WO2022237209A1 - 压裂设备 - Google Patents

压裂设备 Download PDF

Info

Publication number
WO2022237209A1
WO2022237209A1 PCT/CN2022/070479 CN2022070479W WO2022237209A1 WO 2022237209 A1 WO2022237209 A1 WO 2022237209A1 CN 2022070479 W CN2022070479 W CN 2022070479W WO 2022237209 A1 WO2022237209 A1 WO 2022237209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating
oil
power end
pump
oil inlet
Prior art date
Application number
PCT/CN2022/070479
Other languages
English (en)
French (fr)
Inventor
常胜
崔树桢
吕亮
仲跻风
付善武
兰春强
杜瑞杰
张建
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to US17/743,267 priority Critical patent/US11668289B2/en
Publication of WO2022237209A1 publication Critical patent/WO2022237209A1/zh
Priority to US18/167,676 priority patent/US20230193734A1/en
Priority to US18/307,177 priority patent/US12006925B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system
    • F16N39/02Arrangements for conditioning of lubricants in the lubricating system by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems

Definitions

  • Embodiments of the present disclosure relate to a fracturing device.
  • An embodiment of the present disclosure provides a fracturing device, including: a plunger pump including a fluid end and a power end, the power end having a power end oil outlet and at least one power end oil inlet in communication with each other; and a power end
  • the terminal lubrication system includes: a lubricating oil tank defining a containing space, at least one lubricating pump having a lubricating pump oil inlet and a lubricating pump oil outlet communicating with each other, and at least one lubricating motor providing power for the at least one lubricating pump.
  • the oil inlet of the lubricating pump communicates with the accommodating space of the lubricating oil tank
  • the oil outlet of the power end communicates with the accommodating space of the lubricating oil tank through an oil return pipeline
  • the at least one lubricating pump The oil outlet of the lubricating pump communicates with the at least one power end oil inlet through at least one oil inlet pipeline, wherein at least a part of at least one of the lubricating motor and the lubricating pump is located in the accommodation space middle.
  • the lubricating pump oil inlet of the lubricating pump is directly exposed to the accommodation space of the lubricating oil tank.
  • the power end lubrication system further includes at least one transmission device connecting the at least one lubrication motor and the at least one lubrication pump, at least a part of the at least one transmission device is located in the accommodation space.
  • lubricating oil is contained in the accommodating space of the lubricating oil tank, and the at least one lubricating motor is configured to drive the at least one lubricating pump to deliver the lubricating oil to the the power end.
  • At least part of said at least one lubricating pump is submerged in said lubricating oil in said lubricating oil tank.
  • the lubricating pump oil inlet of the at least one lubricating pump is completely submerged in the lubricating oil in the lubricating oil tank.
  • the fracturing equipment further includes: a prime mover connected to the power end and configured to power the power end; and a control system connected to the prime mover and the power end lubrication system .
  • the prime mover is an electric motor.
  • the plunger pump further includes a first reducer and a second reducer connected to the power end, one of the first reducer and the second reducer is a worm gear reducer, The other of the first reducer and the second reducer is a parallel-stage reducer or a planetary-stage reducer.
  • both the first reducer and the second reducer are located on the same side of the power end, and the other of the first reducer and the second reducer is located on the Between the one of the first speed reducer and the second speed reducer and the power end.
  • the fracturing equipment further includes: a temperature detector, arranged on any one of the oil return pipeline, the oil outlet of the power end, and the lubricating oil tank to detect the The temperature of the lubricating oil in the return oil pipeline.
  • the control system is connected to the temperature detector and is configured to control the at least one lubricating motor when the plunger pump is stopped and the temperature measured by the temperature detector is greater than a first set value keep running.
  • the fracturing equipment further includes an alarm and at least one filter arranged on the at least one oil inlet pipeline, and the control system is connected to the at least one filter and the alarm and is configured to When the pressure difference of the filter element of the at least one filter is greater than the second set value, the alarm is sounded.
  • control system is configured to control the plunger pump to stop running when the temperature measured by the temperature detector is greater than the first set value and the alarm sends out an alarm.
  • the at least one lubrication pump includes a first lubrication pump and a second lubrication pump
  • the at least one oil inlet pipeline includes a first oil inlet pipeline and a second oil inlet pipeline
  • the at least one power end oil inlet The port includes a first power end oil inlet and a second power end oil inlet
  • the first oil inlet pipeline communicates with the lubricating pump oil outlet of the first lubricating pump and the first power end oil inlet
  • the second oil inlet pipeline communicates with the oil outlet of the lubricating pump of the second lubricating pump and the oil inlet of the second power end
  • the configuration of the first lubricating pump and the second lubricating pump is such that the first lubricating pump
  • the lubricating oil pressures in the oil inlet pipeline and the second oil inlet pipeline are different.
  • the fracturing equipment further includes at least one oil pressure detector and at least one radiator, at least one radiator is arranged on the at least one oil inlet pipeline, and the at least one oil pressure detector is arranged on the On at least one oil inlet pipeline or on the at least one power end oil inlet and configured to detect the oil pressure of the lubricating oil in the at least one oil inlet pipeline, the at least one radiator is configured to The lubricating oil in the oil pipeline cools down.
  • the control system is connected to the at least one oil pressure detector and the at least one radiator, and is configured to control the at least one lubricating motor according to the value of the oil pressure measured by the at least one oil pressure detector.
  • the rotation speed and the cooling power of the at least one radiator are controlled according to the value of the temperature measured by the temperature detector.
  • Fig. 1 is a schematic block diagram of a fracturing device provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic block diagram of a fracturing equipment using a diesel engine to drive a plunger pump provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic block diagram of an electric drive fracturing device using a motor to drive a plunger pump provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a plunger pump in a fracturing equipment provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic block diagram of a part of an electrically driven fracturing device provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of an automatic control process of the lubricating oil cooling process of the fracturing equipment provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a fracturing device, including: a plunger pump, including a fluid end and a power end, and the power end has at least one power end oil inlet and a power end oil outlet communicated with each other; and the power end
  • the lubricating system includes: a lubricating oil tank defining an accommodating space, at least one lubricating pump having a lubricating pump oil inlet and a lubricating pump oil outlet communicating with each other, and at least one lubricating motor providing power for the at least one lubricating pump.
  • the oil inlet of the lubricating pump communicates with the accommodating space, the oil outlet of the power end communicates with the lubricating oil tank through an oil return pipeline, and the oil outlet of the lubricating pump of the at least one lubricating pump passes through at least one inlet
  • the oil pipeline communicates with the at least one power end oil inlet. At least a part of at least one of the lubricating motor and the lubricating pump is located in the accommodation space.
  • Fig. 1 is a schematic block diagram of a fracturing device provided by an embodiment of the present disclosure.
  • the fracturing equipment includes a plunger pump 110 and a power end lubrication system 151 .
  • the plunger pump 110 includes a fluid end 111 and a power end 112 .
  • the power end 112 has a power end oil outlet EE and a power end oil inlet EI communicating with each other.
  • the power end lubrication system 151 includes: a lubricating oil tank 1514 , a lubricating pump 1513 , and a lubricating motor 1511 .
  • the lubricating oil tank 1514 defines a receiving space C.
  • the lubricating pump 1513 has a lubricating pump oil inlet PI and a lubricating pump oil outlet PE communicating with each other.
  • the lubrication motor 1511 provides power to the lubrication pump 1513 .
  • the oil inlet PI of the lubricating pump communicates with the accommodation space C, and the oil outlet EE of the power end communicates with the accommodation space C of the lubricating oil tank 1514 through the oil return line L1.
  • the lubricating pump oil outlet PE of the lubricating pump 1513 communicates with the power end oil inlet EI through the oil inlet pipeline L2.
  • the lubricating motor 1511 is located outside the accommodating space C of the lubricating oil tank 1514 , and the lubricating pump 1513 is located in the accommodating space.
  • both the lubricating motor 1511 and the lubricating pump 1513 are located in the accommodation space C of the lubricating oil tank 1514 .
  • a part of the lubricating motor 1511 and all of the lubricating pump 1513 are located in the accommodation space C of the lubricating oil tank 1514 .
  • a part of the lubricating motor 1511 and a part of the lubricating pump 1513 are located in the accommodation space C of the lubricating oil tank 1514 .
  • At least a part of at least one of the lubricating motor 1511 and the lubricating pump 1513 is located in the accommodation space.
  • the lubricating oil tank 1514 prevents at least one of the lubricating motor 1511 and the lubricating pump 1513 located therein from propagating noise during operation, thereby reducing the noise during operation of the power end lubricating system 151 .
  • the lubricating pump oil inlet PI of the lubricating pump 1513 is directly exposed to the accommodation space C of the lubricating oil tank 1514 . That is, the communication between the lubricating pump oil inlet PI of the lubricating pump 1513 and the accommodation space C of the lubricating oil tank 1514 does not depend on any pipeline.
  • the power end lubrication system 151 may further include a transmission device 1512 connecting a lubrication motor 1511 and a lubrication pump 1513 .
  • the transmission device 1512 is completely located in the accommodation space C of the lubricating oil tank 1514 .
  • the transmission device 1512 may be partially located in the accommodating space C of the lubricating oil tank 1514 or completely located outside the accommodating space C of the lubricating oil tank 1514 .
  • the transmission device 1512 in FIG. 1 can be omitted. That is, the lubricating motor 1511 and the lubricating pump 1513 may be directly connected to each other.
  • lubricating oil O is accommodated in the accommodation space C of the lubricating oil tank 1514 .
  • the lubricating motor 1511 is configured to drive the lubricating pump 1513 to deliver lubricating oil O to the power end via at least one oil inlet pipeline.
  • lubricating pump 1513 is at least partially submerged in lubricating oil O.
  • the lubricating oil O in the lubricating oil tank 1514 further hinders the propagation of the noise when the lubricating pump 1513 is working, so as to further reduce the noise when the power end lubricating system 151 is working.
  • the lubricating pump oil inlet PI of the lubricating pump 1513 is completely submerged in the lubricating oil O. That is, the lubricating pump oil inlet PI of the lubricating pump 1513 is completely below the lubricating oil O liquid level OS. In this way, lubricating oil can directly enter the lubricating pump 1513 through the lubricating pump oil inlet PI of the lubricating pump 1513 and be pumped out from the lubricating pump oil outlet PE of the lubricating pump 1513 . Therefore, the oil suction line for connecting the oil inlet PI of the lubricating pump with the lubricating oil in the accommodation space C of the lubricating oil tank 1514 can be saved.
  • the embodiment of the present disclosure does not limit whether the oil suction line is connected to the oil inlet PI of the lubricating pump 1513 .
  • one end of the oil suction line (not shown) is connected to the lubricating pump oil inlet PI of the lubricating pump 1513 , and the opposite end of the oil suction line extends into the lubricating oil O.
  • the oil suction pipeline can be completely located in the accommodating space C of the lubricating oil tank 1514 , and can also be partially located in the accommodating space C of the lubricating oil tank 1514 .
  • the fracturing equipment may further include: a prime mover 120 and a control system 160 .
  • Prime mover 120 is connected to power end 112 of plunger pump 110 and is configured to provide power to power end 112 .
  • Control system 160 is connected to prime mover 120 and power end lubrication system 151 .
  • the connection between the control system 160 and each part can be realized by wire line or by wireless communication.
  • FIG. 1 the connections between the control system 160 and various parts are not all shown with lines.
  • the control system 160 in this application may include multiple dispersed parts or an integrated whole, which is not specifically limited in this embodiment of the present disclosure.
  • the fracturing equipment provided by the embodiment of the present disclosure further includes: a temperature detector T arranged on the oil return line L1 to detect the temperature of lubricating oil entering the oil return line L1 from the power end 112 .
  • the control system 160 is connected to the temperature detector T and is configured to control the lubricating motor 1511 to continue running when the plunger pump 110 stops running and the temperature measured by the temperature detector T is greater than a first set value.
  • the control system will also delay the shutdown of the lubricating pump. If the oil temperature exceeds the first set value, the lubricating oil radiator will continue to operate until the oil temperature is lower than the first set value, and the lubricating oil pump and the lubricating oil cooling will stop running.
  • Fig. 2 is a schematic block diagram of a fracturing equipment using a diesel engine to drive a plunger pump provided by an embodiment of the present disclosure.
  • prime mover 120 is, for example, a diesel engine.
  • the diesel engine 120 is connected to the gearbox 192 and drives the plunger pump 110 to work through the transmission shaft 191 .
  • the power source is a diesel engine 120
  • the transmission device is a gearbox 192 and a transmission shaft 191
  • the actuator is a plunger pump 110 .
  • the fracturing equipment also includes: a high pressure manifold system 140 , a low pressure manifold system 130 , a fluid end lubrication system 152 , and a power end lubrication system 151 .
  • Fracturing equipment using diesel engines has the following disadvantages: 1) The overall size and weight are relatively large: diesel engines usually use 12 or 16 cylinders, and the engine itself is relatively large, and in order to adjust the discharge flow of the equipment, it must be equipped with a gearbox 2) The operation is not environmentally friendly: the diesel engine will generate exhaust gas pollution during operation, and the operation noise is high, as high as 115dB or more, which affects Normal rest for the surrounding residents; 3) High operating costs: Diesel engines and gearboxes need to be imported from abroad, and the purchase cost is relatively high. During the operation process, the engine and transmission need to be maintained in time, and the maintenance cost is relatively high. Equipment fuel consumption costs are high.
  • the diesel engine is used as the power source, and it needs to be equipped with related gearboxes 192 (to realize the adjustment of the input speed of the plunger pump and the adjustment of the displacement of the equipment), the cooling system 170 (for the engine, gearbox, hydraulic pressure, etc.) cooling system and other oil), hydraulic and starting system 180 (used to start diesel engines and drive fan hydraulic motors and other hydraulic components), the system has many components, and the risk of failure is relatively high; it increases the difficulty of coordinated operation of various systems.
  • Fig. 3 is a schematic block diagram of an electric drive fracturing device using a motor to drive a plunger pump provided by an embodiment of the present disclosure.
  • prime mover 120 is, for example, an electric motor.
  • the electric motor 120 is used as a power source, and the plunger pump 110 is driven to act through a transmission shaft or directly driven to act.
  • the fracturing equipment mainly includes a motor 120 , a plunger pump 110 , a high-pressure manifold system 140 , a low-pressure manifold system 130 , a fluid end lubrication system 152 , a power end lubrication system 151 , a cooling system 170 , and a control system 160 .
  • These systems can be placed on chassis trucks or semi-trailers or steel skids to facilitate equipment transportation and transfer; electric drive fracturing equipment has fewer components, simple structure, less risk of equipment failure, and less difficulty in coordinated operation of the system.
  • Fig. 4 is a schematic structural diagram of a plunger pump in a fracturing equipment provided by an embodiment of the present disclosure.
  • the plunger pump 110 in the fracturing equipment provided by the embodiment of the present disclosure may further include a first speed reducer 115 and a second speed reducer 113 connected to the power end 112.
  • the first reducer 115 is a worm gear reducer; the second reducer 113 is a parallel stage reducer or a planetary stage reducer.
  • both the first reducer 115 and the second reducer 113 are located on the same side of the power end 112 .
  • the second reducer 113 is located between the first reducer 115 and the power end 112 .
  • the embodiment of the present disclosure does not limit the relative positional relationship among the power end 112 , the first reducer 115 and the second reducer 113 .
  • Fig. 5 is a schematic block diagram of a part of an electrically driven fracturing device provided by an embodiment of the present disclosure.
  • the electrically driven fracturing equipment includes a plunger pump 110 with a power end 112 and a power end lubrication system 151 configured to provide lubricating oil to the power end of the plunger pump 110 .
  • the power end lubricating system 151 includes, for example, two lubricating motors 1511 and 1511', two transmission devices 1512 and 1512', lubricating pumps 1513 and 1513' and a lubricating oil tank 1514.
  • two lubricating motors 1511 and 1511 ′ are located in the accommodation space of the lubricating oil tank 1514 .
  • the lubricating motor 1511 provides power to the lubricating pump 1513 through the transmission device 1512 to drive the lubricating pump 1513 to run.
  • the oil inlet line L2 is connected to the oil outlet PE of the oil pump 1513 and the oil inlet EI of the power end 112; to the power end 112 of the plunger pump 110.
  • the lubricating motor 1511' provides power to the lubricating pump 1513' through the transmission device 1512' to drive the lubricating pump 1513' to run.
  • the oil inlet line L2' communicates with the lubricating pump oil outlet PE' of the lubricating pump 1513' and the power end oil inlet EI' of the power end 112; The oil is pumped to the power end 112 of the plunger pump 110 through the oil inlet line L2'.
  • lubrication motors and transmission devices are not limited here. Two lubricating pumps can be driven by a single lubricating motor, or two lubricating pumps can be driven separately by two lubricating motors. Each lubricating pump can be directly connected to the lubricating electrode or can be connected through a transmission mechanism.
  • two independent lubricating circuits respectively lubricate different components inside the power end 112 of the plunger pump.
  • one is a high-pressure lubrication circuit (in which the lubricating oil pressure is high) and the other is a low-pressure lubrication circuit (in which the lubricating oil pressure is low).
  • the high-pressure lubrication circuit lubricates the parts inside the power end 112 of the plunger pump that require high lubricating oil pressure; the low-pressure lubrication line lubricates the parts inside the power end 112 of the plunger pump that require large lubrication flow and low lubricating oil pressure; this lubrication
  • the method can lubricate the internal components of the plunger pump power end. According to the different requirements of each component, the required lubricating oil pressure and amount of lubricating oil can be given to effectively ensure the normal oil temperature and sufficient lubrication of the internal components of the plunger pump power end during operation. , effectively extending the service life of each component.
  • the fracturing equipment further includes: a temperature detector T arranged on the oil return line L1 or the oil outlet EE of the power end to detect the temperature of the lubricating oil entering the oil return line L1 from the power end 112 .
  • the oil return line L1 communicates with the oil outlet EE of the power end and the accommodation space C of the lubricating oil tank 1514 .
  • the control system 160 is connected to the temperature detector T and is configured to control the lubricating motors 1513 and 1513' to continue running when the plunger pump 110 stops running and the temperature measured by the temperature detector T is greater than a first set value.
  • the control system will also delay the shutdown of the lubricating pump. If the oil temperature exceeds the first set value, the lubricating oil radiator will continue to operate until the oil temperature is lower than the first set value, and the lubricating oil pump and the lubricating oil cooling will stop running.
  • the fracturing equipment provided by the embodiment of the present disclosure further includes filters 1515 and 1515' and alarms respectively arranged on the oil inlet pipelines L2 and L2'.
  • Alarm can be arranged on the filter element of at least one of filter 1515 and 1515'.
  • the control system 160 is connected to the filters 1515 and 1515' and the alarm and is configured to cause the alarm to sound an alarm if the filter element pressure differential of any of the filters 1515 and 1515' is greater than a second set value. An operator may be alerted to a possible problem with filters 1515 and 1515' by sounding an alarm.
  • control system 160 can control the plunger pump 110 to stop running. In this way, it can protect the equipment and prevent equipment failure caused by insufficient lubrication.
  • the fracturing equipment provided by the embodiments of the present disclosure further includes at least one oil pressure detector (not shown) and at least one radiator 1516 .
  • the radiator 1516 is disposed on the oil inlet line L1 and is configured to cool down the lubricating oil in the oil inlet line L1 .
  • a radiator may also be provided on the oil inlet line L1' and configured to cool down the lubricating oil in the oil inlet line L1'.
  • At least one oil pressure detector is arranged on at least one oil inlet pipeline or on the at least one power end oil inlet and is configured to detect the oil pressure of the lubricating oil in the at least one oil inlet pipeline.
  • the control system 160 is connected to at least one oil pressure detector and at least one radiator 1516, and is configured to control the rotation speed of at least one lubricating motor according to the value of the oil pressure measured by the at least one oil pressure detector and the value of the oil pressure measured by the temperature detector.
  • the value of the temperature controls the cooling power of the at least one heat sink 1516 .
  • Fig. 6 is a schematic diagram of an automatic control process of the lubricating oil cooling process of the fracturing equipment provided by an embodiment of the present disclosure.
  • the power end lubrication system 151 monitors the oil pressure of the two power end oil inlets EI and EI' of the plunger pump 110 (the power end oil inlet can be EI and EI' inlet monitoring, also can be monitored on the oil inlet pipeline L1 and L1'), set the normal working lubricating oil pressure range, if it is detected that the lubricating oil pressure is lower than a certain set value, the control system It will control the speed of the lubricating motor to increase, the speed of the lubricating pump to increase, the displacement of the lubricating oil to increase, and the pressure of the lubricating oil to increase; The pump speed is reduced, the lubrication displacement is reduced, and the lubricating oil pressure is reduced; through the detection and feedback of the lubricating oil pressure, the automatic control of the lubrication system at the power end is realized, and the control system is more intelligent, more efficient, and more energy-
  • the power end lubrication system 151 also monitors the oil temperature of the oil outlet EE of the power end of the plunger pump 110 (it can be at the oil outlet EE of the power end or the oil return line L1 or the lubricating oil tank 1514 for detection). Set the normal working oil temperature range.
  • the control system will control the lubricating oil to disperse and reduce the speed until it stops working and no longer dissipates heat to the lubricating oil; if it is detected If the lubricating oil temperature is higher than a certain set value, the control system will control the lubricating oil diffuser to increase the speed, increase the heat dissipation power, and dissipate the heat of the lubricating oil.
  • the lubricating oil fan speed will increase or decrease accordingly, and the heat dissipation power will also increase or decrease accordingly; through the detection and feedback of the lubricating oil temperature, Realize the automatic control of the lubricating oil cooling system, adjust the cooling power according to the actual demand, the control system is more intelligent, more efficient, more energy-saving, and the appropriate speed is also conducive to reducing fan noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • General Details Of Gearings (AREA)

Abstract

本公开实施例提供一种压裂设备,包括:柱塞泵,包括液力端和动力端,所述动力端具有彼此连通的至少一个动力端进油口和动力端出油口;以及动力端润滑***,包括:限定一容纳空间的润滑油箱、具有彼此连通的润滑泵进油口和润滑泵出油口的至少一个润滑泵和为所述至少一个润滑泵提供动力的至少一个润滑电机。所述润滑泵进油口与所述容纳空间连通,所述动力端出油口通过回油管路与所述润滑油箱连通,所述至少一个润滑泵的所述润滑泵出油口通过至少一个进油管路与所述至少一个动力端进油口连通。所述润滑电机和所述润滑泵中的至少之一的至少一部分位于所述容纳空间中。

Description

压裂设备
本申请要求于2021年05月12日递交的中国专利申请第202121008278.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种压裂设备。
背景技术
当前,页岩气等非常规油气能源正在被大力开发。这就需要压裂设备对地层进行压裂造缝提高油气产量。
发明内容
本公开的实施例提供一种压裂设备,包括:柱塞泵,包括液力端和动力端,所述动力端具有彼此连通的动力端出油口和至少一个动力端进油口;以及动力端润滑***,包括:限定一容纳空间的润滑油箱、具有彼此连通的润滑泵进油口和润滑泵出油口的至少一个润滑泵和为所述至少一个润滑泵提供动力的至少一个润滑电机。其中,所述润滑泵进油口与所述润滑油箱的所述容纳空间连通,所述动力端出油口通过回油管路与所述润滑油箱的所述容纳空间连通,所述至少一个润滑泵的所述润滑泵出油口通过至少一个进油管路与所述至少一个动力端进油口连通,其中,所述润滑电机和所述润滑泵中的至少之一的至少一部分位于所述容纳空间中。
在一个示例中,所述润滑泵的所述润滑泵进油口直接暴露于所述润滑油箱的所述容纳空间中。
在一个示例中,所述动力端润滑***还包括连接所述至少一个润滑电机和所述至少一个润滑泵的至少一个传动装置,所述至少一个传动装置的至少一部分位于所述容纳空间中。
在一个示例中,所述润滑油箱的所述容纳空间中容纳有润滑油,所述至少 一个润滑电机配置为驱动所述至少一个润滑泵将所述润滑油经由所述至少一个进油管路输送至所述动力端。
在一个示例中,所述至少一个润滑泵的至少部分浸没在所述润滑油箱中的所述润滑油之中。
在一个示例中,所述至少一个润滑泵的所述润滑泵进油口完全浸没在所述润滑油箱中的所述润滑油之中。
在一个示例中,所述压裂设备还包括:原动机,连接到所述动力端且配置为对所述动力端提供动力;以及控制***,连接到所述原动机和所述动力端润滑***。
在一个示例中,所述原动机为电动机。
在一个示例中,所述柱塞泵还包括连接到所述动力端的第一减速器和第二减速器,所述第一减速器和所述第二减速器中的一个为蜗轮蜗杆减速器,所述第一减速器和所述第二减速器中的另一个为平行级减速器或行星级减速器。
在一个示例中,所述第一减速器和所述第二减速器均位于所述动力端的同一侧,且所述第一减速器和所述第二减速器中的所述另一个位于所述第一减速器和所述第二减速器中的所述一个与所述动力端之间。
在一个示例中,所述压裂设备还包括:温度检测器,设置在所述回油管路、所述动力端出油口和所述润滑油箱中任一个上以检测从所述动力端进入所述回油管路中的所述润滑油的温度。所述控制***连接到所述温度检测器且配置为在所述柱塞泵停止运行且所述温度检测器测得的所述温度大于第一设定值的情况下控制所述至少一个润滑电机继续运行。
在一个示例中,所述压裂设备还包括报警器和设置在所述至少一个进油管路上的至少一个过滤器,所述控制***连接到所述至少一个过滤器和所述报警器并且配置为在所述至少一个过滤器的滤芯压差大于第二设定值的情况下使所述报警器发出警报。
在一个示例中,所述控制***配置为在所述温度检测器测得的所述温度大于所述第一设定值且所述报警器发出警报的情况下控制所述柱塞泵停止运行。
在一个示例中,所述至少一个润滑泵包括第一润滑泵和第二润滑泵,所述至少一个进油管路包括第一进油管路和第二进油管路,所述至少一个动力端 进油口包括第一动力端进油口和第二动力端进油口,所述第一进油管路连通所述第一润滑泵的所述润滑泵出油口和第一动力端进油口,所述第二进油管路连通所述第二润滑泵的所述润滑泵出油口和第二动力端进油口,所述第一润滑泵和所述第二润滑泵配置为使得所述第一进油管路和所述第二进油管路内的所述润滑油压不同。
在一个示例中,所述压裂设备还包括至少一个油压检测器和至少一个散热器,至少一个散热器设置在所述至少一个进油管路上,所述至少一个油压检测器设置在所述至少一个进油管路上或者所述至少一个动力端进油口上且配置为检测所述至少一个进油管路中的所述润滑油的油压,所述至少一个散热器配置为对所述至少一个进油管路中的所述润滑油降温。所述控制***连接到所述至少一个油压检测器和所述至少一个散热器,配置为根据所述至少一个油压检测器测得的所述油压的值控制所述至少一个润滑电机的转速以及根据所述温度检测器测得的所述温度的值控制所述至少一个散热器的散热功率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施方式。
图1为本公开实施例提供的压裂设备的示意性框图。
图2为本公开实施例提供的采用柴油发动机驱动柱塞泵的压裂设备的示意性框图。
图3为本公开实施例提供的采用电动机驱动柱塞泵的电驱压裂设备的示意性框图。
图4为本公开实施例提供的压裂设备中的柱塞泵的结构示意图。
图5为本公开实施例提供的电驱压裂设备的一部分的示意性框图。
图6为本公开实施例提供的压裂设备的润滑油散热过程的自动控制流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供一种压裂设备,包括:柱塞泵,包括液力端和动力端,所述动力端具有彼此连通的至少一个动力端进油口和动力端出油口;以及动力端润滑***,包括:限定一容纳空间的润滑油箱、具有彼此连通的润滑泵进油口和润滑泵出油口的至少一个润滑泵和为所述至少一个润滑泵提供动力的至少一个润滑电机。所述润滑泵进油口与所述容纳空间连通,所述动力端出油口通过回油管路与所述润滑油箱连通,所述至少一个润滑泵的所述润滑泵出油口通过至少一个进油管路与所述至少一个动力端进油口连通。所述润滑电机和所述润滑泵中的至少之一的至少一部分位于所述容纳空间中。
这样,可以有效降低动力端润滑***工作时的噪音。
图1为本公开实施例提供的压裂设备的示意性框图。
参见图1,压裂设备包括柱塞泵110和动力端润滑***151。柱塞泵110包括液力端111和动力端112。动力端112具有彼此连通的动力端出油口EE和动力端进油口EI。
动力端润滑***151包括:润滑油箱1514、润滑泵1513、润滑电机1511。
润滑油箱1514限定一容纳空间C。
润滑泵1513具有彼此连通的润滑泵进油口PI和润滑泵出油口PE。
润滑电机1511对润滑泵1513提供动力。润滑泵进油口PI与容纳空间C连通,动力端出油口EE通过回油管路L1与润滑油箱1514的容纳空间C连通。润滑泵1513的润滑泵出油口PE通过进油管路L2与动力端进油口EI连通。
在图1所示的示例中,润滑电机1511位于润滑油箱1514的容纳空间C之外,润滑泵1513位于容纳空间中。
在另一示例中,润滑电机1511和润滑泵1513全部都位于润滑油箱1514的容纳空间C中。
在又一示例中,润滑电机1511的一部分以及润滑泵1513的全部位于润滑油箱1514的容纳空间C中。
在又一示例中,润滑电机1511的一部分以及润滑泵1513的一部分位于润滑油箱1514的容纳空间C中。
也就是,润滑电机1511和润滑泵1513中的至少之一的至少一部分位于容纳空间中。
这样,通过润滑油箱1514阻碍至少部分位于其中的润滑电机1511和润滑泵1513中的至少之一工作时噪音的传播,从而实现动力端润滑***151工作时噪音的降低。
继续参见图1,润滑泵1513的润滑泵进油口PI直接暴露于润滑油箱1514的容纳空间C中。也就是,润滑泵1513的润滑泵进油口PI与润滑油箱1514的容纳空间C之间的连通可不依赖任何管路。
动力端润滑***151还可包括连接润滑电机1511和润滑泵1513的传动装置1512。在图1所示示例中,传动装置1512完全位于润滑油箱1514的容纳空间C中。在另外的示例中,传动装置1512可以部分位于润滑油箱1514的容纳空间C中或者完全位于润滑油箱1514的容纳空间C之外。
可以理解的是,图1中的传动装置1512是可省略的。也就是,润滑电机1511和润滑泵1513可以彼此直接连接。
例如,润滑油箱1514的容纳空间C中容纳有润滑油O。润滑电机1511配置为驱动润滑泵1513将润滑油O经由至少一个进油管路输送至动力端。
例如,润滑泵1513至少部分浸没在润滑油O之中。这样,通过润滑油箱 1514中的润滑油O进一步阻碍润滑泵1513工作时噪音的传播,从而实现动力端润滑***151工作时噪音的进一步降低。
例如,润滑泵1513的润滑泵进油口PI完全浸没在润滑油O之中。也就是,润滑泵1513的润滑泵进油口PI完全位于润滑油O的液面OS之下。这样,润滑油可以直接经由润滑泵1513的润滑泵进油口PI进入润滑泵1513中并从润滑泵1513的润滑泵出油口PE泵出。因此,可以节省用于连接润滑泵进油口PI与润滑油箱1514的容纳空间C中的润滑油的吸油管路。
可以理解的是,本公开的实施例并不限制润滑泵1513的润滑泵进油口PI上是否连接有吸油管路。在另一示例中,吸油管路(未示出)的一端连接润滑泵1513的润滑泵进油口PI,吸油管路的相反的另一端伸入润滑油O中。吸油管路可以完全位于润滑油箱1514的容纳空间C中,也可以部分位于润滑油箱1514的容纳空间C中。
参见图1,根据本公开实施例提供的压裂设备还可包括:原动机120和控制***160。
原动机120连接到柱塞泵110的动力端112且配置为对动力端112提供动力。
控制***160连接到原动机120和动力端润滑***151。控制***160与各个部分之间的连接可以是通过导线线路实现也可以是通过无线通信方式实现。在图1中控制***160与各个部分之间的连接并未全部用线条示出。此外,可以理解的是,控制***160本申请可以包括多个分散的部分也可以是一个集成的整体,对此本公开实施例并不做具体限定。
参见图1,本公开实施例提供的压裂设备还包括:温度检测器T,设置在回油管路L1上以检测从动力端112进入回油管路L1中的润滑油的温度。
控制***160连接到温度检测器T且配置为在柱塞泵110停止运行且温度检测器T测得的温度大于第一设定值的情况下控制润滑电机1511继续运行。
这样,当柱塞泵停止运行时,控制***也会对润滑泵进行延时停机。如果油温超过第一设定值,润滑油散会继续运行,直到油温低于第一设定值,润滑油泵和润滑油散热停止运行。
图2为本公开实施例提供的采用柴油发动机驱动柱塞泵的压裂设备的示 意性框图。
例如,参见图2,原动机120例如为柴油发动机。柴油发动机120连接变速箱192,经过传动轴191驱动柱塞泵110进行工作。这里,动力源为柴油发动机120,传动装置为变速箱192和传动轴191,执行元件为柱塞泵110。此外,该压裂设备还包括:高压管汇***140、低压管汇***130、液力端润滑***152、动力端润滑***151。
采用柴油发动机的压裂设备具有以下缺点:1)外形尺寸及重量较大:柴油发动机多采用12缸或16缸,发动机本身体积较大,而且为了调节设备排出流量,必须配备变速箱进行发动机转速调节,整个设备外形尺寸较大,重量较大,运输不方便,设备功率密度较小;2)作业不环保:柴油发动机在作业过程中会产生废气污染,作业噪音较高,高达115dB以上,影响周围居民的正常休息;3)作业成本高:柴油发动机及变速箱需靠国外进口,采购成本较高。在作业过程中还需要及时进行发动机及变速箱的维护保养,保养费用较高。设备燃油消耗费用高。
此外,采用柴油发动机的压裂设备中:柴油发动机作为动力源,需要配套相关的变速箱192(实现柱塞泵输入转速调节,设备排量调节)、冷却***170(对发动机、变速箱、液压***等油液进行冷却)、液压及启动***180(用于启动柴油发动机及驱动风扇液压马达等液压部件),***组成较多,出现故障的风险较大;增加各***协同运作难度。
图3为本公开实施例提供的采用电动机驱动柱塞泵的电驱压裂设备的示意性框图。
例如,参见图3,原动机120例如为电动机。采用电动机120作为动力源,经传动轴驱动柱塞泵110动作或者直接驱动柱塞泵110动作。该压裂设备主要包括电动机120、柱塞泵110、高压管汇***140、低压管汇***130、液力端润滑***152、动力端润滑***151、冷却***170、控制***160。这些***可以放置在底盘车或半挂车或钢结构橇架上,方便设备的运输转运;电驱压裂设备各***组成较少,结构简单,设备故障风险小,***协同运作难度小。
图4为本公开实施例提供的压裂设备中的柱塞泵的结构示意图。
本公开实施例提供的压裂设备中的柱塞泵110还可包括连接到动力端 112的第一减速器115和第二减速器113。
例如,第一减速器115为蜗轮蜗杆减速器;第二减速器113为平行级减速器或行星级减速器。
例如,第一减速器115和第二减速器113均位于动力端112的同一侧。第二减速器113位于第一减速器115与动力端112之间。
可以理解的是,本公开实施例并不限制动力端112、第一减速器115和第二减速器113之间的相对位置关系。
图5为本公开实施例提供的电驱压裂设备的一部分的示意性框图。
参见图5,该电驱压裂设备包括具有动力端112的柱塞泵110以及配置为对柱塞泵110的动力端提供润滑油的动力端润滑***151。
动力端润滑***151例如包括两个润滑电机1511和1511’、两个传动装置1512和1512’、润滑泵1513和1513’和润滑油箱1514。
例如,两个润滑电机1511和1511'位于润滑油箱1514的容纳空间中。
润滑电机1511通过传动装置1512对润滑泵1513提供动力以驱动润滑泵1513运行。进油管路L2连通润滑泵1513的润滑泵出油口PE与动力端112的动力端进油口EI;润滑泵1513配置为将润滑油箱1514的容纳空间C中的润滑油经由进油管路L2泵送到柱塞泵110的动力端112。
润滑电机1511’通过传动装置1512’对润滑泵1513’提供动力以驱动润滑泵1513’运行。进油管路L2’连通润滑泵1513’的润滑泵出油口PE’与动力端112的动力端进油口EI’;润滑泵1513’配置为将润滑油箱1514’的容纳空间C中的润滑油经由进油管路L2’泵送到柱塞泵110的动力端112。
可以理解理解的是,这里并不限制润滑电机和传动装置的个数。可以通过单个润滑电机驱动两个润滑泵,也可以通过两个润滑电机分别驱动两个润滑泵。每个润滑泵与润滑电极之间可以直接连接也可以通过传动机构连接。
此外,在另外的示例中,也可以通过将润滑电机、润滑泵、传动装置均集成到润滑油箱的容纳空间中,仅润滑泵浸入润滑油箱的润滑油中。
在本公开实施例提供的电驱压裂设备中,两个独立的润滑回路分别给柱塞泵动力端112内部不同的部件进行润滑。两个润滑回路中,一个为高压润滑回路(其中润滑油压高),另一个为低压润滑回路(其中润滑油压低)。高压润滑回路针对柱塞泵动力端112内部需要润滑油压高的部位进行润滑;低 压润滑管路针对柱塞泵动力端112内部需要润滑流量大、润滑油压低的部位进行润滑;这种润滑方式可以对柱塞泵动力端内部各部件进行润滑,根据各部件需求不同,给予需要的润滑油压及润滑油量,有效保证作业过程中柱塞泵动力端内部各部件油温正常,润滑充分,有效延长各部件使用寿命。
继续参见图5,压裂设备还包括:温度检测器T,设置在回油管路L1上或者动力端出油口EE上以检测从动力端112进入回油管路L1中的润滑油的温度。回油管路L1连通动力端出油口EE和润滑油箱1514的容纳空间C。
控制***160连接到温度检测器T且配置为在柱塞泵110停止运行且温度检测器T测得的温度大于第一设定值的情况下控制润滑电机1513和1513’继续运行。
这样,当柱塞泵停止运行时,控制***也会对润滑泵进行延时停机。如果油温超过第一设定值,润滑油散会继续运行,直到油温低于第一设定值,润滑油泵和润滑油散热停止运行。
参见图5,本公开实施例提供的压裂设备还包括分别设置在进油管路L2和L2’上的过滤器1515和1515’和报警器。报警器可以设置在过滤器1515和1515’至少之一的滤芯上。控制***160连接到过滤器1515和1515’和报警器并且配置为在过滤器1515和1515’中任一个的滤芯压差大于第二设定值的情况下使报警器发出警报。通过发出报警可以提醒操作者注意过滤器1515和1515’可能存在问题。
当润滑油温超过第一设定值且同时滤芯存在报警的情况下,控制***160可控制柱塞泵110停止运行。这样,可以对设备起到保护作用,防止润滑不足造成设备故障。
本公开实施例提供的压裂设备还包括至少一个油压检测器(未示出)和至少一个散热器1516。散热器1516设置在进油管路L1上且配置为对进油管路L1中的润滑油降温。在另一示例中,进油管路L1’上也可设置有散热器且配置为对进油管路L1’中的润滑油降温。
至少一个油压检测器设置在至少一个进油管路上或者所述至少一个动力端进油口上且配置为检测所述至少一个进油管路中的所述润滑油的油压。
控制***160连接到至少一个油压检测器和至少一个散热器1516,且配置为根据至少一个油压检测器测得的油压的值控制至少一个润滑电机的转速 以及根据温度检测器测得的温度的值控制至少一个散热器1516的散热功率。
图6为本公开实施例提供的压裂设备的润滑油散热过程的自动控制流程示意图。
参见图6,本公开实施例提供的压裂设备中,动力端润滑***151通过对柱塞泵110的两个动力端进油口EI和EI’进行油压监测(可以在动力端进油口EI和EI’进口监测,也可以在进油管路L1和L1’上进行监测),对正常工作润滑油压范围进行设定,如果检测到润滑油压低于某个设定值,则控制***会控制润滑电机转速升高,润滑泵转速升高,润滑排量加大,润滑油压提高;如果检测到润滑油压高于某个设定值,则控制***会控制润滑电机转速降低,润滑泵转速降低,润滑排量减少,润滑油压降低;通过对润滑油压的检测及反馈,实现动力端润滑***的自动控制,控制***更智能,更高效,能源更节省。
本公开实施例提供的压裂设备中,动力端润滑***151还对柱塞泵110的动力端出油口EE进行油温监测(可以在动力端出油口EE或回油管路L1或润滑油箱1514上进行检测)。对正常工作油温范围进行设定,如果检测到润滑油温低于某个设定值,则控制***会控制润滑油散降低转速,直到停止工作,不再对润滑油进行散热;如果检测到润滑油温高于某个设定值,则控制***会控制润滑油散增加转速,提高散热功率,对润滑油进行散热。而且随着润滑油温高于或低于对应设定值的大小,润滑油散转速也会随之增加或减少,散热功率也会随之增加或减少;通过对润滑油温的检测及反馈,实现润滑油散热***的自动控制,根据实际需求调节散热功率,控制***更智能,更高效,能源更节省,适合的转速也有利于降低风扇噪音。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (15)

  1. 一种压裂设备,包括:
    柱塞泵,包括液力端和动力端,所述动力端具有彼此连通的动力端出油口和至少一个动力端进油口;以及
    动力端润滑***,包括:限定一容纳空间的润滑油箱、具有彼此连通的润滑泵进油口和润滑泵出油口的至少一个润滑泵和为所述至少一个润滑泵提供动力的至少一个润滑电机,
    其中,所述润滑泵进油口与所述润滑油箱的所述容纳空间连通,所述动力端出油口通过回油管路与所述润滑油箱的所述容纳空间连通,所述至少一个润滑泵的所述润滑泵出油口通过至少一个进油管路与所述至少一个动力端进油口连通,其中,所述润滑电机和所述润滑泵中的至少之一的至少一部分位于所述容纳空间中。
  2. 根据权利要求1所述的压裂设备,其中,所述润滑泵的所述润滑泵进油口直接暴露于所述润滑油箱的所述容纳空间中。
  3. 根据权利要求1所述的压裂设备,其中,所述动力端润滑***还包括连接所述至少一个润滑电机和所述至少一个润滑泵的至少一个传动装置,所述至少一个传动装置的至少一部分位于所述容纳空间中。
  4. 根据权利要求1至3中任一项所述的压裂设备,其中,所述润滑油箱的所述容纳空间中容纳有润滑油,所述至少一个润滑电机配置为驱动所述至少一个润滑泵将所述润滑油经由所述至少一个进油管路输送至所述动力端。
  5. 根据权利要求4所述的压裂设备,其中,所述至少一个润滑泵的至少部分浸没在所述润滑油箱中的所述润滑油之中。
  6. 根据权利要求5所述的压裂设备,其中,所述至少一个润滑泵的所述润滑泵进油口完全浸没在所述润滑油箱中的所述润滑油之中。
  7. 根据权利要求4-6中任一项所述的压裂设备,其中,还包括:
    原动机,连接到所述动力端且配置为对所述动力端提供动力;以及
    控制***,连接到所述原动机和所述动力端润滑***。
  8. 根据权利要求7所述的压裂设备,其中,所述原动机为电动机。
  9. 根据权利要求8所述的压裂设备,其中,所述柱塞泵还包括连接到所 述动力端的第一减速器和第二减速器,所述第一减速器和所述第二减速器中的一个为蜗轮蜗杆减速器,所述第一减速器和所述第二减速器中的另一个为平行级减速器或行星级减速器。
  10. 根据权利要求9所述的压裂设备,其中,所述第一减速器和所述第二减速器均位于所述动力端的同一侧,且所述第一减速器和所述第二减速器中的所述另一个位于所述第一减速器和所述第二减速器中的所述一个与所述动力端之间。
  11. 根据权利要求8-10中任一项所述的压裂设备,其中,还包括:温度检测器,设置在所述回油管路、所述动力端出油口和所述润滑油箱中任一个上以检测从所述动力端进入所述回油管路中的所述润滑油的温度,
    所述控制***连接到所述温度检测器且配置为在所述柱塞泵停止运行且所述温度检测器测得的所述温度大于第一设定值的情况下控制所述至少一个润滑电机继续运行。
  12. 根据权利要求11所述的压裂设备,其中,还包括报警器和设置在所述至少一个进油管路上的至少一个过滤器,所述控制***连接到所述至少一个过滤器和所述报警器并且配置为在所述至少一个过滤器的滤芯压差大于第二设定值的情况下使所述报警器发出警报。
  13. 根据权利要求12所述的压裂设备,其中,所述控制***配置为在所述温度检测器测得的所述温度大于所述第一设定值且所述报警器发出警报的情况下控制所述柱塞泵停止运行。
  14. 根据权利要求8-13中任一项所述的压裂设备,其中,
    所述至少一个润滑泵包括第一润滑泵和第二润滑泵,所述至少一个进油管路包括第一进油管路和第二进油管路,所述至少一个动力端进油口包括第一动力端进油口和第二动力端进油口,所述第一进油管路连通所述第一润滑泵的所述润滑泵出油口和第一动力端进油口,所述第二进油管路连通所述第二润滑泵的所述润滑泵出油口和第二动力端进油口,所述第一润滑泵和所述第二润滑泵配置为使得所述第一进油管路和所述第二进油管路内的所述润滑油压不同。
  15. 根据权利要求11-13中任一项所述的压裂设备,其中,还包括至少一个油压检测器和至少一个散热器,至少一个散热器设置在所述至少一个进油 管路上,所述至少一个油压检测器设置在所述至少一个进油管路上或者所述至少一个动力端进油口上且配置为检测所述至少一个进油管路中的所述润滑油的油压,所述至少一个散热器配置为对所述至少一个进油管路中的所述润滑油降温,
    所述控制***连接到所述至少一个油压检测器和所述至少一个散热器,配置为根据所述至少一个油压检测器测得的所述油压的值控制所述至少一个润滑电机的转速以及根据所述温度检测器测得的所述温度的值控制所述至少一个散热器的散热功率。
PCT/CN2022/070479 2021-04-07 2022-01-06 压裂设备 WO2022237209A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/743,267 US11668289B2 (en) 2021-05-12 2022-05-12 Fracturing apparatus
US18/167,676 US20230193734A1 (en) 2021-04-07 2023-02-10 Fracturing equipment having multiple electric-power supplies
US18/307,177 US12006925B2 (en) 2021-05-12 2023-04-26 Fracturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121008278.5U CN215111965U (zh) 2021-05-12 2021-05-12 压裂设备
CN202121008278.5 2021-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,267 Continuation US11668289B2 (en) 2021-04-07 2022-05-12 Fracturing apparatus

Publications (1)

Publication Number Publication Date
WO2022237209A1 true WO2022237209A1 (zh) 2022-11-17

Family

ID=79295640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070479 WO2022237209A1 (zh) 2021-04-07 2022-01-06 压裂设备

Country Status (2)

Country Link
CN (1) CN215111965U (zh)
WO (1) WO2022237209A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215111965U (zh) * 2021-05-12 2021-12-10 烟台杰瑞石油装备技术有限公司 压裂设备
US11668289B2 (en) 2021-05-12 2023-06-06 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327686A (zh) * 2017-08-10 2017-11-07 油威力液压科技股份有限公司 旋压机液压润滑***
CN110485984A (zh) * 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种半挂车载的涡轮压裂设备
CN110608028A (zh) * 2019-10-14 2019-12-24 中石化四机石油机械有限公司 一种双层电驱压裂撬装设备
US20200208776A1 (en) * 2017-09-01 2020-07-02 S.P.M. Flow Control, Inc. Lubrication system for a frac pump
CN112780245A (zh) * 2021-01-26 2021-05-11 烟台杰瑞石油装备技术有限公司 压裂设备
CN215111965U (zh) * 2021-05-12 2021-12-10 烟台杰瑞石油装备技术有限公司 压裂设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327686A (zh) * 2017-08-10 2017-11-07 油威力液压科技股份有限公司 旋压机液压润滑***
US20200208776A1 (en) * 2017-09-01 2020-07-02 S.P.M. Flow Control, Inc. Lubrication system for a frac pump
CN110485984A (zh) * 2019-09-20 2019-11-22 烟台杰瑞石油装备技术有限公司 一种半挂车载的涡轮压裂设备
CN110608028A (zh) * 2019-10-14 2019-12-24 中石化四机石油机械有限公司 一种双层电驱压裂撬装设备
CN112780245A (zh) * 2021-01-26 2021-05-11 烟台杰瑞石油装备技术有限公司 压裂设备
CN215111965U (zh) * 2021-05-12 2021-12-10 烟台杰瑞石油装备技术有限公司 压裂设备

Also Published As

Publication number Publication date
CN215111965U (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
US11668289B2 (en) Fracturing apparatus
WO2022237209A1 (zh) 压裂设备
US20230048551A1 (en) Lubrication System for Continuous High-Power Turbine Fracturing Equipment
WO2023272778A1 (zh) 涡轮压裂设备
US12012822B2 (en) Ultra-high power cementing apparatus integrated with remote control
US11746636B2 (en) Fracturing apparatus and control method thereof, fracturing system
US11680474B2 (en) Fracturing apparatus and control method thereof, fracturing system
US11313359B2 (en) Electric drive pump for well stimulation
US9853523B2 (en) Wheel motor cooling system with equally divided flow
CN107237617A (zh) 一种单机双泵结构的电驱压裂装备
CN112833316A (zh) 一种电驱压裂撬润滑***、压裂撬与润滑控制方法
US20170276054A1 (en) Nitrogen vaporization
US7165949B2 (en) Cavitation noise reduction system for a rotary screw vacuum pump
RU200014U1 (ru) Мобильная насосная установка для закачивания жидкостей и смесей в призабойные зоны скважин
US20230279762A1 (en) Fracturing apparatus and control method thereof, fracturing system
US8230973B2 (en) Transmission pump system
WO2023087528A1 (zh) 涡轮压裂设备和涡轮压裂井场
TWI527684B (zh) 空氣壓縮系統及其冷卻結構
CN106246326B (zh) 辅机冷却***及方法
RU167488U1 (ru) Передвижной горизонтальный насосный агрегат для нагнетательных скважин
CN211969622U (zh) 一种压裂拖车
CN104373269A (zh) 高压共轨泵回油***
WO2021230773A1 (ru) Мобильная насосная установка для закачивания жидкостей и смесей в скважины
CN210715084U (zh) 双螺杆泵用集成强制润滑***
CN219433030U (zh) 润滑装置以及压裂设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806187

Country of ref document: EP

Kind code of ref document: A1