WO2022238605A1 - Composite material based on the dispersion of polymers of the paek family in asa and derived mixtures - Google Patents

Composite material based on the dispersion of polymers of the paek family in asa and derived mixtures Download PDF

Info

Publication number
WO2022238605A1
WO2022238605A1 PCT/ES2022/070282 ES2022070282W WO2022238605A1 WO 2022238605 A1 WO2022238605 A1 WO 2022238605A1 ES 2022070282 W ES2022070282 W ES 2022070282W WO 2022238605 A1 WO2022238605 A1 WO 2022238605A1
Authority
WO
WIPO (PCT)
Prior art keywords
asa
polymers
dispersion
paek
composite material
Prior art date
Application number
PCT/ES2022/070282
Other languages
Spanish (es)
French (fr)
Inventor
Sergio Ignacio Molina Rubio
José Javier RELINQUE MADROÑAL
Belén PALACIOS IBAÑEZ
Original Assignee
Universidad De Cádiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cádiz filed Critical Universidad De Cádiz
Publication of WO2022238605A1 publication Critical patent/WO2022238605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the invention is based on the development of polymer-polymer composite materials.
  • the dispersing phase is acrylonitrile styrene acrylate (ASA) terpolymer, or derivative mixtures
  • the dispersed phase is a polymer from the polyaryletherketone (PAEK) family.
  • PAEK polyaryletherketone
  • the composites derived from the present invention are of interest in the construction sector (aerospace, naval, rail and automotive transport, furniture, etc.) as well as in polymer engineering, since the materials, due to their thermoplastic nature, are fully processable both by conventional plastics processing techniques (injection, extrusion, thermoforming, rotational molding, etc.) and by additive manufacturing technologies based on the extrusion of material.
  • additive manufacturing brings together a compendium of manufacturing techniques for three-dimensional parts, based on layer-by-layer deposition of material, from a wide range of technologies governed by various physicochemical principles (Guo, N.; Leu MC Front. Mech. Eng. 2013, 8, 215).
  • the parts manufactured in this way result from the addition of the aforementioned layers in a process that involves 3D-CAD design, transfer to an AM machine and addition of material (Gibson, I.; Robsen, DW; Stucker. Additive Manufacturing technologies: 3D Printing , Rapid Prototyping and Direct Digital Manufacturing; Springer, 2015).
  • AM evolved from its initial application in rapid prototyping to cover the needs of very varied manufacturing sectors (medicine (Giannatsis, J.; Dedoussis, V. Int. J. Adv. Manuf. Technol. 2009, 40, 116), aeronautics and shipbuilding (Najmon, JC; Raeisi, S.; Tovar, A. Additive Manufacturing for the Aerospace Industry; Elsevier, 2019), (Moreno Nieto, D.; Casal Lopez, V.; Molina, SI Addit. Manuf. 2018, 23, 79), automotive (Bassoli, E. etal. Rapid Prototyp. J. 2007 13, 148), (Leal, R. et al. Int. J. Adv. Manuf.
  • fused filament manufacturing (FFF)
  • FFF fused filament manufacturing
  • polymers or polymer-based composites
  • molten form are forced through a heated die.
  • FFF fused filament manufacturing
  • These material extrusion techniques are one of the most widespread uses in the context of AM due to the easy processing of polymers in comparison with ceramics or metals, which usually require higher operating temperatures and more sophisticated technologies (Lee, J. Y.; An , J.; Chua, C. K. Appl. Mater. Today. 2017, 7, 120).
  • the FFF would suffer from a relatively reduced manufacturing capacity, therefore, in order to build industrial-sized parts, large-scale manufacturing devices are required.
  • ABS acrylonitrile butadiene styrene
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PMMA polymethylmethacrylate
  • ABS has excellent properties that, however, suffer deterioration over time (loss of mechanical resistance, color change) when the material is exposed to the elements due to exposure to radiation. UV.
  • ASA substitution of the butadiene block by acrylate eliminates the olefinic bond of the structure, which is susceptible to degradation (Liang, Y. L; et al. Polymer. 2012, 53, 604), improving resistance to weathering and degradation by exposure to UV radiation.
  • the traditional solution to mitigate the consequences of said thermal degradation is to incorporate flame retardants as additives to the polymers. These retardants are organic and inorganic substances that through different mechanisms interfere with the fire cycle (air-heat-fuel).
  • a great research effort is focused on displacing the traditional halogenated retardants and those that incorporate other toxic elements (due to their negative environmental implications) by different families of materials, both on a micro and nanoscopic scale (phosphorous, metallic particles, based on carbon, etc.) (Vahidi, G. et al. J.
  • ASA is functionalizable, for example, by maleic anhydride grafting (Liu, Z.
  • the novelty of the present invention lies in improving the mechanical properties and flame resistance of ASA-based composites by adding small amounts of a high-cost technical polymer, particularly from the PAEK family. or PEI, although the concept could be extended to other technical polymers with a high limiting oxygen index (polytetrafluoroethylene PTFE, polyphenylenesulfone PPSU, polyimide, Pl, etc).
  • This patent makes use of functionalized PC to introduce fire retardant character to the mixtures, although the polymeric base are polyesters, differing from ASA which is the object of the present invention. It should be considered that in this patent the functionalization would not be performed on the dispersing phase but on the additives, in an approach with a different chemical basis. Additionally, the patent does not claim use in additive manufacturing, as other patents do (WO2015134316A1), (CN106700411A). In these, materials for additive manufacturing are claimed, although PAEK is not used in the first and they are used as a dispersant phase in the second, instead of as a dispersed phase in a low proportion, as described in the present invention with the consequent savings in costs. cost. Additionally, in both cases use is made of other additives to improve the flame retardant character (halogenated in the first, fibers in the second), moving away from the concept of the invention described.
  • the invention consists of the production of polymer-polymer composites where the dispersing phase is ASA, any of its derivative mixtures, whose main component is ASA, with other thermoplastics such as PP, PE, PET, PS, PC, PVC and PMMA, or others. thermoplastics, including variants of these materials from their recycling, as well as the chemical functionalization of said thermoplastics, for example through the use of maleic anhydride grafts.
  • the dispersed phase would be any material from the PAEK family (PEEK, PEK, PEKK, etc.), also including PEI and any technical polymer that does not melt during the extrusion and mixing process of the base thermoplastic polymer.
  • the dispersed phase is added as an additive in proportion to the weight of the dispersing phase, up to 10% by weight.
  • the procedure for obtaining the composite consists of hot dispersion of the dispersed phase in the dispersing phase with subsequent extrusion using a device for this purpose (infernal mixer, single/double screw extruder).
  • the heating profile of the equipment with which the synthesis is carried out must seek to melt the dispersing phase. Shear mixing must also be guaranteed to ensure an adequate level of dispersion of the additives.
  • an initiator dicumyl peroxide or benzoyl peroxide
  • the materials must be dried prior to processing and the resulting mixture would be well suited for use in FFF printers in filament form; It would either be reduced to pellets for use in LFAM printers fed in this format, or it would be adapted to a suitable format for use in other conventional polymer transformation and manufacturing technologies.
  • the resulting material can be referred to as a polymer-polymer composite (for example, ASA-PEEK).
  • the heating profile of the nozzle must be analogous to that used in the preparation of the materials, so that it melts the dispersant phase and can be deposited on the construction platform of the machine. Said platform must also be conditioned at a temperature that minimizes the possible thermal shrinkage (warping) of the first deposited layers.
  • the manufactured parts or coatings are applicable in various construction sectors.
  • the parts manufactured from the materials subject of the present invention exhibit improved fire retardant behavior and mechanical resistance with respect to the pristine dispersant phase. This has been demonstrated through the pertinent flammability and tensile behavior tests of the aforementioned materials.
  • the materials that the invention develops are focused on providing an innovative economic solution to a problem that has aroused a considerable volume of research, in the form of academic articles and the generation of patents.
  • Said problem consists of having parts with personalized geometries for rapid construction in sectors such as naval, aerospace, automotive, etc.
  • the invention provides starting materials for the manufacture of parts or coatings from the mixture of conventional polymeric materials that improve the flame retardant behavior and mechanical resistance of the pristine dispersant phase, providing a solution to the need for structural parts. Designed for use both indoors and outdoors, in the case of exposure to severe temperature conditions.
  • the present invention is a simple approach that allows combining the good mechanical properties of the dispersant phase and the fire retardant properties of the dispersed phase.
  • Both phases are polymers whose large-scale mixing is simple and economical with conventional procedures, where the Bibliographical citations consulted refer to laboratory-scale processes, without clear scalability.
  • ASA as a dispersing phase
  • the composites resulting from the mixture with PAEK or PEI exhibit good mechanical properties and resistance to environmental degradation of the former and incorporate the fire retardant character of the latter.
  • their use as an additive is an adequate economic solution to obtain materials with sufficient fire retardant behavior and mechanical resistance. .
  • ASA-PEEK filaments are described in a proportion of PEEK of 3% by weight with respect to ASA.
  • ASA and PEEK were mixed by hand shaking.
  • the above mixture was fed into a laboratory Noztek Pro Filament Extruder single-screw extruder that produced a filament with an average diameter of 1.75 mm, at a temperature of 240 °C. To improve the degree of mixing, the filament obtained was pelletized and reintroduced into the extruder (at the same temperature) and the final filament was obtained.
  • the filament obtained could be used in an FFF machine and also pelletized again for use in an LFAM and in conventional injection (in both cases after prior drying as in step 2).
  • the filament was fed into a FFF Raise 3D Pro 2 machine that melted the material at 240°C and deposited it on a build platform at 100°C for the construction of mechanical test specimens.
  • step 1 To prepare the same composite, including the functionalization by means of maleic anhydride grafts, 30 g of maleic anhydride and 3 g of dicumyl peroxide initiator would be weighed in addition to what was referred to in step 1, and they would be incorporated into the manual mixture in step 3. or they would be fed together with the powder with a dispenser for this purpose. The rest of the steps (4 to 6) would be analogous to obtain the functionalized composite in this case.
  • the materials manufactured according to the sequence described would have an eventual degree of high industrial interest, considering the advanced state of development of the capacities of the materials, the feasibility of both synthesis and manufacturing in AM and other conventional manufacturing techniques having been demonstrated in the laboratory. with thermoplastics. The improvement of fire retardant and mechanical properties has also been demonstrated.
  • the present invention would provide materials that, after being appropriately processed by conventional techniques or by FA material extrusion techniques, can be immediately applied as final products in the form of structural parts or coatings. Taking into account the ease of processing, the industrial interest in the materials subject of the present invention would lie both in the processing of the material, and in its subsequent manufacture using the technologies described. The commercialization of the final products would be another potentially viable economic activity that would arise as a result of the invention.

Abstract

Disclosed are polymer mixtures based on the dispersion of polymers of the PAEK family, PEI and other intrinsically flame retardant-polymers in ASA and derivatives, formed by means of the additivation of the former in the latter, using a method involving hot shear mixing. The resulting composite materials can subsequently be processed using additive production techniques based on material extrusion and conventional production techniques using thermoplastics, to obtain fully functional pieces or coatings with improved flame-retardant and mechanical behaviour. The method for producing the composite materials is simple, economic and scalable, and the materials are intended for small- and large-scale production.

Description

MATERIAL COMPUESTO BASADO EN LA DISPERSIÓN DE POLÍMEROS DE LA FAMILIA PAEK EN ASA Y MEZCLAS DERIVADAS COMPOSITE MATERIAL BASED ON THE DISPERSION OF POLYMERS OF THE PAEK FAMILY IN ASA AND DERIVED BLENDS
SECTOR DE LA TÉCNICA TECHNIQUE SECTOR
La invención se basa en el desarrollo de materiales compuestos (composites) polímero-polímero. En dichos composites la fase dispersante son el terpolímero acrilonitrilo estireno acrilato (ASA), o mezclas derivadas, y la fase dispersa es un polímero de la familia de las poliariletercetonas (PAEK). El resultado es un material que aúna las buenas propiedades mecánicas de la fase dispersante e incorpora el comportamiento ignífugo de la fase dispersa. Los composites derivados de la presente invención resultan de interés en el sector de la construcción (transporte aeroespacial, naval, ferroviario y automoción, mobiliario, etc.) así como en ingeniería de polímeros, toda vez que los materiales, por su carácter termoplástico, son plenamente procesables tanto mediante técnicas convencionales de procesado de plásticos (inyección, extrusión, termoconformado, rotamoldeo, etc.) como mediante tecnologías de fabricación aditiva basadas en la extrusión de material. The invention is based on the development of polymer-polymer composite materials. In these composites, the dispersing phase is acrylonitrile styrene acrylate (ASA) terpolymer, or derivative mixtures, and the dispersed phase is a polymer from the polyaryletherketone (PAEK) family. The result is a material that combines the good mechanical properties of the dispersant phase and incorporates the flame retardant behavior of the dispersed phase. The composites derived from the present invention are of interest in the construction sector (aerospace, naval, rail and automotive transport, furniture, etc.) as well as in polymer engineering, since the materials, due to their thermoplastic nature, are fully processable both by conventional plastics processing techniques (injection, extrusion, thermoforming, rotational molding, etc.) and by additive manufacturing technologies based on the extrusion of material.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La fabricación aditiva (FA) agrupa un compendio de técnicas de fabricación de piezas tridimensionales, basado en la deposición capa a capa de material, a partir de un amplio abanico de tecnologías regidas por diversos principios físico-químicos (Guo, N.; Leu M. C. Front. Mech. Eng. 2013, 8, 215). Las piezas así fabricadas resultan de la adición de las referidas capas en un proceso que involucra diseño 3D-CAD, transferencia a una máquina de FA y adición de material (Gibson, I.; Robsen, D. W.; Stucker. Additive Manufacturing technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing; Springer, 2015). La FA evolucionó de su aplicación inicial en prototipado rápido a cubrir necesidades de sectores de fabricación muy variados (medicina (Giannatsis, J.; Dedoussis, V. Int. J. Adv. Manuf. Technol. 2009, 40, 116), aeronáutica y construcción naval (Najmon, J. C.; Raeisi, S.; Tovar, A. Additive Manufacturing for the Aerospace Industry; Elsevier, 2019), (Moreno Nieto, D.; Casal López, V.; Molina, S. I. Addit. Manuf. 2018, 23, 79), automoción (Bassoli, E. etal. Rapid Prototyp. J. 2007 13, 148), (Leal, R. et al. Int. J. Adv. Manuf. Technol. 2017, 92, 1671), etc.), a la vez que facilitan una producción rápida de piezas que por su geometría compleja y alto valor añadido requieran tiradas cortas (T ofail, S. M. et al. Mater. T oday, 2018, 21, 22), (Hague, R.; Campbell, I. Dickens, P. Proc. Instn. Mech. Engrs. Part C. Additive manufacturing (AM) brings together a compendium of manufacturing techniques for three-dimensional parts, based on layer-by-layer deposition of material, from a wide range of technologies governed by various physicochemical principles (Guo, N.; Leu MC Front. Mech. Eng. 2013, 8, 215). The parts manufactured in this way result from the addition of the aforementioned layers in a process that involves 3D-CAD design, transfer to an AM machine and addition of material (Gibson, I.; Robsen, DW; Stucker. Additive Manufacturing technologies: 3D Printing , Rapid Prototyping and Direct Digital Manufacturing; Springer, 2015). AM evolved from its initial application in rapid prototyping to cover the needs of very varied manufacturing sectors (medicine (Giannatsis, J.; Dedoussis, V. Int. J. Adv. Manuf. Technol. 2009, 40, 116), aeronautics and shipbuilding (Najmon, JC; Raeisi, S.; Tovar, A. Additive Manufacturing for the Aerospace Industry; Elsevier, 2019), (Moreno Nieto, D.; Casal Lopez, V.; Molina, SI Addit. Manuf. 2018, 23, 79), automotive (Bassoli, E. etal. Rapid Prototyp. J. 2007 13, 148), (Leal, R. et al. Int. J. Adv. Manuf. Technol. 2017, 92, 1671) , etc.), while facilitating rapid production of parts that, due to their complex geometry and high added value, require short runs (T ofail, SM et al. Mater. Today, 2018, 21, 22), (Hague, R., Campbell, I. Dickens, P. Proc. Inst. Mech. Engrs. Part C.
2003, 217, 25) favoreciéndose el ahorro de energía, costes operativos y la minimización de emisiones (Tang, Y.; Mak, K.; Zhao, Y. F. J. Clean Prod. 2016, 137, 1560), (Yang, Y.; L¡, L. J. Clean Prod. 2018, 170, 1268), (Ullah, A. M. M. S. et al. Int. J. Sustain. Manuf. 2015, 3, 20), (Weller, C.; Kleer, R.; Piller, F. T. Int. J. Prod. Econ. 2015, 164, 43). 2003, 217, 25) favoring energy savings, operating costs and minimizing emissions (Tang, Y.; Mak, K.; Zhao, Y. F. J. Clean Prod. 2016, 137, 1560), (Yang, Y.; L ¡, L. J. Clean Prod. 2018, 170, 1268), (Ullah, A. M. M. S. et al. Int. J. Sustain. Manuf. 2015, 3, 20), (Weller, C.; Kleer, R.; Piller, F. T. Int J. Prod. Econ. 2015, 164, 43).
Dentro del genérico grupo de técnicas de FA conocidas como fabricación con filamento fundido (FFF), polímeros (o composites de base polimérica) en forma de fundido son forzados a pasar a través de una boquilla calefactada. Estas técnicas de extrusión de material constituyen uno de los usos más extendidos en el contexto de la FA por el fácil procesado de los polímeros en comparación con cerámicas o metales, que suelen requerir mayores temperaturas de operación y tecnologías más sofisticadas (Lee, J. Y.; An, J.; Chua, C. K. Appl. Mater. Today. 2017, 7, 120). Sin embargo, en el contexto industrial, la FFF adolecería de una capacidad de fabricación relativamente reducida, por lo que, con vistas a la construcción de piezas a tamaño industrial se requieren dispositivos de fabricación a gran escala. En los últimos años se han construido máquinas de mayor envergadura modificando el sistema de alimentación (sustituyendo filamento polimérico por granza polimérica o composite) y se ha aumentado el tamaño de las boquillas de modo que se ha podido alcanzar volúmenes de fabricación del orden de varios metros cúbicos. Estas técnicas se denominan genéricamente fabricación aditiva de gran formato (LFAM) alimentadas por granza (Sánchez, D. M. et al. Mater. Des. 2020, 191, 108577). Within the generic group of AM techniques known as fused filament manufacturing (FFF), polymers (or polymer-based composites) in molten form are forced through a heated die. These material extrusion techniques are one of the most widespread uses in the context of AM due to the easy processing of polymers in comparison with ceramics or metals, which usually require higher operating temperatures and more sophisticated technologies (Lee, J. Y.; An , J.; Chua, C. K. Appl. Mater. Today. 2017, 7, 120). However, in the industrial context, the FFF would suffer from a relatively reduced manufacturing capacity, therefore, in order to build industrial-sized parts, large-scale manufacturing devices are required. In recent years, larger machines have been built by modifying the feeding system (replacing polymeric filament with polymeric pellets or composite) and the size of the nozzles has been increased so that manufacturing volumes of the order of several meters have been achieved. cubic. These techniques are generically called large format additive manufacturing (LFAM) fed by pellets (Sánchez, D. M. et al. Mater. Des. 2020, 191, 108577).
Entre los materiales utilizados en las técnicas previamente descritas se utilizan los terpolímeros ASA y acrilonitrilo butadieno estireno (ABS), así como sus mezclas potenciales con policarbonato (PC), cloruro de polivinilo (PVC) y polimetilmetacrilato (PMMA), entre otros (Du, Y. G. et al. J. Polym. Res. 2012, 19, 9993), (Akay, M.; Ozden, S. J. Mater. Sci. 1995, 30, 3358). El ABS presenta excelentes propiedades que, no obstante, sufren deterioro en el tiempo (pérdida de resistencia mecánica, modificación del color) cuando el material se expone a la intemperie por exposición a la radiación UV. En el ASA, la sustitución del bloque butadieno por acrilato elimina el enlace olefínico de la estructura, susceptible a degradación (Liang, Y. L; et al. Polymer. 2012, 53, 604), mejorando la resistencia a la intemperie y la degradación por exposición a la radiación UV. Among the materials used in the previously described techniques, ASA and acrylonitrile butadiene styrene (ABS) terpolymers are used, as well as their potential mixtures with polycarbonate (PC), polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA), among others (Du, YG et al. J. Polym. Res. 2012, 19, 9993), (Akay, M.; Ozden, SJ Mater. Sci. 1995, 30, 3358). ABS has excellent properties that, however, suffer deterioration over time (loss of mechanical resistance, color change) when the material is exposed to the elements due to exposure to radiation. UV. In ASA, the substitution of the butadiene block by acrylate eliminates the olefinic bond of the structure, which is susceptible to degradation (Liang, Y. L; et al. Polymer. 2012, 53, 604), improving resistance to weathering and degradation by exposure to UV radiation.
Un denominador común en el sector del transporte, en lo tocante al uso de materiales plásticos, es la necesidad de producir piezas con el mayor retardo de llama posible, cuando no comportamiento ignífugo, considerando la catastrófica degradación térmica que en general sufren los polímeros al aumentar la temperatura. La solución tradicional para mitigar las consecuencias de dicha degradación térmica pasa por incorporar retardantes de llama como aditivos a los polímeros. Estos retardantes son sustancias orgánicas e inorgánicas que mediante distintos mecanismos interfieren en el ciclo del fuego (aire-calor-combustible). En la actualidad, un gran esfuerzo investigador se centra en desplazar los tradicionales retardantes halogenados y los que incorporan otros elementos tóxicos (por sus negativas implicaciones ambientales) por distintas familias de materiales, tanto a escala micro como nanoscópica (fosforados, partículas metálicas, basados en carbono, etc.) (Vahidi, G. et al. J. Appl. Polym. Sci. 2021, 138, 1). Existen polímeros con elevada resistencia a la degradación térmica, en particular las PAEK. Esta familia de polímeros comparte la presencia de grupos aromáticos (arilos) con distintas formulaciones. La poliarileteretercetona (PEEK) exhibe una transición vitrea a 143 °C, punto de fusión en torno a 343 °C y un intervalo de degradación comprendido en los 575-580 °C. Estas propiedades se traducen en un aumento de la temperatura necesaria para que el material entre en combustión, aumentando el índice de oxígeno limitante y procurando un comportamiento ignífugo superior, en comparación con otros polímeros (Patel, P. et al. Polym. Degrad. Stab. 2011, 96, 12), de modo que no arderían en presencia de fuego cuando se encuentran prestando servicio en una atmósfera de aire convencional; el porcentaje de oxígeno del aire no es suficiente para que tenga lugar el proceso de combustión sostenida de estos polímeros. A common denominator in the transport sector, regarding the use of plastic materials, is the need to produce parts with the highest possible flame retardance, when not fireproof behavior, considering the catastrophic thermal degradation that polymers generally suffer when increasing temperature. The traditional solution to mitigate the consequences of said thermal degradation is to incorporate flame retardants as additives to the polymers. These retardants are organic and inorganic substances that through different mechanisms interfere with the fire cycle (air-heat-fuel). At present, a great research effort is focused on displacing the traditional halogenated retardants and those that incorporate other toxic elements (due to their negative environmental implications) by different families of materials, both on a micro and nanoscopic scale (phosphorous, metallic particles, based on carbon, etc.) (Vahidi, G. et al. J. Appl. Polym. Sci. 2021, 138, 1). There are polymers with high resistance to thermal degradation, particularly PAEK. This family of polymers shares the presence of aromatic groups (aryls) with different formulations. Polyaryletheretherketone (PEEK) exhibits a glass transition at 143 °C, a melting point around 343 °C and a degradation interval between 575-580 °C. These properties translate into an increase in the temperature necessary for the material to ignite, increasing the limiting oxygen index and ensuring superior fire retardant behavior, compared to other polymers (Patel, P. et al. Polym. Degrad. Stab 2011, 96, 12), so that they would not burn in the presence of fire when they are serving in a conventional air atmosphere; the percentage of oxygen in the air is not sufficient for the sustained combustion process of these polymers to take place.
En definitiva, la combinación de ASA en LFAM, así como mezclas derivadas, con polímeros basados en PAEK, resulta ser una solución de compromiso conveniente al objeto de mejorar las propiedades ignífugas de los primeros. La aditivación de polímeros PAEK, que no funden durante el procesado de ASA (en la horquilla 220-250 °C), puede considerarse análoga a la dispersión de materiales cerámicos en el seno de polímeros termoplásticos, lo que supone una interacción que obstaculizaría la fluencia de las cadenas poliméricas de la fase dispersante (Peponi, L. et al. Mater. Sci. Eng. R Reports. 2014, 85, 1), de modo que se obtienen materiales con resistencia mecánica mejorada. Adicionalmente, el ASA es funcionalizable, por ejemplo, mediante injertos de anhídrido maleico (Liu, Z. et al. Ind. Eng. Chem. Res. 2012,51, 9235), (Ma, H. et al. Polym. Degrad. Stab. 2006, 91, 2951), por lo que la compatibilización de la fase dispersa en ASA y derivados puede eventualmente facilitarse siguiendo procedimientos de funcionalización como los descritos. Puesto que el precio de los PAEK es elevado (Sánchez, D. M. et al. Mater. Des. 2020, 191, 108577), la aplicación en forma de mezclas reduciría costes a través de composites basados en ASA, lo que proporcionaría piezas estructurales útiles no sólo para el ámbito del transporte, sino para mobiliario de interiores y exteriores y, en general, en situaciones en las que los productos requeridos deban exhibir un comportamiento ignífugo o de elevado retardo de combustión en presencia de fuego. No debe descartarse el uso de los composites polímero-polímero que describe la presente invención en forma de recubrimientos funcionales. De lo anterior se desprende que lo novedoso de la presente invención estriba en la mejora de propiedades mecánicas y la resistencia a llama de composites en base ASA por adición de pequeñas cantidades de un polímero técnico de alto coste, en particular de la familia de los PAEK o PEI, aunque el concepto podría extenderse para otros polímeros técnicos con elevado índice de oxígeno limitante (politetrafluoroetileno PTFE, polifenilensulfona PPSU, poliimida, Pl, etc). Lo antedicho es el núcleo de la invención, sin perjuicio de poder usar mezclas en base ASA con otros termoplásticos de uso extendido (polipropileno, PP, polietileno, PE, tereftalato de polietileno, PET, poliestireno, PS, o los ya citados PC, PVC, PMMA, etc.), incluyendo aquellos procedentes de reciclado y fuentes renovables. De este modo se obtendría una fase dispersante intrínsecamente no ignífuga. La adición de los polímeros técnicos anteriores aportaría la mejora de propiedades mecánicas e ignífugas y la eventual funcionalización de la matriz basada en ASA o sus mezclas descritas, mediante técnicas descritas en la bibliografía, como los injertos de anhídrido maleico, facilitarían la dispersión de los aditivos ignifugantes en la fase dispersa. Por lo que respecta a la búsqueda bibliográfica, no existe una contribución previa en la literatura académica como la que se refiere en esta invención. Los artículos referenciados en este apartado proporcionan una visión del estado del arte en torno a las familias de materiales implicados. Se han consultado también bases de datos de patentes encontrándose un buen número de éstas para materiales ignífugos de base ASA o ABS, si bien la mayoría hace uso de compuestos inorgánicos, halogenados en particular, en cualquier caso alejándose del concepto de mezcla de polímeros técnicos en baja proporción en ASA o sus mezclas derivadas, eventualmente funcionalizadas. Mayor interés merecería la discusión de algunas patentes que hacen uso de materiales similares. Destaca el uso de poliésteres basados en resorcinol conteniendo PEI y PC funcionalizados con siloxano (US2007100088A1). Esta patente hace uso PC funcionalizado para introducir carácter ignifugante a las mezclas, si bien la base polimérica son poliésteres, difiriendo del ASA que es el objeto de la presente invención. Debe considerarse que en esta patente la funcionalización no se practicaría sobre la fase dispersante sino sobre los aditivos, en una aproximación con fundamento químico distinto. Adicionalmente, la patente no reivindica uso en fabricación aditiva, como sí lo hacen otras patentes (WO2015134316A1), (CN106700411A). En éstas se reivindican materiales para fabricación aditiva, si bien no se hace uso de PAEK en la primera y se emplean como fase dispersante en la segunda, en lugar de como fase dispersa en baja proporción, como describe la presente invención con el consiguiente ahorro de coste. Adicionalmente, en ambos casos se hace uso de otros aditivos para mejorar el carácter ignífugo (halogenados en la primera, fibras en la segunda), alejándose del concepto de la invención que se describe. In short, the combination of ASA in LFAM, as well as derivative mixtures, with PAEK-based polymers, turns out to be a suitable compromise solution in order to improve the flame retardant properties of the former. The additivation of PAEK polymers, which do not melt during ASA processing (in the 220-250 °C range), can be considered analogous to the dispersion of ceramic materials within thermoplastic polymers, which implies an interaction that would hinder the flow of the chains. polymers of the dispersant phase (Peponi, L. et al. Mater. Sci. Eng. R Reports. 2014, 85, 1), so that materials with improved mechanical resistance are obtained. Additionally, ASA is functionalizable, for example, by maleic anhydride grafting (Liu, Z. et al. Ind. Eng. Chem. Res. 2012, 51, 9235), (Ma, H. et al. Polym. Degrad. Stab. 2006, 91, 2951), so that the compatibilization of the dispersed phase in ASA and derivatives can eventually be facilitated by following functionalization procedures such as those described. Since the price of PAEK is high (Sánchez, DM et al. Mater. Des. 2020, 191, 108577), the application in the form of mixtures would reduce costs through ASA-based composites, which would provide useful structural parts not only for the field of transport, but also for interior and exterior furniture and, in general, in situations in which the required products must exhibit flame retardant behavior or high combustion retardation in the presence of fire. The use of the polymer-polymer composites described in the present invention in the form of functional coatings should not be ruled out. From the foregoing it can be deduced that the novelty of the present invention lies in improving the mechanical properties and flame resistance of ASA-based composites by adding small amounts of a high-cost technical polymer, particularly from the PAEK family. or PEI, although the concept could be extended to other technical polymers with a high limiting oxygen index (polytetrafluoroethylene PTFE, polyphenylenesulfone PPSU, polyimide, Pl, etc). The foregoing is the core of the invention, without prejudice to the ability to use ASA-based mixtures with other widely used thermoplastics (polypropylene, PP, polyethylene, PE, polyethylene terephthalate, PET, polystyrene, PS, or the aforementioned PC, PVC , PMMA, etc.), including those from recycled and renewable sources. In this way, an intrinsically non-fireproof dispersant phase would be obtained. The addition of the above technical polymers would provide an improvement in mechanical and flame retardant properties and the eventual functionalization of the matrix based on ASA or its mixtures described, using techniques described in the bibliography, such as maleic anhydride grafts, would facilitate the dispersion of the additives. flame retardants in the dispersed phase. Regarding the bibliographic search, there is no previous contribution in the academic literature such as the one referred to in this invention. The articles referenced in this section provide a vision of the state of the art around the families of materials involved. Patent databases have also been consulted, finding a good number of these for ASA or ABS-based flame retardant materials, although most make use of inorganic compounds, halogenated in particular, in any case moving away from the concept of mixing technical polymers in low proportion of ASA or its derivative mixtures, possibly functionalized. More interesting would be the discussion of some patents that make use of similar materials. The use of polyesters based on resorcinol containing PEI and PC functionalized with siloxane (US2007100088A1) stands out. This patent makes use of functionalized PC to introduce fire retardant character to the mixtures, although the polymeric base are polyesters, differing from ASA which is the object of the present invention. It should be considered that in this patent the functionalization would not be performed on the dispersing phase but on the additives, in an approach with a different chemical basis. Additionally, the patent does not claim use in additive manufacturing, as other patents do (WO2015134316A1), (CN106700411A). In these, materials for additive manufacturing are claimed, although PAEK is not used in the first and they are used as a dispersant phase in the second, instead of as a dispersed phase in a low proportion, as described in the present invention with the consequent savings in costs. cost. Additionally, in both cases use is made of other additives to improve the flame retardant character (halogenated in the first, fibers in the second), moving away from the concept of the invention described.
En definitiva, aunque existen patentes que persiguen la mejora de resistencia a llama con aproximaciones que pueden parecer similares por el uso de materiales como los que describe la presente invención, no se ha encontrado un concepto idéntico en cuanto a la fabricación de composites en base ASA, o cualquiera de sus mezclas derivadas, en su caso funcionalizadas, incluyendo materiales de la familia PAEK (o de otros polímeros que son intrínsecamente ignífugos en presencia de aire) para lograr un composite polímero-polímero ignífugo y con resistencia mecánica mejorada, concebidos para su uso en fabricación aditiva por extrusión de material y sin perjuicio de su fabricación por técnicas convencionales de producción de termoplásticos. EXPLICACIÓN DE LA INVENCIÓN In short, although there are patents that seek to improve flame resistance with approaches that may seem similar due to the use of materials such as those described in the present invention, an identical concept has not been found in terms of the manufacture of ASA-based composites. , or any of its derivative mixtures, functionalized if applicable, including materials from the PAEK family (or other polymers that are intrinsically flame retardant in the presence of air) to achieve a flame retardant polymer-polymer composite with improved mechanical resistance, designed for use in use in additive manufacturing by extrusion of material and without prejudice to its manufacture by conventional thermoplastic production techniques. EXPLANATION OF THE INVENTION
La invención consiste en la producción de composites polímero-polímero donde la fase dispersante es ASA, cualquiera de sus mezclas derivadas, cuyo componente mayoritario es ASA, con otros termoplásticos como PP, PE, PET, PS, PC, PVC y PMMA, u otros termoplásticos, incluyendo variantes de estos materiales procedentes de su reciclado, así como la funcionalización química de los citados termoplásticos por ejemplo mediante el uso de injertos de anhídrido maleico. La fase dispersa sería cualquier material de la familia de los PAEK (PEEK, PEK, PEKK, etc.), incluyendo también PEI y cualquier polímero técnico que no funda durante el proceso de extrusión y mezcla del polímero termoplástico base. La fase dispersa se añade como aditivo en proporción al peso de fase dispersante, hasta un 10% en peso. The invention consists of the production of polymer-polymer composites where the dispersing phase is ASA, any of its derivative mixtures, whose main component is ASA, with other thermoplastics such as PP, PE, PET, PS, PC, PVC and PMMA, or others. thermoplastics, including variants of these materials from their recycling, as well as the chemical functionalization of said thermoplastics, for example through the use of maleic anhydride grafts. The dispersed phase would be any material from the PAEK family (PEEK, PEK, PEKK, etc.), also including PEI and any technical polymer that does not melt during the extrusion and mixing process of the base thermoplastic polymer. The dispersed phase is added as an additive in proportion to the weight of the dispersing phase, up to 10% by weight.
El procedimiento para la obtención del composite consiste en la dispersión en caliente de la fase dispersa en la fase dispersante con posterior extrusión haciendo uso de un dispositivo a tal efecto ( infernal mixer, extrusora mono/doble husillo). El perfil de calentamiento del equipamiento con el que se efectúa la síntesis debe procurar la fusión de la fase dispersante. También debe garantizarse un mezclado por cizalladura que asegure un adecuado nivel de dispersión de los aditivos. En su caso, si se realiza funcionalización química mediante injertos de anhídrido maleico, deberán añadirse junto a los aditivos, anhídrido maleico y un iniciador (peróxido de dicumilo, o peróxido de benzoílo) que permita incorporar los injertos de anhídrido a la cadena de ASA o ABS. Los materiales deben secarse de forma previa al procesado y la mezcla resultante, bien se adecuaría para su uso en impresoras FFF en forma de filamento; bien se reduciría a granza para su uso en impresoras LFAM con alimentación en este formato, o bien se adaptaría al formato conveniente para su uso en otras tecnologías convencionales de transformación y manufactura de polímeros. The procedure for obtaining the composite consists of hot dispersion of the dispersed phase in the dispersing phase with subsequent extrusion using a device for this purpose (infernal mixer, single/double screw extruder). The heating profile of the equipment with which the synthesis is carried out must seek to melt the dispersing phase. Shear mixing must also be guaranteed to ensure an adequate level of dispersion of the additives. Where appropriate, if chemical functionalization is performed using maleic anhydride grafts, maleic anhydride and an initiator (dicumyl peroxide or benzoyl peroxide) must be added together with the additives to allow the anhydride grafts to be incorporated into the ASA chain or ABS. The materials must be dried prior to processing and the resulting mixture would be well suited for use in FFF printers in filament form; It would either be reduced to pellets for use in LFAM printers fed in this format, or it would be adapted to a suitable format for use in other conventional polymer transformation and manufacturing technologies.
La FA haría uso de estas mezclas poliméricas. Ya que la fase dispersa, por su naturaleza físico-química, no funde durante el proceso de mezcla con el polímero dispersante, puede denominarse el material resultante como composite polímero- polímero (por ejemplo, ASA-PEEK). El filamento alimentado a una máquina FFF, o en su caso la granza, convenientemente secada previa alimentación a una máquina LFAM, permiten la deposición de material fundido capa a capa hasta la obtención de piezas finales o recubrimientos. El perfil de calentamiento de la boquilla debe ser análogo al empleado en la preparación de los materiales, de modo que funda la fase dispersante y pueda depositarse en la plataforma de construcción de la máquina. Dicha plataforma también deberá acondicionarse a una temperatura que minimice la posible retracción térmica (warping) de las primeras capas depositadas. The FA would make use of these polymer blends. Since the dispersed phase, due to its physical-chemical nature, does not melt during the mixing process with the dispersing polymer, the resulting material can be referred to as a polymer-polymer composite (for example, ASA-PEEK). The filament fed to an FFF machine, or, where appropriate, the pellets, conveniently dried prior to feeding to an LFAM machine, allow the deposition of molten material layer by layer until the final parts or coatings are obtained. The heating profile of the nozzle must be analogous to that used in the preparation of the materials, so that it melts the dispersant phase and can be deposited on the construction platform of the machine. Said platform must also be conditioned at a temperature that minimizes the possible thermal shrinkage (warping) of the first deposited layers.
La elaboración de los composites que se describen en la presente invención puede llevarse a efecto siguiendo la siguiente secuencia genérica: The preparation of the composites described in the present invention can be carried out following the following generic sequence:
1. Pesada de la fase dispersante y de la fase dispersa. La segunda se añadirá como aditivo en proporción porcentual al peso de la primera. Si se funcionaliza la fase dispersante, se pesarán adicionalmente un 3% y un 0,3% en peso de fase dispersante de anhídrido maleico y de iniciador peróxido de dicumilo o peróxido de benzoílo respectivamente. 2. Secado de los materiales. Para prevenir una inadecuada dispersión de los aditivos en el seno del polímero dispersante, debe evitarse la formación y acumulación de humedad en los materiales. Para ello, se colocarán convenientemente en estufa a una temperatura entre 60-80 °C y se mantendrán un tiempo no inferior a 3 h. En su caso, el anhídrido maleico y el iniciador no deben calentarse. 1. Weighing of the dispersant phase and the dispersed phase. The second will be added as an additive in percentage proportion to the weight of the first. If the dispersing phase is functionalized, an additional 3% and 0.3% by weight of maleic anhydride dispersing phase and dicumyl peroxide or benzoyl peroxide initiator, respectively, are weighed. 2. Drying of the materials. To prevent inadequate dispersion of the additives within the dispersing polymer, the formation and accumulation of moisture in the materials must be avoided. For this, they will be conveniently placed in an oven at a temperature between 60-80 °C and kept for a time of no less than 3 h. If applicable, the maleic anhydride and the initiator must not be heated.
3. Mezclado previo de los materiales. Siempre que no se puedan dosificar conjuntamente con un dispositivo a tal efecto, se efectuará un mezclado por agitación manual de todos los materiales pesados y secados en los pasos previos, (en su caso anhídrido maleico y el iniciador), como paso previo a la extrusión de los composites. 3. Pre-mixing of materials. Whenever they cannot be dosed together with a device for this purpose, all the heavy and dried materials in the previous steps will be mixed by manual shaking (if applicable, maleic anhydride and the initiator), as a step prior to extrusion. of the composites.
4. Mezclado en caliente con fusión de la fase dispersante. La mezcla previa se somete a un perfil de calentamiento de forma que la fusión y ulterior mezcla por cizalladura proveerá de una adecuada dispersión de la fase dispersa en la dispersante. 5. Acondicionamiento final. El composite se adecuará para el uso final a que va destinado. Dependiendo del formato obtenido en el paso previo, será necesario reducir a granza si se han obtenido filamentos de composite de un proceso de extrusión y se requiere el composite en dicho formato para su fabricación ulterior mediante LFAM o cualquier otra tecnología convencional. Por el contrario, si se ha obtenido granza y se requiere filamento para su aplicación en máquinas FFF, la eventual granza de composite obtenida en el paso previo se sometería nuevamente a fusión y se extruiría hasta formar los filamentos necesarios, cuidando la adecuada dispersión del aditivo en el polímero dispersante. 6. Uso de los composites. Estos se usarán para fabricar piezas estructurales o recubrimientos mediante tecnologías de fabricación aditiva por extrusión de material o convencionales de procesado de termoplásticos. 4. Hot mixing with melting of the dispersant phase. The premix is subjected to a heating profile so that the melting and subsequent shear mixing will provide adequate dispersion of the dispersed phase in the dispersant. 5. Final conditioning. The composite will be suitable for the final use for which it is intended. Depending on the format obtained in the previous step, it will be necessary to reduce to pellets if composite filaments have been obtained from an extrusion process and the composite in said format is required for its subsequent manufacture using LFAM or any other conventional technology. On the contrary, if pellets have been obtained and filament is required for its application in FFF machines, the eventual pellet of The composite obtained in the previous step would be melted again and extruded until the necessary filaments were formed, taking care of the proper dispersion of the additive in the dispersing polymer. 6. Use of composites. These will be used to manufacture structural parts or coatings through additive manufacturing technologies by material extrusion or conventional thermoplastic processing.
Las piezas o recubrimientos fabricados son de aplicación en diversos sectores constructivos. Las piezas fabricadas a partir de los materiales sujeto de la presente invención exhiben un comportamiento ignífugo y una resistencia mecánica mejorados respecto a la fase dispersante prístina. Ello se ha demostrado a través de los pertinentes ensayos de inflamabilidad y comportamiento a tracción de los citados materiales. The manufactured parts or coatings are applicable in various construction sectors. The parts manufactured from the materials subject of the present invention exhibit improved fire retardant behavior and mechanical resistance with respect to the pristine dispersant phase. This has been demonstrated through the pertinent flammability and tensile behavior tests of the aforementioned materials.
Como se desprende del estado del arte, la FA se encuentra en una fase expansiva que se espera mantenga un crecimiento sostenido en los próximos años. La proliferación de nuevas técnicas de fabricación discurre en paralelo con la necesidad de una actividad investigadora que surta a los diferentes procesos de FA de materiales útiles para satisfacer muy variadas demandas industriales y de consumo particular.As can be seen from the state of the art, AF is in an expansive phase that is expected to maintain sustained growth in the coming years. The proliferation of new manufacturing techniques goes hand in hand with the need for research activity that supplies the different AM processes with useful materials to satisfy a wide variety of industrial and private consumer demands.
En este sentido, los materiales que desarrolla la invención se enfocan a proporcionar una solución económica novedosa a un problema que ha concitado un volumen de investigación considerable, en forma de artículos académicos y generación de patentes. Dicho problema consiste en disponer de piezas con geometrías personalizadas para la construcción rápida en sectores como el naval, aeorespacial, automoción, etc. Más concretamente, la invención proporciona materiales de partida para la fabricación de piezas o recubrimientos a partir de la mezcla de materiales poliméricos convencionales que mejoran el comportamiento ignífugo y la resistencia mecánica de la fase dispersante prístina, dando solución a la necesidad de disponer de piezas estructurales pensadas para uso tanto en interiores como a la intemperie, para el caso de exposición a severas condiciones de temperatura. In this sense, the materials that the invention develops are focused on providing an innovative economic solution to a problem that has aroused a considerable volume of research, in the form of academic articles and the generation of patents. Said problem consists of having parts with personalized geometries for rapid construction in sectors such as naval, aerospace, automotive, etc. More specifically, the invention provides starting materials for the manufacture of parts or coatings from the mixture of conventional polymeric materials that improve the flame retardant behavior and mechanical resistance of the pristine dispersant phase, providing a solution to the need for structural parts. Designed for use both indoors and outdoors, in the case of exposure to severe temperature conditions.
Aunque se destaca la aplicación de los materiales propuestos en FA, sus propiedades (ignífugos libres de halógenos, mejora de resistencia mecánica) también los convierte en materiales que se pueden aplicar en otras tecnologías de transformación de polímeros, tales como inyección, extrusión, rotamoldeo, etc., ampliando en gran medida su ámbito de aplicación técnica. Although the application of the proposed materials in AM stands out, their properties (halogen-free flame retardant, improvement in mechanical resistance) also make them materials that can be applied in other technologies for transforming polymers, such as injection, extrusion, rotational molding, etc., greatly expanding its field of technical application.
En los antecedentes de la invención se han proporcionado diversas aproximaciones que mejoran el comportamiento ignífugo de polímeros como ASA o ABS, de uso extendido en FA, la mayoría de ellas basadas en la dispersión de diferentes familias de materiales ignifugantes. Por su parte, la presente invención es una aproximación simple que permite aunar las buenas propiedades mecánicas de la fase dispersante e ignífugas de la dispersa. Ambas fases son polímeros cuya mezcla a gran escala es sencilla y económica con procedimientos convencionales, donde las citas bibliográficas consultadas hacen referencia a procesos a escala laboratorio, sin una escalabilidad clara. Adicionalmente, gracias al uso de ASA como fase dispersante, los composites resultantes de la mezcla con PAEK o PEI exhiben buenas propiedades mecánicas y de resistencia a la degradación ambiental de los primeros e incorporan el carácter ignífugo de los segundos. Considerando el elevado precio de los polímeros técnicos que se emplean como fase dispersa, su uso como aditivo (hasta un máximo de un 10% en el peso del polímero dispersante) supone una adecuada solución económica para conseguir materiales con suficiencia en comportamiento ignífugo y resistencia mecánica. In the background of the invention, various approaches have been provided that improve the flame retardant behavior of polymers such as ASA or ABS, widely used in FA, most of them based on the dispersion of different families of flame retardant materials. For its part, the present invention is a simple approach that allows combining the good mechanical properties of the dispersant phase and the fire retardant properties of the dispersed phase. Both phases are polymers whose large-scale mixing is simple and economical with conventional procedures, where the bibliographical citations consulted refer to laboratory-scale processes, without clear scalability. Additionally, thanks to the use of ASA as a dispersing phase, the composites resulting from the mixture with PAEK or PEI exhibit good mechanical properties and resistance to environmental degradation of the former and incorporate the fire retardant character of the latter. Considering the high price of technical polymers that are used as a dispersed phase, their use as an additive (up to a maximum of 10% by weight of the dispersing polymer) is an adequate economic solution to obtain materials with sufficient fire retardant behavior and mechanical resistance. .
Para justificar este nuevo concepto de producción de composites ignífugos con propiedades mecánicas mejoradas, se han demostrado mejoras en composites de 3, 6 y 10% (p/p) de PEEK en ASA de hasta el 25% de resistencia a rotura y de hasta el 50% de rigidez, obteniéndose materiales que retardan la propagación de llama. Por ejemplo, en el caso de un composite con 3% (p/p) de PEEK en ASA, se consigue una resistencia a la rotura de 43,5 MPa frente a 35,6 MPa del ASA puro, y un módulo de Young, como medida de la rigidez, de 1960 MPa frente a 1400MPa que presenta el ASA puro. Además, este composite retarda la propagación de la llama, a diferencia del ASA puro que arde a velocidad superior, según estándar UL-94. Los composites del 6 y 10% tienen módulos de Young en torno 2000 MPa y una resistencia a rotura similar de 45 MPa. Análogamente disminuyen la velocidad de propagación de llama. To justify this new concept of producing fire-retardant composites with improved mechanical properties, improvements have been demonstrated in composites of 3, 6 and 10% (w/w) of PEEK in ASA of up to 25% tensile strength and up to 50% rigidity, obtaining materials that retard the propagation of flame. For example, in the case of a composite with 3% (w/w) PEEK in ASA, a breaking strength of 43.5 MPa is achieved compared to 35.6 MPa for pure ASA, and a Young's modulus, as a measure of rigidity, 1960 MPa compared to 1400 MPa presented by pure ASA. In addition, this composite retards the propagation of the flame, unlike pure ASA which burns at a higher speed, according to the UL-94 standard. The 6 and 10% composites have Young's modulus around 2000 MPa and a similar breaking strength of 45 MPa. Similarly, they decrease the speed of flame propagation.
En conclusión, el concepto de emplear polímeros técnicos como aditivos en composites basados en ASA resulta novedoso por dos motivos. En primer lugar, no resultaba evidente que la dispersión de PAEK y otros polímeros de elevado índice de oxígeno limitante fuera a proporcionar una mejora en el comportamiento ignífugo de los composites y menos aún en la baja proporción relativa (hasta un 10%) en que se han añadido. En segundo lugar, tampoco era obvio que la introducción de los aditivos no fuera a empeorar sensiblemente las propiedades mecánicas, todo ello motivado por dificultades de compatibilización de las fases dispersante y dispersa. La consecución de la mejora de resistencia a llama y propiedades mecánicas convierten la idea de la invención en un método sencillo de producir composites con propiedades mecánicas y funcionales mejoradas a un coste reducido y con uso viable en fabricación aditiva y convencional. In conclusion, the concept of using technical polymers as additives in ASA-based composites is novel for two reasons. First, it was not obvious that the dispersion of PAEK and other high index polymers limiting oxygen would provide an improvement in the fire retardant behavior of the composites and even less in the low relative proportion (up to 10%) in which they have been added. Secondly, it was also not obvious that the introduction of the additives would not appreciably worsen the mechanical properties, all of which was caused by difficulties in making the dispersant and dispersant phases compatible. The achievement of the improvement in flame resistance and mechanical properties converts the idea of the invention into a simple method of producing composites with improved mechanical and functional properties at a reduced cost and with viable use in conventional and additive manufacturing.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, a set of drawings is attached as an integral part of said description, where, with an illustrative and non-limiting nature, what has been represented has been Next:
- Figura 1 : Se muestran dos gráficas comparativas de las medidas de resistencia a rotura y del módulo de Young para el polímero ASA puro y para composites con distintos porcentajes en peso de PEEK (3, 6 y 10%). - Figure 1: Two comparative graphs of the measurements of breaking strength and Young's modulus are shown for the pure ASA polymer and for composites with different percentages by weight of PEEK (3, 6 and 10%).
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
A título de ejemplo se describe la preparación de filamentos de ASA-PEEK en una proporción de PEEK del 3% en peso respecto al ASA. By way of example, the preparation of ASA-PEEK filaments is described in a proportion of PEEK of 3% by weight with respect to ASA.
1. Para la preparación del composite se pesaron 1 kg de ASA y 30 g de PEEK. 1. For the preparation of the composite, 1 kg of ASA and 30 g of PEEK were weighed.
2. Los materiales se pusieron a secar en estufa durante la noche a 60 °C. 2. The materials were dried in an oven overnight at 60 °C.
3. ASA y PEEK se mezclaron por agitación manual. 3. ASA and PEEK were mixed by hand shaking.
4. La mezcla anterior se introdujo como alimentación en una extrusora monohusillo Noztek Pro Filament Extruder de laboratorio que produjo un filamento de 1 ,75 mm de diámetro promedio, a una temperatura de 240 °C. Para mejorar el grado de mezclado, el filamento obtenido se peletizó y se introdujo de nuevo en la extrusora (a la misma temperatura) y se obtuvo el filamento final. 4. The above mixture was fed into a laboratory Noztek Pro Filament Extruder single-screw extruder that produced a filament with an average diameter of 1.75 mm, at a temperature of 240 °C. To improve the degree of mixing, the filament obtained was pelletized and reintroduced into the extruder (at the same temperature) and the final filament was obtained.
5. El filamento obtenido pudo emplearse en una máquina FFF y también peletizarse nuevamente para su uso en una LFAM y en inyección convencional (en ambos casos tras un secado previo como el del paso 2). 5. The filament obtained could be used in an FFF machine and also pelletized again for use in an LFAM and in conventional injection (in both cases after prior drying as in step 2).
6. El filamento se alimentó a una máquina de FFF Raise 3D Pro 2 que fundió el material a 240 °C y lo depositó sobre una plataforma de construcción a 100 °C para la construcción de probetas de ensayo mecánico. 6. The filament was fed into a FFF Raise 3D Pro 2 machine that melted the material at 240°C and deposited it on a build platform at 100°C for the construction of mechanical test specimens.
Para preparar el mismo composite incluyendo la funcionalización mediante injertos de anhídrido maleico, se pesarían adicionalmente a lo referido en el paso 1, 30 g de anhídrido maleico y 3 g de iniciador peróxido de dicumilo y se incorporarían a la mezcla manual en el paso 3, o bien se alimentarían junto al polvo con un dosificador al efecto. El resto de los pasos (4 al 6) serían análogos para obtener en este caso el composite funcionalizado. To prepare the same composite, including the functionalization by means of maleic anhydride grafts, 30 g of maleic anhydride and 3 g of dicumyl peroxide initiator would be weighed in addition to what was referred to in step 1, and they would be incorporated into the manual mixture in step 3. or they would be fed together with the powder with a dispenser for this purpose. The rest of the steps (4 to 6) would be analogous to obtain the functionalized composite in this case.
APLICACIÓN INDUSTRIAL INDUSTRIAL APPLICATION
Los materiales fabricados según la secuencia descrita tendrían un eventual grado de interés industrial elevado, considerando el avanzado estado de desarrollo de las capacidades de los materiales, habiendo sido demostrada en laboratorio la viabilidad tanto de síntesis como de fabricación en FA y otras técnicas convencionales de fabricación con termoplásticos. La mejora de propiedades ignífugas y mecánicas también ha sido demostrada. The materials manufactured according to the sequence described would have an eventual degree of high industrial interest, considering the advanced state of development of the capacities of the materials, the feasibility of both synthesis and manufacturing in AM and other conventional manufacturing techniques having been demonstrated in the laboratory. with thermoplastics. The improvement of fire retardant and mechanical properties has also been demonstrated.
En definitiva, la presente invención proporcionaría materiales que, tras su oportuno procesado mediante técnicas convencionales o por técnicas FA de extrusión de material, pueden aplicarse inmediatamente como productos finales en forma de piezas estructurales o recubrimientos. Habida cuenta de la facilidad de procesado, el interés industrial en los materiales sujeto de la presente invención estribaría tanto en el procesado del material, como en su posterior fabricación haciendo uso de las tecnologías descritas. La comercialización de los productos finales sería otra actividad económica potencialmente viable que surgiría fruto de la invención. In short, the present invention would provide materials that, after being appropriately processed by conventional techniques or by FA material extrusion techniques, can be immediately applied as final products in the form of structural parts or coatings. Taking into account the ease of processing, the industrial interest in the materials subject of the present invention would lie both in the processing of the material, and in its subsequent manufacture using the technologies described. The commercialization of the final products would be another potentially viable economic activity that would arise as a result of the invention.

Claims

REIVINDICACIONES
1. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, caracterizado por que se compone de: - una fase dispersante basada en ASA o cualquiera de sus mezclas derivadas con otros termoplásticos, siempre que el componente mayoritario sea ASA y una fase dispersa basada en cualquier material de la familia de los PAEK (PEEK, PEK, PEKK,...), incluyendo también otros polímeros técnicos que no fundirían a la temperatura de procesado de la fase dispersante, siendo la proporción de fase dispersa respecto del polímero dispersante de un máximo del 10% (p/p). 1. Composite material based on the dispersion of PAEK family polymers in ASA and derivative mixtures, characterized in that it is made up of: - A dispersant phase based on ASA or any of its derivative mixtures with other thermoplastics, provided that the majority component is ASA and a dispersed phase based on any material from the PAEK family (PEEK, PEK, PEKK,...), also including other technical polymers that would not melt at the processing temperature of the dispersant phase, the phase proportion being dispersed with respect to the dispersing polymer of a maximum of 10% (w/w).
2. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicación 1, caracterizado por que la fase dispersante es ASA. 2. Composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to claim 1, characterized in that the dispersing phase is ASA.
3. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicación 1, caracterizado por que la fase dispersante es una mezcla de ASA con otro termoplástico seleccionado de la lista: PP, PE, PET, PS, PC, PVC y PMMA; así como las variantes de estos materiales procedentes de su reciclado. 3. Composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to claim 1, characterized in that the dispersant phase is a mixture of ASA with another thermoplastic selected from the list: PP, PE, PET, PS , PC, PVC and PMMA; as well as the variants of these materials from their recycling.
4. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicación 1, caracterizado por que la fase dispersa es un polímero que se selecciona de la siguiente lista: PEEK, PEK, PEKK, PEI, PPSU, PTFE y Pl. 4. Composite material based on the dispersion of polymers of the PAEK family in ASA and derivative mixtures, according to claim 1, characterized in that the dispersed phase is a polymer selected from the following list: PEEK, PEK, PEKK, PEI, PPSU , PTFE and Pl.
5. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicación 1, caracterizado por que la fase dispersa es PEEK. 5. Composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to claim 1, characterized in that the dispersed phase is PEEK.
6. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicación 1, caracterizado por que la fase dispersante se funcionaliza químicamente con injertos de anhídrido maleico. 6. Composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to claim 1, characterized in that the dispersant phase is chemically functionalized with grafts of maleic anhydride.
7. Material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, caracterizado por que la proporción de PEEK está comprendida entre 3-6% (p/p) respecto al ASA. 7. Composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to previous claims, characterized in that the proportion of PEEK is between 3-6% (w/w) with respect to ASA.
8. Uso de materiales compuestos basados en la dispersión de polímeros de la familia8. Use of composite materials based on the dispersion of polymers of the family
PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, con módulos de elasticidad de hasta 2090 MPa, resistencia a rotura de 44,9 MPa y resistencia a llama mejorada según estándar UL-94, para la obtención de piezas estructurales o recubrimientos en diversos sectores de la construcción (aeroespacial, naval, automoción, mobiliario, etc.). PAEK in ASA and derived mixtures, according to previous claims, with modulus of elasticity of up to 2090 MPa, breaking strength of 44.9 MPa and improved flame resistance according to the UL-94 standard, for obtaining structural parts or coatings in various sectors construction (aerospace, naval, automotive, furniture, etc.).
9. Uso de materiales compuestos basados en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, con módulos de elasticidad de hasta 2090 MPa, resistencia a rotura de 44,9 MPa y resistencia a llama mejorada según estándar UL-94, para la obtención de piezas estructurales o recubrimientos en el sector de ingeniería de polímeros. 9. Use of composite materials based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to previous claims, with modulus of elasticity of up to 2090 MPa, breaking strength of 44.9 MPa and improved flame resistance according to standard. UL-94, for obtaining structural parts or coatings in the polymer engineering sector.
10. Uso de materiales compuestos basados en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, con módulos de elasticidad de hasta 2090 MPa, resistencia a rotura de 44,9 MPa y resistencia a llama mejorada según estándar UL-94, para la obtención de piezas estructurales o recubrimientos en diversos sectores de la construcción (aeroespacial, naval, automoción, mobiliario, etc.) que estén expuestos a la intemperie. 10. Use of composite materials based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to previous claims, with modulus of elasticity of up to 2090 MPa, breaking resistance of 44.9 MPa and improved flame resistance according to standard. UL-94, for obtaining structural parts or coatings in various construction sectors (aerospace, naval, automotive, furniture, etc.) that are exposed to the elements.
11. Uso del material compuesto basado en la dispersión de polímeros de la familia11. Use of the composite material based on the dispersion of polymers of the family
PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, en forma de granza para fabricación aditiva de gran formato (LFAM). PAEK in ASA and derivative mixtures, according to previous claims, in the form of pellets for large format additive manufacturing (LFAM).
12. Uso del material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, en forma de filamento para fabricación aditiva con filamento fundido (FFF). 12. Use of the composite material based on the dispersion of polymers of the PAEK family in ASA and derivative mixtures, according to previous claims, in the form of a filament for additive manufacturing with fused filament (FFF).
13. Uso del material compuesto basado en la dispersión de polímeros de la familia PAEK en ASA y mezclas derivadas, según reivindicaciones anteriores, para fabricación mediante técnicas convencionales de producción de termoplásticos, como la inyección, la extrusión, el termoconformado y el rotamoldeo. 13. Use of the composite material based on the dispersion of polymers from the PAEK family in ASA and derivative mixtures, according to previous claims, for manufacturing by means of conventional thermoplastic production techniques, such as injection, extrusion, thermoforming and rotational molding.
PCT/ES2022/070282 2021-05-10 2022-05-09 Composite material based on the dispersion of polymers of the paek family in asa and derived mixtures WO2022238605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202130420A ES2927918B2 (en) 2021-05-10 2021-05-10 COMPOSITE MATERIAL BASED ON THE DISPERSION OF POLYMERS FROM THE PAEK FAMILY IN ASA, ABS AND DERIVED BLENDS
ESP202130420 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022238605A1 true WO2022238605A1 (en) 2022-11-17

Family

ID=84028019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070282 WO2022238605A1 (en) 2021-05-10 2022-05-09 Composite material based on the dispersion of polymers of the paek family in asa and derived mixtures

Country Status (2)

Country Link
ES (1) ES2927918B2 (en)
WO (1) WO2022238605A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161120A1 (en) * 2016-03-17 2017-09-21 Qed Labs Inc. Articles with improved flame retardancy and/or melt dripping properties
WO2018046582A1 (en) * 2016-09-08 2018-03-15 Ineos Styrolution Group Gmbh Thermoplastic polymer powder for selective laser sintering (sls)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106700411A (en) * 2015-11-14 2017-05-24 黑龙江鑫达企业集团有限公司 PEEK compound materials suitable for 3D printing
US11697730B2 (en) * 2018-04-26 2023-07-11 Virginia Tech Intellectual Properties, Inc. Thermoplastic composites for use in fused filament fabrication, a 3D printing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161120A1 (en) * 2016-03-17 2017-09-21 Qed Labs Inc. Articles with improved flame retardancy and/or melt dripping properties
WO2018046582A1 (en) * 2016-09-08 2018-03-15 Ineos Styrolution Group Gmbh Thermoplastic polymer powder for selective laser sintering (sls)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU ZHENGUO, DENG YUNJIAO, HAN YE, CHEN MING, SUN SHULIN, CAO CHUNLEI, ZHOU CHAO, ZHANG HUIXUAN: "Toughening of Polyamide-6 with a Maleic Anhydride Functionalized Acrylonitrile-Styrene-Butyl Acrylate Copolymer", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 51, no. 27, 11 July 2012 (2012-07-11), pages 9235 - 9240, XP093007967, ISSN: 0888-5885, DOI: 10.1021/ie202960q *
NANDAN BHANU, KANDPAL LAXMI D., MATHUR GYANESH N.: "Poly(acrylonitrile-butadiene-styrene)/Poly(ether ether ketone) Blends: an Attempt Towards a Polymer Reinforced Polymer Composite", MACROMOLECULAR MATERIALS AND ENGINEERING., WILEY VCH VERLAG, WEINHEIM., DE, vol. 289, no. 8, 9 August 2004 (2004-08-09), DE , pages 749 - 756, XP093007965, ISSN: 1438-7492, DOI: 10.1002/mame.200400018 *

Also Published As

Publication number Publication date
ES2927918B2 (en) 2023-03-17
ES2927918A1 (en) 2022-11-11

Similar Documents

Publication Publication Date Title
ES2709689T3 (en) Process for the preparation of composite articles that have improved electrical properties
EP2563850B1 (en) Expansible beads of polyamide
ES2387643T3 (en) Polyester foam material with fire retardant behavior
CN103059416B (en) Anti-impact modified PP/HDPE (Polypropylene/High Density Polyethylene) plastics for automotive interior parts and preparation method thereof
KR101578953B1 (en) Flameproof expandable styrene polymers, and method for the production thereof
US11130276B2 (en) Use of molding materials based on vinyl aromatic/diene block copolymers for 3-D-printing
CN101215409A (en) PBT/ABS alloy material and preparation method thereof
ES2656531T3 (en) A process for producing foam molded articles
JP6469973B2 (en) Method of manufacturing thermoplastic resin extruded foam insulation board
TW202039667A (en) Recycle pet foaming material and method for manufacturing the same
CN103242631A (en) Biodegradable composite material and preparation method thereof
CN104981505B (en) Poly (arylene ether) foamed material
CA3029684A1 (en) Multilayered sheet for thermoforming having improved sagging resistance
CN104479275A (en) PP/PA composite material for automobile interior and exterior and preparation method of PP/PA composite material
KR101685761B1 (en) 3d printer filament using biodegradable resin composition having improved whiteness and mechanical properties
JP2010111740A (en) Biodegradable flame retardant polyester resin composition for foaming, foamed article obtained therefrom, and molded article thereof
JP2018193424A (en) Antistatic agent for thermoplastic polyester resin, thermoplastic polyester resin master-batch, thermoplastic polyester resin molding, and method for producing the same
ES2927918B2 (en) COMPOSITE MATERIAL BASED ON THE DISPERSION OF POLYMERS FROM THE PAEK FAMILY IN ASA, ABS AND DERIVED BLENDS
Breuer et al. Development and processing of flame retardant cellulose acetate compounds for foaming applications
KR100836496B1 (en) A biodegradable rigid foam
Lisha et al. Thermal Performances and Fluidity of Biodegradable Poly (L-lactic acid) Filled with N, N'-Oxalyl Bis (piperonylic acid) Dihydrazide as a Nucleating Agent
KR20160144613A (en) Composite having improved conductivity and Preparation Method Thereof
CN104530533A (en) Preparation method of halogen-free flame retardant polyethylene foamed plastic
Melillo et al. Modification of poly (lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties
CN112639001A (en) Foamed sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE