WO2022236881A1 - 一种高速离心压缩机风冷***出口温控启闭结构 - Google Patents

一种高速离心压缩机风冷***出口温控启闭结构 Download PDF

Info

Publication number
WO2022236881A1
WO2022236881A1 PCT/CN2021/096362 CN2021096362W WO2022236881A1 WO 2022236881 A1 WO2022236881 A1 WO 2022236881A1 CN 2021096362 W CN2021096362 W CN 2021096362W WO 2022236881 A1 WO2022236881 A1 WO 2022236881A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
temperature
centrifugal compressor
cooling system
housing
Prior art date
Application number
PCT/CN2021/096362
Other languages
English (en)
French (fr)
Inventor
邢子义
谢元豪
Original Assignee
烟台东德实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台东德实业有限公司 filed Critical 烟台东德实业有限公司
Publication of WO2022236881A1 publication Critical patent/WO2022236881A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Definitions

  • the invention relates to an outlet temperature control opening and closing structure of an air-cooling system of a high-speed centrifugal compressor.
  • the structure of the current high-speed centrifugal compressor mainly includes a housing 1, a stator 2, and a main shaft 3.
  • the inner sides of the two ends of the housing 1 are respectively installed with a primary bearing seat 4 and a secondary bearing seat 5 for supporting the main shaft.
  • the first-level worm gear 6 and the second-level worm gear 7 are respectively installed on the first-level bearing housing and the second-level bearing housing.
  • the stage volutes 9 communicate with each other through connecting pipes 23 .
  • the spindle speed exceeds 10000r/min. Due to its high speed, a lot of heat will be generated inside. If the heat is not discharged in time to form heat accumulation, it will be forced to stop due to high internal temperature.
  • the centrifugal compressor is generally cooled by two systems: external water cooling and internal air cooling.
  • the internal air cooling system is to set an air guide channel inside the centrifugal compressor, and the internal heat is taken away by the air flow, and finally from the shell. Exit discharge.
  • the air inlet is generally connected with the inner cavity of the first-stage volute or the connecting pipe, and the high-pressure gas enters the interior of one end of the shell from the inner cavity of the first-stage volute or the connecting pipe, and is discharged from the outlet of the other end of the shell.
  • the internal temperature does not rise substantially. If the internal air cooling system operates during this period, the substantial cooling effect cannot be achieved. The shunting of the flow will lead to the loss of compression efficiency.
  • the present invention provides a high-speed centrifugal compressor air-cooling system outlet temperature-controlled opening and closing structure, which solves the problem that the previous internal air-cooling system starts and stops with the start and stop of the centrifugal compressor.
  • the problem of gas splitting and loss of compression efficiency caused by the operation of the internal air cooling system at the beginning of the centrifugal compressor is solved.
  • a high-speed centrifugal compressor air cooling system outlet temperature control opening and closing structure including a temperature control valve, the temperature control valve is set at the outlet of the shell of the centrifugal compressor internal air cooling system, and the temperature control valve is used to induce centrifugal Compressor internal temperature and open or close the shell outlet according to the internal temperature.
  • the locking rod of the temperature control valve is movably inserted in the outlet of the housing, and there is a gap between the locking rod and the inner wall of the outlet of the housing, and a sealing ring is provided on the locking rod, and the sealing ring is connected with the outlet of the housing.
  • the inner wall cooperates to realize the closure of the housing outlet, and the sealing ring separates from the housing outlet to realize the opening of the housing outlet.
  • the housing outlet includes a wide-mouth section and a narrow-mouth section, the sealing ring is in contact with the inner wall of the narrow-mouth section to close the housing outlet, and the sealing ring is not in contact with the inner wall of the wide-mouth section to open the housing outlet.
  • the temperature control valve is installed inside the base in the housing, and the base is provided with an exhaust channel, which communicates the internal air cooling system, the inner cavity of the base, and the outlet of the housing.
  • the temperature control valve includes a self-operated temperature regulating valve, the spool of the self-operated temperature regulating valve is in contact with one end of the push block, the outside of the push block is sleeved with a spring, and the two ends of the spring are respectively mounted on the steps and the outer wall of the push block.
  • the retaining rings in the base are in contact with each other, and the other end of the push block is connected to the locking rod, and the locking rod passes through the retaining ring and extends into the outlet of the casing.
  • the temperature-sensitive liquid in the self-operated temperature regulating valve is heated and expands to drive the valve core to elongate, and the valve core pushes the push block and the lock rod to move to the wide mouth section to open the outlet of the shell, and the temperature-sensitive liquid in the self-operated temperature regulating valve
  • the liquid is cooled and shrinks to drive the valve core to retract, and the spring resets to push the push block and the lock rod to move to the narrow mouth section to close the shell outlet.
  • the push block is threadedly connected with the locking rod.
  • the base is integrally formed with the secondary bearing seat of the centrifugal compressor.
  • the present invention adopts above-mentioned scheme, has the following advantages:
  • the temperature control valve can sense the internal temperature of the centrifugal compressor and open or close the shell outlet according to the internal temperature, thereby controlling the start-up of the internal air-cooling system stop.
  • the temperature control valve can close the outlet of the shell, avoiding the gas split and loss of compression efficiency caused by the operation of the air cooling system in the early stage, and improving the compression efficiency in the early stage.
  • the temperature control valve can automatically open the outlet of the shell, and the air cooling system operates to cool down the internal temperature of the centrifugal compressor.
  • Fig. 1 is a structural schematic diagram of the present invention.
  • FIG. 2 is a schematic diagram of the enlarged structure of part A in FIG. 1 .
  • a high-speed centrifugal compressor air-cooling system outlet temperature-controlled opening and closing structure includes a temperature-controlled valve, and the temperature-controlled valve is set at the shell outlet 10 of the air-cooled system inside the centrifugal compressor.
  • the temperature control valve is used to sense the internal temperature of the centrifugal compressor and open or close the casing outlet 10 according to the internal temperature.
  • the temperature control valve can close the shell outlet 10, and the gas of the air-cooling system cannot exit the shell.
  • the air-cooling system cannot operate, avoiding the gas diversion and loss of compression efficiency caused by the operation of the air-cooling system in the early stage, and improving the compression efficiency in the early stage.
  • the temperature control valve can automatically open the shell outlet 10, and the gas of the air-cooling system can be discharged from the shell outlet 10, and the air Cold system operation cools down the inside of the centrifugal compressor.
  • the temperature control valve can be generally divided into: self-operated temperature control valve and electric temperature control valve. Any temperature control valve that can open or close the shell outlet 10 by sensing internal temperature changes is within the protection scope of the present invention.
  • the basic working principle of the valve is as follows: the locking rod 11 of the temperature control valve is movably inserted in the housing outlet 10, there is a gap between the locking rod 11 and the inner wall of the housing outlet 10, and the locking rod 11 is provided with a seal
  • the sealing ring 14 cooperates with the inner wall of the housing outlet to close the housing outlet 10, and the sealing ring 14 separates from the housing outlet 10 to realize the opening of the housing outlet.
  • the casing outlet 10 can be designed to include a wide-mouth section 12 and a narrow-mouth section 13, the wide-mouth section 12 is arranged on the outside of the narrow-mouth section 13, and the sealing ring 14 and the narrow-mouth section
  • the inner wall of 13 contacts and cooperates to realize the closing of the housing outlet 10, and the sealing ring 14 is not in contact with the inner wall of the wide-mouth section 12 to realize the opening of the housing outlet 10, which can shorten the moving stroke of the locking rod 11.
  • the temperature control valve is installed inside the base 15 in the housing 1, and the base 15 is provided with an exhaust channel 16, and the exhaust channel 16 communicates with the internal air cooling system, the inner cavity of the base, and the outlet of the housing to ensure The air of the air-cooled system is discharged from the inside of the centrifugal compressor through the exhaust passage, the inner cavity of the base, and the outlet of the shell.
  • the temperature control valve includes a self-operated temperature regulating valve 17, the spool 18 of the self-operated temperature regulating valve 17 is in contact with one end of the push block 19, the outer side of the push block 19 is sleeved with a spring 20, and the two ends of the spring 20 are respectively connected to the push block.
  • the step 21 on the outer wall of 19 is in contact with the retaining ring 22 clamped in the base 15, and the other end of the push block 19 is connected to the locking rod 11, and the locking rod 11 passes through the retaining ring 22 and extends into the outlet 10 of the housing.
  • the self-operated temperature regulating valve 17 realizes automatic regulation by utilizing the principles of liquid thermal expansion and liquid incompressibility.
  • the volume of the temperature-sensitive liquid in the self-operated temperature regulating valve 17 expands or contracts accordingly.
  • the temperature-sensitive liquid in the self-operated temperature regulating valve 17 is heated and expands to drive the valve core 18 to elongate, and the valve core 18 pushes the push block 19 and the lock rod 11 to move to the wide mouth section 12 to open the shell outlet.
  • the temperature-sensitive liquid in the regulating valve 17 is cooled and shrinks to drive the valve core 18 to retract, and the spring 20 resets to push the push block 19 and the locking rod 11 to move to the narrow mouth section 13 to close the casing outlet.
  • the push block 19 is threadedly connected to the locking rod 11, or other fixed connection methods.
  • the base 15 is integrally formed with the secondary bearing seat 5 of the centrifugal compressor, which is convenient for processing, or the base 15 is provided separately and fixedly connected with the housing 1 .
  • the temperature-sensitive liquid in the self-operated temperature control valve 17 is cooled and shrinks to drive the valve core 18 to retract, and the spring 20 pushes the push block 19 under the action of its own elastic force to drive the locking rod 11 to move to the narrow mouth section 13, at this time, the sealing ring 14 of the locking rod 11 closes the housing outlet 10, and the gas of the air cooling system cannot be discharged from the housing outlet 10 , the air-cooling system cannot operate, avoiding the gas diversion and loss of compression efficiency caused by the operation of the air-cooling system in the early stage, and improving the compression efficiency in the early stage.
  • the internal temperature rises, and when the internal temperature exceeds the set value of the temperature control valve, the temperature-sensitive liquid in the self-operated temperature regulating valve 17 is heated and expands to drive the valve core 18 to elongate, and the valve core 18 pushes Block 19, the step 21 of push block 19 compresses the spring 20, drives the lock lever 11 to move to the wide mouth section 12 to open the shell outlet 10, at this time the gas of the air cooling system can be discharged from the shell outlet 10, and the air cooling system is running Cooling of the inside of the centrifugal compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种高速离心压缩机风冷***出口温控启闭结构,包括温控阀,温控阀设在离心压缩机内部风冷***的壳体出口(10)处,温控阀用于感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口(10)。通过在离心压缩机内部风冷***的壳体出口(10)处设置温控阀,温控阀可感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口(10),从而控制内部风冷***的启停。在离心压缩机开始工作阶段,由于内部温度并没有升高,温控阀可关闭壳体出口(10),避免了前期因风冷***运行导致的气体分流及压缩效率损失,提高了前期的压缩效率。待离心压缩机工作一段时间内部温度升高后,温控阀可自动打开壳体出口(10),风冷***运行对离心压缩机内部进行降温。

Description

一种高速离心压缩机风冷***出口温控启闭结构 技术领域:
本发明涉及一种高速离心压缩机风冷***出口温控启闭结构。
背景技术:
目前发展新能源燃料电池汽车被认为是交通能源动力转型的重要环节,为了保障燃料电池发动机正常工作,发动机一般需要氢气供应子***、空气供应子***和循环水冷却管理子***等辅助***,大量的研究表明,高压、大流量的空气供应对提高现有燃料电池发动机的功率输出具有明显的效果。因此,一般空气进入发动机之前,要对进气进行增压,离心式空压机就是实现该目标的一种能量转换装置,是燃料电池发动机空气供应***的重要零部件之一。
目前的高速离心压缩机,其结构主要包括壳体1、定子2和主轴3,壳体1两端内侧分别安装用于支撑主轴的一级轴承座4和二级轴承座5,主轴两端穿出一级轴承座和二级轴承座分别安装一级蜗轮6和二级蜗轮7,一级蜗轮和二级蜗轮外安装有一级蜗壳8和二级蜗壳9,一级蜗壳8和二级蜗壳9通过连接管23相连通。工作时,主轴转速超过10000r/min,由于其转速很高,工作时内部会产生大量的热量,这些热量如果不及时排出形成热量堆积,会出现因内部温度过高导致被迫停机的情况。现在一般都通过外部水冷和内部风冷两种***对离心压缩机进行降温,其中,内部风冷***都是在离心压缩机内部设置导风通道,通过气流带走内部热量,最后从壳体的出口排出。目前的内部风冷***,其进风口一般与一级蜗壳内腔或连接管相连通,高压气体从一级蜗壳内腔或连接管进入壳体一端内部,从壳体另一端出口排出,带走离心压缩机内部热量。在离 心压缩机开始工作的一段时间内,实质上内部温度并没有升高,此时间段内如果内部风冷***运行,达不到实质降温效果,而且由于一级蜗壳内腔或连接管内气体的分流会导致压缩效率的损失,目前行业内还没有针对上述问题的任何课题研究。
综上,如何使高速离心压缩机的内部风冷***根据内部温度变化实现实时启停问题,已成为行业内亟需解决的技术难题。
发明内容:
本发明为了弥补现有技术的不足,提供了一种高速离心压缩机风冷***出口温控启闭结构,解决了以往的内部风冷***随离心压缩机的启停而启停的问题,解决了离心压缩机开始工作阶段内部风冷***运行导致的气体分流、压缩效率损失问题。
本发明为解决上述技术问题所采用的技术方案是:
一种高速离心压缩机风冷***出口温控启闭结构,包括温控阀,所述温控阀设在离心压缩机内部风冷***的壳体出口处,所述温控阀用于感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口。
所述温控阀的锁杆活动插装在壳体出口内,所述锁杆与壳体出口内壁之间设有间隙,所述锁杆上设有密封圈,所述密封圈与壳体出口内壁配合实现壳体出口的关闭,所述密封圈脱离壳体出口实现壳体出口的打开。
所述壳体出口包括宽口段和窄口段,所述密封圈与窄口段内壁接触配合实现壳体出口的关闭,所述密封圈与宽口段内壁不接触实现壳体出口的打开。
所述温控阀安装在壳体内的基座内部,基座上设有排气通道,排气通道将内部风冷***、基座内腔、壳体出口相连通。
所述温控阀包括自力式温度调节阀,自力式温度调节阀的阀芯与推块一端 相接触,推块的外侧套设弹簧,弹簧的两端分别与推块外壁的台阶以及卡装在基座内的弹簧挡圈相接触,推块的另一端连接锁杆,锁杆穿出弹簧挡圈伸至壳体出口内。
所述自力式温度调节阀内的感温液体受热膨胀带动阀芯伸长,阀芯推动推块及锁杆运动至宽口段将壳体出口打开,所述自力式温度调节阀内的感温液体受冷收缩带动阀芯回缩,弹簧复位推动推块及锁杆运动至窄口段将壳体出口关闭。
所述推块与锁杆螺纹连接。
所述基座与离心压缩机的二级轴承座一体成型。
本发明采用上述方案,具有以下优点:
通过在离心压缩机内部风冷***的壳体出口处设置温控阀,温控阀可感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口,从而控制内部风冷***的启停。在离心压缩机开始工作阶段,由于内部温度并没有升高,温控阀可关闭壳体出口,避免了前期因风冷***运行导致的气体分流及压缩效率损失,提高了前期的压缩效率。待离心压缩机工作一段时间内部温度升高后,温控阀可自动打开壳体出口,风冷***运行对离心压缩机内部进行降温。
附图说明:
图1为本发明的结构示意图。
图2为图1中的A部放大结构示意图。
图中,1、壳体,2、定子,3、主轴,4、一级轴承座,5、二级轴承座,6、一级蜗轮,7、二级蜗轮,8、一级蜗壳,9、二级蜗壳,10、壳体出口,11、锁杆,12、宽口段,13、窄口段,14、密封圈,15、基座,16、排气通道,17、自力式温度调节阀,18、阀芯,19、推块,20、弹簧,21、台阶,22、弹簧挡 圈,23、连接管。
具体实施方式:
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。
如图1-2所示,一种高速离心压缩机风冷***出口温控启闭结构,包括温控阀,所述温控阀设在离心压缩机内部风冷***的壳体出口10处,所述温控阀用于感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口10。在离心压缩机开始工作阶段,由于内部温度并没有升高,内部温度没有达到温控阀的设定值,此时温控阀可关闭壳体出口10,风冷***的气体无法从壳体出口10排出,风冷***无法运行,避免了前期因风冷***运行导致的气体分流及压缩效率损失,提高了前期的压缩效率。待离心压缩机工作一段时间内部温度升高后,内部温度超过温控阀的设定值后,温控阀可自动打开壳体出口10,风冷***的气体可从壳体出口10排出,风冷***运行对离心压缩机内部进行降温。
温控阀总体可分为:自力式温控阀和电动温控阀,任何能通过感应内部温度变化对壳体出口10进行打开或关闭的温控阀都在本发明保护范围之内,温控阀其基本工作原理如下:温控阀的锁杆11活动插装在壳体出口10内,所述锁杆11与壳体出口10内壁之间设有间隙,所述锁杆11上设有密封圈14,所述密封圈14与壳体出口内壁配合实现壳体出口10的关闭,所述密封圈14脱离壳体出口10实现壳体出口的打开。
当壳体1厚度较厚时,可将壳体出口10设计为包括宽口段12和窄口段13,宽口段12设在窄口段13的外侧,所述密封圈14与窄口段13内壁接触配合实现壳体出口10的关闭,所述密封圈14与宽口段12内壁不接触实现壳体出口10的打开,这样可缩短锁杆11的移动行程。
所述温控阀安装在壳体1内的基座15内部,基座15上设有排气通道16,排气通道16将内部风冷***、基座内腔、壳体出口相连通,保证风冷***的空气从离心压缩机内部经排气通道、基座内腔、壳体出口排出。
所述温控阀包括自力式温度调节阀17,自力式温度调节阀17的阀芯18与推块19一端相接触,推块19的外侧套设弹簧20,弹簧20的两端分别与推块19外壁的台阶21以及卡装在基座15内的弹簧挡圈22相接触,推块19的另一端连接锁杆11,锁杆11穿出弹簧挡圈22伸至壳体出口10内。
所述自力式温度调节阀17利用液体受热膨胀及液体不可压缩的原理实现自动调节,温度变化时,自力式温度调节阀17内的感温液体体积随着膨胀或收缩。所述自力式温度调节阀17内的感温液体受热膨胀带动阀芯18伸长,阀芯18推动推块19及锁杆11运动至宽口段12将壳体出口打开,所述自力式温度调节阀17内的感温液体受冷收缩带动阀芯18回缩,弹簧20复位推动推块19及锁杆11运动至窄口段13将壳体出口关闭。
所述推块19与锁杆11螺纹连接,或其他固定连接方式。
所述基座15与离心压缩机的二级轴承座5一体成型,便于加工,或者基座15单独设置,与壳体1固连。
工作原理:
在离心压缩机开始工作阶段,由于内部温度并没有升高,内部温度没有达到温控阀的设定值,自力式温度调节阀17内的感温液体受冷收缩带动阀芯18回缩,弹簧20在自身弹力作用下推动推块19带动锁杆11运动至窄口段13,此时,锁杆11的密封圈14将壳体出口10关闭,风冷***的气体无法从壳体出口10排出,风冷***无法运行,避免了前期因风冷***运行导致的气体分流及压 缩效率损失,提高了前期的压缩效率。待离心压缩机工作一段时间内部温度升高后,内部温度超过温控阀的设定值后,自力式温度调节阀17内的感温液体受热膨胀带动阀芯18伸长,阀芯18推动推块19、推块19的台阶21压缩弹簧20,带动锁杆11运动至宽口段12将壳体出口10打开,此时风冷***的气体可从壳体出口10排出,风冷***运行对离心压缩机内部进行降温。
上述具体实施方式不能作为对本发明保护范围的限制,对于本技术领域的技术人员来说,对本发明实施方式所做出的任何替代改进或变换均落在本发明的保护范围内。
本发明未详述之处,均为本技术领域技术人员的公知技术。

Claims (8)

  1. 一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:包括温控阀,所述温控阀设在离心压缩机内部风冷***的壳体出口处,所述温控阀用于感应离心压缩机内部温度并根据内部温度的高低打开或关闭壳体出口。
  2. 根据权利要求1所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述温控阀的锁杆活动插装在壳体出口内,所述锁杆与壳体出口内壁之间设有间隙,所述锁杆上设有密封圈,所述密封圈与壳体出口内壁配合实现壳体出口的关闭,所述密封圈脱离壳体出口实现壳体出口的打开。
  3. 根据权利要求2所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述壳体出口包括宽口段和窄口段,所述密封圈与窄口段内壁接触配合实现壳体出口的关闭,所述密封圈与宽口段内壁不接触实现壳体出口的打开。
  4. 根据权利要求2所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述温控阀安装在壳体内的基座内部,基座上设有排气通道,排气通道将内部风冷***、基座内腔、壳体出口相连通。
  5. 根据权利要求2所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述温控阀包括自力式温度调节阀,自力式温度调节阀的阀芯与推块一端相接触,推块的外侧套设弹簧,弹簧的两端分别与推块外壁的台阶以及卡装在基座内的弹簧挡圈相接触,推块的另一端连接锁杆,锁杆穿出弹簧挡圈伸至壳体出口内。
  6. 根据权利要求3所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述自力式温度调节阀内的感温液体受热膨胀带动阀芯伸长,阀 芯推动推块及锁杆运动至宽口段将壳体出口打开,所述自力式温度调节阀内的感温液体受冷收缩带动阀芯回缩,弹簧复位推动推块及锁杆运动至窄口段将壳体出口关闭。
  7. 根据权利要求5所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述推块与锁杆螺纹连接。
  8. 根据权利要求4所述的一种高速离心压缩机风冷***出口温控启闭结构,其特征在于:所述基座与离心压缩机的二级轴承座一体成型。
PCT/CN2021/096362 2021-05-14 2021-05-27 一种高速离心压缩机风冷***出口温控启闭结构 WO2022236881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110528699.9A CN113153823B (zh) 2021-05-14 2021-05-14 一种高速离心压缩机风冷***出口温控启闭结构
CN202110528699.9 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022236881A1 true WO2022236881A1 (zh) 2022-11-17

Family

ID=76875209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096362 WO2022236881A1 (zh) 2021-05-14 2021-05-27 一种高速离心压缩机风冷***出口温控启闭结构

Country Status (2)

Country Link
CN (1) CN113153823B (zh)
WO (1) WO2022236881A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168927A1 (en) * 2010-01-14 2011-07-14 Chia-Hua Yuan Temperature controlled valve core
CN108361413A (zh) * 2017-11-29 2018-08-03 西安法士特汽车传动有限公司 一种用于变速器冷却***的板式温控阀及其控制方法
CN209195537U (zh) * 2018-12-28 2019-08-02 重庆长安汽车股份有限公司 一种温控阀
CN111486110A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 离心压缩机、热泵***
CN112610531A (zh) * 2020-12-30 2021-04-06 河北金士顿科技有限责任公司 一种空压机空气冷却***的内部引气***精确控制结构
CN112648433A (zh) * 2020-12-20 2021-04-13 刘明圃 一种智能制造液体温控溢流阀及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2735898Y (zh) * 2004-06-17 2005-10-26 沈斌 一种压力锅防干烧***装置
JP7204524B2 (ja) * 2019-02-25 2023-01-16 三菱重工コンプレッサ株式会社 圧縮機
CN209860058U (zh) * 2019-06-18 2019-12-27 势加透博(北京)科技有限公司 一种由电机驱动的两级氢燃料电池堆供气装置
CN212935650U (zh) * 2020-07-15 2021-04-09 稳力(广东)科技有限公司 一种燃料电池离心式空压机冷却结构
CN111810420A (zh) * 2020-08-06 2020-10-23 珠海格力电器股份有限公司 压缩机、燃料电池***和车辆
CN112260455B (zh) * 2020-10-13 2022-06-03 稳力(广东)科技有限公司 燃料电池用离心式高速空压机及其冷却结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168927A1 (en) * 2010-01-14 2011-07-14 Chia-Hua Yuan Temperature controlled valve core
CN108361413A (zh) * 2017-11-29 2018-08-03 西安法士特汽车传动有限公司 一种用于变速器冷却***的板式温控阀及其控制方法
CN209195537U (zh) * 2018-12-28 2019-08-02 重庆长安汽车股份有限公司 一种温控阀
CN111486110A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 离心压缩机、热泵***
CN112648433A (zh) * 2020-12-20 2021-04-13 刘明圃 一种智能制造液体温控溢流阀及其使用方法
CN112610531A (zh) * 2020-12-30 2021-04-06 河北金士顿科技有限责任公司 一种空压机空气冷却***的内部引气***精确控制结构

Also Published As

Publication number Publication date
CN113153823B (zh) 2021-11-30
CN113153823A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN107893772B (zh) 一种带能量回收功能的离心式燃料电池空气压缩机
CN108775289B (zh) 一种带储气功能的自冷却型空气悬浮压气机
CN101109390A (zh) 一种球床高温气冷堆离心式氦气压缩机
CN106655574B (zh) 高速电机直驱透平机械的转子自循环冷却***及冷却方法
KR101795148B1 (ko) 다중 냉각 매질을 활용한 하이브리드형 인터쿨러 시스템 및 그 제어방법
CN114876824B (zh) 一种高速离心空压机与膨胀机集成***风冷结构
JPH0114408B2 (zh)
CN111058906A (zh) 一种应用于超临界二氧化碳透平的冷却结构、方法
KR20020041438A (ko) 터보기계의 로터와 스테이터 사이에 형성된 방사상간극에서의 유동을 간접냉각하는 방법 및 장치
WO2022236881A1 (zh) 一种高速离心压缩机风冷***出口温控启闭结构
CN109736904B (zh) 一种消除低压缸胀差、变形的温度控制***及方法
CN114810673B (zh) 一种高速离心压缩机二级压缩回流内循环风冷***
CN209145984U (zh) 一种燃料电池用离心式超高速空压机冷却流道
CN109494922A (zh) 一种用于水泵的新型电动机
CN115434952A (zh) 一种高速离心空压机与膨胀机集成装置的热交换***
CN211422717U (zh) 一种应用于超临界二氧化碳透平的冷却结构
CN212028101U (zh) 一种双冷却***的离心式空气压缩机
CN109057887B (zh) 超临界工质透平壳体保温及内外对流冷却装置及其工作方法
CN114856730A (zh) 一种超临界二氧化碳透平的闭式循环冷却***及调节方法
CN113027766A (zh) 一种变频喷油螺杆空压机的油气冷却器及其***
CN209510725U (zh) 一种分体式空压机液冷却***
CN207363956U (zh) 汽车涡轮增压器压气机壳
JP3051560B2 (ja) 蒸気タービンにおける外車室上下半部間温度差の低減方法及び装置
CN110469546A (zh) 一种用以降低压气机效率衰减的结构
CN112524824B (zh) 一种用于光热发电的超临界二氧化碳自冷却透平***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941450

Country of ref document: EP

Kind code of ref document: A1