porous surface layer, the porous Arithmetic mean height (Sa) of the surface of the porous film on the layered side (Sa), surface free energy, glass transition temperature (°C), thermal dimensional stability, peel strength, dry adhesion with electrode, wet with electrode It shows adhesion, rate characteristics and life characteristics of batteries using the porous film.
  • Example 1 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.09 ⁇ m.
  • Example 2 A porous film was obtained in the same manner as in Example 1, except that the solid content concentration of the coating liquid was changed to 50% by mass and the viscosity was changed to 80 mPa ⁇ s.
  • Example 3 A porous film was obtained in the same manner as in Example 1, except that the drying temperature of the coating liquid was set to 110°C.
  • Example 4 A porous film was obtained in the same manner as in Example 1, except that the composition shown in Table 8 was used without using the organic resin particles A.
  • Example 5 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.15 ⁇ m.
  • Example 6 A porous film was obtained in the same manner as in Example 1, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.008 ⁇ m.
  • Example 7 A porous film was obtained in the same manner as in Example 42, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.008 ⁇ m.
  • Example 8 A porous film was obtained in the same manner as in Example 42, except that the arithmetic mean height (Sa) of the polyolefin microporous membrane was changed to 0.15 ⁇ m.
  • Table 8 shows the arithmetic mean height (Sa) of the porous substrate used in Comparative Examples 1 to 8, the type of monomer used for polymerization of the polymer constituting the organic resin particles, and each monomer
  • the glass transition temperature (° C.) of the polymer polymerized using only the monomer, the proportion (%) of each monomer used, and the glass transition temperature of the polymer polymerized only with the monomer are ⁇ 100. ° C. to 0 °C.
  • Table 9 shows the types of inorganic particles used in Comparative Examples 1 to 8, the volume content ⁇ , the obtained porous film ⁇ / ⁇ , the occupation ratio ⁇ of the inorganic particles in the porous surface layer, the porous
  • the arithmetic mean height (Sa), surface free energy, glass transition temperature (° C.) and film thickness of the porous film on the layered side of the porous film are shown.
  • Table 10 shows the thermal dimensional stability, peel strength, dry adhesion to electrodes, wet adhesion to electrodes, rate characteristics, and life of the porous films obtained in Comparative Examples 1 to 8 and batteries using them. The measurement results of the characteristics are shown.
  • Examples 1 to 49 all have a porous substrate and a porous layer containing inorganic particles and organic resin particles on at least one surface of the porous substrate.
  • the porous substrate has an arithmetic mean height (Sa) of 0.01 ⁇ m or more and less than 0.09 ⁇ m in a 2200 ⁇ m square on the surface of the porous substrate on the side in contact with the porous layer,
  • Sa arithmetic mean height
  • the volume of all constituent components of the layer is 100% by volume
  • the volume content ⁇ (% by volume) of the inorganic particles and the occupation ratio ⁇ (% by mass) of the inorganic particles at the surface of the porous layer are ⁇ / ⁇ 1.
  • It is a porous film has excellent dry adhesion to electrodes, and has good rate characteristics and battery life.
  • Examples 40 to 44 and 46 to 49 have excellent wet adhesion to the electrode by appropriately selecting the composition of the organic resin particles.
  • Comparative Example 4 does not contain organic resin particles, uneven distribution of the organic resin particles on the surface does not occur.
  • the arithmetic mean height (Sa) of the surface of the porous substrate on the side in contact with the porous layer is less than 0.01 ⁇ m, so the adhesiveness to the electrode is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、電極との優れた接着性と電解液注液性、熱寸法安定性を有し、低抵抗な多孔性フィルムを提供することを課題とし、 多孔質基材と、該多孔質基材の少なくとも一方の面に無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、多孔質基材は多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)との関係がβ/α<1を満たす、多孔性フィルムとすることを本旨とする。

Description

多孔性フィルム、二次電池用セパレータおよび二次電池
 本発明は、多孔性フィルム、二次電池用セパレータおよび二次電池に関する。
 リチウムイオン電池のような二次電池は、電気自動車、ハイブリッド車、プラグインハイブリッド車などの自動車用途や、スマートフォン、タブレット、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器、電動工具、電動バイク、電動アシスト補助自転車などに幅広く使用されている。
 リチウムイオン電池は、一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成を有している。
 二次電池用セパレータとしては、ポリオレフィン系多孔質基材が用いられている。二次電池用セパレータに求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させることで、放電を停止させるシャットダウン特性が挙げられる。
 また、リチウムイオン電池のエネルギー密度向上のために、電池形態が捲回型から積層型への置き換えが進んでいる。積層型の場合、正極、セパレータ、負極を積層した電極積層体を用いる二次電池の製造工程において、電極積層体を運搬する際に、積層体構造を維持するため、または、電極積層体を円筒型、角型などの缶に挿入する場合、その際に形が崩れないようにするため、もしくは、より多くの電極積層体を缶の中に入れてエネルギー密度を高くするため、さらにはラミネート型電池においては、外装材に挿入した後に形状が変形しないようにするために、電解液を含浸する前のセパレータと電極との接着性(ドライ接着性)が求められている。そのために上記工程において、電極積層体に熱プレスを実施する場合がある。一方で、熱プレス後の電極積層体への電解液の含浸、すなわち電解液注液性の悪化を防ぐ必要がある。またリチウムイオン電池には、電解液を含浸した状態での電極との接着性(ウェット接着性)や高出力化、高寿命化などの良好な電池特性も求められている。
 上記ドライ接着性の要求に対して、特許文献1では、耐熱層上に形成された接着剤層を積層することで電極とのドライ接着性の発現を図っている。特許文献2では、粒子状重合体の粒子径と無機粒子の粒子径が特定の関係を満たすことで電極とのドライ接着性を高めている。また、セパレータの最表面を粗くにすることで電解液の含浸性を向上させることが知られている(特許文献3)。またドライ接着性とウェット接着性の両方を発現させることで、電池作製時の歩留まり性、初期充放電時の歩留まり性の向上を検討している(特許文献4)。
国際公開第2013/151144号 国際公開第2018/034094号 国際公開第2014/021293号 国際公開第2016/098684号
 前述のとおり、二次電池の製造工程における熱プレス工程によって電極とセパレータのドライ接着性と電解液注液性の両立が求められる。さらに電池の大型化によって電極積層体の大型化、さらなる高容量化が求められており、電極とのドライ接着性に加えてウェット接着性さらには電解液注液性を向上させる必要がある。また、積層型電池の需要増加により、生産性向上も求められており、接着性向上のための熱プレス時間の短縮も必要である。電極との接着性と電解液注液性の両立のため、電極との接着を担う有機樹脂粒子量を適宜調整することが検討されているが、有機樹脂量を増加すると、電解液注液性が低下し、電池抵抗の増大によりレート特性、電池寿命が悪化する問題がある。一方、有機樹脂量を低減すると電極との接着性が低下する問題もある。
 本発明の目的は、上記問題に鑑み、電極との優れた接着性(ドライ接着性、ウェット接着性)と電解液注液性、熱寸法安定性を有し、低抵抗な多孔性フィルムを提供する。
 そこで、本発明者らは、熱プレス時間短縮のための高圧熱プレスによる電極との接着性に着眼し、鋭意検討を重ねた結果、多孔質基材の算術平均高さをある一定の高さとし、表層に有機樹脂粒子を偏在させて無機粒子と層分離させることで電極とのドライ接着性と電解液注液性に優れることを見出した。さらに有機樹脂粒子の組成を適宜選択することで、上述した特性に加えてウェット接着性にも優れることを見出した。
 上記課題を解決するため本発明の多孔性フィルムは次の構成を有する。
(1)多孔質基材と、該多孔質基材の少なくとも一方の面に無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たす、多孔性フィルム。
(2)前記多孔性フィルムは、多孔質層を有する側の表面の2200μm四方における算術平均高さ(Sa)が0.005μm以上0.085μm未満である、(1)に記載の多孔性フィルム。
(3)前記無機粒子の体積含有率αが多孔質層の全構成成分の体積を100体積%としたとき30体積%以上80体積%以下である、(1)または(2)に記載の多孔性フィルム。
(4)前記多孔質表面部での無機粒子の占有率βが0%より大きい、(1)から(3)のいずれかに記載の多孔性フィルム。
(5)前記多孔質基材は、多孔質層と接する側の表面の12nm四方における算術平均粗さ(Ra)が10nm以上80nm未満である、(1)から(4)のいずれかに記載の多孔性フィルム。
(6)前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における突出山部高さ(Spk)が0.01μm以上0.12μm未満である、(1)から(5)のいずれかに記載の多孔性フィルム。
(7)前記多孔質層の表面自由エネルギーが10mN/m以上80mN/m以下である、(1)から(6)のいずれかに記載の多孔性フィルム。
(8)前記前記多孔質基材がポリオレフィン微多孔膜である(1)から(7)のいずれかに記載の多孔性フィルム
(9)前記無機粒子が無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子である、(1)から(8)のいずれかに記載の多孔性フィルム。
(10)前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体を有する、(1)から(9)のいずれかに記載の多孔性フィルム。
(11)前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、フッ素含有(メタ)アクリレート単量体の割合が20質量%以上80質量%以下である、(10)に記載の多孔性フィルム。
(12)前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体のみで重合された重合体を含む、(11)に記載の多孔性フィルム。
(13)前記フッ素含有(メタ)アクリレート単量体一分子に含有されるフッ素原子数が3以上13以下である、(10)から(12)のいずれかに記載の多孔性フィルム。
(14)前記有機樹脂粒子が、さらに水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体を有する、(12)または(13)に記載の多孔性フィルム。
(15)前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、水酸基を有する(メタ)アクリレート単量体の割合が0質量%より大きく7.0質量%以下である(14)に記載の多孔性フィルム。
(16)前記有機樹脂粒子に含まれる重合体について、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下となる単量体であることを特徴とする、(10)から(15)のいずれかに記載の多孔性フィルム。
(17)前記その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体が、有機樹脂粒子の全構成単量体成分を100質量%としたとき、0質量%より大きく、10.0質量%以下である、(16)に記載の多孔性フィルム。
(18)前記多孔質層が少なくとも2種類の有機樹脂粒子を含む、(1)から(17)のいずれかに記載の多孔性フィルム。
(19)前記有機樹脂粒子の平均粒径が100nm以上500nm以下である、(1)から(18)のいずれかに記載の多孔性フィルム。
(20)前記多孔質基材の膜厚が3μm以上15μm以下である、(1)から(19)のいずれかに記載の多孔性フィルム。
(21)前記多孔質層の膜厚が2μm以上8μm以下である、(1)から(20)のいずれかに記載の多孔性フィルム。
(22)(1)から(21)のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。
(23)(22)に記載の二次電池用セパレータを用いてなる二次電池。
(24)多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、
前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であるポリオレフィン微多孔膜からなり、
前記無機粒子が、無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子であり、
前記有機樹脂粒子が、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体であり、
前記多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率αが30体積%以上80体積%以下であり、
該無機粒子の体積含有率αと前記多孔質層の表面部での無機粒子の占有率βとの関係が、β>0かつβ/α<1を満たす、電池用セパレータ。
 本発明によれば、電極との優れた接着性(ドライ接着性、ウェット接着性)と電解液注液性、熱寸法安定性を有し、低抵抗な多孔性フィルムを提供することができる。特に高圧熱プレスした際に、優れたドライ接着性を発現することができる。また、該多孔性フィルムを電池用セパレータとして用いることで、電池作製工程の歩留まり向上、電池寿命とレート特性に優れた二次電池を提供することができる。
 本発明の多孔性フィルムは、多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たすことを特徴とする。
 以下、本発明の多孔性フィルムについて詳細に説明する。
 本発明の多孔性フィルムは、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満である。この算術平均高さ(Sa)の下限を0.01μm以上とすることで、電極との接着性をより向上させることができる。また、この算術平均高さ(Sa)の上限を0.09μm未満とすることで、電極と多孔性フィルムが接着した電極積層体に電解液が含浸しやすく成り、電解液注液性が向上し、電池用セパレータとして用いたときにレート特性、電池寿命が向上する。
 これまで、電極とのドライ接着性を向上させるためには、セパレータの最表面に設けた接着層を平滑することが検討されている。さらに、近年、電解液を含浸する前のセパレータと電極とのドライ接着性の歩留まりを向上するために、電極との接着工程(熱プレス)においてプレス圧力を大幅に上げることで、セパレータと電極との接着工程時間を大幅に短縮することが検討されている。その場合、ドライ接着性を向上させるためにはセパレータの最表面が電極により深くプレスされることで、電極内に存在する活物質への凹凸に追従する必要があるが、最表面が平滑であるとその凹凸に追従できずに電極とのドライ接着性が逆に低下することがわかった。一方で最表面が粗すぎると、活物質の凹凸に追従しやすくなり、電極とのドライ接着性が必要以上に上がることで電解液注液性が低下することがわかった。そのため、セパレータの最表面をある一定範囲に平滑にすることで、活物質への凹凸の追従を調整可能となり、電極とのドライ接着性と電解液注液性を両立することができる。
 また、電極とのドライ接着性およびウェット接着性を向上させるために、電極との接着を担う有機樹脂粒子の含有量を増やすことが検討されるが、電解液注液時に電解液が電極内に含浸しにくくなることで、電池生産性が低下し、またイオン輸送の阻害により膜抵抗が悪化する場合があった。そのため、電極とのドライ接着性およびウェット接着性と膜の低抵抗の維持との両立に課題があった。
 本発明の多孔性フィルムは、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)を0.01μm以上0.09μm未満とすることで、電極とのドライ接着性と電解液注液性が両立できることを見出した。算術平均高さ(Sa)を前記範囲とすることで、多孔質層表面の算術平均高さも低減し、電極とのドライ接着工程(熱プレス)の際に、電極内に存在する活物質への凹凸追従性を調整することができ、電極とのドライ接着性と電解液注液性の両立を示すものである。有機樹脂粒子量を増やすことなくコストを抑えて電極とのドライ接着性を向上させることができ、かつ電極注液性の向上により膜抵抗を低くすることができる。そのため、本発明の多孔性フィルムを電池用セパレータとして用いる電池はレート特性及び電池寿命の両立が可能となる。
 ここで多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)は、多孔質基材の樹脂の種類、可塑剤の種類、シート形成後の冷却有無、延伸方法、延伸倍率、延伸温度、延伸後の乾式再延伸といった各種製造条件を調整することで、所定の範囲とすることが可能となる。
 本発明における多孔質層は、無機粒子と有機樹脂粒子を含有する。多孔質層は、多孔質層の全構成成分の体積を100体積%としたときの無機粒子の体積含有率α(体積%)と、多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たす。β/αが1より小さいことは、多孔質層の表面部での無機粒子の占有率が多孔質層全体の無機粒子の含有率より低いことを示しており、すなわち有機樹脂粒子が多孔質層の表面部に偏在していることを示している。多孔質層の表面部に有機樹脂粒子が偏在することで、表面部は有機樹脂粒子が多く存在するため、電極との十分な接着性を示す。
 なお、上記説明した、無機粒子の体積含有率αおよび無機粒子の占有率βは、実施例の項に記載の方法によって求められる。
 そして、本発明の多孔性フィルムは、多孔質層と接する側の多孔質基材表面の2200μmにおける算術平均高さ(Sa)が0.01μm以上0.09μm未満である多孔質基材を用いて、かつ、多孔質層が、多孔質層の全構成成分を100体積%としたとき、無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)がβ/α<1を満たすことで、特に高圧熱プレスをしたときに電極との高いドライ接着性およびウェット接着性、電解液注液性を得られる。β/αは、より好ましくは0.5以下であり、さらに好ましくは0.3以下である。β/αの下限は、特に制限されるものではないが、0.01以上であると良い。
β/αの下限は、特に制限されるものではないが、0.01以上であると良い。
 β/αが前記範囲内である多孔質層を形成するためには、2種の塗工液を用いる2段階の塗布工程を経て形成してもよく、1種の塗工液を用いる1段階の塗布工程で形成することがより好ましい。1段階の塗布工程で形成できると、塗工回数の低減による低コスト化が可能となる。1段階の塗布工程とするには、例えば、有機樹脂粒子の表面自由エネルギー、塗工液の粘度、固形分濃度、乾燥温度を適宜調節することで、β/αを所定の範囲とすることが可能となる。詳細については後述する。
 無機粒子の体積含有率αは、多孔質層の全構成成分の体積を100体積%としたとき、好ましくは30体積%以上80体積%以下であり、より好ましくは40体積%以上70体積%以下であり、さらに好ましくは50体積%以上60体積%以下である。無機粒子の体積含有率βが30体積%以上とすることで、十分な熱寸法安定性が得られる。また80体積%以下とすることで、有機樹脂粒子の含有率が十分となり、電極とのドライ接着性およびウェット接着性が向上する。
 多孔質層の表面部での無機粒子の占有率βは0%より大きいことが好ましい。より好ましくは、1%以上、さらに好ましくは5%以上である。βが0%より大きいことで1段階の塗布工程による塗工回数低減または原料減少による塗材費の低減により低コスト化が可能となる。上限は、特に制限されるものではないが、50%未満であると良い。より好ましくは30%未満、更に好ましくは20%未満である。50%未満であることで電極との接着性が良好となる。β=0ということは多孔質層表面に無機粒子が存在しておらず、多孔質中に全て存在することを示す。なお、多孔質層の表面部とは、多孔質層の外側表面および電極との接着性に影響する深さの表面層であり、後述するSEM-EDXを用いて得られる画像が示すものとする。
 [多孔質層]
 本発明の多孔性フィルムは、後ろで詳しく説明する多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層が形成されている。
 多孔質層の膜厚は、下限としては、2μm以上とすることが好ましく、より好ましくは3μm以上、さらに好ましくは4μm以上である。また、多孔質層の膜厚の上限としては、8μm以下とすることが好ましく、7μm以下であることが好ましく、より好ましくは6μm以下である。ここでいう多孔質層の膜厚とは、多孔質基材に設けられた多孔質層の合計厚みをいう。多孔質層の膜厚が2μm以上とすることで、十分な熱寸法安定性および有機樹脂の偏在が起こりやすくなり電極との接着性が得られる。また、8μm以下とすることで、多孔質構造となり、レート特性、電池寿命が良好となる。また、コスト面でも有利となる。
 多孔質層の表面自由エネルギーは、10mN/m以上80mN/m以下であることが好ましく、より好ましくは15mN/m以上70mN/m以下、さらに好ましくは20mN/m以上60mN/m以下である。10mN/m以上とすることで、多孔質層の塗工安定性が向上する。また80mN/m以下とすることで、有機樹脂粒子の層分離による表面偏在が生じやすくβ/αを制御しやすくなる。
 また多孔質層は20℃以上80℃未満にガラス転移温度を有することが好ましい。下限はより好ましくは30℃以上、さらに好ましくは40℃以上である。また、上限はより好ましくは70℃以下、さらに好ましくは60℃以下である。ガラス転移温度を20℃以上とすることで、電解液への膨潤性を抑制し、ウェット接着性、レート特性、電池寿命が良好となる。また80℃未満とすることで、電極とのドライ接着性がより向上する。ガラス転移温度を適切な範囲にするために、特定の単量体群から適宜選択することができる。
 (1)有機樹脂粒子
 有機樹脂粒子は電極との接着性を改善する。有機樹脂粒子を構成する樹脂は、電極との接着性を有する樹脂が好ましく、有機樹脂粒子を多孔性フィルム表層に偏在させることでイオン透過性が向上して、レート特性が向上する。また有機樹脂粒子の表面自由エネルギーを低くすることで、β/αを低くすることができる。
 有機樹脂粒子としては、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体有することが好ましい。この中でも特に有機樹脂粒子はフッ素含有(メタ)アクリレート単量体のみで重合された重合体と他の重合体との混合物、又は、フッ素含有(メタ)アクリレート単量体が用いられて重合された共重合体を有することが望ましい。これにより、有機樹脂粒子の表面自由エネルギーを低くすることで有機樹脂粒子を表面側に偏在することができ、多孔質層の電極との接着性を向上することができる。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」および「メタクリレート」の両方の意味を意味する。
 フッ素含有(メタ)アクリレート単量体が用いられて重合された重合体は、フッ素含有(メタ)アクリレートを重合して得られる繰り返し単位を含む。
 フッ素含有(メタ)アクリレート単量体としては、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、3-(パーフルオロブチル)-2-ヒドロキシプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレートなどが挙げられる。フッ素含有(メタ)アクリレート単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 有機樹脂粒子に用いられるフッ素含有(メタ)アクリレート単量体の割合は、有機樹脂粒子の全構成単量体成分を100質量%としたとき、20質量%より大きいことが好ましく、より好ましくは22質量%以上、さらに好ましくは25質量%以上、一層好ましくは30質量%以上である。また、80質量%以下が好ましく、より好ましくは60質量%以下、さらに好ましくは50質量%以下、一層好ましくは40質量%以下、最も好ましくは35質量%以下である。上記範囲とすることで、有機樹脂粒子が表層に偏在しやすくなり、十分な電極との接着性が得られる。
 有機樹脂粒子にフッ素含有(メタ)アクリレート単量体が用いられているか否か、さらには有機樹脂粒子に用いられたフッ素含有(メタ)アクリレート単量体の割合は、公知の方法を用いて測定することができる。例えば、まず多孔性フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、核磁気共鳴法(H-NMR、19F-NMR、13C-NMR)、赤外吸収分光法(IR)、X線光電子分光法(XPS)、蛍光X線分析法(EDX)、および元素分析法、熱分解ガスクロマトグラフ質量分析計(熱分解GC/MS)などにより、フッ素含有(メタ)アクリレート単量体に由来するシグナルの強度から算出することができる。特に熱分解GC/MSによってフッ素含有(メタ)アクリレート単量体が用いられているかを確認した後、13C-NMR(固体NMR試料管に前記有機樹脂成分と適当量の溶媒(重クロロホルム)を充填し、一晩静置後にDD/MAS法にて測定)によって、用いられたフッ素含有(メタ)アクリレート単量体の割合を求めることができる。
 また、フッ素含有(メタ)アクリレート単量体一分子に含まれるフッ素原子数は、3以上13以下が好ましい。フッ素原子数は、より好ましくは3以上11以下、さらに好ましくは3以上9以下である。上記範囲にすることで、有機樹脂粒子の表面自由エネルギーを小さくでき、また、塗工性を両立することができる。フッ素原子数が3以上の場合は有機樹脂粒子の表面自由エネルギーの低下が十分となり、電極との接着性が十分となる。また、フッ素原子数が13以下の場合、多孔質基材への塗工性が担保され、生産性が向上する。
 なお、フッ素含有(メタ)アクリレートのフッ素原子数は、公知の方法を用いて測定することができる。例えば、まず多孔性フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解し、無機粒子と分離する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、核磁気共鳴法(H-NMR、19F-NMR、13C-NMR)、赤外吸収分光法(IR)、X線光電子分光法(XPS)、蛍光X線分析法(EDX)、および元素分析法、熱分解ガスクロマトグラフ質量分析計(熱分解GC/MS)などにより、フッ素含有(メタ)アクリレート単量体に由来するシグナルの強度から算出することができる。この中でも特に熱分解GC/MSが有用である。
 不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 (メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、シクロヘキシルアクリレート、ヒドロキシエチルアクリレート、ベンジルアクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、5-ヒドロキシペンチルアクリレート、6-ヒドロキシヘキシルアクリレート、7-ヒドロキシヘプチシルアクリレート、8-ヒドロキシオクチルアクリレートなどのアクリル酸エステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、t-ブチルシクロヘキシルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、シクロヘキシルメタクリレート、ヒドロキシエチルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルメタクリレート、ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、5-ヒドロキシペンチルメタクリレート、6-ヒドロキシヘキシルメタクリレート、7-ヒドロキシヘプチシルメタクリレート、8-ヒドロキシオクチルメタクリレートなどのメタクリル酸エステルなどが挙げられる。(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 上記(メタ)アクリル酸エステル単量体の中でも、水酸基を有する(メタ)アクリレート単量体を用いることが好ましい。水酸基を有する(メタ)アクリレート単量体を用いることで有機樹脂粒子のガラス転移温度を調整し、電極とのドライ接着性を優れたものにすることができる。水酸基を有する(メタ)アクリレート単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。特に、ヒドロキシエチルアクリレート(HEA)、4-ヒドロキシブチルアクリレート(4-HBA)、2-ヒドロキシプロピルアクリレート(2-HPA)が好ましい。
 スチレン系単量体としては、スチレン、α―メチルスチレン、パラメチルスチレン、t-ブチルスチレン、クロロスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどが挙げられる。オレフィン系単量体としては、エチレン、プロピレンなどが挙げられる。ジエン系単量体としては、ブタジエン、イソプレンなどが挙げられる。
 アクリルアミド系単量体としては、アクリルアミドなどが挙げられる。これらのうち、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 フッ化ビニリデン単量体としては、フッ化ビニリデン単量体単独を用いたホモポリマーまたはその他単量体との共重合体であってもよい。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、酢酸ビニル、塩化ビニル、アクリロニトリル等が挙げられる。これらは、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 有機樹脂粒子は、フッ素含有(メタ)アクリレート単量体が用いられて重合された重合体と水酸基を有する(メタ)アクリレート単量体が用いられて重合された重合体とを含む混合物、又は、フッ素含有(メタ)アクリレート単量体および水酸基を有する(メタ)アクリレート単量体を含む単量体混合物が用いられて重合された共重合体を含んでいることが好ましい。
 有機樹脂粒子に含有される水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体の含有率は、有機樹脂粒子の全構成成分を100質量%としたとき、0質量%より大きく、7.0質量%以下が好ましい。さらに好ましくは0.5質量%以上5.0質量%以下、さらに好ましくは1.0質量%以上3.0質量%以下である。この含有率が0質量%より大きいことで、有機樹脂粒子の重合安定性が向上する。また7.0質量%以下とすることで、十分な電極とのドライ接着性が得られる、また電解液への膨潤性を抑制することで、十分な電極とのウェット接着性を得られることで、電極間距離が一定となり、初期充放電時の容量低下を抑制することが出来るため、初期充放電時の歩留まり性が向上する。
 なお、有機樹脂粒子に含まれる水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体の含有率は、公知の方法を用いて測定することができる。例えば、まず多孔質フィルム上から水およびアルコールなどの有機溶媒を用いて多孔質層を脱離させ、水およびアルコールなどの有機溶媒を十分に乾燥させて多孔質層に含まれる構成成分を得る。得られた構成成分に有機樹脂成分を溶解する有機溶媒を添加して有機樹脂成分のみを溶解する。続いて、有機樹脂成分が溶解した溶液から有機溶媒を乾燥させ、有機樹脂成分のみを抽出する。得られた有機樹脂成分を用いて、熱分解GC/MSによって水酸基を有する(メタ)アクリレート単量体の存在有無を確認した後、13C-NMR(固体NMR試料管に前記有機樹脂成分と適当量の溶媒(重クロロホルム)を充填し、一晩静置後にDD/MAS法にて測定)によって、水酸基を有する(メタ)アクリレート単量体を用いて重合された共重合体の含有率を求めることができる。
 フッ素含有(メタ)アクリレート単量体と水酸基を有する(メタ)アクリレート単量体とが用いられて重合された共重合体を得るに際しては、さらに1分子あたり2個以上の反応性基を有する単量体を用いて重合を行うことが好ましい。1分子あたり2個以上の反応性基を有する単量体を用いることにより、電解液への膨潤性を抑制した耐電解液性に優れ、かつ電極とのドライ接着性、電解液中での電極とのウェット接着性に優れた重合体粒子を得ることができる。
 1分子あたり2個以上の反応性基を有する単量体としては、たとえば、1分子あたり2個以上の反応性基を有する(メタ)アクリレート単量体を用いることが好ましく、アルキレングリコールジ(メタ)アクリレート、及びウレタンジ(メタ)アクリレートを用いることがより好ましい。
 有機樹脂粒子に含まれる重合体は、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合されたときの重合体のガラス転移温度が、-100℃以上0℃以下となる単量体が用いられて重合されたものであることが好ましい。このガラス転移温度の範囲はより好ましくは-70℃以上-10℃以下、さらに好ましくは-50℃以上-20℃である。ここでガラス転移温度とは、JIS K7121:2012に従って、示差走査熱量測定(DSC)により測定された中間点ガラス転移温度とする。中間点ガラス転移温度は、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とする。
 前記その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体の割合が、有機樹脂粒子の全構成成分を100質量%としたとき、0質量%より大きく、10.0質量%以下であることが好ましい。この割合は、より好ましくは1質量%以上7.0質量%以下、さらに好ましくは3.0質量%以上5.0質量%以下である。0質量%より大きくすることで、有機樹脂粒子が柔軟化して接着性が良好となる。一方、10.0質量%未満とすることで、有機樹脂粒子の柔軟化が起こりにくくなることで、有機樹脂粒子の電解液への膨潤性を抑制することができる。その単量体のみで重合されたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体の割合を少なくすると、ドライ接着後のウェット接着の低下率が抑制される傾向があり、ウェット接着性の改善の点で有利である。
 本発明の多孔性フィルムの多孔質層には、電極との接着性を有する有機樹脂粒子のほかに、異なる機能を付与する有機樹脂粒子を含んでもよい。つまり、多孔質層は少なくとも2種類の有機樹脂粒子を含むことができる。異なる機能を付与する有機樹脂粒子としては、有機樹脂粒子同士また有機樹脂粒子と無機粒子を互いに密着させるため、または有機樹脂粒子を多孔質基材に密着させるバインダー機能を持たせるために、エマルジョンバインダーとして用いても良い。バインダー機能により密着性が向上して、電極との接着性をより向上させることが出来る。有機樹脂粒子としては電池の使用範囲で電気化学的に安定である樹脂が好ましい。
 本明細書において、有機樹脂粒子は、粒子形状を有するものに加え、部分的に造膜し、周辺の粒子およびバインダーと融着しているものも含む。その形状は、特に制限されず、球状、多角形状、扁平状、繊維状等のいずれであってもよい。
 有機樹脂粒子の平均粒径は、100nm以上が好ましい。より好ましくは120nm以上、さらに好ましくは150nm以上、最も好ましくは170nm以上である。また、500nm以下が好ましく、より好ましくは400nm以下、さらに好ましくは300nm以下、最も好ましくは250nm以下である。平均粒径を100nm以上とすることで、多孔質構造となり、レート特性、電池寿命がより良好となる。また、500nm以下とすることで、多孔質層の膜厚が適切となり、レート特性、電池寿命をより向上できる。
 有機樹脂粒子の平均粒径は以下の方法を用いて測定できる。電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)を用いて、多孔質層の表面を倍率3万倍で撮像した画像(画像1)と、同視野で無機粒子のみが含有する元素を対象としたEDX画像(画像2)とを得る。画像サイズは4.0μm×3.0μm、画素数は1,280画素×1,024画素であり、1画素の大きさは3.1nm×2.9nmとする。画像2の中の無機粒子のみが有する元素を含まない粒子を有機樹脂粒子とする。目視で区別できないときには元素分析でフッ素元素を含有するものを有機樹脂粒子とする。次に、該有機樹脂粒子について、画像1上で各有機樹脂に対して面積が最小となる外接長方形(正方形を含む)を描き、長辺(正方形の場合は一辺)の長さをその粒子の粒径とし、画像1内にみられる全ての有機樹脂粒子についてそれぞれの粒径を測定し、その算術平均値を平均粒径とした。ただし、画像1中に50個の有機樹脂粒子が観察されなかった場合は、複数の画像を撮影し、その複数の画像に含まれる全ての有機樹脂粒子の粒子数の合計が50個に達するまで撮像を行って求めた。有機樹脂粒子を測定し、その算術平均値を平均粒径とした。
 (2)無機粒子
 本発明の多孔性フィルムの多孔質層は、無機粒子を含有する。多孔質層が無機粒子を含むことで熱寸法安定性および異物による短絡の抑制を付与することができる。
 無機粒子としては、具体的には酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物粒子、窒化アルミニウム、窒化硅素などの無機窒化物粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子などが挙げられる。無機粒子としては、無機水酸化物、無機酸化物及び無機硫酸化物からなる群から選ばれる少なくとも一種によって構成された粒子であることが好ましく、中でも高強度化に効果のある酸化アルミニウム、また有機樹脂粒子と無機粒子の分散工程の部品摩耗低減に効果のあるベーマイト、硫酸バリウムが特に好ましい。さらにこれらの無機粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。
 用いる無機粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。
 (3)バインダー
 本発明の多孔性フィルムの多孔質層は、上で説明した有機樹脂粒子および無機粒子を互いに密着させるため、および有機樹脂粒子および無機粒子を多孔質基材に密着させるために、バインダーを含有してもよい。バインダーとしては、電池の使用範囲で電気化学的に安定である樹脂が好ましい。また、バインダーは有機溶媒に可溶なバインダー、水溶性バインダー、エマルジョンバインダーなどが挙げられ、単体でも、組み合わせて使用してもよい。
 有機溶媒に可溶なバインダーおよび水溶性バインダーを用いる場合、バインダー自体の好ましい粘度は、濃度が15質量%の際に、10000mPa・s以下であることが好ましい。より好ましくは8000mPa・s以下であり、さらに好ましくは5000mPa・s以下である。濃度が15質量%で粘度を10000mPa・s以下とすることで、塗剤の粘度上昇を抑制でき、有機樹脂粒子が表面へ偏在することで、電極とのドライ接着性およびウェット接着性が向上する。
 また、エマルジョンバインダーを用いる場合、分散剤は水や有機溶媒として、エタノールなどのアルコール系溶媒、アセトンなどのケトン系溶媒などが挙げられるが、水分散系のものが取り扱い性や、他の成分との混合性の点から好ましい。エマルジョンバインダーの粒径は、30~1000nm、好ましくは50~500nm、より好ましくは70~400nm、さらに好ましくは80~300nmである。エマルジョンバインダーの粒径を30nm以上とすることで透気度の上昇を抑制でき、電池特性が良好となる。また、1000nm以下とすることで、多孔質層と多孔質基材との十分な密着性が得られる。
 バインダーに用いることができる樹脂は、例えば、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリカーボネート、ポリアセタール、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ウレタンなどの樹脂が挙げられる。これらの中でもアクリル樹脂を用いることで、有機樹脂粒子との相互作用により、より強固な密着性が得られるため、特に好ましい。またポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(以下、「ポリフッ化ビニリデン系樹脂」ということがある)を用いることで、電解液中での電極との接着性がさらに向上するため、特に好ましい。これらの樹脂は、1種または必要に応じ2種以上を混合して用いてもよい。
 また、ポリフッ化ビニリデン系樹脂のフッ化ビニリデン含有率は、樹脂を構成する成分のうち、80質量%以上100質量%未満が好ましい。より好ましくは、85質量%以上であり、また99質量%以下である。さらに好ましくは、90質量%以上であり、また98質量%以下である。フッ化ビニリデン含有率が80質量%より小さいと、十分な力学的強度が得られず、電極との接着性は発現するがその強度が弱いために剥離しやすくなる場合がある。また、フッ化ビニリデン含有率が100質量%の場合、耐電解液性が低下するため、十分な接着性を得ることができない場合がある。
 水溶性バインダーを用いる場合の多孔質層における含有量は、有機樹脂粒子と無機粒子の合計量に対して、0.5質量%以上が好ましい。より好ましくは1質量%以上、さらに好ましくは1.5質量%以上である。また、10質量%以下が好ましい。より好ましくは8質量%以下、さらに好ましくは6質量%以下である。水溶性バインダーの含有量を0.5質量%以上とすることで、多孔質層と多孔質基材との十分な密着性が得られる。また、10質量%以下とすることで、透気度上昇を抑制でき、電池特性が良好となる。
 エマルジョンバインダーを用いる場合の多孔質層における含有量は、有機樹脂粒子と無機粒子の合計量に対して、1質量%以上が好ましい。より好ましくは5質量%以上、さらに好ましくは7.5質量%以上、最も好ましくは10質量%以上である。また、30質量%以下が好ましく、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。エマルジョン系バインダーの含有量を1質量%以上とすることで、多孔質層と多孔質基材との十分な密着性が得られる。また、30質量%以下とすることで、透気度上昇を抑制でき、電池特性が良好となる。特に7.5質量%以上20質量%以下とすることで有機樹脂粒子と無機粒子の密着およびこれら粒子の基材への密着を促進するだけでなく、有機樹脂粒子と相互作用を示し、電極とのドライ接着性、ウェット接着性も向上する。
 (4)多孔質層の形成
 多孔質層の形成方法について以下に説明する。
 多孔質層は、2種の塗液を用いた2段階の塗布工程を経て形成してもよく、1種の塗液を用いた1段階の塗布工程を経て形成してもよい。
 2段階塗布工程とは、無機粒子と溶媒からなる塗工液を調整し、多孔質基材上にこれを塗布し、水系分散塗工液の溶媒を乾燥させた後、次に有機樹脂粒子と溶媒からなる塗工液を調整し、前記無機粒子塗工層上にこれを塗布し、塗工液の溶媒を乾燥させて多孔質層を形成し、多孔性フィルムを得る方法である。塗布方法としてはスプレーコーティングを用いてもよい。
 1段階塗布工程とは、有機樹脂粒子、無機粒子と溶媒からなる塗工液を調製し、多孔質基材上にこれを塗布し、塗工液の溶媒を乾燥させて多孔質層を形成し、多孔性フィルムを得る方法である。
 塗工方法について、特に限定されるものではないが、後者については塗工回数減少によるコストダウンが可能である。そこで後者による多孔質層の形成方法を以下に説明する。
 (i)まず、有機樹脂粒子を、所定の濃度に分散させることで塗工液を調製する。水系分散塗工液は、有機樹脂粒子を、溶媒に分散、懸濁、又は乳化することで調製される。塗工液の溶媒としては、必ずしも限定されないが、有機樹脂粒子を固体状態で、分散、懸濁又は乳化し得る溶媒であれば特に限定されるものではない。例えば、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の有機溶剤が挙げられる。環境への負荷の低さ、安全性及び経済的な観点からは、水、又は、水とアルコールとの混合液に、有機樹脂を乳化した水系エマルションが好ましい。水を用いる場合には、さらに水以外の溶媒を加えても良い。
 塗工液の固形分濃度は、5%以上40%以下であることが好ましい。所定の範囲とすることで、塗工安定性と塗工、乾燥における表面偏在が両立できる。また、塗工液の溶液粘度は、5mPa・s以上50mPa・s以下であることが好ましい。所定の範囲とすることで、塗工液の分散性と塗工、乾燥における表面偏在が両立できる。前記好ましい範囲で塗工液の固形分濃度を低く、粘度を小さく調整することで、有機樹脂粒子を外側層に偏在するように調整できる。
 また塗工液には、必要に応じて、造膜助剤、分散剤、増粘剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。
 塗工液の分散方法としては、例えば、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられる。その中でも分散時に無機粒子、有機樹脂粒子にかかる圧力が高い分散方法(ビーズミル、サンドミル)を選択することで、分散性が向上し、有機樹脂粒子の表面偏在がより起こりやすくなる。これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。
 (ii)次に、得られた塗工液を多孔質基材上に塗工する。塗工方法としては、例えば、ディップコーティング、グラビアコーティング、スリットダイコーティング、ナイフコーティング、コンマコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。これらに限定されることはなく、用いる有機樹脂、バインダー、分散剤、レベリング剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。
 (iii)その後、塗工液の溶媒を乾燥させて多孔質層を形成する。乾燥温度は40℃以上100℃以下であることが好ましい。そうすることで、多孔質層の乾燥が均一となり、多孔質層と接する側の多孔性フィルム表面の2200μm四方における算術平均高さ(Sa)が多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)の影響を受けやすくなり、電極との接着性が向上する。40℃未満の場合、塗工液の溶媒が乾燥しない。一方100℃より高い場合、乾燥時の熱量が多くなり粒子の形状を維持できずに造膜するため、有機樹脂粒子の表面偏在が起こらなくなるため、β/α=0となる。よって、所定の範囲とすることでの良好な電極との接着性と塗工、乾燥速度向上による低コスト化の両立が可能となる。
 [多孔質基材]
 本発明において多孔質基材は、内部に微細孔を有しこれら微細孔が一方の面から他方の面へと連結された構造を有する。多孔質基材としては、例えば微多孔膜、不織布、または繊維状物からなる多孔膜シートなどが挙げられる。電気絶縁性であり、電気的に安定で、電解液にも安定の観点および製造方法による、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)、12nm四方における算術平均粗さ(Ra)、2200μm四方における突出山部高さ(Spk)の調整の容易さから、多孔質基材は、ポリオレフィン微多孔膜であることが好ましい。すなわち、ポリオレフィンで構成された多孔質の膜であることが好ましい。ポリオレフィン微多孔膜を構成する樹脂は、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、およびこれらを組み合わせた混合物などが挙げられる。ポリオフレフィン微多孔膜は単膜でも複数の層を有する積層膜でもよく、例えばポリエチレンを90質量%以上含有する単膜、ポリエチレンとポリプロピレンからなる積層膜などが挙げられる。
 多孔質層と接する側の多孔質基材表面の12nm四方における算術平均粗さ(Ra)は、下限が10nm以上80nm未満であることが好ましい。この算術平均粗さ(Ra)を10nm以上とすることで多孔質層を形成する際の多孔質基材の搬送性が向上するため、均一な層形成が可能となるとともに、多孔性フィルムの算術平均粗さも向上し、12nm四方という局所範囲に細かい凹凸が存在するため、電極内の活物質の凹凸に追従しやすくなるため、電極とのドライ接着およびウェット接着性もより向上させることができる。また、この算術平均粗さ(Ra)を80nm未満とすることで電解液注液性が向上し、電池用セパレータとして用いた際に良好なレート特性、電池寿命を発揮できる。算術平均粗さ(Ra)の上限は60nm以下であることが好ましく、より好ましくは40nm以下である。
 多孔質層と接する側の多孔質基材表面の多孔質基材の2200μm四方における突出山部高さ(Spk)は、0.01μm以上0.12μm未満であることが好ましく、下限は0.03μm以上がより好ましく、0.05μm以上が更に好ましい。この突出山部高さ(Spk)の上限は0.12μm未満がより好ましく、0.10μm以下が更に好ましい。また、この突出山部高さ(Spk)を0.01μm以上とすることで、多孔質層を形成する際の多孔質基材の搬送性が向上するため、均一な層形成が可能となるため、有機樹脂粒子の表層への偏在が起こりやすくなり電極とのドライ接着性およびウェット接着性が向上する。一方、この突出山部高さ(Spk)を0.12μm未満とすることで、電解液注液性が向上し、良好なレート特性、電池寿命を有する。
 多孔質基材の厚みは、3μm以上15μm以下が好ましく、下限は5μm以上がより好ましく、また上限は12μm以下であることがより好ましい。
 次に、多孔質基材の製造方法について説明する。ここで、多孔質基材の製造方法は特に限定されるものでないが、ポリオレフィン微多孔膜の製造方法を以下に説明する。
 (a)まず、二軸押出し機中にて上述したポリオレフィンからなる樹脂組成物に可塑剤を添加し、溶融混練して樹脂溶液を調整する。
 ポリオレフィン樹脂組成物は、ポリオレフィン樹脂で構成され、単一組成でもよく、2種以上のポリオレフィン樹脂からなる混合物であってもよい。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン等が挙げられるがこれに限定されない。ポリエチレン樹脂物として、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン低密度を単一組成で用いてもよく、分子量の異なる混合物としてもよい。超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上ポリエチレンの混合物を用いることが好ましく、特に、Mwが1×10以上の超高分子量ポリエチレン(A)とMwが1×10以上9×10未満のポリエチレン(B)からなる混合物が好ましく、Mwが1×10以上の超高分子量ポリエチレンを含有することがより好ましい。超高分子量ポリエチレン(A)とポリエチレン(B)の割合は、超高分子量ポリエチレン(A)とポリエチレン(B)の合計を100質量%として、超高分子量ポリエチレン(A)の含有率は50質量%未満であると好ましい。
 可塑剤は、比較的高倍率の延伸を可能とするため、可塑剤は室温で液体であることが好ましい。具体的には、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族炭化水素等が挙げられる。ポリオレフィン樹脂組成物と可塑剤との配合割合は、ポリオレフィン樹脂組成物の含有率を50質量%以上90重量%以下とすることが好ましい。
 前記ポリオレフィン樹脂組成物、可塑剤の含有量、冷却工程を設けることで、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を小さく調整することが可能となり、所定の範囲としやすくなる。
 (b)次いで、樹脂溶液を押出機からダイに送給し、シート状に押し出し冷却することによりゲル状シートを成形する。
 (c)その後、ゲル状シートを延伸する。ゲル状シートの延伸は、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸することが好ましい。延伸面倍率は、4倍以上100倍以下が好ましく、12倍以上64倍がより好ましく、25倍以上49倍以下が特に好ましい。延伸倍率を高くするほど、多孔質基材の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を小さくすることできる。
 (d)その後、洗浄溶媒を用いて、可塑剤の除去を行い、乾燥することでポリオレフィン微多孔膜を得ることができる。
 (e)上記工程に加え、乾燥工程後に延伸(乾式再延伸ともいう)を行ってもよい。第二の延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。 再延伸の倍率は、一軸延伸の場合、1.01~2.0倍が好ましく、二軸延伸を行う場合は1.01~2.0倍延伸するのが好ましい。再延伸倍率が大きいほど、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)や突出山部高さ(Spk)、12nm四方における算術平均粗さ(Ra)を小さくすることできる。
 [多孔性フィルム]
 本発明の多孔性フィルムは、多孔質層が設けられた側の表面の2200μm四方における算術平均高さ(Sa)が0.005μm以上0.085μm未満であることが好ましい。より好ましくは0.060μm以下である。上記範囲とすることで、上述した電極との接着工程(熱プレス)の際に、電極内に存在する活物質への凹凸への追従性を調整可能となり、電解液注液性をより向上させることができる。多孔性フィルムは、多孔質層が設けられた側の表面の2200μm四方における算術平均高さ(Sa)は多孔質層が設けられた側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)の影響を大きく受ける傾向があり、多孔質基材の多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)の上記好ましい範囲内で適宜選定することで、所定の範囲内とすることができる。
 [二次電池]
 本発明の多孔性フィルムは、リチウムイオン電池等の二次電池用セパレータに好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
 正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的にはフッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウム箔が用いられることが多い。
 負極は、活物質およびバインダー樹脂からなる負極材が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、金属リチウムなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。
 電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。
 二次電池の作製方法としては、まず活物質と導電助剤をバインダー樹脂の溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極と二次電池用セパレータとの接着性が高く、かつ優れたレート特性、電池寿命を有し、また、低コストでの製造が可能となる。
 以下、本発明を実施例により詳細に説明するが、これにより本発明が制限されるものではない。なお、以下の記載において「%」および「部」は、それぞれ「質量%」および「質量部」を表わす。
 以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。
 [測定方法]
 (1)多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)、突出山部高さ(Spk)
 多孔性フィルムから5cm×5cmに切り出した試料から水20gを用いて多孔質層を脱離させ、水を十分に乾燥させて目的の多孔質基材を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用い、脱離後にこれを十分に乾燥させる。次に得られた多孔質基材を外寸6cm四方、内寸3cm四方の金属枠にシワが入らないよう貼り付けた。日立ハイテクサイエンス社製の走査型白色干渉顕微鏡VS-1540を用い、以下の条件で表面粗さの測定を行い、ISO 25178に準拠し三次元表面粗さパラメータ(Sa、Spk)を算出した。多孔質基材の両面に多孔質層が形成された場合は、同条件で多孔質基材の両表面に対し、各面4点、計8点測定を実施し、計測された値を平均した。また多孔質基材の片面に多孔質層が形成された場合は、同条件で多孔質層側と接する側の多孔質基材表面に対し、4点測定を実施し、計測された値を平均した。
・対物レンズ:5倍
・鏡筒レンズ:0.5倍
・波長フィルター:530white
・カメラ:高画素
・測定モード:Wave
・カットオフ:無し
 (2)多孔質層における無機粒子の体積含有率α(体積含有率α)
 多孔性フィルムから10cm×10cmに切り出した試料から水40gを用いて多孔質層を抽出し、水を十分に乾燥させて多孔質層の構成成分を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用いてもよい。得られた構成成分全量の質量を測定した後、構成成分を有機樹脂成分が溶融・分解する程度の高温で燃焼し、有機樹脂成分と無機成分を分離した後、無機粒子のみの質量を測定した。(無機粒子の質量/構成成分全量の質量)×100の式より多孔質層における無機粒子の含有率を質量%で算出した。また、((構成成分全量の質量-無機粒子の質量)/(構成成分全量の質量))×100の式により多孔質層における有機樹脂成分の含有率を質量%で算出した。次に、それぞれの成分の比重は比重計にて測定した。先に得られた無機粒子および有機樹脂成分の質量含有率(質量%)と無機粒子および有機樹脂成分の密度から多孔質層における無機粒子の体積含有率を体積%で算出した。上記測定を試料5枚について実施し、計測された値を平均した。
 (3)多孔質層の表面部での無機粒子の占有率β(占有率β)
 多孔性フィルムをPt/Pdを30秒蒸着した試料の多孔質層の表面をSEM-EDX(Hitachi SE8200)で倍率10,000倍、加速電圧5.0kVで測定し、無機粒子の無機元素について解析を行った。画像解析ソフト(東陽テクニカ,SPIP6.0.10)を使用して、EDX画像中の元素記号表示、倍率表示、スケールバー、加速電圧表示部をマスクして除いた後に、「粒子・孔解析」モードで、検出方法としては閾値の閾値レベルを130nmで行い、画像の面積に対する無機粒子の無機元素に対応する部分の面積を百分率で表したパラメータである面積率(%)を無機粒子の占有率βとした。上記測定を試料5枚について実施し、計測された値を平均した。
 (4)多孔質層が設けられた側の多孔性フィルム表面の2200μm四方における算術平均高さ(Sa)
 多孔性フィルムから5cm×5cmに切り出した試料を外寸6cm四方、内寸3cm四方の金属枠にシワが入らないよう貼り付けた。日立ハイテクサイエンス社製の走査型白色干渉顕微鏡VS-1540を用い、以下の条件で表面粗さの測定を行い、ISO 25178に準拠し三次元表面粗さパラメータ(Sa)を算出した。同条件で多孔性フィルムの両表面に対し、各面4点、計8点の測定を実施し、計測された値を平均した。なお、多孔質層を片面に設けた場合には、多孔質層が設けられた側の表面に対して4点計測した値を平均した。
・対物レンズ:5倍
・鏡筒レンズ:0.5倍
・波長フィルター:530white
・カメラ:高画素
・測定モード:Wave
・カットオフ:無し    。
 (5)多孔質層と接する側の多孔質基材表面の12nm四方における算術平均粗さ(Ra)
 多孔性フィルムから12cm×12cmに切り出した試料から水50gを用いて多孔質層を脱離させ、水を十分に乾燥させて目的の多孔質基材を得た。なお、水で十分に脱離できないときにはアルコールなどの有機溶媒を用い、脱離後にこれを十分に乾燥させる。走査型プローブ顕微鏡(セイコーインスツルメンツ製SPA-500)を用いて、多孔質基材をカーボンテープで試料台に固定し、カンチレバーはSI-DF40を用い、測定領域を12μm四方、振幅減衰率を-0.25、走査周波数を0.5HzとしDFMモードで算術平均粗さ(Ra)の測定を行った。多孔質基材の両面に多孔質層が形成された場合は、同条件で多孔質基材の両表面に対し、各面3点、計6点の測定を実施し、計測された値を平均した。また多孔質基材の片面に多孔質層が形成された場合は、同条件で多孔質基材の多孔質層側の面に対し、3点測定を実施し、計測された値を算術平均した。
 (6)多孔質層の表面自由エネルギー
 多孔性フィルムから100mm×100mmに切り出した試料の表面を水、エチレングリコール、ヨウ化メチレン、ホルムアミドのそれぞれいにおける接触角測定を行い、Young-Dupreの式より多孔質層の表面自由エネルギー(mN/m)を測定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
 (7)多孔質層の膜厚
 多孔性フィルムから100mm×100mmに切り出した試料の中央部において、ミクロトームに試料の断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S-800、加速電圧26kV)にて10000倍の倍率にて観察して、多孔質基材との界面から表面の最も高いところまでの距離を計測した。片面の場合は片面のみ、両面の場合は両面ともに計測し、その合計を多孔質層の膜厚とした。なお多孔質基材と多孔質層の界面について、無機粒子の存在領域において、無機粒子が確認されなくなった場所を界面と規定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
 (8)多孔性フィルムの膜厚
 多孔性フィルムをから100mm×100mmに切り出した試料の中央部における膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定した。上記測定を試料5枚について実施し、計測された値を算術平均した。
 (9)多孔性フィルムのガラス転移温度
 「JIS K7121:2012 プラスチックの転移温度測定方法」の規定に準じた示差走査熱量測定(DSC)にて測定された多孔性フィルムの中間点ガラス転移温度とした。中間点ガラス転移温度は、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とした。上記測定を試料3枚について実施し、計測された値を算術平均した。
 (10)多孔質基材と多孔質層の剥離強度
 多孔性フィルムをから25mm幅、100mm長さ切り出した試料を厚み2cmのアクリル板に貼り付けた。次に試料に18mm幅、150mm長さにカットしたテープ(3M社製、品番810-3-15)を0.5MPa、25℃、0.2m/分でロールプレスを行うことで貼り付けた。その後、剥離速度300mm/minの条件で、テープを180度で剥離し、長さ方向の30mmから70mmまでの平均値を剥離強度とした。
・剥離強度が「秀」: より強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「優」: 強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「良」: やや強い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「可」: 弱い力で多孔質基材と多孔質層が剥離した。
・剥離強度が「悪」: 極弱い力で多孔質基材と多孔質層が剥離した。
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。
 (11)熱収縮率(熱寸法安定性)
 多孔性フィルムをから100mm×100mmに切り出した試料3枚について各試料の一辺の中点と対辺の中点をマークし、中点間の長さを測定した後、150℃のオーブン中に無張力下で30分熱処理を行った。熱処理後の試料について、熱処理前と同一箇所の中点間の長さを測定し、以下の式より熱収縮率を算出し、以下の5段階(5%未満を秀、5%以上10%未満を「優」、10%以上20%未満を「良」、20%以上40%未満を「可」、40%以上を「悪」)にて評価を行った。
熱収縮率(%)=[(熱処理前の中点間の長さ-熱処理後の中点間の長さ)/(熱処理前の中点間の長さ)]×100
 (12)電極とのドライ接着性
 活物質がLi(Ni5/10Mn2/10Co3/10)O、バインダーがフッ化ビニリデン樹脂、導電助剤がアセチレンブラックとグラファイトの正極20mm×50mmと多孔性フィルム25mm×55mmを、活物質と多孔質層が接触するように設置し、75℃の加熱環境下、6MPaの圧力で10秒間熱プレスを行い、電極と多孔性フィルムを接着させた。次にピンセットを用いて手動で剥離させ、接着強度を下記5段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と多孔性フィルムとの接着強度も測定し、正極および負極のそれぞれの評価結果を統合した平均接着強度を接着強度として判定した。
・接着強度が「秀」: より強い力で電極と多孔性フィルムが剥離した。
・接着強度が「優」: 強い力で電極と多孔性フィルムが剥離した。
・接着強度が「良」: やや強い力で電極と多孔性フィルムが剥離した。
・接着強度が「可」: 弱い力で電極と多孔性フィルムが剥離した。
・接着強度が「悪」: 極弱い力で電極と多孔性フィルムが剥離した。
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。
 (13)電極とのウェット接着性
 活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極(幅20mm×長さ70mm)を電極として用いた。多孔性フィルム(幅25mm×長さ80mm)を、電極と多孔性フィルムの長さ方向に端部が重なるように、また活物質と多孔質層が接触するように設置して、条件a(70℃の加熱環境下、5MPaの圧力で6秒間)で熱プレスを行い、電極と多孔性フィルムを接着させて試験片を作製した。試験片を、3片を閉じて袋状にしたアルミラミネートフィルム内に設置し、電解液注液工程(電解液1gを試験片の多孔性フィルム側から染み込ませる)後、真空シーラーを用いてアルミラミネートフィルムの残り1辺を封入した。ここで、電解液はエチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製したものを用いた。次に、この試験片を封入後のアルミラミネートフィルムを60℃環境下で17時間静置条件にて保存した。アルミラミネートフィルムから試験片を取り出し、試験片表面の電解液を拭いた。その後、ピンセットを用いて手動で剥離させ、接着強度を下記5段階にて評価を行った。
・接着強度が「秀」: より強い力で電極と多孔性フィルムが剥離した。
・接着強度が「優」: 強い力で電極と多孔性フィルムが剥離した。
・接着強度が「良」: やや強い力で電極と多孔性フィルムが剥離した。
・接着強度が「可」: 弱い力で電極と多孔性フィルムが剥離した。
・接着強度が「悪」: 極弱い力で電極と多孔性フィルムが剥離した。
 なお、剥離に要した力の大きさは、「秀」>「優」>「良」>「可」>「悪」である。
 (14)電解液注液性
 活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極5枚を8cm×8cmに切り出す。また多孔性フィルム6枚を8.5cm×8.5cmに切り出す。その後、活物質層と多孔質層が接触するように交互に負極と多孔性フィルムを設置し、75℃/6MPa/10秒で熱プレスを行い、負極と多孔性フィルムを接着させた積層体を作製した。その後、1枚の90mm×150mmのアルミラミネートフィルムに上記積層体を挟み込んだ後、エチレンカーボネート:エチルメチルカーボネート=3:7(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製した電解液を6g入れた。電解液を10分間含浸させた後、積層体を取り出し、積層体から多孔性フィルム(1枚目)、負極(1枚目)、多孔性フィルム(2枚目)を、負極(2枚目)と順に剥がして、4枚目の多孔性フィルムを取り出した。多孔性フィルムに電解液がどの程度含浸しているか(電解液注液性)を下記5段階にて評価を行った。
・電解液注液性が「秀」 : 多孔性フィルムの90%以上に電解液が含浸していた。
・電解液注液性が「優」 : 多孔性フィルムの75%以上90%未満に電解液が含浸していた。
・電解液注液性が「良」 : 多孔性フィルムの60%以上75%未満に電解液が含浸していた。
・電解液注液性が「可」 : 多孔性フィルムの45%以上60%未満に電解液が含浸していた。
・電解液注液性が「不可」: 多孔性フィルムの45%未満に電解液が含浸していた。
 (15)電池作製
 正極シートは、正極活物質としてLi(Ni5/10Mn2/10Co3/10)Oを96質量部、正極導電助剤としてアセチレンブラックとグラファイトを1.0質量部ずつ、正極結着剤としてポリフッ化ビニリデン2質量部を、プラネタリーミキサーを用いてN-メチル-2-ピロリドン中に分散させた正極スラリーを、アルミ箔上に塗布、乾燥、圧延して作製した(塗布目付:10.0mg/cm)。この正極シートを40mm×40mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。幅5mm、厚み0.1mmのアルミ製のタブをタブ接着部に超音波溶接した。負極シートは、負極活物質として天然黒鉛98質量部、増粘剤としてカルボキシメチルセルロースを1質量部、負極結着剤としてスチレン-ブタジエン共重合体1質量部を、プラネタリーミキサーを用いて水中に分散させた負極スラリーを、銅箔上に塗布、乾燥、圧延して作製した(塗布目付:6.6mg/cm)。この負極シートを45mm×45mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。正極タブと同サイズの銅製のタブをタブ接着部に超音波溶接した。次に、多孔性フィルムを55mm×55mmに切り出し、多孔性フィルムの両面に上記正極と負極を活物質層が多孔性フィルムを隔てるように重ね、正極塗布部が全て負極塗布部と対向するように配置して電極群を得た。その後、75℃の加熱環境下、6MPaの圧力で10秒間熱プレスを行い、正極・多孔性フィルム・負極を接着させた。1枚の90mm×200mmのアルミラミネートフィルムに上記正極・多孔性フィルム・負極を挟み込み、アルミラミネートフィルムの長辺を折り、アルミラミネートフィルムの長辺2辺を熱融着し、袋状とした。エチレンカーボネート:エチルメチルカーボネート=3:7(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製した電解液を用いた。袋状にしたアルミラミネートフィルムに電解液1.5gを注入し、減圧含浸させながらアルミラミネートフィルムの短辺部を熱融着させてラミネート型電池とした。
 (16)放電負荷特性
 放電負荷特性を下記手順にて試験を行い、放電容量維持率にて評価した。上記ラミネート型電池を用いて、25℃下、0.5Cで放電したときの放電容量と、25℃下、10Cで放電したときの放電容量とを測定し、(7Cでの放電容量)/(0.5Cでの放電容量)×100の式で放電容量維持率(%)を算出した。ここで、充電条件は0.5C、4.3Vの定電流充電とし、放電条件は2.7Vでの定電流放電とした。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が40%未満を「悪」、45%以上50%未満を「良」、50%以上55%未満を「優」、55%以上を「秀」とした。
 (17)寿命特性
 寿命特性を下記手順にて試験を行い、放電容量維持率にて評価した。
 〈1~300サイクル目〉
 充電、放電を1サイクルとし、充電条件を2C、4.3Vの定電流充電、放電条件を2C、2.7Vの定電流放電とし、25℃下で充放電を300回繰り返し行った。
 〈放電容量維持率の算出〉
 (300サイクル目の放電容量)/(1サイクル目の放電容量)×100の式で放電容量維持率(%)を算出した。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が50%未満を寿命特性が「悪」、50%以上60%未満を寿命特性が「良」、60%以上70%未満を寿命特性が「優」、70%以上を寿命特性が「秀」とした。
 (実施例1)
 分散液A
 イオン交換水120部、アデカリアソーブSR-1025(アデカ(株)製乳化剤)1部を反応器に仕込み、撹拌を開始した。これに窒素雰囲気下で2,2’-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)(和光純薬工業(株)製)0.4部を添加し、2,2,2-トリフルオロエチルメタクリレート(3FM)24部、シクロヘキシルアクリレート(CHA)56部、ヒドロキシエチルメタクリレート(HEMA)12部、アルキレングリコールジメタクリレート(AGDMA)9部、アデカリアソーブSR-1025(乳化剤、アデカ株式会社製)8部、イオン交換水115部からなる単量体混合物を70℃で1.5時間かけて連続的に滴下し、滴下終了後5時間にわたり重合処理を行い、共重合体からなる有機樹脂粒子(重合体A)(粒径190nm、ガラス転移温度:42℃)を含む分散液Aを製造した。
 分散液Z
 無機粒子として平均粒径0.5μmのアルミナ粒子(酸化アルミニウム)を用い、溶媒として無機粒子と同量の水、および分散剤としてカルボキシメチルセルロースを無機粒子に対して1質量%添加した上で、ビーズミルにて分散し、分散液Zを調製した。
 塗工液
 分散液Aと分散液Zを多孔質層に含まれる無機粒子の体積含有率αが50体積%、固形分濃度22質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は13mPa・sであった。
 得られた塗工液を、#10のワイヤーバーを用いて多孔質基材としてポリオレフィン微多孔膜(算術平均高さ(Sa)0.06μm、突出山部高さ(Spk)0.06μm、算術平均粗さ(Ra)40nm、厚み9μm)上へ両面塗工し、熱風オーブン(乾燥設定温度45℃)内で1分間乾燥し、含有される溶媒が揮発することで多孔質層を形成し、多孔性フィルムを得た。
 表1には、実施例1~30で用いた多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)、無機粒子の種類、体積含有率α、有機樹脂粒子の種類、塗工条件を示す。表2には、実施例1~30で得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層を有する側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、多孔性フィルムのガラス転移温度(℃)及び多孔質層の膜厚を示す。表3には、実施例1~30で得られた多孔性フィルムおよびそれを用いた電池について熱寸法安定性、剥離強度、電極とのドライ接着性、電解液注液性、レート特性、寿命特性の測定結果を示す。
 (実施例2)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.04μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例3)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.08μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例4)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.01μmに変更した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
 (実施例5)
 多孔質層に含まれる無機粒子の体積含有率αを30体積%に変更した以外は実施例1と同様にして、多孔性フィルムを得た。
 (実施例6)
 多孔質層に含まれる無機粒子の体積含有率αを80体積%に変更した以外は実施例1と同様にして、多孔性フィルムを得た。
 (実施例7)
 塗工液の固形分濃度を10質量%、粘度を10mPa・sに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例8)
 塗工液の固形分濃度を40質量%、粘度を40mPa・sに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例9)
 実施例1と同様に分散液Aおよび分散液Zを調整した。
 分散液B
 アクリル酸エステル単量体としてメチルアクリレートからなる重合体(重合体B)(粒径140nm)をからなる分散液Bを調整した。その後、分散液Aと分散液Zと分散液Bを多孔質層に含まれる無機粒子の体積含有率αが50体積%、有機樹脂粒子(重合体A)の含有率が35体積%、有機樹脂粒子(重合体B)の含有率が15体積%、固形分濃度22質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は13mPa・sであった。有機樹脂粒子を、フッ素含有メタクリレート単量体からなる重合体Aを90質量%とアクリル酸エステル単量体からなる重合体B(平均粒子径130nm)を10質量%含む2種類の混合物とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例10)
 2,2,2-トリフルオロエチルメタクリレート(3FM)を1H,1H,5H-オクタフルオロペンチルアクリレート(8FA)に替えた以外は実施例1の分散液Aと同様に調整して重合体Cを含む分散液Cを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例11)
 有機樹脂粒子を形成する重合体Dを構成するための単量体として、2,2,2-トリフルオロエチルメタクリレート(3FM)24部、シクロヘキシルアクリレート(CHA)56部、ヒドロキシエチルメタクリレート(HEMA)12部、アルキレングリコールジメタクリレート(AGDMA)9部に代えて、メタクリル酸エステル単量体としてエチルメタクリレート100部を用いた以外は、実施例1の分散液Aと同様に調製して重合体Dを含む分散液Dを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例12)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.08μmに変更した以外は、実施例11と同様にして、多孔性フィルムを得た。
 (実施例13)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.01μmに変更した以外は、実施例11と同様にして、多孔性フィルムを得た。
 (実施例14)
 有機樹脂粒子を形成する重合体Eを構成するための単量体として、2,2,2-トリフルオロエチルメタクリレート(3FM)24部、シクロヘキシルアクリレート(CHA)56部、ヒドロキシエチルメタクリレート(HEMA)12部、アルキレングリコールジメタクリレート(AGDMA)9部に代えて、フッ化ビニリデン単量体100部を用いた以外は、実施例1の分散液Aと同様に調製して重合体Eを含む分散液Eを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例15)
 有機樹脂粒子の平均粒径を75nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例16)
 有機樹脂粒子の平均粒径を100nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例17)
 有機樹脂粒子の平均粒径を500nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例18)
 有機樹脂粒子の平均粒径を700nmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例19)
 無機粒子を硫酸バリウム粒子とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例20)
 無機粒子をベーマイト粒子とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例21)
 多孔質層の膜厚を5μmとした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例22)
 多孔質層の膜厚を8μmとした以外は、実施例1と同様にして、多孔性フィルムを得た。 
 (実施例23)
 実施例1の分散液Aの製造条件において、3FM20部とし、ガラス転移温度が20℃となるようにCHA、HEMA、AGDMAの量を調整して重合体Fを得た以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例24)
 実施例1の分散液Aの製造条件において、3FM80部とし、ガラス転移温度が20℃となるようにCHA、HEMA、AGDMAの量を調整して重合体Gを得た以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例25)
 塗工液の乾燥温度設定を75℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例26)
 塗工液の乾燥温度設定を100℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例27)
 多孔質基材として実施例1と同じポリオレフィン微多孔膜を用い、該ポリオレフィン微多孔膜上に分散液Zを#9のワイヤーバーを用いて両面塗工し、熱風オーブン(乾燥設定温度50℃)内で1分間乾燥し、含有される溶媒が揮発することで第一多孔質層を形成した。その後、分散液Aを固形分濃度6質量%となるように、水中に分散させて、攪拌機にて混合した。得られた塗工液の粘度は7mPa・sであった。該塗工液を、第一塗工層上に#1.5のワイヤーバーを用いて両面塗工し、熱風オーブン(乾燥設定温度50℃)内で1分間乾燥し、含有される溶媒が揮発することで第二多孔質層を形成した以外は、実施例6と同様にして、多孔性フィルムを得た。固形分濃度とワイヤーバーを上記とすることで、多孔質層の表面部の無機粒子の占有率βは20%であった。
 (実施例28)
 重合体Dを用いた以外は、実施例27と同様にして、多孔性フィルムを得た。
 (実施例29)
 多孔質層のガラス転移温度を20℃となるように、有機樹脂粒子を形成する重合体を構成するために好適なメタクリル酸エステル単量体(ブチルメタクリレート)を選定し得られた重合体Hを用いた以外は、実施例28と同様にして、多孔性フィルムを得た。
 (実施例30)
 多孔質層のガラス転移温度を80℃となるように、有機樹脂粒子を形成する重合体を構成するために好適なフッ素含有アクリレート単量体を含むアクリル酸エステル単量体(メチルアクリレート50部、ブチルアクリレート50部)を選定し得られた共重合体Iを用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
Figure JPOXMLDOC01-appb-T000001
表中の重合体は以下を表す。
重合体A:フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:30質量%)
重合体B:アクリル酸エステル単量体が用いられて重合された重合体
重合体C:フッ素含有アクリレート単量体が用いられて重合された重合体
重合体D:メタクリル酸エステル単量体が用いられて重合された重合体
重合体E:フッ化ビニリデン単量体が用いられて重合された重合体
重合体F:フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:20質量%)
重合体G:フッ素含有メタクリレート単量体が用いられて重合された重合体(用いられた全単量体に占めるフッ素含有メタクリレート単量体の割合:80質量%)
重合体H:メタクリル酸エステル単量体が用いられて重合された重合体
重合体I:アクリル酸エステル単量体が用いられて重合された共重合体
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (実施例31)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を5nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例32)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を10nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例33)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を50nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例34)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を70nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例35)
 ポリオレフィン微多孔膜の算術平均粗さ(Ra)を100nmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例36)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.01μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例37)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.04μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例38)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.09μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (実施例39)
 ポリオレフィン微多孔膜の突出山部高さ(Spk)を0.15μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 実施例31~39で用いた多孔質基材の算術平均高さ(Sa)、算術平均粗さ(Ra)もしくは突出山部高さ(Spk)および、実施例33~41で得られた多孔性フィルムおよびそれを用いた電池について剥離強度、電極とのドライ接着性、レート特性、寿命特性の測定結果を表4、表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (実施例40)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Jを含む分散液Jを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例41)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Kを含む分散液Kを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例42)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Lを含む分散液Lを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例43)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Mを含む分散液Mを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例44)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Nを含む分散液Nを製造した。その後、実施例1と同様にして、多孔性フィルムを得た。
 (実施例45)
 有機樹脂粒子の構成を表6に示すように変更した以外は実施例1の分散液Aと同じように重合体Oを含む分散液Oを製造した。その後、実施例1と同様にして、の多孔性フィルムを得た。
 (実施例46)
 多孔質層に含まれる無機粒子の体積含有率αを30体積%に変更した以外は実施例42と同様にして、本発明の多孔性フィルムを得た。
 (実施例47)
 多孔質層に含まれる無機粒子の体積含有率αを80体積%に変更した以外は実施例42と同様にして、本発明の多孔性フィルムを得た。
 (実施例48)
 多孔質基材を、算術平均高さ(Sa)を0.08μmのポリオレフィン微多孔膜に変更した以外は、実施例42と同様にして、本発明の多孔性フィルムを得た。
 (実施例49)
 多孔質基材を、算術平均高さ(Sa)を0.01μmのポリオレフィン微多孔膜に変更した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
 表6には、実施例40~49で用いた多孔質基材の算術平均高さ(Sa)、有機樹脂粒子を構成する重合体の重合に用いた単量体の種類、各単量体について該単量体のみを用いて重合した重合体のガラス転移温度(℃)、各単量体の使用割合(%)、および、その単量体のみで重合した重合体のガラス転移温度が-100℃以上0℃以下となる単量体の使用割合(表6中、「γ」と表記)を示す。
Figure JPOXMLDOC01-appb-T000006
 表7には、実施例40~49で用いた無機粒子の種類、体積含有率α、および得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層が設けられた側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、ガラス転移温度(℃)、熱寸法安定性、剥離強度、電極とのドライ接着性、電極とのウェット接着性、そして該多孔性フィルムを用いた電池のレート特性、寿命特性を示す。
Figure JPOXMLDOC01-appb-T000007
 (比較例1)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.09μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例2)
 塗工液の固形分濃度を50質量%に変更にして粘度を80mPa・sにした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例3)
 塗工液の乾燥温度設定を110℃とした以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例4)
 有機樹脂粒子Aを用いずに表8に示す組成に変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例5)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.15μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例6)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.008μmに変更した以外は、実施例1と同様にして、多孔性フィルムを得た。
 (比較例7)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.008μmに変更した以外は、実施例42と同様にして、多孔性フィルムを得た。
 (比較例8)
 ポリオレフィン微多孔膜の算術平均高さ(Sa)を0.15μmに変更した以外は、実施例42と同様にして、多孔性フィルムを得た。
 表8には、比較例1~8で用いた多孔質基材の算術平均高さ(Sa)、有機樹脂粒子を構成する重合体の重合に用いた単量体の種類、各単量体について該単量体のみを用いて重合した重合体のガラス転移温度(℃)、各単量体の使用割合(%)、および、その単量体のみで重合した重合体のガラス転移温度が-100℃以上0℃以下となる単量体の使用割合(表8中、「γ」と表記)を示す。表9には、比較例1~8で用いた無機粒子の種類、体積含有率α、および得られた多孔性フィルムのβ/α、多孔質表層部での無機粒子の占有率β、多孔質層が設けられた側の多孔性フィルム表面の算術平均高さ(Sa)、表面自由エネルギー、ガラス転移温度(℃)及び多孔質層の膜厚を示す。表10には、比較例1~8で得られた多孔性フィルムおよびそれを用いた電池について熱寸法安定性、剥離強度、電極とのドライ接着性、電極とのウェット接着性、レート特性、寿命特性の測定結果を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 (参考例1)
 実施例1で得られた多孔性フィルムについて、電極との接着性の熱プレス条件を75℃の加熱環境下、2MPaの圧力で10秒間として電極とのドライ接着性、電解液注液性、レート特性、寿命特性を測定した。参考例1、2で得られた測定結果を表11に示す。
 (参考例2)
 実施例4で得られた多孔性フィルムについて、電極との接着性の熱プレス条件を75℃の加熱環境下、2MPaの圧力で10秒間として電極とのドライ接着性、電解液注液性、レート特性、寿命特性を測定した。
Figure JPOXMLDOC01-appb-T000011
 表1~7から、実施例1~49は、いずれも、多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は、前記多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(質量%)がβ/α<1である、多孔性フィルムであり、優れた電極とのドライ接着性を有し、レート特性、電池寿命も良好である。また実施例40~44および46~49は有機樹脂粒子の組成を好適に選択することで、さらに電極との優れたウェット接着性も有する。
 一方、比較例1、5、8は、多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)を0.09μm以上となるため、電解液注液性が劣る。比較例2は塗工液の粘度、固形分濃度が好適範囲を外れているため、有機樹脂粒子の表面偏在が阻害されており、β/α=1となるため、十分な電極との接着性が得られない。比較例3は塗工液の乾燥温度が100℃を超えているため、乾燥の過程で有機樹脂粒子が粒子形状を保持できておらず造膜することで有機樹脂粒子の表面偏在が阻害されており、β/α=1となるため、十分な電極との接着性が得られない。比較例4は有機樹脂粒子を含有していないため、有機樹脂粒子の表面偏在が起こらないため、β/α=1となり、十分な電極との接着性が得られない。比較例6、7は多孔質層と接する側の多孔質基材表面の算術平均高さ(Sa)を0.01μm未満となるため、電極との接着性が劣る。
 なお、参考例1、2は、実施例1と実施例4にて得た多孔性フィルムと電極との接着性について熱プレス条件の圧力を6MPaから2MPaへ変更して実施したときには、実施例1、4とは異なり、多孔質層と接する側の多孔質基材表面の2200μm四方における算術平均高さ(Sa)が小さいほど電極との接着性が増加し、電解液注液性が低下した例を示すものである。

Claims (24)

  1.  多孔質基材と、該多孔質基材の少なくとも一方の面に無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、前記多孔質基材は前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であり、多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率α(体積%)と多孔質層の表面部での無機粒子の占有率β(面積%)との関係がβ/α<1を満たす、多孔性フィルム。
  2.  前記多孔性フィルムは、多孔質層を有する側の表面の2200μm四方における算術平均高さ(Sa)が0.005μm以上0.085μm未満である、請求項1に記載の多孔性フィルム。
  3.  前記無機粒子の体積含有率αが多孔質層の全構成成分の体積を100体積%としたとき30体積%以上80体積%以下である、請求項1または2に記載の多孔性フィルム。
  4.  前記多孔質層の表面部での無機粒子の占有率βが0%より大きい、請求項1から3のいずれかに記載の多孔性フィルム。
  5.  前記多孔質基材は、多孔質層と接する側の表面の12nm四方における算術平均粗さ(Ra)が10nm以上80nm未満である、請求項1から4のいずれかに記載の多孔性フィルム。
  6.  前記多孔質基材は、多孔質層と接する側の表面の2200μm四方における突出山部高さ(Spk)が0.01μm以上0.12μm未満である、請求項1から5のいずれかに記載の多孔性フィルム。
  7.  前記多孔質層の表面自由エネルギーが10mN/m以上80mN/m以下である、請求項1から6のいずれかに記載の多孔性フィルム。
  8.  前記多孔質基材がポリオレフィン微多孔膜である、請求項1から7のいずれかに記載の多孔性フィルム。
  9.  前記無機粒子が無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子である、請求項1から8のいずれかに記載の多孔性フィルム。
  10.  前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アクリルアミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体を有する、請求項1から9のいずれかに記載の多孔性フィルム。
  11.  前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、フッ素含有(メタ)アクリレート単量体の割合が20質量%以上80質量%以下である、請求項10に記載の多孔性フィルム。
  12.  前記有機樹脂粒子がフッ素含有(メタ)アクリレート単量体のみで重合された重合体を含む、請求項10に記載の多孔性フィルム。
  13.  前記フッ素含有(メタ)アクリレート単量体一分子に含有されるフッ素原子数が3以上13以下である、請求項10から12のいずれかに記載の多孔性フィルム。
  14.  前記有機樹脂粒子が、さらに水酸基を有する(メタ)アクリレート単量体を用いて重合された重合体または共重合体を含む、請求項12または請求項13に記載の多孔性フィルム。
  15.  前記有機樹脂粒子について、有機樹脂粒子の全構成単量体成分を100質量%としたとき、水酸基を有する(メタ)アクリレート単量体の割合が0質量%より大きく7.0質量%以下である請求項14に記載の多孔性フィルム。
  16.  前記有機樹脂粒子に含まれる重合体について、該重合体の原材料である単量体のうち少なくとも1つの単量体が、その単量体のみで重合がされたときの重合体のガラス転移温度が-100℃以上0℃以下となる単量体であることを特徴とする、請求項10から15のいずれかに記載の多孔性フィルム。
  17.  前記その単量体のみで重合がされたときの重合体のガラス転移温度が-100℃以上0℃以下である単量体が、有機樹脂粒子の全構成単量体成分を100質量%としたとき、0質量%より大きく、10.0質量%以下である、請求項16に記載の多孔性フィルム。
  18.  前記多孔質層が少なくとも2種類の有機樹脂粒子を含む、請求項1から17のいずれかに記載の多孔性フィルム。
  19.  前記有機樹脂粒子の平均粒径が100nm以上500nm以下である、請求項1から18のいずれかに記載の多孔性フィルム。
  20.  前記多孔質基材の膜厚が3μm以上15μm以下である、請求項1から請求項19のいずれかに記載の多孔性フィルム。
  21.  前記多孔質層の膜厚が2μm以上8μm以下である、請求項1から請求項20のいずれかに記載の多孔性フィルム。
  22.  請求項1から21のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。
  23.  請求項22に記載の二次電池用セパレータを用いてなる二次電池。
  24.  多孔質基材と、該多孔質基材の少なくとも一方の面に、無機粒子と有機樹脂粒子を含む多孔質層とを有する多孔性フィルムであって、
    前記多孔質基材は、前記多孔質層と接する側の表面の2200μm四方における算術平均高さ(Sa)が0.01μm以上0.09μm未満であるポリオレフィン微多孔膜からなり、
    前記無機粒子が、無機水酸化物、無機酸化物および無機硫酸化物からなる群から選ばれる少なくとも1種によって構成された粒子であり、
    前記有機樹脂粒子が、フッ素含有(メタ)アクリレート単量体、不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体、スチレン系単量体、オレフィン系単量体、ジエン系単量体、アミド系単量体、フッ化ビニリデン単量体からなる群から選ばれる少なくとも1つの単量体が用いられて重合された重合体であり、
    前記多孔質層の全構成成分の体積を100体積%としたとき無機粒子の体積含有率αが30体積%以上80体積%以下であり、
    該無機粒子の体積含有率α(体積%)と前記多孔質層の表面部での無機粒子の占有率β(面積%)との関係が、β>0かつβ/α<1を満たす、電池用セパレータ。
PCT/JP2022/015373 2021-05-10 2022-03-29 多孔性フィルム、二次電池用セパレータおよび二次電池 WO2022239548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280030604.3A CN117223165A (zh) 2021-05-10 2022-03-29 多孔性膜、二次电池用隔板及二次电池
KR1020237028343A KR20240007116A (ko) 2021-05-10 2022-03-29 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
JP2022521273A JPWO2022239548A1 (ja) 2021-05-10 2022-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079537 2021-05-10
JP2021-079537 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239548A1 true WO2022239548A1 (ja) 2022-11-17

Family

ID=84028222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015373 WO2022239548A1 (ja) 2021-05-10 2022-03-29 多孔性フィルム、二次電池用セパレータおよび二次電池

Country Status (4)

Country Link
JP (1) JPWO2022239548A1 (ja)
KR (1) KR20240007116A (ja)
CN (1) CN117223165A (ja)
WO (1) WO2022239548A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198534A1 (ja) * 2014-06-27 2015-12-30 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2016072162A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2019087422A (ja) * 2017-11-07 2019-06-06 トヨタ自動車株式会社 非水系二次電池
WO2020091061A1 (ja) * 2018-11-01 2020-05-07 住友化学株式会社 非水電解液二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191597B2 (ja) 2012-04-05 2017-09-06 日本ゼオン株式会社 二次電池用セパレータ
US20150207122A1 (en) 2012-07-30 2015-07-23 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN107004812B (zh) 2014-12-15 2020-07-21 帝人株式会社 非水电解质电池用隔膜、非水电解质电池及非水电解质电池的制造方法
KR102408245B1 (ko) 2016-08-17 2022-06-10 니폰 제온 가부시키가이샤 비수계 이차 전지 다공막용 조성물, 비수계 이차 전지용 다공막 및 비수계 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198534A1 (ja) * 2014-06-27 2015-12-30 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2016072162A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2019087422A (ja) * 2017-11-07 2019-06-06 トヨタ自動車株式会社 非水系二次電池
WO2020091061A1 (ja) * 2018-11-01 2020-05-07 住友化学株式会社 非水電解液二次電池

Also Published As

Publication number Publication date
CN117223165A (zh) 2023-12-12
JPWO2022239548A1 (ja) 2022-11-17
KR20240007116A (ko) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7207328B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP6431621B2 (ja) 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス
WO2019107219A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JPWO2016031163A1 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP7327044B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7234941B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7115319B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2019008884A (ja) パターン塗工用スラリー
JP6430618B1 (ja) 非水電解液二次電池
JP7052924B1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2022239548A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2021200648A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2022239547A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021184378A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7331692B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2023053821A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2021200649A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7176249B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2024072806A (ja) 蓄電デバイス用セパレータ、その製造方法及び蓄電デバイス
JP2021057338A (ja) 電気化学素子用セパレータの製造方法
JP2022037886A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2022037399A (ja) 電気化学素子用セパレータの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022521273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030604.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807253

Country of ref document: EP

Kind code of ref document: A1