WO2022237102A1 - 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法 - Google Patents

镍钴锰正极材料和废旧镍钴锰正极材料的回收方法 Download PDF

Info

Publication number
WO2022237102A1
WO2022237102A1 PCT/CN2021/130420 CN2021130420W WO2022237102A1 WO 2022237102 A1 WO2022237102 A1 WO 2022237102A1 CN 2021130420 W CN2021130420 W CN 2021130420W WO 2022237102 A1 WO2022237102 A1 WO 2022237102A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
manganese
nickel
positive electrode
electrode material
Prior art date
Application number
PCT/CN2021/130420
Other languages
English (en)
French (fr)
Inventor
万江涛
张宁
张勇杰
刘满库
李子郯
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to EP21931964.7A priority Critical patent/EP4117084A1/en
Publication of WO2022237102A1 publication Critical patent/WO2022237102A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of recycling waste nickel-cobalt-manganese ternary positive electrode materials, in particular to a nickel-cobalt-manganese positive electrode material and a recovery method for waste nickel-cobalt-manganese positive electrode materials.
  • Nickel-cobalt-manganese ternary cathode materials have been widely used in the field of lithium batteries for a long time.
  • various waste lithium-ion batteries have also begun to increase gradually, which requires reasonable treatment of waste lithium-ion batteries. Recycle.
  • the main purpose of the present invention is to provide a nickel-cobalt-manganese positive electrode material and a recovery method of waste nickel-cobalt-manganese positive electrode material, to solve the problems of long flow process, high cost and the high cost of the existing recovery method of waste nickel-cobalt-manganese positive electrode material.
  • the present invention provides a method for recycling waste nickel-cobalt-manganese positive electrode materials.
  • the recovery method for waste nickel-cobalt-manganese positive electrode materials includes: crushing waste nickel-cobalt-manganese positive electrode materials to obtain pellets; The material is used as the crystal seed, and the solution containing nickel source, cobalt source and manganese source is subjected to precipitation reaction to obtain a nickel-cobalt-manganese precursor; the lithium source is coated on the surface of the nickel-cobalt-manganese precursor to form a new nickel-cobalt-manganese ternary positive electrode Material.
  • the recovery method of the waste nickel-cobalt-manganese positive electrode material also includes: dismantling and stripping the ternary positive electrode sheet to remove the ternary positive electrode sheet.
  • the process of dismantling and stripping includes: performing a first calcination treatment on the ternary positive electrode sheet to obtain the waste nickel-cobalt-manganese positive electrode material; the temperature of the first calcination treatment is 500-700° C., and the time is 2-8 hours.
  • the process of dismantling and stripping includes: acid-dissolving and stripping the product of the first calcining treatment to obtain the waste nickel-cobalt-manganese positive electrode material; the acid-dissolving and stripping process includes reacting the product of the first calcining treatment with sulfuric acid and hydrogen peroxide; Concentration is 98wt%, and the addition is 1 ⁇ 5% of the product of the first calcination treatment; 40 ⁇ 60°C.
  • the precipitation process includes: preparing pellets and water into a slurry of 50-200 g/L, and adjusting its pH to 10-11; using sodium hydroxide and ammonia water as precipitating agents, and mixing the slurry, nickel-containing , the solution of cobalt source and manganese source carries out precipitation reaction, obtains nickel cobalt manganese precursor, and the molar ratio of nickel source, cobalt source and manganese source is identical with the molar ratio of nickel cobalt manganese in the granular material; Granular material, containing nickel source, For the solution of cobalt source and manganese source, the dosage ratio of sodium hydroxide and ammonia water is (50-200) g: (0.5-2) mol: (5-10) mol: (8-12) mol.
  • the temperature of the precipitation reaction is 30-75° C., and the reaction time is 20-120 h.
  • the lithium source coating process includes: aging the nickel-cobalt-manganese precursor, lithium hydroxide and soluble carbonate to obtain a new nickel-cobalt-manganese ternary cathode material.
  • the preparation method of the new nickel-cobalt-manganese ternary positive electrode material also includes: performing a second calcination treatment on the nickel-cobalt-manganese precursor and the dopant coated with the lithium source to obtain a doped product; combining the doped product with Aluminum oxide is subjected to the third calcination treatment to obtain a new nickel-cobalt-manganese ternary positive electrode material.
  • the dopant is selected from one or more of the group consisting of zinc oxide, titanium oxide, scandium oxide, aluminum oxide, magnesium oxide and gallium oxide; to account for the weight of the nickel-cobalt-manganese precursor coated with lithium source In terms of percentage content, the amount of dopant used is 0.05-2%; in the third calcination treatment, based on the weight percentage of the nickel-cobalt-manganese precursor coated with lithium source, the amount of alumina used is 0.05-2% .
  • the present application also provides a nickel-cobalt-manganese positive electrode material.
  • the nickel-cobalt-manganese positive electrode material includes: an inner core layer, a first coating layer and a second coating layer, and the first coating layer covers the inner core.
  • the second coating layer is coated on the surface of the first coating layer; wherein, the inner core layer is waste nickel-cobalt-manganese positive electrode material, the first coating layer is nickel-cobalt-manganese ternary hydroxide precursor, and the second The cladding layer is a lithium source cladding layer; or the nickel-cobalt-manganese positive electrode material is obtained by the recovery method of the above-mentioned waste nickel-cobalt-manganese positive electrode material.
  • the above recovery method can be used to make the waste nickel-cobalt-manganese positive electrode material as the core material, the nickel-cobalt-manganese ternary hydroxide precursor as the first coating layer, and the lithium source coating layer as the A new nickel-cobalt-manganese ternary cathode material for the second cladding layer. Therefore, using the above recovery method can repair the waste nickel-cobalt-manganese positive electrode material with defects such as cracks in appearance, which is beneficial to improve its discharge capacity and cycle performance. At the same time, the recovery method also has the characteristics of short process and low cost.
  • the above recycling method can not only shorten the recycling process of waste nickel-cobalt-manganese cathode materials and reduce costs, but also improve the electrical properties of the new nickel-cobalt-manganese ternary cathode materials such as discharge capacity and cycle performance.
  • the existing recovery methods of waste nickel-cobalt-manganese cathode materials have the problems of long process and high cost, and the new ternary cathode materials have low discharge capacity and poor cycle performance.
  • the application provides a method for recycling waste nickel-cobalt-manganese positive electrode materials.
  • the recovery method for waste nickel-cobalt-manganese positive electrode materials includes: crushing waste nickel-cobalt-manganese positive electrode materials to obtain pellets; As a seed crystal, the solution containing nickel source, cobalt source and manganese source is subjected to precipitation reaction to obtain a nickel-cobalt-manganese precursor; the lithium source is coated on the surface of the nickel-cobalt-manganese precursor to form a new nickel-cobalt-manganese ternary positive electrode material .
  • the waste nickel-cobalt-manganese cathode material is generally a relatively brittle material, it is easy to be broken.
  • the waste nickel-cobalt-manganese cathode material has a large particle size and needs to be crushed to obtain pellets suitable as seed crystals.
  • the pellet obtained after crushing is used as a seed crystal, and then through a precipitation reaction, a new nickel-cobalt-manganese precipitate is coated on the surface of the seed crystal to form a new precursor material.
  • the lithium source coating is carried out on the surface of the new precursor material to prepare a new nickel-cobalt-manganese ternary positive electrode material.
  • the above recycling method it is possible to produce a new lithium-cobalt-manganese positive electrode material with the waste nickel-cobalt-manganese positive electrode material as the core material, the nickel-cobalt-manganese ternary hydroxide precursor as the first coating layer, and the lithium source coating layer as the second coating layer.
  • the nickel-cobalt-manganese ternary cathode material Therefore, using the above recovery method can repair the waste nickel-cobalt-manganese positive electrode material with defects such as cracks in appearance, which is beneficial to improve its discharge capacity and cycle performance. At the same time, the recovery method also has the characteristics of short process and low cost.
  • the above recycling method can not only shorten the recycling process of waste nickel-cobalt-manganese cathode materials and reduce costs, but also improve the electrical properties of the new nickel-cobalt-manganese ternary cathode materials such as discharge capacity and cycle performance.
  • the particle size of the pellets is 1-5 ⁇ m.
  • the particle size of the pellets includes but is not limited to the above-mentioned range, and limiting it within the above-mentioned range is conducive to improving the coating uniformity of the nickel-cobalt-manganese precursor coating layer, and is also convenient to further improve the nickel-cobalt-manganese coating in the subsequent application process. Electrical properties of manganese cathode materials.
  • the nickel-cobalt-nickel ternary positive electrode sheet also includes carbon materials, separators, electrolytes, binders and other substances.
  • the existence of the above-mentioned substances will affect the performance of the subsequent positive electrode material, so in order to remove the above-mentioned substances, in a preferred embodiment, the recovery method of the waste nickel-cobalt-manganese positive electrode material also includes: dismantling the ternary positive electrode sheet Peeling to remove one or more of the group consisting of carbon materials, separators, electrolytes and binders contained in the ternary positive electrode sheet to obtain waste nickel-cobalt-manganese positive electrode materials.
  • the process of dismantling and stripping includes: performing a first calcination treatment on the ternary positive electrode sheet to obtain the waste nickel-cobalt-manganese positive electrode material.
  • the above-mentioned substances can be removed together by calcination treatment, so dismantling and stripping by calcination process is a relatively economical and simple treatment method, so the above-mentioned method is conducive to further shortening the process flow and reducing the cost of the process.
  • carbon-based material refers to a carbon-containing raw material such as carbon used in the electrode preparation process.
  • the temperature of the first calcination treatment is 500-700° C., and the time is 2-8 hours.
  • waste ternary cathode materials usually contain a certain amount of doping layer and/or coating layer of other substances.
  • the process of dismantling and stripping includes: acid-dissolving and stripping the product of the first calcination treatment to obtain the waste nickel-cobalt-manganese positive electrode material.
  • sulfuric acid and hydrogen peroxide are added in batches during the acid-soluble stripping process, and the first calcined The product reacts with sulfuric acid and hydrogen peroxide.
  • the addition of sulfuric acid can neutralize and remove the oxides in the waste ternary cathode materials.
  • the addition of hydrogen peroxide can play a catalytic role, which is beneficial to improve the reaction rate of the neutralization reaction and oxide removal rate.
  • the concentration and consumption of sulfuric acid and hydrogen peroxide and the reaction temperature can be adjusted as required, more preferably, the concentration of sulfuric acid is 98wt%, and the addition is 1 ⁇ 5% of the product of the first calcination treatment;
  • the concentration of hydrogen peroxide is 30wt%, consumption It is 1-5 vol% of the total volume of the reaction system of the acid-soluble peeling; the temperature of the acid-soluble peeling is 40-60°C. Limiting the temperature, sulfuric acid and hydrogen peroxide used in the acid-dissolving stripping process within the above-mentioned range is beneficial to further improve the removal rate of oxides in waste ternary cathode materials.
  • the precipitant used in the above precipitation reaction can be selected from alkali metal hydroxides commonly used in the art, and the precipitation process can be carried out by methods commonly used in the art.
  • the precipitation process includes: preparing the pellets and water into a slurry of 50-200 g/L, and adjusting its pH to 10-11; using sodium hydroxide and ammonia water as precipitating agents, and The slurry, the solution containing nickel source, cobalt source and manganese source are subjected to precipitation reaction to obtain a nickel cobalt manganese precursor, and the molar ratio of nickel source, cobalt source and manganese source is the same as the molar ratio of nickel cobalt manganese in the pellets.
  • Formulating the pellets into a slurry with a specific content, and limiting its pH within the above-mentioned range is conducive to improving the dispersion rate of the pellets during the precipitation process, and at the same time it is beneficial to make the nickel-cobalt-manganese hydroxide on the surface of the pellets more coated. uniform.
  • Adding ammonia water during the precipitation process can make it complex with metal ions (nickel source, cobalt source and manganese source), and then carry out precipitation reaction with sodium hydroxide, which can greatly improve the precipitation of nickel source, cobalt source and manganese source conversion rate, thereby ensuring the ratio of nickel element, cobalt element and manganese element and the uniformity of crystal phase structure in the subsequently formed nickel-cobalt-manganese cathode material, and correspondingly improving its electrical performance.
  • metal ions nickel source, cobalt source and manganese source
  • the pellets, the total moles of nickel, cobalt and manganese in the solution containing nickel source, cobalt source and manganese source, the amount ratio of sodium hydroxide and ammonia water is (50-200) g: (0.5-2) mol :(5 ⁇ 10)mol:(8 ⁇ 12)mol.
  • the temperature of the precipitation reaction is 30-75° C., and the reaction time is 20-120 h.
  • the lithium source coating process can adopt methods commonly used in the art such as calcination method or precipitation method.
  • the lithium source coating process includes: aging the nickel-cobalt-manganese precursor, lithium hydroxide and soluble carbonate to obtain a new nickel-cobalt-manganese ternary positive electrode material. Lithium hydroxide and soluble carbonate can react to form lithium carbonate, and the lithium carbonate generated in the solution will coat the surface of the nickel-cobalt-manganese precursor during the aging process.
  • the coating process of lithium carbonate by the above method can avoid introducing other impurity elements, which is beneficial to further improve the uniformity and electrical properties of the metal phase in the finally obtained nickel-cobalt-manganese positive electrode material.
  • the weight ratio of lithium hydroxide to soluble carbonate is 1:1, and the addition amount of the two is 105-120% of the theoretical amount required for coating the nickel-cobalt-manganese precursor.
  • the cathode material is represented by the general formula LiMO 2 .
  • the particle size of the nickel-cobalt-manganese precursor is 9-11 ⁇ m.
  • the surface of the nickel-cobalt-manganese positive electrode material can be coated.
  • the preparation method of the new nickel-cobalt-manganese ternary positive electrode material further includes: performing a second calcination treatment on the nickel-cobalt-manganese precursor and the dopant coated with the lithium source to obtain a doped product ; The doped product and alumina are subjected to a third calcination treatment to obtain a new nickel-cobalt-manganese ternary positive electrode material. Doping the nickel-cobalt-manganese positive electrode material and coating it with alumina is beneficial to greatly improve the discharge capacity and electric cycle performance of the positive electrode material.
  • the doping amount of the dopant and the coating amount of alumina can be changed according to actual needs. More preferably, the dopant includes but not limited to one or more of the group consisting of zinc oxide, titanium oxide, scandium oxide, aluminum oxide, magnesium oxide and gallium oxide; nickel cobalt manganese precursor coated with lithium source In terms of the weight percentage of the body, the dosage of the dopant is 0.05% to 2%; in the third calcination treatment, in terms of the weight percentage of the nickel-cobalt-manganese precursor coated with lithium source, the dosage of alumina is 0.05% ⁇ 2%.
  • the temperature of the second calcination process and the third calcination process varies with the ratio of the amount of nickel-cobalt-manganese in the newly prepared nickel-cobalt-manganese positive electrode material.
  • the ratio of the amount of nickel-cobalt-manganese in the newly prepared ternary positive electrode material is 1:1:1
  • the temperature of the second calcination process is 900-1050°C, and the calcination time is 8-20h; when the ratio of the amount of nickel-cobalt-manganese in the newly prepared ternary positive electrode material is 5:2:3, the temperature of the second calcination process 900-1000°C, and the calcination time is 8-20h; when the ratio of the amount of nickel-cobalt-manganese in the newly prepared ternary positive electrode material is 8:1:1, the temperature of the second calcination process is 700-850°C,
  • the above-mentioned lithium source coating process will produce a certain amount of lithium-containing mother liquor
  • the recovery method of the above-mentioned waste nickel-cobalt-manganese positive electrode material also includes: the step of recovering the lithium element in the lithium-containing mother liquor .
  • trisodium phosphate, sodium dihydrogen phosphate, or ammonium dihydrogen phosphate are added to the lithium-containing mother liquor to recover a small amount of lithium ions remaining in the mother liquor by precipitation.
  • the present application also provides a nickel-cobalt-manganese positive electrode material.
  • the nickel-cobalt-manganese positive electrode material includes: an inner core layer, a first coating layer and a second coating layer, and the first coating layer covers the inner core.
  • the second coating layer is coated on the surface of the first coating layer; wherein, the inner core layer is waste nickel-cobalt-manganese positive electrode material, the first coating layer is nickel-cobalt-manganese ternary hydroxide precursor, and the second The cladding layer is a lithium source cladding layer; or the nickel-cobalt-manganese positive electrode material is obtained by the recovery method of the above-mentioned waste nickel-cobalt-manganese positive electrode material.
  • the nickel-cobalt-manganese positive electrode material with the above structure can achieve the electrical performance of the existing positive electrode materials, and at the same time, the nickel-cobalt-manganese positive electrode material uses waste nickel-cobalt-manganese positive electrode materials as raw materials to realize the optimal allocation of resources, greatly reducing its preparation cost.
  • the above recovery method has a short process flow and a simple treatment method, which can further reduce the cost of the process and the preparation cycle.
  • a method for recovering waste nickel-cobalt-manganese cathode material comprises:
  • Dismantling and stripping Disassemble the 811 polycrystalline lithium battery (the molar ratio of nickel-cobalt-manganese in the nickel-cobalt-manganese positive electrode material is 8:1:1), and then calcinate the positive electrode piece in a high-temperature furnace at 500°C Peeling off (the first calcination treatment process), the calcination time is 5h, and the carbon material, separator, electrolyte, and binder are removed together to obtain the first calcination treatment product (positive electrode material).
  • Acid-dissolved peeling add the concentrated sulfuric acid (concentration of concentrated sulfuric acid is 98wt%) that accounts for 3wt% of positive electrode material in the positive electrode material obtained, then add the hydrogen peroxide reagent (concentration is 30wt%) that accounts for 2% of total volume of reaction system, Acid soluble stripping at 50°C for 1h.
  • Precursor synthesis transfer the above slurry to the reaction kettle and submerge the stirring blade with a fixed volume, add an appropriate amount of sodium hydroxide and ammonia water to adjust the pH of the system to 10-11; stir and heat up to 55°C, and add 2mol/ L nickel-cobalt-manganese sulfate solution (the molar ratio of nickel-cobalt-manganese three elements is 8:1:1), 6mol/L liquid caustic soda and 8mol/L ammonia water carry out precipitation reaction (the temperature of precipitation reaction is 55 °C), Continue the reaction for 65 hours to obtain a precursor material with a particle size of 9.8 ⁇ m, settle for 30 minutes, and take out half of the supernatant.
  • nickel-cobalt-manganese sulfate solution the molar ratio of nickel-cobalt-manganese three elements is 8:1:1
  • 6mol/L liquid caustic soda and 8mol/L ammonia water carry out
  • Lithium coating add 100g/L sodium carbonate and 120g/L lithium hydroxide solution concurrently to the system, adjust the stirring speed to 150rpm, add 110% theoretical amount of lithium hydroxide and sodium carbonate within 2h and age After 1h, a new lithium-coated ternary precursor material was obtained.
  • Calcination of the positive electrode material according to the sintering process of the nickel-cobalt-manganese positive electrode material with a molar ratio of nickel-cobalt-manganese three elements of 8:1:1, zinc oxide doping (doping amount is 1%) is carried out, and at 750 ° C
  • the second calcination treatment was carried out at 500° C. for 15 hours; the third calcination treatment was carried out at 500° C., and the aluminum oxide (0.3%) coating was carried out at the same time.
  • the calcination time was 8 hours to obtain a finished positive electrode material.
  • Mother liquor recovery add enough sodium dihydrogen phosphate and appropriate amount of liquid caustic soda to the lithium-containing mother liquor to adjust the pH to 12.0, so as to precipitate the lithium element, and then dehydrate and dry to save the lithium phosphate raw material.
  • the electrolytic solution uses EC/DMC (ethylene carbonate/dimethyl carbonate) as a solvent, and the content of lithium hexafluorophosphate is 1.0 mol/L.
  • the positive electrode material finished product made by the application is mixed with SP (carbon black conductive agent), CNT (carbon nanotube), PVDF (polyvinylidene fluoride) in a weight ratio of 80:5:5:10, and mixed with NMP (N- methylpyrrolidone) as a solvent slurry and stirred for 6 hours to obtain a slurry.
  • SP carbon black conductive agent
  • CNT carbon nanotube
  • PVDF polyvinylidene fluoride
  • NMP N- methylpyrrolidone
  • the above slurry is scraped and coated on the aluminum foil with a preparation device, and dried to obtain a pole piece.
  • the lithium sheet is cellgarde2000
  • the above electrolyte is assembled into a button battery in the order of negative electrode case-electrode sheet-electrolyte solution-diaphragm-sharp sheet-positive electrode case, and the specification is 2032.
  • Wuhan Landian LAND2000 tester to perform charge and discharge test at 4.3V.
  • the test results show that the 0.1C gram capacity of the product is 215mAh, and the capacity retention rate is 99.5% after 50 cycles at room temperature at 25°C, which is basically consistent with other positive electrode materials, which proves that this method is feasible.
  • a method for recovering waste nickel-cobalt-manganese cathode material comprises:
  • Acid-dissolved stripping adding the obtained positive electrode material to 2wt% concentrated sulfuric acid (concentration of concentrated sulfuric acid is 98wt%) of the positive electrode material, and then adding 3% hydrogen peroxide reagent (concentration of hydrogen peroxide reagent 30%) accounting for the total volume of the reaction system , acid-dissolved at 60 ° C for 2 hours.
  • Precursor synthesis transfer the above slurry to the reaction kettle and submerge the stirring blade with a fixed volume, add an appropriate amount of sodium hydroxide and ammonia water to adjust the pH of the system to 10-11; stir and heat up to 70°C, and add 2mol/ L of nickel-cobalt-manganese sulfate solution (the molar ratio of nickel-cobalt-manganese is 5:2:3), 8mol/L of liquid caustic soda and 9mol/L of ammonia for precipitation reaction (the temperature of the precipitation reaction is 70 ° C), continuous After reacting for 40 hours, a precursor material with a particle size of 10.2 ⁇ m was obtained, settled for 30 minutes, and extracted half of the supernatant.
  • nickel-cobalt-manganese sulfate solution the molar ratio of nickel-cobalt-manganese is 5:2:3
  • Lithium coating add 150g/L sodium carbonate and 180g/L lithium hydroxide solution to the system concurrently, adjust the stirring speed to 150rpm, add 108% theoretical amount of lithium hydroxide and sodium carbonate within 2h and age After 1h, a new lithium-coated ternary precursor material was obtained.
  • a method for recovering waste nickel-cobalt-manganese cathode material comprises:
  • Dismantling and stripping Disassemble the 111 polycrystalline lithium battery (the molar ratio of nickel, cobalt and manganese in the nickel-cobalt-manganese positive electrode material is 1:1:1), and then calcinate the positive electrode piece in a high-temperature furnace at 650°C Peel off (the first calcination treatment process), the calcination time is 2 hours, and remove the carbon material, separator, electrolyte, and binder together at the same time to obtain the first calcination treatment product (positive electrode material).
  • Acid-dissolved peeling add the vitriol oil (concentration of concentrated sulfuric acid is 98wt%) that accounts for 4wt% of positive pole material in the positive electrode material obtained, then add the hydrogen peroxide reagent (the concentration of hydrogen peroxide reagent 30% that accounts for reaction system gross volume 3%) ), acid-dissolved stripping at 40°C for 2h.
  • Precursor synthesis transfer the above slurry to the reaction kettle and submerge the stirring blade with a fixed volume, add an appropriate amount of sodium hydroxide and ammonia water to adjust the pH of the system to 10-11; stir to raise the temperature to 60°C, and add 1.5mol/ L nickel-cobalt-manganese sulfate solution (the molar ratio of nickel-cobalt-manganese is 1:1:1), 5mol/L liquid caustic soda and 7mol/L ammonia water for precipitation reaction (precipitation reaction temperature is 60°C), continuous reaction After 30 hours, a precursor material with a particle size of 10.5 ⁇ m was obtained, settled for 30 minutes, and took out half of the supernatant.
  • Lithium coating add 200g/L sodium carbonate and 200g/L lithium hydroxide solution in parallel to the system, adjust the stirring speed to 100rpm, add theoretical amount of 105% lithium hydroxide and sodium carbonate within 2h and age for 1h , to obtain a new lithium-coated ternary precursor material.
  • Example 1 The difference from Example 1 is that the temperature of the first calcination process is 300°C.
  • the 0.1C gram capacity of the product is 165mAh, and the capacity retention rate is 95.0% after 50 cycles at room temperature at 25°C.
  • Example 1 The difference from Example 1 is that the temperature of the first calcination process is 800°C.
  • the 0.1C gram capacity of the product is 202mAh, and the capacity retention rate is 97.0% after 50 cycles at room temperature at 25°C.
  • Example 1 The difference from Example 1 is that no hydrogen peroxide was added during the acid-soluble peeling process.
  • the 0.1C gram capacity of the product is 195mAh, and the capacity retention rate is 93.3% after 50 cycles of normal temperature cycle at 25°C.
  • Example 1 The difference with Example 1 is: in the acid-soluble peeling process, the addition of concentrated sulfuric acid is 10wt% based on the weight percentage of the first calcined product, and the hydrogen peroxide is added as a percentage of the total volume of the reaction system. The added amount is 0.5vol%.
  • the 0.1C gram capacity of the product is 199mAh, and the capacity retention rate is 96.2% after 50 cycles of normal temperature cycle at 25°C.
  • Example 1 The difference from Example 1 is that the temperature of the precipitation reaction is 30°C.
  • the 0.1C gram capacity of the product is 188mAh, and the capacity retention rate is 97.4% after 50 cycles at room temperature at 25°C.
  • Example 1 The difference with Example 1 is: in the acid-soluble peeling process, the addition of concentrated sulfuric acid is 1wt% based on the weight percentage of the first calcined product, and the hydrogen peroxide is added as a percentage of the total volume of the reaction system. The addition amount is 5vol%.
  • the 0.1C gram capacity of the product is 210mAh, and the capacity retention rate is 98.5% after 50 cycles at room temperature at 25°C.
  • Example 1 in the acid soluble exfoliation process, the addition of concentrated sulfuric acid (concentration is 98wt%) is 5wt% in terms of the weight percentage of the first calcined treatment product, accounting for the total volume of the reaction system In terms of percentage content, the addition amount of hydrogen peroxide (concentration is 30wt%) is 1vol%.
  • the 0.1C gram capacity of the product is 201mAh, and the capacity retention rate is 97.7% after 50 cycles at room temperature at 25°C.
  • Example 1 The difference from Example 1 is that the positive electrode material that has been dismantled and stripped and acid-dissolved stripped is subjected to restorative sintering with lithium hydroxide to obtain a new ternary positive electrode material, wherein the restorative calcination temperature is 800°C, and the hydrogen The added amount of lithium is 110% of the theoretical added amount.
  • the 0.1C gram capacity of the product is 190mAh, and the capacity retention rate is 75.1% after 50 cycles at room temperature at 25°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种镍钴锰正极材料和废旧镍钴锰正极材料的回收方法。该回收方法包括:对废旧镍钴锰正极材料进行破碎,得到粒料;将粒料作为晶种,使含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体;在镍钴锰前驱体表面进行锂源包覆,形成新的镍钴锰三元正极材料。采用上述回收方法不仅能够缩短废旧镍钴锰正极材料的回收流程,降低成本,还能够提高新的镍钴锰三元正极材料的放电容量和循环性能等电学性能。

Description

镍钴锰正极材料和废旧镍钴锰正极材料的回收方法 技术领域
本发明涉及废旧镍钴锰三元正极材料的回收领域,具体而言,涉及一种镍钴锰正极材料和废旧镍钴锰正极材料的回收方法。
背景技术
镍钴锰三元正极材料(NCM三元正极材料)在锂电池领域早就得到了广泛的应用,相应地,各种废旧锂离子电池也开始逐渐增加,这就需要对废旧锂离子电池进行合理回收。
目前废旧锂离子回收的工艺很多,常用的方法如下:
(1)在电池拆解后将有价金属进行湿法溶解,制备成硫酸镍钴锰等的结晶和碳酸锂原料;利用这些原料进行新的前驱体的合成,最后采用新的前驱体添加碳酸锂或者氢氧化锂进行一次、两次或者三次烧结最终得到理想的正极三元材料,组装成电池。这种工艺能够满足NCM三元正极材料的完全修复再生,但流程较多,再生起来成本也较高。
(2)将拆解下来的正极粉料直接添加一定量的氢氧化锂或碳酸锂源进行修复性烧结实现再生。但是由于这种方法对形貌和裂纹等得不到完全的修复,得到的新材料容量降低了,并且循环性能较差,不能实现完全修复性再生。
鉴于上述问题的存在,有必要提供一种流程短、成本低,且制得的新的三元正极材料的放电容量高和循环性能好的废旧镍钴锰正极材料的回收方法。
发明内容
本发明的主要目的在于提供一种镍钴锰正极材料和废旧镍钴锰正极材料的回收方法,以解决现有废旧镍钴锰正极材料的回收方法存在流程长、成本高,且制得的新的三元正极材料的放电容量低和循环性能差的问题。
为了实现上述目的,本发明一方面提供了一种废旧镍钴锰正极材料的回收方法,废旧镍钴锰正极材料的回收方法包括:对废旧镍钴锰正极材料进行破碎,得到粒料;将粒料作为晶种,使含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体;在镍钴锰前驱体表面进行锂源包覆,形成新的镍钴锰三元正极材料。
进一步地,经破碎过程后,粒料的粒径为1~5μm;废旧镍钴锰正极材料的回收方法还包括:三元正极极片进行拆解剥离,以去除三元正极极片中含有的碳类材料、隔膜、电解液和粘结剂组成的组中的一种或多种,得到废旧镍钴锰正极材料。
进一步地,拆解剥离的过程包括:将三元正极极片进行第一煅烧处理,得到废旧镍钴锰正极材料;第一煅烧处理的温度为500~700℃,时间为2~8h。
进一步地,拆解剥离的过程包括:将第一煅烧处理的产物进行酸溶剥离,得到废旧镍钴锰正极材料;酸溶剥离过程包括将第一煅烧处理的产物与硫酸及双氧水反应;硫酸的浓度为98wt%,加入量为第一煅烧处理的产物的1~5%;双氧水的浓度为30wt%,用量为酸溶剥离的反应体系的总体积的1~5vol%,酸溶剥离的温度为40~60℃。
进一步地,沉淀过程包括:将粒料与水配制为50~200g/L的浆料,并将其pH调至10-11;将氢氧化钠和氨水作为沉淀剂,将浆料、含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体,且镍源、钴源和锰源的摩尔比与粒料中镍钴锰的摩尔比相同;粒料,含镍源、钴源和锰源的溶液,氢氧化钠和氨水的用量比为(50~200)g:(0.5~2)mol:(5~10)mol:(8~12)mol。
进一步地,沉淀反应的温度为30~75℃,反应时间为20~120h。
进一步地,锂源包覆过程包括:将镍钴锰前驱体、氢氧化锂和可溶性碳酸盐进行陈化处理,得到新的镍钴锰三元正极材料。
进一步地,新的镍钴锰三元正极材料的制备方法还包括:将经锂源包覆的镍钴锰前驱体与掺杂剂进行第二煅烧处理,得到掺杂产物;将掺杂产物与氧化铝进行第三煅烧处理,得到新的镍钴锰三元正极材料。
进一步地,掺杂剂选自氧化锌、氧化钛、氧化钪、氧化铝、氧化镁和氧化镓组成的组中的一种或多种;以占锂源包覆的镍钴锰前驱体的重量百分含量计,掺杂剂的用量为0.05~2%;第三煅烧处理中,以占锂源包覆的镍钴锰前驱体的重量百分含量计,氧化铝的用量为0.05~2%。
另一方面,本申请还提供了一种镍钴锰正极材料,镍钴锰正极材料包括:内芯层、第一包覆层和第二包覆层,第一包覆层包覆在内芯层表面,第二包覆层包覆在第一包覆层表面;其中,内芯层为废旧镍钴锰正极材料,第一包覆层为镍钴锰三元氢氧化物前驱体,第二包覆层为锂源包覆层;或镍钴锰正极材料采用上述废旧镍钴锰正极材料的回收方法制得。
应用本发明的技术方案,通过上述回收方法能够制得以废旧镍钴锰正极材料为芯层材料,以镍钴锰三元氢氧化物前驱体为第一包覆层,以锂源包覆层为第二包覆层的新的镍钴锰三元正极材料。因而采用上述回收方法能够对形貌上存在裂纹等缺陷的废旧镍钴锰正极材料进行修复,从而有利于提高其放电容量和循环性能。同时上述回收方法还存在流程短,且成本低等特点。综上所述,采用上述回收方法不仅能够缩短废旧镍钴锰正极材料的回收流程,降低成本,还能够提高新的镍钴锰三元正极材料的放电容量和循环性能等电学性能。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有的废旧镍钴锰正极材料的回收方法存在流程长、成本高,且制得的新的三元正极材料的放电容量低和循环性能差的问题。为了解决上述技术问题,本申请提供了一种废旧镍钴锰正极材料的回收方法,废旧镍钴锰正极材料的回收方法包括:对废旧镍钴锰正极材料进行破碎,得到粒料;将粒料作为晶种,使含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体;在镍钴锰前驱体表面进行锂源包覆,形成新的镍钴锰三元正极材料。
由于废旧镍钴锰正极材料一般属于物性比较脆的物料,因而很容易对其进行破碎。同时废旧镍钴锰正极材料的粒度较大需要对其进行破碎以得到适合作为晶种的粒料。以破碎后得到的粒料作为晶种,然后通过沉淀反应,在晶种表面包覆新的镍钴锰沉淀物,形成新的前驱体材料。然后在上述新的前驱体材料的表面进行锂源包覆制得新的镍钴锰三元正极材料。
通过上述回收方法能够制得以废旧镍钴锰正极材料为芯层材料,以镍钴锰三元氢氧化物前驱体为第一包覆层,以锂源包覆层为第二包覆层的新的镍钴锰三元正极材料。因而采用上述回收方法能够对形貌上存在裂纹等缺陷的废旧镍钴锰正极材料进行修复,从而有利于提高其放电容量和循环性能。同时上述回收方法还存在流程短,且成本低等特点。综上所述,采用上述回收方法不仅能够缩短废旧镍钴锰正极材料的回收流程,降低成本,还能够提高新的镍钴锰三元正极材料的放电容量和循环性能等电学性能。
在一种优选的实施例中,经破碎过程后,粒料的粒径为1~5μm。粒料的粒径包括但不限于上述范围,而将其限定在上述范围内有利于提高镍钴锰前驱体包覆层的包覆均匀性,同时也便于进一步提高其在后续应用过程中镍钴锰正极材料的电学性能。
镍钴镍三元正极片中除了包含镍钴镍三元正极材料外,还包括碳类材料、隔膜、电解液、粘结剂等物质。上述物质的存在会影响后续制得的正极材料的性能,因而为了去除上述物质,在一种优选的实施例中,废旧镍钴锰正极材料的回收方法还包括:三元正极极片进行拆解剥离,以去除三元正极极片中含有的碳类材料、隔膜、电解液和粘结剂组成的组中的一种或多种,得到废旧镍钴锰正极材料。优选地,拆解剥离的过程包括:将三元正极极片进行第一煅烧处理,得到废旧镍钴锰正极材料。通过煅烧处理可以将上述几种物质一并去除,因而采用煅烧过程进行拆解剥离是一种较为经济、且简单的处理方法,因而采用上述方法有利于进一步缩短工艺流程,并降低工艺的成本。
上述“碳类材料”是指电极制备过程中使用的含有碳的原料比如碳等。
为了进一步提高碳类材料、隔膜、电解液、粘结剂等物质的去除率,优选地,第一煅烧处理的温度为500~700℃,时间为2~8h。
由于废旧三元正极材料中通常会包含一定量的掺杂层和/或其它物质的包覆层。为了降低此类物质对后续制得的正极材料性能的影响,优选地,拆解剥离的过程包括:将第一煅烧处理的产物进行酸溶剥离,得到废旧镍钴锰正极材料。
由于废旧三元正极材料中的掺杂层和/或其它杂质多为氧化物,因而在一种优选的实施例中,酸溶剥离过程中分批加入硫酸和双氧水,并使第一煅烧处理的产物与硫酸及双氧水反应。加入硫酸能够使其与废旧三元正极材料中的氧化物发生中和反应而去除,对于一些难溶的氧化物,双氧水的加入可以起到催化作用,从而有利于提高中和反应的反应速率和氧化物的去除率。硫酸和双氧水的浓度和用量以及反应温度可以根据需要进行调节,更优选地,硫酸的浓度为98wt%,加入量为第一煅烧处理的产物的1~5%;双氧水的浓度为30wt%,用量为酸溶剥离的反应体系的总体积的1~5vol%;酸溶剥离的温度为40~60℃。将酸溶剥离过程的温度、硫酸和双氧水的用量限定在上述范围内有利于进一步提高废旧三元正极材料中氧化物的去除率。
上述沉淀反应中采用的沉淀剂可以选用本领域常用的碱金属氢氧化物,沉淀过程可以采用本领域常用的方法进行。在一种优选的实施例中,沉淀过程包括:将粒料与水配制为50~200g/L的浆料,并将其pH调至10~11;将氢氧化钠和氨水作为沉淀剂,将浆料、含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体,且镍源、钴源和锰源的摩尔比与粒料中镍钴锰的摩尔比相同。
将粒料配制成特定含量的浆料,并将其pH限定在上述范围内有利于提高沉淀过程中粒料的分散率,同时有利于使镍钴锰氢氧化物在粒料表面包覆地更加均匀。在沉淀过程中加入氨水,可以使其与金属离子(镍源、钴源和锰源)发生络合,然后再与氢氧化钠进行沉淀反应,可以大大提高镍源、钴源和锰源的沉淀转化率,进而保证镍元素、钴元素和锰元素的比例以及后续形成的镍钴锰正极材料中的晶相结构均一性,相应地提高其电学性能。更优选地,粒料,含镍源、钴源和锰源的溶液中镍钴锰元素的总摩尔数,氢氧化钠和氨水的用量比为(50~200)g:(0.5~2)mol:(5~10)mol:(8~12)mol。
为了进一步提高沉淀反应的反应速率和沉淀转化率,在一种优选的实施例中,沉淀反应的温度为30~75℃,反应时间为20~120h。
上述锂源包覆过程可以采用本领域常用的方法比如煅烧法或沉淀法。在一种优选的实施例中,锂源包覆过程包括:将镍钴锰前驱体、氢氧化锂和可溶性碳酸盐进行陈化处理,得到新的镍钴锰三元正极材料。氢氧化锂和可溶性碳酸盐反应后能够形成碳酸锂,在溶液中生成的碳酸锂会在陈化过程中包覆在镍钴锰前驱体的表面。通过上述方法进行碳酸锂包覆过程可以避免引入其它杂质元素,进而有利于进一步提高最终获得的镍钴锰正极材料中金属相的均一性和电学性能。优选地,氢氧化锂和可溶性碳酸盐的重量比为1:1,且二者的加入量为使镍钴锰前驱体进行包覆所需的理论用量的105~120%。计算锂元素的理论用量时,正极材料以通式LiMO 2表示。
优选地,上述镍钴锰前驱体的粒度为9~11μm。
为了进一步提高镍钴锰正极材料的电学性能,可以在镍钴锰正极材料表面进行包覆。在一种优选的实施例中,新的镍钴锰三元正极材料的制备方法还包括:将经锂源包覆的镍钴锰前驱体与掺杂剂进行第二煅烧处理,得到掺杂产物;将掺杂产物与氧化铝进行第三煅烧处理,得到新的镍钴锰三元正极材料。在镍钴锰正极材料上进行掺杂,并包覆氧化铝有利于大大提高正极材料的放电容量和电循环性能。
掺杂剂的掺杂量和氧化铝的包覆量可以根据实际需要进行变化。更优选地,掺杂剂包括但不限于氧化锌、氧化钛、氧化钪、氧化铝、氧化镁和氧化镓组成的组中的一种或多种;以占锂源包覆的镍钴锰前驱体的重量百分含量计,掺杂剂的用量为0.05~2%;第三煅烧处理中,以占锂源包覆的镍钴锰前驱体的重量百分含量计,氧化铝的用量为0.05~2%。
第二煅烧过程和第三煅烧过程的温度随新制得的镍钴锰正极材料中镍钴锰的物质的量之比的不同而变化。在一种优选的实施例中,当掺杂剂为氧化锌,掺杂量为1%时,新制得的三元正极材料中镍钴锰的物质的量之比为1:1:1时,第二煅烧过程的温度为900~1050℃,煅烧时间为8~20h;新制得的三元正极材料中镍钴锰的物质的量之比为5:2:3时,第二煅烧过程的温度为900~1000℃,煅烧时间为8~20h;新制得的三元正极材料中镍钴锰的物质的量之比为8:1:1时,第二煅烧过程的温度为700~850℃,煅烧时间为8~20h。当氧化铝的掺杂量为0.3%时,第三煅烧过程的温度为400~600℃,时间为3~10h。
在一种优选的实施例中,上述锂源包覆过程会产生一定量的含锂母液,因而上述废旧镍钴锰正极材料的回收方法还包括:对含锂母液中的锂元素进行回收的步骤。优选地,在含锂母液中加入磷酸三钠、磷酸二氢钠或磷酸二氢铵等将母液中残留的少量锂离子进行沉淀回收。
另一方面,本申请还提供了一种镍钴锰正极材料,镍钴锰正极材料包括:内芯层、第一包覆层和第二包覆层,第一包覆层包覆在内芯层表面,第二包覆层包覆在第一包覆层表面;其中,内芯层为废旧镍钴锰正极材料,第一包覆层为镍钴锰三元氢氧化物前驱体,第二包覆层为锂源包覆层;或镍钴锰正极材料采用上述废旧镍钴锰正极材料的回收方法制得。
具有上述结构的镍钴锰正极材料能够达到现有的正极材料的电学性能,同时上述镍钴锰正极材料以废旧镍钴锰正极材料为原料实现了资源的优化配置,大大降低了其制备成本。另一方面上述回收方法流程短、处理方法简单,也能进一步降低工艺的成本和制备周期。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
一种废旧镍钴锰正极材料的回收方法包括:
1)拆解剥离:将811多晶锂电池(镍钴锰正极材料中镍钴锰的摩尔数之比为8:1:1)拆解,然后将正极极片在500℃高温炉内进行煅烧剥离(第一煅烧处理过程),煅烧时间为5h,将碳类材料、隔膜、电解液、粘结剂一起去除,得到第一煅烧处理产物(正极材料)。
2)酸溶剥离:将得到的正极材料中加入占正极材料3wt%的浓硫酸(浓硫酸的浓度为98wt%),然后加入占反应体系总体积2%的双氧水试剂(浓度为30wt%),在50℃下酸溶剥离1h。
3)湿式研磨:固液分离,水洗,然后将湿料进行球磨至粒度为1~5μm,加纯水浆化成固含量为100g/L的浆料。
4)前驱体合成:将上述浆料移送至反应釜并定体积淹没搅拌桨叶,加入适量的氢氧化钠和氨水调节体系的pH至10~11;搅拌升温至55℃,并流加入2mol/L硫酸镍钴锰溶液(镍钴锰三元素的摩尔数之比为8:1:1),6mol/L的液碱和8mol/L的氨水进行沉淀反应(沉淀反应的温度为55℃),持续反应65h,得到粒度为9.8μm的前驱体材料,沉降30min,抽出二分之一的上清液。
5)锂包覆:向体系中并流加入100g/L碳酸钠和120g/L氢氧化锂溶液,调整搅拌速度为150rpm,在2h内加入理论量110%的氢氧化锂和碳酸钠并陈化1h,得到锂包覆的新型三元前驱体材料。
6)正极材料煅烧:按照镍钴锰三元素的摩尔数之比为8:1:1的镍钴锰正极材料的烧结工艺进行氧化锌掺杂(掺杂量为1%),并在750℃下进行第二次煅烧处理,煅烧时间为15h;然后在500℃下进行第三次煅烧处理,同时进行氧化铝(用量为0.3%)包覆,煅烧时间为8h,得到正极材料成品。
7)母液回收:含锂的母液中加入足量的磷酸二氢钠和适量的液碱调至pH 12.0,以使锂元素沉淀,然后脱水干燥保存磷酸锂原料。
8)电性能检测:进行扣电组装并检测电化学性能,具体方法如下:
电解液中以EC/DMC(碳酸乙烯酯/碳酸二甲酯)为溶剂,六氟磷酸锂含量为1.0mol/L。将本申请制得的正极材料成品与SP(炭黑导电剂)、CNT(碳纳米管)、PVDF(聚偏氟乙烯)按重量比80:5:5:10混合,并以NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌6小时,得到浆料。
然后将上述浆料用制备器刮涂在铝箔上,烘干后,制得极片。然后采用锂片为对电极,隔膜为cellgarde2000,上述电解液,按照负极壳体-极片-电解液-隔膜-利片-正极壳体的顺序组装成扣式电池,规格为2032。然后采用武汉蓝电LAND2000测试仪在4.3V下进行充放电测试。测试结果表明:产品0.1C克容量为215mAh,25℃常温循环50周容量保持率99.5%,与其它的正极材料进行对比基本一致,证实本方法可行。
实施例2
一种废旧镍钴锰正极材料的回收方法包括:
1)拆解剥离:将循环1500周后的523多晶锂电池(镍钴锰正极材料中镍钴锰的摩尔数之比为5:2:3)拆解,然后将正极极片在600℃高温炉内进行煅烧剥离(第一煅烧处理过程), 煅烧时间为5h,同时将碳类材料、隔膜、电解液、粘结剂一起去除,得到第一煅烧处理产物(正极材料)。
2)酸溶剥离:将得到的正极材料加入占正极材料2wt%的浓硫酸(浓硫酸的浓度为98wt%),然后加入占反应体系总体积3%的双氧水试剂(双氧水试剂的浓度30%),在60℃下酸溶剥离2h。
3)湿式研磨:固液分离,水洗,然后将湿料进行球磨至粒度为1-5μm,加纯水浆化成固含量为80g/L的浆料。
4)前驱体合成:将上述浆料移送至反应釜并定体积淹没搅拌桨叶,加入适量的氢氧化钠和氨水调节体系的pH至10-11;搅拌升温至70℃,并流加入2mol/L的硫酸镍钴锰溶液(镍钴锰的摩尔数之比为5:2:3),8mol/L的液碱和9mol/L的氨水进行沉淀反应(沉淀反应的温度为70℃),持续反应40h,得到粒度为10.2μm的前驱体材料,沉降30min,抽出二分之一的上清液。
5)锂包覆:向体系中并流加入150g/L碳酸钠和180g/L氢氧化锂溶液,调整搅拌速度为150rpm,在2h内加入理论量108%的氢氧化锂和碳酸钠并陈化1h,得到锂包覆的新型三元前驱体材料。
6)正极材料煅烧:按照镍钴锰三元素的摩尔数之比为5:2:3的镍钴锰正极材料的烧结工艺在980℃下进行第二煅烧处理(氧化锌掺杂量为1%),煅烧时间为15h,得到正极材料成品。
7)母液回收:含锂的母液中加入足量的磷酸钠和适量的液碱调至pH 12.0,以使锂元素沉淀,然后脱水干燥保存磷酸锂原料。
8)电性能检测:进行扣电组装并检测电化学性能,4.3V,得到产品0.1C克容量为157mAh,25℃常温循环50周容量保持率99.8%,与其它的正极材料进行对比基本一致,证实本方法可行。
实施例3
一种废旧镍钴锰正极材料的回收方法包括:
1)拆解剥离:将111多晶锂电池(镍钴锰正极材料中镍钴锰的摩尔数之比为1:1:1)拆解,然后将正极极片在650℃高温炉内进行煅烧剥离(第一煅烧处理过程),煅烧时间为2h,同时将碳类材料、隔膜、电解液、粘结剂一起去除,得到第一煅烧处理产物(正极材料)。
2)酸溶剥离:将得到的正极材料中加入占正极材料4wt%的浓硫酸(浓硫酸的浓度为98wt%),然后加入占反应体系总体积3%的双氧水试剂(双氧水试剂的浓度30%),在40℃下酸溶剥离2h。
3)湿式研磨:固液分离,水洗,然后将湿料进行球磨至粒度为1-5μm,加纯水浆化成固含量为60g/L的浆料。
4)前驱体合成:将上述浆料移送至反应釜并定体积淹没搅拌桨叶,加入适量的氢氧化钠和氨水调节体系的pH至10-11;搅拌升温至60℃,并加入1.5mol/L硫酸镍钴锰溶液(镍钴锰的摩尔数之比为1:1:1),5mol/L的液碱和7mol/L的氨水进行沉淀反应(沉淀反应的温度为60℃),持续反应30h,得到粒度为10.5μm的前驱体材料,沉降30min,抽出二分之一的上清液。
5)锂包覆:向体系中并流加入200g/L碳酸钠和200g/L氢氧化锂溶液,调整搅拌速度为100rpm在2h内加入理论量105%的氢氧化锂和碳酸钠并陈化1h,得到锂包覆的新型三元前驱体材料。
6)正极材料煅烧:按照镍钴锰的摩尔数之比为1:1:1的镍钴锰正极材料的烧结工艺在1000℃下进行第二煅烧处理(氧化锌掺杂量为1%),煅烧时间为15h,得到正极材料成品。
7)母液回收:含锂的母液中加入足量的磷酸二氢铵和适量的液碱调至pH 12.0,以使锂元素沉淀,然后脱水干燥保存磷酸锂原料。
8)电性能检测:进行扣电组装并检测电化学性能,4.3V,得到产品0.1C克容量为148mAh,25℃常温循环50周容量保持率99.9%,与其它的正极材料进行对比基本一致,证实本方法可行。
实施例4
与实施例1的区别为:第一煅烧处理过程的温度为300℃。
产品0.1C克容量为165mAh,25℃常温循环50周容量保持率95.0%。
实施例5
与实施例1的区别为:第一煅烧处理过程的温度为800℃。
产品0.1C克容量为202mAh,25℃常温循环50周容量保持率97.0%。
实施例6
与实施例1的区别为:酸溶剥离过程中没有加入双氧水。
产品0.1C克容量为195mAh,25℃常温循环50周容量保持率93.3%。
实施例7
与实施例1的区别为:酸溶剥离过程中,以占第一煅烧处理产物的重量百分含量计,浓硫酸的加入量为10wt%,以占反应体系总体积的百分含量计,双氧水的加入量为0.5vol%。
产品0.1C克容量为199mAh,25℃常温循环50周容量保持率96.2%。
实施例8
与实施例1的区别为:沉淀反应的温度为30℃。
产品0.1C克容量为188mAh,25℃常温循环50周容量保持率97.4%。
实施例9
与实施例1的区别为:酸溶剥离过程中,以占第一煅烧处理产物的重量百分含量计,浓硫酸的加入量为1wt%,以占反应体系总体积的百分含量计,双氧水的加入量为5vol%。
产品0.1C克容量为210mAh,25℃常温循环50周容量保持率98.5%。
实施例10
与实施例1的区别为:酸溶剥离过程中,以占第一煅烧处理产物的重量百分含量计,浓硫酸(浓度为98wt%)的加入量为5wt%,以占反应体系总体积的百分含量计,双氧水(浓度为30wt%)的加入量为1vol%。
产品0.1C克容量为201mAh,25℃常温循环50周容量保持率97.7%。
对比例1
与实施例1的区别为:将经过拆解剥离和酸溶剥离的到正极材料与氢氧化锂进行修复性烧结,得到新的三元正极材料,其中修复性煅烧的温度为800℃,氢氧化锂的加入量为理论加入量的110%。
产品0.1C克容量为190mAh,25℃常温循环50周容量保持率75.1%。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
比较实施例1至10及对比例1可知,采用本申请提供的回收方法有利于提高新制得的正极材料的电学性能。
比较实施例1、4至5可知,将第一煅烧处理过程的温度限定在本申请优选的范围内有利于进一步提高新制得的正极材料的电学性能。
比较实施例1、6、7、9和10可知,将硫酸和双氧水的浓度限定在本申请优选的范围内有利于进一步提高新制得的正极材料的电学性能。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种废旧镍钴锰正极材料的回收方法,其特征在于,所述废旧镍钴锰正极材料的回收方法包括:
    对所述废旧镍钴锰正极材料进行破碎,得到粒料;
    将所述粒料作为晶种,使含镍源、钴源和锰源的溶液进行沉淀反应,得到镍钴锰前驱体;
    在所述镍钴锰前驱体表面进行锂源包覆,形成新的镍钴锰三元正极材料。
  2. 根据权利要求1所述的废旧镍钴锰正极材料的回收方法,其特征在于,经所述破碎过程后,粒料的粒径为1~5μm;
    所述废旧镍钴锰正极材料的回收方法还包括:三元正极极片进行拆解剥离,以去除所述三元正极极片中含有的碳类材料、隔膜、电解液和粘结剂中的一种或多种,得到所述废旧镍钴锰正极材料。
  3. 根据权利要求2所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述拆解剥离的过程包括:将所述三元正极极片进行第一煅烧处理,得到所述废旧镍钴锰正极材料;
    所述第一煅烧处理的温度为500~700℃,时间为2~8h。
  4. 根据权利要求3所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述拆解剥离的过程包括:将所述第一煅烧处理的产物进行酸溶剥离,得到所述废旧镍钴锰正极材料;
    所述酸溶剥离过程包括将所述第一煅烧处理的产物与硫酸及双氧水反应;
    所述硫酸的浓度为98wt%,加入量为所述第一煅烧处理的产物的1~5%;所述双氧水的浓度为30wt%,用量为所述酸溶剥离的反应体系的总体积的1~5vol%,所述酸溶剥离的温度为40~60℃。
  5. 根据权利要求1至4中任一项所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述沉淀过程包括:
    将所述粒料与水配制为50~200g/L的浆料,并将其pH调至10-11;
    将氢氧化钠和氨水作为沉淀剂,将所述浆料、所述含镍源、钴源和锰源的溶液进行沉淀反应,得到所述镍钴锰前驱体,且所述镍源、所述钴源和所述锰源的摩尔比与所述粒料中镍钴锰的摩尔比相同;
    所述粒料,所述含镍源、钴源和锰源的溶液中镍钴锰元素的总摩尔数,所述氢氧化钠和所述氨水的比例为(50~200)g:(0.5~2)mol:(5~10)mol:(8~12)mol。
  6. 根据权利要求5所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述沉淀反应的温度为30~75℃,反应时间为20~120h。
  7. 根据权利要求5所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述锂源包覆过程包括:将所述镍钴锰前驱体、氢氧化锂和可溶性碳酸盐进行陈化处理,得到所述新的镍钴锰三元正极材料。
  8. 根据权利要求7所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述新的镍钴锰三元正极材料的制备方法还包括:
    将经所述锂源包覆的镍钴锰前驱体与掺杂剂进行第二煅烧处理,得到掺杂产物;
    将所述掺杂产物与氧化铝进行第三煅烧处理,得到所述新的镍钴锰三元正极材料。
  9. 根据权利要求8所述的废旧镍钴锰正极材料的回收方法,其特征在于,所述掺杂剂选自氧化锌、氧化钛、氧化钪、氧化铝、氧化镁和氧化镓组成的组中的一种或多种;
    以占所述锂源包覆的镍钴锰前驱体的重量百分含量计,所述掺杂剂的用量为0.05~2%;
    所述第三煅烧处理中,以占所述锂源包覆的镍钴锰前驱体的重量百分含量计,所述氧化铝的用量为0.05~2%。
  10. 一种镍钴锰正极材料,其特征在于,所述镍钴锰正极材料包括:
    内芯层;
    第一包覆层,所述第一包覆层包覆在所述内芯层表面;
    第二包覆层,所述第二包覆层包覆在所述第一包覆层表面;
    其中,所述内芯层为废旧镍钴锰正极材料,所述第一包覆层为镍钴锰三元氢氧化物前驱体,所述第二包覆层为锂源包覆层;或所述镍钴锰正极材料采用权利要求1至9中任一项所述的废旧镍钴锰正极材料的回收方法制得。
PCT/CN2021/130420 2021-05-11 2021-11-12 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法 WO2022237102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21931964.7A EP4117084A1 (en) 2021-05-11 2021-11-12 Recycling method for nickel-cobalt-manganese positive electrode material and waste nickel-cobalt-manganese positive electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110509993.5A CN112993242B (zh) 2021-05-11 2021-05-11 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
CN202110509993.5 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237102A1 true WO2022237102A1 (zh) 2022-11-17

Family

ID=76337523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130420 WO2022237102A1 (zh) 2021-05-11 2021-11-12 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法

Country Status (3)

Country Link
EP (1) EP4117084A1 (zh)
CN (1) CN112993242B (zh)
WO (1) WO2022237102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784324A (zh) * 2022-11-29 2023-03-14 四川蜀矿环锂科技有限公司 一种利用废旧三元锂电池回收制备三元正极材料前驱体的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425213A (zh) * 2020-05-08 2023-07-14 江苏载驰科技股份有限公司 一种回收废旧锂离子电池有价金属及再生三元正极材料的方法
CN112993242B (zh) * 2021-05-11 2021-10-12 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
CN114196829B (zh) * 2021-11-17 2023-03-28 华中科技大学 一种退役锂离子电池镍钴锰正极材料的回收方法
CN114497793A (zh) * 2022-01-25 2022-05-13 宁波大学 一种机械弯曲混合气体张力实现回收电极活性材料快速剥离的方法
CN114566728B (zh) * 2022-02-28 2023-07-21 蜂巢能源科技股份有限公司 一种无钴正极材料的回收方法
CN114836631B (zh) * 2022-06-15 2023-12-01 蜂巢能源科技股份有限公司 一种电池材料萃取回收产生的铜锰液的再生利用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683981A (zh) * 2008-09-25 2010-03-31 浙江昱辉阳光能源有限公司 一种废硅液的回收再生方法
JP2014156648A (ja) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp 廃正極材及び廃電池からの金属回収方法
CN106410313A (zh) * 2016-11-24 2017-02-15 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料修复再生的方法
CN108682915A (zh) * 2018-05-29 2018-10-19 江苏理工学院 一种废旧镍钴锰三元锂电池和银镍合金共同处理方法
CN109244436A (zh) * 2018-11-20 2019-01-18 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法以及一种锂离子电池
CN110277552A (zh) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料的修复再生方法
CN110854370A (zh) * 2019-11-22 2020-02-28 四川新锂想能源科技有限责任公司 一种高镍镍钴锰酸锂正极材料的制备方法
CN111439790A (zh) * 2020-04-22 2020-07-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法
CN112259820A (zh) * 2020-10-22 2021-01-22 中钢集团南京新材料研究院有限公司 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN112993242A (zh) * 2021-05-11 2021-06-18 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271669B1 (ko) * 2010-04-20 2013-06-05 한국지질자원연구원 폐배터리의 유가금속 재활용방법
CN109755484A (zh) * 2017-11-03 2019-05-14 天津国安盟固利新材料科技股份有限公司 一种改性三元正极材料及其制备方法
WO2020118716A1 (zh) * 2018-12-14 2020-06-18 中国科学院深圳先进技术研究院 一种超声水热修复废旧三元电池正极材料的方法
CN109698334A (zh) * 2018-12-18 2019-04-30 桑顿新能源科技有限公司 正极片、钛酸锂电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683981A (zh) * 2008-09-25 2010-03-31 浙江昱辉阳光能源有限公司 一种废硅液的回收再生方法
JP2014156648A (ja) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp 廃正極材及び廃電池からの金属回収方法
CN106410313A (zh) * 2016-11-24 2017-02-15 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料修复再生的方法
CN110277552A (zh) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料的修复再生方法
CN108682915A (zh) * 2018-05-29 2018-10-19 江苏理工学院 一种废旧镍钴锰三元锂电池和银镍合金共同处理方法
CN109244436A (zh) * 2018-11-20 2019-01-18 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法以及一种锂离子电池
CN110854370A (zh) * 2019-11-22 2020-02-28 四川新锂想能源科技有限责任公司 一种高镍镍钴锰酸锂正极材料的制备方法
CN111439790A (zh) * 2020-04-22 2020-07-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法
CN112259820A (zh) * 2020-10-22 2021-01-22 中钢集团南京新材料研究院有限公司 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN112993242A (zh) * 2021-05-11 2021-06-18 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784324A (zh) * 2022-11-29 2023-03-14 四川蜀矿环锂科技有限公司 一种利用废旧三元锂电池回收制备三元正极材料前驱体的方法
CN115784324B (zh) * 2022-11-29 2024-04-12 四川蜀矿环锂科技有限公司 一种利用废旧三元锂电池回收制备三元正极材料前驱体的方法

Also Published As

Publication number Publication date
CN112993242A (zh) 2021-06-18
EP4117084A1 (en) 2023-01-11
CN112993242B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2022237102A1 (zh) 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
JP6017789B2 (ja) ニッケル・コバルト・マンガン系多元素が添加されたリチウムイオン電池用正極材料及びその製造方法
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN104600285B (zh) 一种球形镍锰酸锂正极材料的制备方法
CN111916687A (zh) 一种正极材料及其制备方法和锂离子电池
JP2012517675A5 (zh)
CN101434417A (zh) 电池级球形四氧化三钴的湿法制备方法
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
CN109301189B (zh) 一种类单晶型高镍多元材料的制备方法
CN102683668B (zh) 尖晶石镍锰基氧化物正极材料及其制备方法
CN107611384B (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN108807949A (zh) 一种高镍锰酸锂正极材料的制备方法
CN108899480A (zh) 一种长循环寿命高比容量镍钴铝正极材料及其制备方法
CN111785960A (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
CN112531158A (zh) 一种高镍三元单晶材料及其制备方法
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
CN107394178B (zh) 一种钠离子电池负极用碳酸钴/石墨烯复合材料及其制备方法与应用
CN101373832A (zh) 一种高电压锂离子电池掺杂正极材料及其制备方法
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN111048862A (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN111106343A (zh) 一种镧、氟共掺杂的高镍三元正极材料及其制备方法与应用
CN101704681A (zh) 一种尖晶石结构钛酸锂的制备方法
CN106340642B (zh) 一种长循环高容量锂电池正极材料及制备方法
CN112713263B (zh) 一种偏磷酸盐包覆钴酸锂材料的制备方法及包含其的锂离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021931964

Country of ref document: EP

Effective date: 20220930

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE