WO2022236736A1 - 电极组件、电池单体、电池以及用电装置 - Google Patents

电极组件、电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2022236736A1
WO2022236736A1 PCT/CN2021/093351 CN2021093351W WO2022236736A1 WO 2022236736 A1 WO2022236736 A1 WO 2022236736A1 CN 2021093351 W CN2021093351 W CN 2021093351W WO 2022236736 A1 WO2022236736 A1 WO 2022236736A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
pole piece
bent
electrode assembly
bent portion
Prior art date
Application number
PCT/CN2021/093351
Other languages
English (en)
French (fr)
Inventor
许虎
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023528305A priority Critical patent/JP2023549798A/ja
Priority to CN202180007973.6A priority patent/CN115623875B/zh
Priority to KR1020237015594A priority patent/KR20230084546A/ko
Priority to PCT/CN2021/093351 priority patent/WO2022236736A1/zh
Priority to EP21923593.4A priority patent/EP4117078A4/en
Priority to US17/847,200 priority patent/US20220367918A1/en
Publication of WO2022236736A1 publication Critical patent/WO2022236736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more specifically, relates to an electrode assembly, a manufacturing method and system thereof, a battery cell, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides an electrode assembly, a manufacturing method and a manufacturing system thereof, a battery cell, a battery and an electrical device, which can enhance the safety of the battery cell.
  • an embodiment of the present application provides an electrode assembly, including a positive pole piece and a negative pole piece, the positive pole piece and the negative pole piece are wound along the winding direction to form a winding structure, and the winding structure includes a bending area .
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part.
  • a second bent portion adjacent to the bent portion is
  • the electrode assembly is provided with a first barrier, at least a part of the first barrier is located between the first bending part and the second bending part, and the first barrier is used to block at least a part of the ions released from the first bending part from intercalating into the second bending part.
  • the phenomenon of lithium precipitation can be effectively reduced.
  • the first blocking member When charging, at least a part of the ions released from the positive electrode active material layer of the first bending part is blocked by the first blocking member, so that the ions blocked by the first blocking member cannot be inserted into the negative electrode active material layer of the second bending part, so that When the negative electrode active material falls off at the second bending portion, the occurrence of lithium precipitation is reduced.
  • the part of the first blocking member beyond the first bending part and the second bending part can play a supporting role, which can effectively reduce the vibration amplitude of the first bending part and the second bending part, and reduce the vibration of the first bending part.
  • the impact force received by the folded part and the second bent part reduces the shedding of the active material, thereby reducing the occurrence of lithium deposition and improving the safety performance of the battery cell.
  • a first blocking member is attached to the first bent portion.
  • the first stopper can be attached to the surface of the first bending part by means of adhesion.
  • the first barrier includes a first base layer and a first adhesive layer, and the first adhesive layer is disposed on a surface of the first base layer facing the first bending portion.
  • the first base layer includes a first body part and a first support part connected to the first body part, the first adhesive layer is used to bond at least part of the first body part to the first bending part, and the first support part is protruding from the first bending portion in the first direction.
  • the first body part is used to block at least a part of ions released from the positive electrode active material layer of the first bending part, thereby reducing the occurrence of lithium precipitation.
  • the first supporting part plays a supporting role, which can effectively reduce the vibration amplitude of the first bending part and the second bending part, reduce the impact force on the first bending part and the second bending part, and reduce the active material The falling off, thereby reducing the occurrence of lithium precipitation, and improving the safety performance of the battery cell.
  • At least part of the surface of the first support portion facing the first bending portion is not provided with the first adhesive layer.
  • the first supporting part protrudes from the first bending part and does not need to be bonded to the first bending part, so the first adhesive layer on the surface of the first supporting part can be omitted, which can save materials and increase energy density.
  • first stoppers are attached to both surfaces of the first bending part, the first body parts of the two first stoppers are respectively arranged on both sides of the first bending part, and the two second stoppers The first support portion of a barrier is not provided with the first adhesive layer.
  • At least part of the surface of the first support portion facing the first bending portion is provided with a first adhesive layer.
  • first stoppers are attached to both surfaces of the first bending part, the first body parts of the two first stoppers are respectively arranged on both sides of the first bending part, and the two second stoppers
  • the first supporting part of a barrier is connected through the first adhesive layer.
  • the first supporting parts of the two first barriers are connected through the first adhesive layer, so that the two first barriers adhere to each other, reducing the risk of the first barrier falling off the first bending part, and improving the first barrier. The reliability of the components during the service life of the battery cell.
  • both ends of the first blocking member are beyond the first bending portion in the first direction.
  • the two ends of the first blocking member along the first direction can play a supporting role, reduce the vibration amplitude of the first bending part, reduce the impact force received by the first bending part, and reduce the shedding of the active material.
  • both ends of the first blocking member are beyond the second bending portion in the first direction.
  • the two ends of the first blocking member along the first direction can play a supporting role, reduce the vibration amplitude of the second bending part, reduce the impact force received by the second bending part, and reduce the shedding of the active material.
  • the electrode assembly is further provided with a second barrier, and at least a part of the second barrier is located between the first bent portion and the second bent portion.
  • the first stopper and the second stopper are arranged at intervals along the first direction, the end of the first stopper away from the second stopper exceeds the end of the first bending part, and the end of the second stopper away from the first stopper exceeds the other end of the first bent portion.
  • the electrode assembly further includes a spacer for isolating the first pole piece and the second pole piece, and in the first direction, both ends of the spacer exceed the first bent portion and the second bent portion .
  • the spacer can separate the first bending part from the second bending part, reducing the risk of conduction between the first bending part and the second bending part.
  • the porosity of the first barrier is smaller than that of the separator, so that the first barrier can more effectively block the passage of lithium ions.
  • the stiffness of the first barrier is greater than the stiffness of the spacer.
  • the first stopper has a relatively high hardness, which can withstand a large impact force and reduce the deformation of the first stopper when it is subjected to an impact force, thereby effectively reducing the vibration of the first bending part and the second bending part The amplitude is reduced, the impact force on the first bending part and the second bending part is reduced, and the falling off of the active material is reduced.
  • both ends of the spacer protrude beyond the first barrier in the first direction. In this way, the first barrier will not increase the maximum dimension of the electrode assembly in the first direction, thereby increasing the energy density of the electrode assembly.
  • a surface of the spacer is attached with a first barrier.
  • the rolled structure further includes a straight region connected to the bent region. Both ends of the first blocking member along the winding direction are located in the bending area; or, one end of the first blocking member along the winding direction is located in the bending area, and the other end of the first blocking member along the winding direction is located in the straight area; Alternatively, both ends of the first blocking member along the winding direction are located in the straight zone.
  • the positive pole piece further includes a first straight portion located in the straight region and a positive tab connected to the first straight portion, the first straight portion is connected to the first bent portion, and the positive tab is connected to one end of the first straight portion along the first direction.
  • an end of the first blocking member close to the positive tab exceeds the first bending portion and the second bending portion. The first blocking member can reduce the vibration amplitude of the electrode assembly on the side of the positive electrode tab, thereby reducing the risk of tearing the positive electrode tab.
  • At least one innermost bending portion of the positive electrode sheet is a first bending portion
  • at least one innermost bending portion of the negative electrode sheet is a second bending portion.
  • a first barrier is arranged between the two innermost bending parts of the bending area, which can reduce the phenomenon of lithium precipitation between the two innermost bending parts of the bending area and improve safety performance.
  • an embodiment of the present application provides a battery cell, including a casing and the electrode assembly according to any embodiment of the first aspect, and the electrode assembly is housed in the casing.
  • the embodiment of the present application provides a battery, including a box body and the battery cell of the second aspect, and the battery cell is accommodated in the box body.
  • an embodiment of the present application provides an electrical device, including the battery in the third aspect, and the battery is used to provide electrical energy.
  • an embodiment of the present application provides a method for manufacturing an electrode assembly, including: providing a positive electrode sheet, a negative electrode sheet, and a first barrier; winding the positive electrode sheet and the negative electrode sheet along the winding direction to form a roll winding structure.
  • the rolled structure includes a bending region.
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part. A second bent portion adjacent to the bent portion.
  • At least a part of the first blocking member is located between the first bending portion and the second bending portion, and the first blocking member is used for blocking at least a part of ions exiting from the first bending portion from being inserted into the second bending portion.
  • the first direction at least one end of the first blocking member exceeds the first bending portion and the second bending portion, and the first direction is perpendicular to the winding direction.
  • the embodiment of the present application provides a manufacturing system for an electrode assembly, including: a first providing device for providing a positive electrode sheet; a second providing device for providing a negative electrode sheet; a third providing device for To provide a first barrier; an assembly device for winding the positive pole piece and the negative pole piece along the winding direction to form a wound structure.
  • the rolled structure includes a bending region.
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part. A second bent portion adjacent to the bent portion.
  • At least a part of the first blocking member is located between the first bending portion and the second bending portion, and the first blocking member is used for blocking at least a part of ions exiting from the first bending portion from being inserted into the second bending portion.
  • the first direction at least one end of the first blocking member exceeds the first bending portion and the second bending portion, and the first direction is perpendicular to the winding direction.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Fig. 6 is a schematic structural diagram of an electrode assembly provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of an electrode assembly provided by some embodiments of the present application.
  • Fig. 8 is a schematic cross-sectional view of the electrode assembly shown in Fig. 7 along line D-D;
  • FIG. 9 is an enlarged schematic view of the electrode assembly shown in FIG. 8 at block F;
  • Fig. 10 is a schematic cross-sectional view of the electrode assembly shown in Fig. 7 along the line E-E;
  • Fig. 11 is a schematic diagram of the local structure of the positive pole piece of the electrode assembly provided in some embodiments of the present application in the unfolded state;
  • Fig. 12 is a schematic partial cross-sectional view of an electrode assembly provided by another embodiment of the present application.
  • Fig. 13 is a partial cross-sectional schematic diagram of an electrode assembly provided by some other embodiments of the present application.
  • Fig. 14 is a partial cross-sectional schematic diagram of an electrode assembly provided by some further embodiments of the present application.
  • Fig. 15 is a schematic diagram of a partial structure of an electrode assembly provided by another embodiment of the present application.
  • Fig. 16 is a schematic diagram of a partial structure of an electrode assembly provided in some other embodiments of the present application.
  • Fig. 17 is a schematic diagram of a partial structure of an electrode assembly provided by another embodiment of the present application.
  • Fig. 18 is a partial structural schematic diagram of an electrode assembly provided by some other embodiments of the present application.
  • Fig. 19 is a schematic flowchart of a method for manufacturing an electrode assembly provided by some embodiments of the present application.
  • Fig. 20 is a schematic block diagram of an electrode assembly manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector;
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode protrusion protruding from the positive electrode current collector, and the positive electrode current collector part is coated with a positive electrode active material layer, at least part of the positive electrode convex part is not coated with a positive electrode active material layer, and the positive electrode convex part is used as a positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode protrusion protruding from the negative electrode current collector. part is coated with a negative electrode active material layer, at least part of the negative electrode convex part is not coated with a negative electrode active material layer, and the negative electrode convex part is used as a negative electrode tab.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • lithium ions are released from the positive active material layer and intercalated into the negative active material layer, but some abnormalities may occur, for example, the negative active material layer has insufficient lithium intercalation space, and lithium ions are inserted into the negative active material layer. If the resistance is too large or lithium ions are released from the positive active material layer too quickly, the extracted lithium ions cannot be embedded in the negative active material layer of the negative electrode sheet in equal amounts, and the lithium ions that cannot be embedded in the negative electrode sheet can only be obtained on the surface of the negative electrode sheet. electrons, thereby forming a single substance of lithium metal, which is the phenomenon of lithium precipitation.
  • Lithium analysis not only reduces the performance of lithium-ion battery cells, greatly shortens the cycle life, but also limits the fast charging capacity of lithium-ion battery cells.
  • the precipitated lithium metal is very active and can react with the electrolyte at a relatively low temperature, resulting in a decrease in the initial temperature of the self-heating of the battery cell and a decrease in the self-heating temperature of the battery cell.
  • the heat generation rate increases, seriously endangering the safety of battery cells.
  • the lithium precipitation is serious, the extracted lithium ions can form lithium crystals on the surface of the negative electrode sheet, and the lithium crystals are easy to pierce the separator, causing the risk of short circuit between the adjacent positive electrode sheet and the negative electrode sheet.
  • the inventors found that when the electrode assembly is vibrated or squeezed, the active material of the positive pole piece or the active material of the negative pole piece will fall off, which is called powder falling off. Due to the shedding of the active material, especially the shedding of the active material on the negative electrode sheet, the lithium intercalation sites of the negative electrode active material layer of the negative electrode sheet may be less than the lithium ions that can be provided by the positive electrode active material layer of its adjacent positive electrode sheet. Quantity, therefore, lithium-ion battery cells are prone to lithium precipitation when charging.
  • the inventor also found that the winding-type electrode assembly is more prone to lithium deposition in its bending area.
  • the reason for the lithium deposition phenomenon is mainly because it is located in the bending area.
  • the positive pole piece and the negative pole piece need to be bent, and the positive active material layer and the negative active material layer are prone to stress concentration during the bending process and cause the respective active materials to fall off. Due to the shedding of the active material, especially the shedding of the active material on the negative electrode sheet, the lithium intercalation sites of the negative electrode active material layer of the negative electrode sheet may be less than the lithium ions that can be provided by the positive electrode active material layer of its adjacent positive electrode sheet. amount, thus triggering the phenomenon of lithium precipitation.
  • the embodiment of the present application provides a technical solution, in which the electrode assembly includes a positive pole piece and a negative pole piece, and the positive pole piece and the negative pole piece are wound along the winding direction to form a winding structure,
  • the rolled structure includes a bending region.
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part.
  • a second bent portion adjacent to the bent portion is
  • the electrode assembly is provided with a first barrier, at least a part of the first barrier is located between the first bending part and the second bending part, and the first barrier is used to block at least a part of the ions released from the first bending part from intercalating into the second bending part.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptop computers, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 cover each other, the first box body part 51 and the second box body part 51
  • the two box parts 52 jointly define an accommodating space 53 for accommodating the battery cells.
  • the second box part 52 can be a hollow structure with one end open, the first box part 51 is a plate-shaped structure, and the first box part 51 covers the opening side of the second box part 52 to form an accommodating space 53
  • the box body 5; the first box body portion 51 and the second box body portion 52 also can be a hollow structure with one side opening, and the opening side of the first box body portion 51 is covered on the opening side of the second box body portion 52 , to form a box body 5 with an accommodation space 53 .
  • the first box body part 51 and the second box body part 52 can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealing member may also be provided between the first box body portion 51 and the second box body portion 52, such as sealant, sealing ring, etc. .
  • the first box part 51 covers the top of the second box part 52
  • the first box part 51 can also be called an upper box cover
  • the second box part 52 can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 .
  • there are multiple battery cells 7 and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a confluence component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a schematic exploded view of a battery cell provided by some embodiments of the present application.
  • the battery cell 7 provided by the embodiment of the present application includes an electrode assembly 10 and a casing 20 , and the electrode assembly 10 is accommodated in the casing 20 .
  • housing 20 may also be used to contain electrolyte, such as electrolytic solution.
  • the housing 20 can be in various structural forms.
  • the housing 20 may include a housing 21 and an end cover 22, the housing 21 is a hollow structure with one side open, the end cover 22 covers the opening of the housing 21 and forms a sealed connection, so as to form a A sealed space that accommodates the electrode assembly 10 and the electrolyte.
  • the housing 21 can be in various shapes, such as cylinder, cuboid and so on.
  • the shape of the casing 21 may be determined according to the specific shape of the electrode assembly 10 .
  • the end cap 22 can also be of various structures, for example, the end cap 22 is a plate-shaped structure, a hollow structure with one end open, and the like.
  • the housing 21 is a cuboid structure, and the end cover 22 is a plate-shaped structure, and the end cover 22 covers the opening at the top of the housing 21 .
  • the battery cell 7 may further include a positive electrode terminal 30 , a negative electrode terminal 40 and a pressure relief mechanism 50 , and the positive electrode terminal 30 , the negative electrode terminal 40 and the pressure relief mechanism 50 are all mounted on the end cap 22 . Both the positive electrode terminal 30 and the negative electrode terminal 40 are used to electrically connect with the electrode assembly 10 to output the electric energy generated by the electrode assembly 10 .
  • the pressure relief mechanism 50 is used to release the pressure inside the battery cell 7 when the internal pressure or temperature of the battery cell 7 reaches a predetermined value.
  • the pressure relief mechanism 50 is located between the positive electrode terminal 30 and the negative electrode terminal 40, and the pressure relief mechanism 50 may be a component such as an explosion-proof valve, a burst disk, a gas valve, a pressure relief valve, or a safety valve.
  • the housing 20 can also be of other structures.
  • the housing 20 includes a housing 21 and two end caps 22.
  • the housing 21 is a hollow structure with openings on opposite sides, and one end cap 22 corresponds to Covering an opening of the casing 21 to form a sealed connection to form a sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • the positive electrode terminal 30 and the negative electrode terminal 40 can be installed on the same end cap 22, or on different end caps 22; a pressure relief mechanism 50 can be installed on one end cap 22, It is also possible that the pressure relief mechanism 50 is installed on both end covers 22 .
  • the battery cell 7 there may be one or more electrode assemblies 10 housed in the case 20 .
  • the case 20 there may be one or more electrode assemblies 10 housed in the case 20 .
  • FIG. 4 there are two electrode assemblies 10 .
  • Fig. 5 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • the electrode assembly 10 of the embodiment of the present application includes a positive pole piece 11 and a negative pole piece 12 , and the positive pole piece 11 and the negative pole piece 12 are wound along a winding direction A to form a winding structure.
  • the winding direction A is the direction in which the positive pole piece 11 and the negative pole piece 12 are wound circumferentially from the inside to the outside. In FIG. 5 , the winding direction A is clockwise.
  • the electrode assembly 10 further includes a separator 13 for isolating the positive electrode piece 11 and the negative electrode piece 12 to reduce the risk of short circuit between the positive electrode piece 11 and the negative electrode piece 12 .
  • the separator 13 has a large number of penetrating micropores, which can ensure the free passage of electrolyte ions and have good permeability to lithium ions. Therefore, the separator 13 basically cannot block the passage of lithium ions.
  • the material of the spacer 13 may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene) or the like.
  • the positive pole piece 11 , the negative pole piece 12 and the separator 13 are all strip-shaped structures.
  • the positive pole piece 11 , the separator 13 and the negative pole piece 12 can be stacked in sequence first, and then wound more than two times to form the electrode assembly 10 .
  • the electrode assembly 10 can be in various shapes, for example, the electrode assembly 10 can be in the shape of a cylinder, a flat body, a prism (such as a triangular prism, a quadrangular prism or a hexagonal prism) or other shapes.
  • a prism such as a triangular prism, a quadrangular prism or a hexagonal prism
  • the rolled structure includes a bend region B.
  • Both the positive pole piece 11 and the negative pole piece 12 include a plurality of bending portions 14 located in the bending area B.
  • the bending area B is the area where the electrode assembly 10 has a bending structure, the part of the positive electrode sheet 11 located in the bending area B (ie the bending part 14 of the positive electrode sheet 11) and the part of the negative electrode sheet 12 located in the bending area B
  • the part that is, the bent portion 14 of the negative pole piece 12
  • the bent portion 14 of the positive pole piece 11 and the bent portion 14 of the negative pole piece 12 are generally bent into an arc shape.
  • the bending portion 14 of the positive pole piece 11 and the bending portion 14 of the negative pole piece 12 are alternately arranged, that is, in the bending area B, one bending portion of the negative pole piece 12 14.
  • a bent portion 14 of the positive pole piece 11 , a bent portion 14 of the negative pole piece 12 . . . are arranged in sequence.
  • the innermost bent portion 14 of the positive pole piece 11 is located outside the innermost bent portion 14 of the negative pole piece 12 .
  • the electrode assembly 10 is a flat body.
  • the winding structure further includes a straight region C connected to the bending region B.
  • Both the positive pole piece 11 and the negative pole piece 12 include a plurality of straight portions 15 located in the straight region C.
  • the straight region C is a region where the electrode assembly 10 has a straight structure.
  • the part of the positive pole piece 11 located in the straight region C i.e. the straight portion 15 of the positive pole piece 11
  • the part of the negative pole piece 12 located in the straight region C i.e. the straight portion 15 of the negative pole piece 12
  • the surfaces of the straight portion 15 of the positive pole piece 11 and the straight portion 15 of the negative pole piece 12 are both substantially planar.
  • Fig. 6 is a schematic structural diagram of an electrode assembly provided by another embodiment of the present application.
  • the electrode assembly 10 is generally cylindrical.
  • the winding structure may only have the bent area B without the straight area.
  • one turn of the positive pole piece 11 is a bent portion 14 ; in the negative pole piece 12 , one turn of the negative pole piece 12 is a bent portion 14 .
  • Fig. 7 is a partial structural schematic diagram of an electrode assembly provided by some embodiments of the present application
  • Fig. 8 is a schematic sectional view of the electrode assembly shown in Fig. 7 along line D-D
  • Fig. 9 is a block F of the electrode assembly shown in Fig. 8
  • FIG. 10 is a schematic cross-sectional view of the electrode assembly shown in FIG. 7 along the line E-E
  • FIG. 11 is a partial structural schematic view of the positive electrode sheet of the electrode assembly provided by some embodiments of the present application in an unfolded state.
  • the positive electrode sheet 11 includes a positive electrode collector 111 and a positive electrode coating 112 coated on the surface of the positive electrode collector 111.
  • the positive electrode collector 111 includes a positive electrode current collector 111a and protrudes from the positive electrode current collector.
  • the positive electrode tab 111b of the part 111a, the positive electrode coating 112 includes a positive electrode active material layer 112a, the two surfaces of the positive electrode current collecting part 111a are coated with the positive electrode active material layer 112a, and the positive electrode ear 111b is at least partially not coated with the positive electrode active material layer 112a.
  • the portion of the positive electrode tab 111b not coated with the positive electrode active material layer 112a is used for electrical connection to an electrode terminal.
  • the positive electrode coating 112 also includes an insulating layer 112b, the insulating layer 112b is located on the side of the positive electrode active material layer 112a close to the positive electrode tab 111b, and the area of the positive electrode current collector 111a that is not coated with the positive electrode active material layer 112a is coated with an insulating layer 112b.
  • the root of the positive tab 111b close to the positive current collector 111a is also coated with an insulating layer 112b.
  • both ends of the positive electrode coating 112 along the first direction X are flush with both ends of the positive electrode current collecting portion 111 a along the first direction X.
  • the first direction X is perpendicular to the winding direction A.
  • the positive tab 111b is connected to one end of the straight portion along the first direction X and protrudes from the straight portion. In the first direction X, both ends of the straight portion of the positive electrode sheet 11 are flush with both ends of the bent portion of the positive electrode sheet 11 .
  • the positive electrode tab 111 b may be connected to part of the straight portion, or may be connected to the entire straight portion. Exemplarily, there are a plurality of positive tabs 111b arranged in layers.
  • the negative electrode sheet 12 includes a negative electrode current collector 121 and a negative electrode coating coated on the surface of the negative electrode current collector 121.
  • the negative electrode current collector 121 includes a negative electrode current collector and a negative electrode tab protruding from the negative electrode current collector.
  • the negative electrode coating includes a negative electrode
  • the active material layer 122 is coated with the negative active material layer 122 on both surfaces of the current collector of the negative electrode, and the negative electrode tab is at least partially not coated with the negative active material layer 122 .
  • the portion of the negative electrode tab not coated with the negative active material layer 122 is used for electrical connection to the electrode terminal.
  • the two ends of the negative electrode active material layer 122 along the first direction X are flush with the two ends of the negative electrode current collector along the first direction X.
  • both ends of the negative electrode active material layer 122 protrude beyond the positive electrode active material layer 112a.
  • the first direction X is perpendicular to the winding direction A.
  • one end of the positive electrode active material layer 112a is located on the inner side of one end of the negative electrode active material layer 122, and the other end of the positive electrode active material layer 112a is located at the other end of the negative electrode active material layer 122.
  • the negative electrode active material layer 122 can cover the positive electrode active material layer 112a, providing more lithium intercalation sites for the lithium ions extracted from the positive electrode active material layer 112a, and reducing the risk of lithium precipitation.
  • At least one bent portion of the positive pole piece 11 is a first bent portion 14a
  • at least one bent portion of the negative pole piece 12 is a second bent portion adjacent to the first bent portion 14a.
  • Fold 14b The electrode assembly 10 is provided with a first stopper 16, at least a part of the first stopper 16 is located between the first bent portion 14a and the second bent portion 14b, the first stopper 16 is used to block the At least a part of the extracted ions are embedded in the second bent portion 14b. In the first direction X, at least one end of the first blocking member 16 exceeds the first bending portion 14a and the second bending portion 14b.
  • first direction X one end of the first stopper 16 goes beyond the first bent part 14a and the second bent part 14b, and the other end of the first stopper 16 can either go beyond the first bent part 14a or not.
  • the second bending portion 14b may or may not exceed the second bending portion 14b.
  • first bent portions 14a there may be one or more first bent portions 14a.
  • all the bent portions may be the first bent portion 14 a, or part of the bent portion may be the first bent portion 14 a.
  • a part of the bent portion of the positive pole piece 11 is the first bent portion 14a, and the other part of the bent portion is the third bent portion;
  • a second bent portion 14a and the second bent portion 14b are provided a blocking piece 16 , and no first blocking piece 16 is provided between the third bending portion and the bending portions of the adjacent negative electrode tabs 12 on both sides.
  • the negative electrode sheet 12 there may be one or more second bent portions 14b.
  • all the bent portions may be the second bent portion 14b, or part of the bent portion may be the second bent portion 14b.
  • a part of the bent part of the negative pole piece 12 is the second bent part 14b, and another part of the bent part is the fourth bent part;
  • a second bent part 14b and the first bent part 14a are provided with a a blocking piece 16 , and no first blocking piece 16 is provided between the fourth bending portion and the bending portions of the adjacent positive pole pieces 11 on both sides.
  • first stoppers 16 there may be one or more first stoppers 16 between the first bending portion 14a and the second bending portion 14b. Between the first bending part 14a and the second bending part 14b, only the first stopper 16 may be provided, or other stoppers, such as the second stopper, the third stopper, etc., may be provided at the same time.
  • the first blocking member 16 may be entirely located in the bending area B, or only partly located in the bending area B. As shown in FIG. For example, for an electrode assembly including a straight region C, the first barrier member 16 may be entirely located in the bending region B, or partly located in the bending region B and the other part located in the straight region C.
  • the first blocking member 16 can be independently disposed on the positive pole piece 11 and the negative pole piece 12 , or can be attached to any surface of the positive pole piece 11 , any surface of the negative pole piece 12 or any surface of the separator 13 .
  • the first barrier 16 is independently arranged on the positive pole piece 11 and the negative pole piece 12, which means that the first barrier 16 is separately laminated with the positive pole piece 11 and the negative pole piece 12, that is, there is no adhesion or coating relationship; attaching refers to connecting by means of adhesion, coating or spraying.
  • the second bending part produces stress concentration during the bending process and may cause the negative electrode active material to fall off; due to the falling off of the negative electrode active material, the lithium intercalation site of the negative electrode active material layer of the second bending part may be less than that of the first bending part The number of lithium ions provided by the positive electrode active material layer in the upper part, thus triggering the phenomenon of lithium precipitation.
  • the negative electrode active material layer of the second bending part is in a bent state, and when the negative electrode active material layer of the second bending part is subjected to vibration or extrusion , it is easier to produce the shedding of the negative electrode active material.
  • the phenomenon of lithium precipitation can be effectively reduced.
  • the active material layer 122 is such that when the negative active material of the second bending portion 14b falls off, the occurrence of lithium precipitation is reduced.
  • the first barrier 16 blocks at least a part of the ions extracted from the positive electrode active material layer 112a of the first bent portion 14a, thereby reducing the amount of lithium released. happened.
  • At least one end of the first blocking member 16 in the first direction X exceeds the first bending portion 14a and the second bending portion 14b, and the end of the first blocking member 16 exceeds the first bending portion 14a and the second bending portion 14a.
  • the part of the second bending part 14b can play a supporting role, which can effectively reduce the vibration amplitude of the first bending part 14a and the second bending part 14b, and reduce the vibration of the first bending part 14a and the second bending part 14b.
  • the impact force received reduces the shedding of active materials, thereby reducing the occurrence of lithium precipitation and improving the safety performance of battery cells.
  • the first blocking member 16 can not only reduce the falling off of the positive electrode active material in the first bending part 14a and the falling off of the negative electrode active material in the second bending part 14b, but also block the first bending part 14a. At least a part of the ions extracted from the positive electrode active material layer 112a can reduce the occurrence of lithium precipitation and improve the safety performance of the battery cell.
  • both ends of the first blocking member 16 exceed the first bending portion 14a.
  • One end of the first stopper 16 in the first direction X is located on the outer side of one end of the first bent portion 14a in the first direction X, and the other end of the first stopper 16 in the first direction X One end is located on the outer side of the other end of the first bent portion 14a in the first direction X. As shown in FIG.
  • one end of the first blocking member 16 exceeds the second bending portion 14b, and the other end of the first blocking member 16 may or may not exceed the second bending portion 14b.
  • the two ends of the first blocking member 16 along the first direction X can play a supporting role, reduce the vibration amplitude of the first bending part 14a, reduce the impact force received by the first bending part 14a, and reduce the Shedding of active substances.
  • both ends of the first blocking member 16 exceed the second bending portion 14b.
  • One end of the first stopper 16 in the first direction X is located on the outer side of one end of the second bent portion 14b in the first direction X, and the other end of the first stopper 16 in the first direction X One end is located on the outer side of the other end of the second bent portion 14b in the first direction X. As shown in FIG.
  • the two ends of the first blocking member 16 along the first direction X can play a supporting role, reduce the vibration amplitude of the second bending part 14b, reduce the impact force received by the second bending part 14b, and reduce the The active material falls off, thereby reducing the occurrence of lithium precipitation and improving the safety performance of the battery cell.
  • At least one innermost bent portion of the positive pole piece 11 is the first bent portion 14a, and at least one innermost bent portion of the negative pole piece 12 is the second bent portion 14b.
  • the first stopper 16 is disposed between the two innermost bending parts of the bending area B.
  • the innermost bending part of the positive pole piece 11 has the largest bending degree, that is, the phenomenon that the positive active material of the innermost bending part of the positive pole piece 11 falls off is the most serious; the innermost bending part of the negative pole piece 12 is bent The degree of bending is the largest, that is, the phenomenon that the negative electrode active material falls off at the innermost bending portion of the negative electrode sheet 12 is the most serious.
  • At least one of the innermost bending parts in the positive pole piece 11 is set as the first bending part 14a, and at least one of the innermost bending parts in the negative pole piece 12 is set as the second bending part 14b, this can reduce the lithium precipitation phenomenon between the two innermost bending parts of the bending area B, and improve the safety performance.
  • the more than two bending parts of the negative electrode sheet 12 from the inside to the outside are the first bending parts 14a, and the more than two bending parts of the positive electrode sheet 11 from the inside to the outside are the second bending parts. 14b.
  • the first bent portions 14a and the second bent portions 14b are arranged alternately from inside to outside.
  • a first stopper 16 is disposed between adjacent first bent portions 14a and second bent portions 14b.
  • both ends of the first barrier 16 along the winding direction A are located at the bending area B; for example, both ends of the first barrier 16 along the winding direction A are located at the bending area B and the flat The junction of the straight zone C, or, both ends of the first barrier 16 along the winding direction A are adjacent to the junction of the bending zone B and the straight zone C.
  • one end of the first blocking member 16 along the winding direction A is located in the bending area B, and the other end of the first blocking member 16 along the winding direction A is located in the straight area C.
  • both ends of the first blocking member 16 along the winding direction A are located in the straight zone C.
  • the positive pole piece 11 further includes a first straight portion 15a located in the straight region C and a positive tab 111b connected to the first straight portion 15a, and the first straight portion 15a is connected to the first bent
  • the folded portion 14a and the positive tab 111b are connected to one end of the first straight portion 15a along the first direction X.
  • an end of the first blocking member 16 close to the positive tab 111b exceeds the first bent portion 14a and the second bent portion 14b.
  • Two ends of the first straight portion 15 a along the first direction X are respectively flush with two ends of the first bent portion 14 a along the first direction X, and the positive tab 111 b protrudes from the first straight portion 15 a.
  • the first stopper 16 can reduce the vibration amplitude of the electrode assembly 10 on the side of the positive tab 111b , thereby reducing the risk of tearing the positive tab 111b.
  • the electrode assembly 10 further includes a spacer 13 for isolating the first pole piece 11 and the second pole piece 12, and in the first direction X, both ends of the spacer 13 are beyond the first bending portion 14a and the second bent portion 14b.
  • One end of the spacer 13 in the first direction X is located on the outer side of one end of the first bent portion 14a in the first direction X, and is located at one end of the second bent portion 14b in the first direction X. part; the other end of the spacer 13 in the first direction X is located on the outer side of the other end of the first bending part 14a in the first direction X, and is located at the second bending The outer side of the other end portion of the portion 14b in the first direction X.
  • the spacer 13 can separate the first bent portion 14a and the second bent portion 14b, reduce the risk of conduction between the first bent portion 14a and the second bent portion 14b, and improve safety performance.
  • the porosity of the first barrier 16 is less than the porosity of the spacer 13 .
  • the porosity of the first barrier 16 is smaller than that of the separator 13 , so that the first barrier 16 can more effectively block the passage of lithium ions.
  • Porosity refers to the percentage of pore volume in a bulk material to the total volume of the material in its natural state.
  • the test method of porosity is the true density test method.
  • the porosity of the first barrier 16 is 10%-70%, and optionally, the porosity of the first barrier 16 is 20%-60%.
  • the hardness of the first blocking member 16 is greater than that of the isolation member 13 .
  • the first stopper 16 has a relatively high hardness, can withstand a large impact force, and reduces the deformation of the first stopper 16 when it is subjected to an impact force, thereby effectively reducing the first bending portion 14a and the second bending portion 14a.
  • the vibration amplitude of the bending part 14b reduces the impact force received by the first bending part 14a and the second bending part 14b, and reduces the shedding of the active material.
  • the Shore hardness of the first blocking member 16 is greater than that of the isolation member 13 .
  • the first stopper 16 has a relatively high hardness, which can also support the spacer 13 and reduce the risk of the end of the spacer 13 being folded between the first bending portion 14a and the second bending portion 14b.
  • one end of the spacer 13 may or may not exceed the first stopper 16, and the other end of the spacer 13 may or may not exceed the first stopper 16. Blocker 16.
  • both ends of the spacer 13 exceed the first stopper 16 .
  • One end of the spacer 13 in the first direction X is located on the outer side of one end of the first stopper 16 in the first direction X, and the other end of the spacer 13 in the first direction X is located in the first direction X.
  • the first barrier 16 does not increase the maximum size of the electrode assembly 10 in the first direction X, and improves the energy density of the electrode assembly 10 .
  • a first barrier is attached to the surface of the spacer 13 .
  • a first stopper 16 is attached to the first bent portion 14a.
  • the first blocking member 16 may be attached to the surface of the first bending portion 14a by means of adhesion.
  • the material of the first barrier 16 includes at least one of inorganic oxide and polymer.
  • the inorganic oxide can be magnesium oxide (MgO), calcium oxide (CaO), boehmite, wollastonite, barium sulfate (BaSO4), calcium sulfate (CaSO4), calcium carbonate (CaCO3), aluminum oxide ( At least one of Al2O3) and silicon dioxide (SiO2);
  • the polymer can be at least one of polypropylene, polyvinyl chloride, polyethylene, epoxy resin, polyacrylate and polyurethane rubber.
  • the first blocking member 16 includes a first base layer 161 and a first adhesive layer 162 , and the first adhesive layer 162 is disposed on a surface of the first base layer 161 facing the first bending portion 14 a.
  • the first base layer 161 includes a first main body portion 161a and a first support portion 161b connected to the first main body portion 161a, and the first adhesive layer 162 is used to bond at least part of the first main body portion 161a to the first bending portion 14a, the first supporting portion 161b protrudes from the first bending portion 14a in the first direction X.
  • the material of the first base layer 161 includes polyethylene and/or ethylene-vinyl acetate copolymer (Ethylene Vinyl Acetate Copolymer, EVA).
  • the first main body portion 161a is a portion of the first base layer 161 overlapping with the first bent portion 14a in the thickness direction of the first bent portion 14a.
  • the first supporting portion 161b does not overlap with the first bending portion 14a in the thickness direction of the first bending portion 14a.
  • the first body portion 161a is used to block at least a part of ions extracted from the positive electrode active material layer 112a of the first bent portion 14a, thereby reducing the occurrence of lithium precipitation.
  • the first supporting part 161b plays a supporting role, which can effectively reduce the vibration amplitude of the first bending part 14a and the second bending part 14b, and reduce the impact on the first bending part 14a and the second bending part 14b Force, reduce the shedding of active materials, thereby reducing the occurrence of lithium precipitation, and improve the safety performance of battery cells.
  • the first body part 161a is entirely bonded to the first bending part 14a through the first adhesive layer 162 . In other embodiments, a part of the first body part 161a is bonded to the first bending part 14a through the first adhesive layer 162, and a part of the first body part 161a is not provided with the first adhesive layer 162 and is not bonded. to the first bent portion 14a.
  • At least part of the surface of the first supporting portion 161b facing the first bending portion 14a is not provided with the first adhesive layer 162 .
  • the first support part 161b protrudes from the first bending part 14a and does not need to be bonded to the first bending part 14a, so the first adhesive layer 162 on the surface of the first support part 161b can be omitted, which can save materials and improve energy efficiency. density.
  • This embodiment can also reduce the possibility of the first support portion 161b being bonded to the spacer 13, and reduce the risk of the spacer 13 being wrinkled under the influence of the first support portion 161b.
  • Fig. 12 is a schematic partial cross-sectional view of an electrode assembly provided by another embodiment of the present application.
  • first stoppers 16 are attached to both surfaces of the first bent portion 14 a.
  • at least two first stoppers 16 are attached to the first bent part 14a, and the first main body parts 161a of the two first stoppers 16 are respectively arranged on both sides of the first bent part 14a, and the two No first adhesive layer 162 is provided on the first supporting portion 161 b of the first blocking member 16 .
  • the first main body portions 161a of the two first blocking members 16 are adhered to the two surfaces of the first bending portion 14a respectively.
  • the first main body portions 161 a of the two first blocking members 16 are respectively used to block at least a part of ions released from the positive electrode active material layer 112 a on both sides of the first bent portion 14 a.
  • the first supporting portions 161b of the two first blocking members 16 can protect the first bending portion 14a from both sides, and reduce the impact force on the first bending portion 14a.
  • Fig. 13 is a schematic partial cross-sectional view of an electrode assembly provided by some other embodiments of the present application.
  • At least part of the surface of the first support portion 161 b facing the first bending portion 14 a is provided with a first adhesive layer 162 .
  • the first adhesive layer 162 can adhere the first supporting part 161b to a set member as required.
  • the first supporting part 161b can be bent and bonded to the end of the first bent part 14a along the first direction X, which can increase the distance between the first blocking part 16 and the first bent part 14a.
  • the bonding area reduces the risk of the first blocking member 16 falling off from the first bending portion 14a.
  • first stoppers 16 are attached to both surfaces of the first bending part 14a, and the first body parts 161a of the two first stoppers 16 are respectively disposed on both sides of the first bending part 14a. On the side, the first supporting portions 161b of the two first blocking members 16 are connected through the first adhesive layer 162 .
  • the first body portions 161a of the two first blocking members 16 are adhered to the two surfaces of the first bending portion 14a.
  • the first support part 161b of one first stopper 16 is provided with a first adhesive layer 162, and the other first stopper 16 No first adhesive layer 162 is provided on the first support part 161b.
  • the two first support parts 161b are pressed together, and one first adhesive
  • the connecting layer 162 connects the two first supporting parts 161b.
  • the first support part 161b of the two first stoppers 16 is provided with a first adhesive layer 162, and the After the two first stoppers 16 are bonded to the first bending portion 14a, the two first support portions 161b are pressed together, and the two first adhesive layers 162 are bonded together to connect the two first support portions 161b connection.
  • the first support portions 161b of the two first blocking pieces 16 are connected by the first adhesive layer 162, so that the two first blocking pieces 16 are adhered to each other, reducing the risk of the first blocking piece 16 falling off from the first bending portion 14a. risk, and improve the reliability of the first stopper 16 in the service life of the battery cells.
  • Fig. 14 is a schematic partial cross-sectional view of an electrode assembly provided by some further embodiments of the present application.
  • the electrode assembly 10 is further provided with a second barrier 17, at least a part of the second barrier 17 is located between the first bending portion 14a and the second bending portion 14b.
  • the first stopper 16 and the second stopper 17 are arranged at intervals along the first direction X, the end of the first stopper 16 facing away from the second stopper 17 exceeds the end of the first bending part 14a, and the end of the second stopper 17 away from One end of the first blocking member 16 is beyond the other end of the first bending portion 14a.
  • the first blocking member 16 and the second blocking member 17 are used to block at least a part of ions exiting from the first bending portion 14 a from being inserted into the second bending portion 14 b.
  • the part of the first stopper 16 beyond the first bending part 14a can play a supporting role, reduce the impact force received by one end of the first bending part 14a during vibration, and reduce the falling off of the active material; the second stopper 17 is beyond the first
  • the part of the first bending part 14a can play a supporting role, reduce the impact force on the other end of the first bending part 14a during vibration, and reduce the falling off of the active material.
  • the second blocking member 17 is attached to the first bent portion 14a.
  • the second stopper 17 has the same structure as the first stopper 16 .
  • the second barrier 17 includes a second base layer 171 and a second adhesive layer 172 .
  • the second adhesive layer 172 is disposed on the surface of the second base layer 171 facing the first bending portion 14a.
  • the second base layer 171 includes a second main body portion 171a and a second support portion 171b connected to the second main body portion 171a, and the second adhesive layer 172 is used to bond at least part of the second main body portion 171a to the first bending portion 14a, the second supporting portion 171b protrudes from the first bending portion 14a in the first direction X. In the thickness direction of the first bent portion 14a, the second body portion 171a overlaps with the first bent portion 14a.
  • the second main body portion 171a is used to block at least a part of ions extracted from the positive electrode active material layer 112a of the first bent portion 14a, thereby reducing the occurrence of lithium precipitation.
  • the second supporting part 171b plays a supporting role, which can effectively reduce the vibration amplitude of the first bending part 14a, reduce the impact force on the first bending part 14a, and reduce the falling off of the active material.
  • the second body part 171a is entirely bonded to the first bending part 14a through the second adhesive layer 172 .
  • At least part of the surface of the second support portion 171b facing the first bending portion 14a is not provided with the second adhesive layer 172 .
  • the surface of the second support portion 171 b facing the first bending portion 14 a may also be provided with a second adhesive layer 172 .
  • the electrode assembly 10 is further provided with a third barrier (not shown), the third barrier is attached to the first bent portion 14a and is located between the first barrier 16 and the second barrier 17 .
  • Fig. 15 is a schematic diagram of a partial structure of an electrode assembly provided by another embodiment of the present application.
  • a first stopper 16 is attached to the surface of the second bent portion 14 b.
  • the first body portion of the first blocking member 16 is adhered to the surface of the second bending portion 14b.
  • both the surface of the first bending portion 14a and the surface of the second bending portion 14b are attached with the first blocking member 16 .
  • Fig. 16 is a schematic diagram of a partial structure of an electrode assembly provided by some other embodiments of the present application.
  • a first barrier 16 is attached to the surface of the spacer 13 .
  • the first blocking member 16 is integrally bonded to the surface of the isolation member 13 .
  • Fig. 17 is a schematic diagram of a partial structure of an electrode assembly provided by another embodiment of the present application.
  • one end of the first blocking member 16 along the winding direction A is located in the bending area B, and the other end of the first blocking member 16 along the winding direction A is located in the straight area C.
  • one end of the first stopper 16 along the winding direction A is adjacent to the junction of the bending zone B and the straight zone C.
  • the first blocking member 16 is attached to the first bent portion 14a and the first straight portion 15a at the same time.
  • Fig. 18 is a schematic diagram of a partial structure of an electrode assembly provided by some other embodiments of the present application.
  • both ends of the first stopper 16 along the winding direction A are located in the straight zone C.
  • the first blocking member 16 is attached to the first bent portion 14a and the first straight portion 15a at the same time.
  • Fig. 19 is a schematic flowchart of a method for manufacturing an electrode assembly provided by some embodiments of the present application.
  • the manufacturing method of the electrode assembly of the embodiment of the present application includes:
  • the rolled structure includes a bending region.
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part.
  • At least a part of the first blocking member is located between the first bending portion and the second bending portion, and the first blocking member is used for blocking at least a part of ions exiting from the first bending portion from being inserted into the second bending portion. In the first direction, at least one end of the first blocking member exceeds the first bending portion and the second bending portion, and the first direction is perpendicular to the winding direction.
  • Step S100 includes: S110, providing a positive pole piece; S120, providing a negative pole piece; S130, providing a first barrier.
  • step S110 and step S120 are executed in no particular order, and may also be executed simultaneously.
  • Fig. 20 is a schematic block diagram of an electrode assembly manufacturing system provided by some embodiments of the present application.
  • the manufacturing system 8 of the electrode assembly includes: a first providing device 81 for providing positive electrode sheets; a second providing device 82 for providing negative electrode sheets; a third providing device 83 , for providing the first barrier; the assembly device 84, for winding the positive pole piece and the negative pole piece along the winding direction to form a wound structure.
  • the rolled structure includes a bending region.
  • Both the positive pole piece and the negative pole piece include a plurality of bending parts located in the bending area, at least one bending part in the positive pole piece is the first bending part, and at least one bending part in the negative pole piece is the first bending part.
  • At least a part of the first blocking member is located between the first bending portion and the second bending portion, and the first blocking member is used for blocking at least a part of ions exiting from the first bending portion from being inserted into the second bending portion. In the first direction, at least one end of the first blocking member exceeds the first bending portion and the second bending portion, and the first direction is perpendicular to the winding direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本申请实施例提供一种电极组件、电池单体、电池以及用电装置。本申请实施例的电极组件,包括正极极片和负极极片,正极极片和负极极片沿卷绕方向卷绕并形成卷绕结构,卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。电极组件设置有第一阻挡件,至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。本申请能够提高电池单体的安全性能。

Description

电极组件、电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电极组件及其制造方法和制造***、电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个不可忽视的问题。如果电池单体的安全问题不能保证,那该电池单体就无法使用。因此,如何增强电池单体的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电极组件及其制造方法和制造***、电池单体、电池以及用电装置,能够增强电池单体的安全性。
第一方面,本申请实施例提供了一种电极组件,包括正极极片和负极极片,正极极片和负极极片沿卷绕方向卷绕并形成卷绕结构,卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。电极组件设置有第一阻挡件,至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。
上述方案中,通过在第一弯折部和第二弯折部之间设置第一阻挡件,可以有效降低析锂现象。在充电时,第一弯折部的正极活性物质层脱出的离子的至少一部分被第一阻挡件阻挡,使得被第一阻挡件阻挡的离子不能嵌入第二弯折部的负极活性物质层,使得当第二弯折部发生负极活性物质脱落时,降低析锂的发生。第一阻挡件的超出第一弯折部和第二弯折部的部分可以起到支撑作用,其能够有效地减小第一弯折部和第二弯折部震动的幅度,降低第一弯折部和第二弯折部受到的冲击力,减少活性物质的脱落,从而降低析锂的发生,提高电池单体的安全性能。
在一些实施例中,第一弯折部上附接有第一阻挡件。第一阻挡件可通过粘附的 方式附接在第一弯折部的表面。
在一些实施例中,第一阻挡件包括第一基层和第一粘接层,第一粘接层设置于第一基层的面向第一弯折部的表面。第一基层包括第一主体部和连接于第一主体部的第一支撑部,第一粘接层用于将第一主体部的至少部分粘接于第一弯折部,第一支撑部在第一方向上突出于第一弯折部。第一主体部用于阻挡第一弯折部的正极活性物质层脱出的至少一部分离子,从而降低析锂的发生。第一支撑部起到支撑作用,其能够有效地减小第一弯折部和第二弯折部震动的幅度,降低第一弯折部和第二弯折部受到的冲击力,减少活性物质的脱落,从而降低析锂的发生,提高电池单体的安全性能。
在一些实施例中,第一支撑部的面向第一弯折部的表面的至少部分未设置第一粘接层。第一支撑部突出于第一弯折部,无需粘接到第一弯折部,所以第一支撑部表面的第一粘接层可以省去,这样可以节省材料,提高能量密度。
在一些实施例中,第一弯折部的两个表面均附接有第一阻挡件,两个第一阻挡件的第一主体部分别设置于第一弯折部的两侧,两个第一阻挡件的第一支撑部均未设置第一粘接层。
在一些实施例中,第一支撑部的面向第一弯折部的表面的至少部分设置有第一粘接层。
在一些实施例中,第一弯折部的两个表面均附接有第一阻挡件,两个第一阻挡件的第一主体部分别设置于第一弯折部的两侧,两个第一阻挡件的第一支撑部通过第一粘接层相连。两个第一阻挡件的第一支撑部通过第一粘接层相连,使得两个第一阻挡件相互粘附,降低第一阻挡件从第一弯折部上脱落的风险,提高第一阻挡件在电池单体的使用寿命中的可靠性。
在一些实施例中,在第一方向上,第一阻挡件的两端均超出第一弯折部。第一阻挡件沿第一方向的两端可以起到支撑作用,减小第一弯折部震动的幅度,降低第一弯折部受到的冲击力,减少活性物质的脱落。
在一些实施例中,在第一方向上,第一阻挡件的两端均超出第二弯折部。第一阻挡件沿第一方向的两端可以起到支撑作用,减小第二弯折部震动的幅度,降低第二弯折部受到的冲击力,减少活性物质的脱落。
在一些实施例中,电极组件还设置有第二阻挡件,第二阻挡件的至少一部分位于第一弯折部和第二弯折部之间。第一阻挡件和第二阻挡件沿第一方向间隔设置,第一阻挡件的背离第二阻挡件的一端超出第一弯折部的一端,第二阻挡件的背离第一阻挡件的一端超出第一弯折部的另一端。
在一些实施例中,电极组件还包括用于隔离第一极片和第二极片的隔离件,在第一方向上,隔离件的两端均超出第一弯折部和第二弯折部。隔离件能够将第一弯折部和第二弯折部隔开,降低第一弯折部和第二弯折部导通的风险。
在一些实施例中,第一阻挡件的孔隙率小于隔离件的孔隙率,使得第一阻挡件可以更有效地阻挡锂离子的通过。
在一些实施例中,第一阻挡件的硬度大于隔离件的硬度。第一阻挡件具有相对较大的硬度,可以承受较大的冲击力,减小第一阻挡件在受到冲击力时的变形,从而 有效地减小第一弯折部和第二弯折部震动的幅度,降低第一弯折部和第二弯折部受到的冲击力,减少活性物质的脱落。
在一些实施例中,在第一方向上,隔离件的两端超出第一阻挡件。这样,第一阻挡件不会增大电极组件在第一方向上的最大尺寸,提高电极组件的能量密度。
在一些实施例中,隔离件的表面附接有第一阻挡件。
在一些实施例中,卷绕结构还包括与弯折区相连的平直区。第一阻挡件沿卷绕方向的两端均位于弯折区;或者,第一阻挡件沿卷绕方向的一端位于弯折区,第一阻挡件沿卷绕方向的另一端位于平直区;或者,第一阻挡件沿卷绕方向的两端均位于平直区。
在一些实施例中,正极极片还包括位于平直区的第一平直部和连接于第一平直部的正极极耳,第一平直部连接于第一弯折部,正极极耳连接于第一平直部沿第一方向的一端。在第一方向上,第一阻挡件的靠近正极极耳的一端超出第一弯折部和第二弯折部。第一阻挡件能够减小电极组件在正极极耳侧的震动幅度,从而降低正极极耳撕裂的风险。
在一些实施例中,正极极片中的至少最内侧的一个弯折部为第一弯折部,负极极片中的至少最内侧的一个弯折部为第二弯折部。弯折区最内侧的两个弯折部之间设置有第一阻挡件,这样可以减少弯折区最内侧的两个弯折部之间的析锂现象,提高安全性能。
第二方面,本申请实施例提供了一种电池单体,包括外壳和第一方面任一实施例的电极组件,电极组件容纳于外壳内。
第三方面,本申请实施例提供了一种电池,包括箱体和第二方面的电池单体,电池单体容纳于箱体内。
第四方面,本申请实施例提供了一种用电装置,包括第三方面的电池,电池用于提供电能。
第五方面,本申请实施例提供了一种电极组件的制造方法,包括:提供正极极片、负极极片和第一阻挡件;沿卷绕方向卷绕正极极片和负极极片以形成卷绕结构。卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。
第六方面,本申请实施例提供了一种电极组件的制造***,包括:第一提供装置,用于提供正极极片;第二提供装置,用于提供负极极片;第三提供装置,用于提供第一阻挡件;组装装置,用于沿卷绕方向卷绕正极极片和负极极片以形成卷绕结构。卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上, 第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的***示意图;
图3为图2所示的电池模块的结构示意图;
图4为本申请一些实施例提供的电池单体的***示意图;
图5为本申请一些实施例提供的电极组件的结构示意图;
图6为本申请另一些实施例提供的电极组件的结构示意图;
图7为本申请一些实施例提供的电极组件的局部结构示意图;
图8为图7所示的电极组件沿线D-D作出的剖视示意图;
图9为图8所示的电极组件在方框F处的放大示意图;
图10为图7所示的电极组件沿线E-E作出的剖视示意图;
图11为本申请一些实施例提供的电极组件的正极极片在展开状态下的局部结构示意图;
图12为本申请另一些实施例提供的电极组件的局部剖视示意图;
图13为本申请又一些实施例提供的电极组件的局部剖视示意图;
图14为本申请再一些实施例提供的电极组件的局部剖视示意图;
图15为本申请另一些实施例提供的电极组件的局部结构示意图;
图16为本申请又一些实施例提供的电极组件的局部结构示意图;
图17为本申请另一些实施例提供的电极组件的局部结构示意图;
图18为本申请又一些实施例提供的电极组件的局部结构示意图;
图19为本申请一些实施例提供的电极组件的制造方法的流程示意图;
图20为本申请一些实施例提供的电极组件的制造***的示意性框图
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领 域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极凸部,正极集流部涂覆有正极活性物质层,正极凸部的至少部分未涂覆正极活性物质层,正极凸部作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和 凸出于负极集流部的负极凸部,负极集流部涂覆有负极活性物质层,负极凸部的至少部分未涂覆负极活性物质层,负极凸部作为负极极耳。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
锂离子电池单体在充电时,锂离子从正极活性物质层脱出并嵌入负极活性物质层,但是可能会发生一些异常情况,例如,负极活性物质层嵌锂空间不足、锂离子嵌入负极活性物质层阻力太大或锂离子过快的从正极活性物质层脱出,脱出的锂离子无法等量的嵌入负极极片的负极活性物质层,无法嵌入负极极片的锂离子只能在负极极片表面得电子,从而形成金属锂单质,这就是析锂现象。析锂不仅使锂离子电池单体性能下降,循环寿命大幅缩短,还限制了锂离子电池单体的快充容量。除此之外,锂离子电池单体发生析锂时,析出来的锂金属非常活泼,在较低的温度下便可以与电解液发生反应,造成电池单体自产热起始温度降低和自产热速率增大,严重危害电池单体的安全。再者,析锂严重时,脱出的锂离子可以在负极极片表面形成锂结晶,而锂结晶容易刺破隔离件,造成相邻的正极极片和负极极片短路的风险。
发明人在研发过程中发现,电极组件受到震动或挤压时,会导致正极极片的活性物质或负极极片的活性物质脱落,称之为掉粉现象。由于活性物质的脱落,尤其是负极极片上活性物质的脱落,可能导致该负极极片的负极活性物质层的嵌锂位少于其相邻的正极极片的正极活性物质层能够提供的锂离子数量,因此,锂离子电池单体在充电时,容易发生析锂现象。
发明人在研发过程中还发现,卷绕式的电极组件在其弯折区更容易出现析锂现象,经过进一步研究发现,发明人找到了造成该析锂现象的原因主要是因为位于弯折区的正极极片和负极极片需要进行折弯,而正极活性物质层和负极活性物质层容易在折弯过程中产生应力集中并导致各自的活性物质脱落。由于活性物质的脱落,尤其是负极极片上活性物质的脱落,可能导致该负极极片的负极活性物质层的嵌锂位少于其相邻的正极极片的正极活性物质层能够提供的锂离子数量,从而引发析锂现象。
鉴于此,本申请实施例提供了一种技术方案,在该技术方案中,电极组件包括正极极片和负极极片,正极极片和负极极片沿卷绕方向卷绕并形成卷绕结构,卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。电极组件设置有第一阻挡件,至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。具有这种结构的电池单体能够减少析锂,降低安全风险。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动 玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的***示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容纳空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的结构示意图。如图3所示,在一些实施例中,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池 模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池单体的***示意图。如图4所示,本申请实施例提供的电池单体7包括电极组件10和外壳20,电极组件10容纳于外壳20内。
在一些实施例中,外壳20还可用于容纳电解质,例如电解液。外壳20可以是多种结构形式。
在一些实施例中,外壳20可以包括壳体21和端盖22,壳体21为一侧开口的空心结构,端盖22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。当然,端盖22也可以是多种结构,比如,端盖22为板状结构、一端开口的空心结构等。示例性的,在图4中,壳体21为长方体结构,端盖22为板状结构,端盖22盖合于壳体21顶部的开口处。
在一些实施例中,电池单体7还可以包括正极电极端子30、负极电极端子40和泄压机构50,正极电极端子30、负极电极端子40和泄压机构50均安装于端盖22上。正极电极端子30和负极电极端子40均用于与电极组件10电连接,以输出电极组件10所产生的电能。泄压机构50用于在电池单体7的内部压力或温度达到预定值时泄放电池单体7内部的压力。
示例性的,泄压机构50位于正极电极端子30和负极电极端子40之间,泄压机构50可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
当然,在另一些实施例中,外壳20也可以是其他结构,比如,外壳20包括壳体21和两个端盖22,壳体21为相对的两侧开口的空心结构,一个端盖22对应盖合于壳体21的一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。在这种结构中,正极电极端子30和负极电极端子40可安装在同一个端盖22上,也可以安装在不同的端盖22上;可以是一个端盖22上安装有泄压机构50,也可以是两个端盖22上均安装有泄压机构50。
需要说明的是,在电池单体7中,容纳于外壳20内的电极组件10可以是一个,也可以是多个。示例性的,在图4中,电极组件10为两个。
图5为本申请一些实施例提供的电极组件的结构示意图。
如图5所示,本申请实施例的电极组件10包括正极极片11和负极极片12,正极极片11和负极极片12沿卷绕方向A卷绕并形成卷绕结构。
在本申请实施例中,卷绕方向A即为正极极片11和负极极片12从内向外周向卷绕的方向。在图5中,卷绕方向A为顺时针方向。
在一些实施例中,电极组件10还包括隔离件13,隔离件13用于将正极极片11和负极极片12隔离,以降低正极极片11与负极极片12之间出现短路的风险。隔离件13具有大量贯通的微孔,能够保证电解质离子自由通过,对锂离子有很好的透过性,所以,隔离件13基本上不能阻挡锂离子通过。示例性地,隔离件13的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
正极极片11、负极极片12和隔离件13均为带状结构。本申请实施例可以先将正极极片11、隔离件13和负极极片12依次层叠,然后再卷绕两圈以上以形成电极组件10。
电极组件10可以是多种形状,例如,电极组件10可呈圆柱体、扁平体、棱柱体(例如三棱柱、四棱柱或六棱柱)或其它形状。
在一些实施例中,卷绕结构包括弯折区B。正极极片11和负极极片12均包括位于弯折区B的多个弯折部14。弯折区B为电极组件10具有弯折结构的区域,正极极片11的位于弯折区B的部分(即正极极片11的弯折部14)和负极极片12的位于弯折区B的部分(即负极极片12的弯折部14)均弯折设置。示例性地,正极极片11的弯折部14和负极极片12的弯折部14大体弯折为圆弧形。
示例性地,在弯折区B,正极极片11的弯折部14和负极极片12的弯折部14交错排布,即在弯折区B,以负极极片12的一个弯折部14、正极极片11的一个弯折部14、负极极片12的一个弯折部14……的顺序依次排布。可选地,正极极片11最内侧的一个弯折部14位于负极极片12最内侧的一个弯折部14的外侧。
在一些实施例中,电极组件10呈扁平体。示例性地,卷绕结构还包括与弯折区B相连的平直区C。正极极片11和负极极片12均包括位于平直区C的多个平直部15。平直区C为电极组件10具有平直结构的区域,可选地,弯折区B为两个且分别连接于平直区C的两端。
正极极片11的位于平直区C的部分(即正极极片11的平直部15)和负极极片12的位于平直区C的部分(即负极极片12的平直部15)基本平直设置。正极极片11的平直部15和负极极片12的平直部15的表面均大体为平面。
图6为本申请另一些实施例提供的电极组件的结构示意图。
如图6所示,在一些实施例中,电极组件10大体为圆柱体。示例性地,卷绕结构可以只有弯折区B而没有平直区。在正极极片11中,正极极片11的一圈即为一个弯折部14;在负极极片12中,负极极片12的一圈即为一个弯折部14。
图7为本申请一些实施例提供的电极组件的局部结构示意图;图8为图7所示的电极组件沿线D-D作出的剖视示意图;图9为图8所示的电极组件在方框F处的放大示意图;图10为图7所示的电极组件沿线E-E作出的剖视示意图;图11为本申请一些实施例提供的电极组件的正极极片在展开状态下的局部结构示意图。
如图7至图11所示,正极极片11包括正极集流体111和涂覆于正极集流体111表面的正极涂层112,正极集流体111包括正极集流部111a和凸出于正极集流部111a的正极极耳111b,正极涂层112包括正极活性物质层112a,正极集流部111a的两个表面涂覆有正极活性物质层112a,正极极耳111b至少部分未涂覆正极活性物质层112a。正极极耳111b的未涂覆正极活性物质层112a的部分用于电连接到电极端子。
在一些实施例中,正极集流部111a仅部分区域涂覆有正极活性物质层112a,正极极耳111b未涂覆正极活性物质层112a。正极涂层112还包括绝缘层112b,绝缘层112b位于正极活性物质层112a的靠近正极极耳111b的一侧,正极集流部111a的未涂覆正极活性物质层112a的区域涂覆有绝缘层112b。示例性地,正极极耳111b的靠近 正极集流部111a的根部也涂覆有绝缘层112b。
在正极极片11的弯折部中,正极涂层112沿第一方向X的两端与正极集流部111a沿第一方向X的两端齐平。第一方向X垂直于卷绕方向A。
在一些实施例中,正极极耳111b连接于平直部沿第一方向X的一端并凸出于平直部。在第一方向X上,正极极片11的平直部的两端分别与正极极片11的弯折部的两端齐平。在正极极片11中,可以部分地平直部上连接有正极极耳111b,也可以全部的平直部上均连接有正极极耳111b。示例性地,正极极耳111b为多个并层叠设置。
负极极片12包括负极集流体121和涂覆于负极集流体121表面的负极涂层,负极集流体121包括负极集流部和凸出于负极集流部的负极极耳,负极涂层包括负极活性物质层122,负极集流部的两个表面涂覆有负极活性物质层122,负极极耳至少部分未涂覆负极活性物质层122。负极极耳的未涂覆负极活性物质层122的部分用于电连接到电极端子。
在负极极片12的弯折部中,负极活性物质层122沿第一方向X的两端与负极集流部沿第一方向X的两端齐平。
在第一方向X上,负极活性物质层122的两端均超出正极活性物质层112a。第一方向X垂直于卷绕方向A。在第一方向X上,正极活性物质层112a的一端部位于负极活性物质层122的一端部的更靠内一侧,正极活性物质层112a的另一端部位于负极活性物质层122的另一端部的更靠内一侧,这样,负极活性物质层122能够覆盖正极活性物质层112a,为正极活性物质层112a脱出的锂离子提供更多的嵌锂位,降低析锂风险。
在一些实施例中,正极极片11中的至少一个弯折部为第一弯折部14a,负极极片12中的至少一个弯折部为与第一弯折部14a相邻的第二弯折部14b。电极组件10设置有第一阻挡件16,至少一部分第一阻挡件16位于第一弯折部14a和第二弯折部14b之间,第一阻挡件16用于阻挡从第一弯折部14a脱出的至少一部分离子嵌入第二弯折部14b。在第一方向X上,第一阻挡件16的至少一端超出第一弯折部14a和第二弯折部14b。
在第一方向X上,第一阻挡件16的一端超出第一弯折部14a和第二弯折部14b,而第一阻挡件16的另一端既可以超出第一弯折部14a也可以不超出第一弯折部14a、既可以超出第二弯折部14b也可以不超出第二弯折部14b。
在正极极片11中,第一弯折部14a可以为一个或多个。在正极极片11中,可以是全部弯折部均为第一弯折部14a,也可以是部分地弯折部为第一弯折部14a。例如,正极极片11中的一部分弯折部为第一弯折部14a,另一部分弯折部为第三弯折部;第一弯折部14a与第二弯折部14b之间设有第一阻挡件16,而第三弯折部与两侧相邻的负极极片12的弯折部之间均未设有第一阻挡件16。
在负极极片12中,第二弯折部14b可以为一个或多个。在负极极片12中,可以是全部弯折部均为第二弯折部14b,也可以是部分地弯折部为第二弯折部14b。例如,负极极片12中的一部分弯折部为第二弯折部14b,另一部分弯折部为第四弯折部;第二弯折部14b与第一弯折部14a之间设有第一阻挡件16,而第四弯折部与两侧相邻的 正极极片11的弯折部之间均未设有第一阻挡件16。
第一弯折部14a和第二弯折部14b之间的第一阻挡件16可以为一个或多个。在第一弯折部14a和第二弯折部14b之间,可以仅设置第一阻挡件16,也可以设置同时其它阻挡件,例如第二阻挡件、第三阻挡件等。
第一阻挡件16既可以全部位于弯折区B,也可以仅一部分位于弯折区B。例如,对于包括平直区C的电极组件,第一阻挡件16既可以全部位于弯折区B,也可以一部分位于弯折区B而另一部分位于平直区C。
第一阻挡件16既可以独立地设置于正极极片11和负极极片12,也可以附接在正极极片11的任意表面、负极极片12的任意表面或隔离件13的任意表面。第一阻挡件16独立地设置于正极极片11和负极极片12,是指第一阻挡件16分别与正极极片11和负极极片12分离式地层叠,即不具有粘附或涂覆关系;附接指的是通过粘附、涂覆或喷涂等方式连接。
第二弯折部在折弯过程中产生应力集中并可能引发负极活性物质脱落;由于负极活性物质的脱落,可能导致第二弯折部的负极活性物质层的嵌锂位少于第一弯折部的正极活性物质层提供的锂离子数量,从而引发析锂现象。在电池单体的使用过程中,可能会受到震动或挤压时;第二弯折部的负极活性物质层处于折弯状态,当第二弯折部的负极活性物质层受到震动或挤压时,更容易产生负极活性物质的脱落。
本申请实施例通过在第一弯折部14a和第二弯折部14b之间设置第一阻挡件16,可以有效降低析锂现象。在充电时,第一弯折部14a的正极活性物质层112a脱出的离子的至少一部分被第一阻挡件16阻挡,使得被第一阻挡件16阻挡的离子不能嵌入第二弯折部14b的负极活性物质层122,使得当第二弯折部14b发生负极活性物质脱落时,降低析锂的发生。换言之,虽然第二弯折部14b因负极活性物质脱落而导致嵌锂位减少,但第一阻挡件16阻挡第一弯折部14a的正极活性物质层112a脱出的至少一部分离子,从而降低析锂的发生。
本申请实施例使第一阻挡件16在第一方向X上的至少一端超出第一弯折部14a和第二弯折部14b,而第一阻挡件16的超出第一弯折部14a和第二弯折部14b的部分可以起到支撑作用,其能够有效地减小第一弯折部14a和第二弯折部14b震动的幅度,降低第一弯折部14a和第二弯折部14b受到的冲击力,减少活性物质的脱落,从而降低析锂的发生,提高电池单体的安全性能。
在本申请实施例中,第一阻挡件16既能减少第一弯折部14a的正极活性物质的脱落和第二弯折部14b的负极活性物质的脱落,还能够阻挡第一弯折部14a的正极活性物质层112a脱出的至少一部分离子,从而降低析锂的发生,提高电池单体的安全性能。
在一些实施例中,在第一方向X上,第一阻挡件16的两端均超出第一弯折部14a。
第一阻挡件16在第一方向X上的一端部位于第一弯折部14a在第一方向X上的一端部的更靠外一侧,第一阻挡件16在第一方向X上的另一端部位于第一弯折部14a在第一方向X上的另一端部的更靠外一侧。
在第一方向X上,第一阻挡件16的一端超出第二弯折部14b,第一阻挡件16 的另一端可以超出第二弯折部14b,也可以不超出第二弯折部14b。
在本实施例中,第一阻挡件16沿第一方向X的两端可以起到支撑作用,减小第一弯折部14a震动的幅度,降低第一弯折部14a受到的冲击力,减少活性物质的脱落。
在一些实施例中,在第一方向X上,第一阻挡件16的两端均超出第二弯折部14b。
第一阻挡件16在第一方向X上的一端部位于第二弯折部14b在第一方向X上的一端部的更靠外一侧,第一阻挡件16在第一方向X上的另一端部位于第二弯折部14b在第一方向X上的另一端部的更靠外一侧。
在本实施例中,第一阻挡件16沿第一方向X的两端可以起到支撑作用,减小第二弯折部14b震动的幅度,降低第二弯折部14b受到的冲击力,减少活性物质的脱落,从而降低析锂的发生,提高电池单体的安全性能。
在一些实施例中,正极极片11中的至少最内侧的一个弯折部为第一弯折部14a,负极极片12中的至少最内侧的一个弯折部为第二弯折部14b。换言之,弯折区B最内侧的两个弯折部之间设置有第一阻挡件16。
正极极片11最内侧的一个弯折部弯折程度最大,即正极极片11最内侧的一个弯折部的正极活性物质脱落的现象最严重;负极极片12最内侧的一个弯折部弯折程度最大,即负极极片12最内侧的一个弯折部的负极活性物质脱落的现象最严重。本申请实施例将正极极片11中的至少最内侧的一个弯折部设置为第一弯折部14a,将负极极片12中的至少最内侧的一个弯折部设置为第二弯折部14b,这样可以减少弯折区B最内侧的两个弯折部之间的析锂现象,提高安全性能。
在一些实施例中,负极极片12从内向外的两个以上的弯折部为第一弯折部14a,正极极片11从内向外的两个以上的弯折部为第二弯折部14b。第一弯折部14a和第二弯折部14b从内向外交替布置。相邻的第一弯折部14a和第二弯折部14b之间设置有第一阻挡件16。
在一些实施例中,第一阻挡件16沿卷绕方向A的两端均位于弯折区B;示例性地,第一阻挡件16沿卷绕方向A的两端均位于弯折区B和平直区C的交界处,或者,第一阻挡件16沿卷绕方向A的两端均临近弯折区B和平直区C的交界处。在另一些实施例中,第一阻挡件16沿卷绕方向A的一端位于弯折区B,第一阻挡件16沿卷绕方向A的另一端位于平直区C。在又一些实施例中,第一阻挡件16沿卷绕方向A的两端均位于平直区C。
在一些实施例中,正极极片11还包括位于平直区C的第一平直部15a和连接于第一平直部15a的正极极耳111b,第一平直部15a连接于第一弯折部14a,正极极耳111b连接于第一平直部15a沿第一方向X的一端。在第一方向X上,第一阻挡件16的靠近正极极耳111b的一端超出第一弯折部14a和第二弯折部14b。
第一平直部15a沿第一方向X的两端分别与第一弯折部14a沿第一方向X的两端齐平,正极极耳111b凸出于第一平直部15a。
当电极组件10震动时,由于正极极耳111b较薄,容易出现撕裂的情况,影响过流能力。由于第一阻挡件16的靠近正极极耳111b的一端超出第一弯折部14a和第二 弯折部14b,所以第一阻挡件16能够减小电极组件10在正极极耳111b侧的震动幅度,从而降低正极极耳111b撕裂的风险。
在一些实施例中,电极组件10还包括用于隔离第一极片11和第二极片12的隔离件13,在第一方向X上,隔离件13的两端均超出第一弯折部14a和第二弯折部14b。
隔离件13在第一方向X上的一端部位于第一弯折部14a在第一方向X上的一端部的更靠外一侧、位于第二弯折部14b在第一方向X上的一端部的更靠外一侧;隔离件13在第一方向X上的另一端部位于第一弯折部14a在第一方向X上的另一端部的更靠外一侧、位于第二弯折部14b在第一方向X上的另一端部的更靠外一侧。
在本实施例中,隔离件13能够将第一弯折部14a和第二弯折部14b隔开,降低第一弯折部14a和第二弯折部14b导通的风险,提高安全性能。
在一些实施例中,第一阻挡件16的孔隙率小于隔离件13的孔隙率。
在本申请实施例中,第一阻挡件16的孔隙率小于隔离件13的孔隙率,从而使得第一阻挡件16可以更有效地阻挡锂离子的通过。孔隙率是指块状材料中孔隙体积与材料在自然状态下总体积的百分比。一般情况下,孔隙率的测试方法为真密度测试方法。
示例性地,第一阻挡件16的孔隙率为10%-70%,可选地,第一阻挡件16的孔隙率为20%-60%。
在一些实施例中,第一阻挡件16的硬度大于隔离件13的硬度。
第一阻挡件16具有相对较大的硬度,可以承受较大的冲击力,减小第一阻挡件16在受到冲击力时的变形,从而有效地减小第一弯折部14a和第二弯折部14b震动的幅度,降低第一弯折部14a和第二弯折部14b受到的冲击力,减少活性物质的脱落。示例性地,第一阻挡件16的邵氏硬度大于隔离件13的邵氏硬度。
第一阻挡件16具有相对较大的硬度,其还能够支撑隔离件13,减少隔离件13的端部翻折到第一弯折部14a和第二弯折部14b之间的风险。
在第一方向X上,隔离件13的一端可以超出第一阻挡件16、也可以不超出第一阻挡件16,隔离件13的另一端可以超出第一阻挡件16、也可以不超出第一阻挡件16。
在一些实施例中,在第一方向X上,隔离件13的两端超出第一阻挡件16。
隔离件13在第一方向X上的一端部位于第一阻挡件16在第一方向X上的一端部的更靠外一侧,隔离件13在第一方向X上的另一端部位于第一阻挡件16在第一方向X上的另一端部的更靠外一侧。
在本实施例中,第一阻挡件16不会增大电极组件10在第一方向X上的最大尺寸,提高电极组件10的能量密度。
在一些实施例中,隔离件13的表面附接有第一阻挡件。
在一些实施例中,第一弯折部14a上附接有第一阻挡件16。示例性地,第一阻挡件16可通过粘附的方式附接在第一弯折部14a的表面。
在一些实施例中,第一阻挡件16的材质包括无机氧化物和高分子聚合物中的至少一种。示例性地,无机氧化物可以是氧化镁(MgO)、氧化钙(CaO)、勃姆石、 硅灰石、硫酸钡(BaSO4)、硫酸钙(CaSO4)、碳酸钙(CaCO3)、氧化铝(Al2O3)和二氧化硅(SiO2)中的至少一种;高分子聚合物可以是聚丙烯、聚氯乙烯、聚乙烯、环氧树脂、聚丙烯酸酯和聚氨酯橡胶中的至少一种。
在另一些实施例中,第一阻挡件16包括第一基层161和第一粘接层162,第一粘接层162设置于第一基层161的面向第一弯折部14a的表面。第一基层161包括第一主体部161a和连接于第一主体部161a的第一支撑部161b,第一粘接层162用于将第一主体部161a的至少部分粘接于第一弯折部14a,第一支撑部161b在第一方向X上突出于第一弯折部14a。
第一基层161的材质包括聚乙烯和/或乙烯-醋酸乙烯共聚物(Ethylene Vinyl Acetate Copolymer,EVA)。
第一主体部161a为第一基层161的在第一弯折部14a的厚度方向上与第一弯折部14a重叠的部分。对应地,第一支撑部161b在第一弯折部14a的厚度方向上不与第一弯折部14a重叠。第一主体部161a用于阻挡第一弯折部14a的正极活性物质层112a脱出的至少一部分离子,从而降低析锂的发生。第一支撑部161b起到支撑作用,其能够有效地减小第一弯折部14a和第二弯折部14b震动的幅度,降低第一弯折部14a和第二弯折部14b受到的冲击力,减少活性物质的脱落,从而降低析锂的发生,提高电池单体的安全性能。
在一些实施例中,第一主体部161a整体通过第一粘接层162粘接于第一弯折部14a。在另一些实施例中,第一主体部161a的一部分通过第一粘接层162粘接于第一弯折部14a,第一主体部161a的一部分未设置第一粘接层162且未粘接到第一弯折部14a。
在一些实施例中,第一支撑部161b的面向第一弯折部14a的表面的至少部分未设置第一粘接层162。第一支撑部161b突出于第一弯折部14a,无需粘接到第一弯折部14a,所以第一支撑部161b表面的第一粘接层162可以省去,这样可以节省材料,提高能量密度。本实施例还可以减小第一支撑部161b粘接到隔离件13的可能性,降低在第一支撑部161b的影响下隔离件13发生褶皱的风险。
图12为本申请另一些实施例提供的电极组件的局部剖视示意图。
如图12所示,在一些实施例中,第一弯折部14a的两个表面均附接有第一阻挡件16。示例性地,第一弯折部14a附接有至少两个第一阻挡件16,两个第一阻挡件16的第一主体部161a分别设置于第一弯折部14a的两侧,两个第一阻挡件16的第一支撑部161b均未设置第一粘接层162。两个第一阻挡件16的第一主体部161a分别粘接于第一弯折部14a的两个表面。
两个第一阻挡件16的第一主体部161a分别用于阻挡第一弯折部14a两侧正极活性物质层112a脱出的至少一部分离子。两个第一阻挡件16的第一支撑部161b能够从两侧保护第一弯折部14a,降低第一弯折部14a受到的冲击力。
图13为本申请又一些实施例提供的电极组件的局部剖视示意图。
如图13所示,在一些实施例中,第一支撑部161b的面向第一弯折部14a的表面的至少部分设置有第一粘接层162。第一粘接层162可以根据需要将第一支撑部161b粘接到设定的构件上。
在一些实施例中,第一支撑部161b可以折弯并粘接到第一弯折部14a沿第一方向X的端部,这样可以增大第一阻挡件16与第一弯折部14a的粘接面积,降低第一阻挡件16从第一弯折部14a上脱落的风险。
在一些实施例中,第一弯折部14a的两个表面均附接有第一阻挡件16,两个第一阻挡件16的第一主体部161a分别设置于第一弯折部14a的两侧,两个第一阻挡件16的第一支撑部161b通过第一粘接层162相连。
两个第一阻挡件16的第一主体部161a粘接于第一弯折部14a的两个表面。
在将两个第一阻挡件16粘接到第一弯折部14a之前,一个第一阻挡件16的第一支撑部161b上设置有第一粘接层162,另一个第一阻挡件16的第一支撑部161b上未设置第一粘接层162,将两个第一阻挡件16粘接到第一弯折部14a之后,将两个第一支撑部161b按压在一起,一个第一粘接层162将两个第一支撑部161b连接。在另一些示例中,在将两个第一阻挡件16粘接到第一弯折部14a之前,两个第一阻挡件16的第一支撑部161b上设置有第一粘接层162,将两个第一阻挡件16粘接到第一弯折部14a之后,将两个第一支撑部161b按压在一起,两个第一粘接层162粘接在一起以将两个第一支撑部161b连接。两个第一阻挡件16的第一支撑部161b通过第一粘接层162相连,使得两个第一阻挡件16相互粘附,降低第一阻挡件16从第一弯折部14a上脱落的风险,提高第一阻挡件16在电池单体的使用寿命中的可靠性。
图14为本申请再一些实施例提供的电极组件的局部剖视示意图。
在一些实施例中,电极组件10还设置有第二阻挡件17,第二阻挡件17的至少一部分位于第一弯折部14a和第二弯折部14b之间。第一阻挡件16和第二阻挡件17沿第一方向X间隔设置,第一阻挡件16的背离第二阻挡件17的一端超出第一弯折部14a的一端,第二阻挡件17的背离第一阻挡件16的一端超出第一弯折部14a的另一端。
第一阻挡件16和第二阻挡件17用于阻挡从第一弯折部14a脱出的至少一部分离子嵌入第二弯折部14b。
第一阻挡件16超出第一弯折部14a的部分可以起到支撑作用,在震动时降低第一弯折部14a的一端受到的冲击力,减少活性物质的脱落;第二阻挡件17超出第一弯折部14a的部分可以起到支撑作用,在震动时降低第一弯折部14a的另一端受到的冲击力,减少活性物质的脱落。
在一些实施例中,第二阻挡件17附接于第一弯折部14a。第二阻挡件17与第一阻挡件16采用相同的结构。示例性地,第二阻挡件17包括第二基层171和第二粘接层172。第二粘接层172设置于第二基层171的面向第一弯折部14a的表面。
第二基层171包括第二主体部171a和连接于第二主体部171a的第二支撑部171b,第二粘接层172用于将第二主体部171a的至少部分粘接于第一弯折部14a,第二支撑部171b在第一方向X上突出于第一弯折部14a。在第一弯折部14a的厚度方向上,第二主体部171a与第一弯折部14a重叠。第二主体部171a用于阻挡第一弯折部14a的正极活性物质层112a脱出的至少一部分离子,从而降低析锂的发生。第二支撑部171b起到支撑作用,其能够有效地减小第一弯折部14a震动的幅度,降低第一弯折部14a受到的冲击力,减少活性物质的脱落。
在一些实施例中,第二主体部171a整体通过第二粘接层172粘接于第一弯折部14a。
在一些实施例中,第二支撑部171b的面向第一弯折部14a的表面的至少部分未设置第二粘接层172。在另一些实施例中,第二支撑部171b的面向第一弯折部14a的表面也可设置有第二粘接层172。
在一些实施例中,电极组件10还设置有第三阻挡件(未示出),第三阻挡件附接于第一弯折部14a且位于第一阻挡件16和第二阻挡件17之间。
图15为本申请另一些实施例提供的电极组件的局部结构示意图。
如图15所示,在一些实施例中,第二弯折部14b的表面附接有第一阻挡件16。示例性地,第一阻挡件16的第一主体部粘接于第二弯折部14b的表面。
在另一些实施例中,第一弯折部14a的表面和第二弯折部14b的表面均附接有第一阻挡件16。
图16为本申请又一些实施例提供的电极组件的局部结构示意图。
在一些实施例中,隔离件13的表面附接有第一阻挡件16。示例性地,第一阻挡件16整体粘接于隔离件13的表面。
图17为本申请另一些实施例提供的电极组件的局部结构示意图。
如图17所示,第一阻挡件16沿卷绕方向A的一端位于弯折区B,第一阻挡件16沿卷绕方向A的另一端位于平直区C。示例性地,第一阻挡件16沿卷绕方向A的一端临近弯折区B和平直区C的交界处。
示例性地,第一阻挡件16同时附接于第一弯折部14a和第一平直部15a。
图18为本申请又一些实施例提供的电极组件的局部结构示意图。
如图18所示,第一阻挡件16沿卷绕方向A的两端均位于平直区C。示例性地,第一阻挡件16同时附接于第一弯折部14a和第一平直部15a。
图19为本申请一些实施例提供的电极组件的制造方法的流程示意图。
如图19所示,本申请实施例的电极组件的制造方法包括:
S100、提供正极极片、负极极片和第一阻挡件;
S200、沿卷绕方向卷绕正极极片和负极极片以形成卷绕结构。
卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。
步骤S100包括:S110、提供正极极片;S120、提供负极极片;S130、提供第一阻挡件。
需要说明的是,通过上述电极组件的制造方法制造出的电极组件的相关结构,可参见上述各实施例提供的电极组件。
在基于上述的电极组件的制造方法组装电极组件时,不必按照上述步骤依次进 行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S110和步骤S120的执行不分先后,也可以同时进行。
图20为本申请一些实施例提供的电极组件的制造***的示意性框图。
如图20所示,本申请实施例的电极组件的制造***8包括:第一提供装置81,用于提供正极极片;第二提供装置82,用于提供负极极片;第三提供装置83,用于提供第一阻挡件;组装装置84,用于沿卷绕方向卷绕正极极片和负极极片以形成卷绕结构。
卷绕结构包括弯折区。正极极片和负极极片均包括位于弯折区的多个弯折部,正极极片中的至少一个弯折部为第一弯折部,负极极片中的至少一个弯折部为与第一弯折部相邻的第二弯折部。至少一部分第一阻挡件位于第一弯折部和第二弯折部之间,第一阻挡件用于阻挡从第一弯折部脱出的至少一部分离子嵌入第二弯折部。在第一方向上,第一阻挡件的至少一端超出第一弯折部和第二弯折部,第一方向垂直于卷绕方向。
通过上述制造***制造出的电极组件的相关结构,可参见上述各实施例提供的电极组件。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种电极组件,包括正极极片和负极极片,所述正极极片和所述负极极片沿卷绕方向卷绕并形成卷绕结构,所述卷绕结构包括弯折区;
    所述正极极片和所述负极极片均包括位于所述弯折区的多个弯折部,所述正极极片中的至少一个弯折部为第一弯折部,所述负极极片中的至少一个弯折部为与所述第一弯折部相邻的第二弯折部;
    所述电极组件设置有第一阻挡件,至少一部分所述第一阻挡件位于所述第一弯折部和所述第二弯折部之间,所述第一阻挡件用于阻挡从所述第一弯折部脱出的至少一部分离子嵌入所述第二弯折部;
    在第一方向上,所述第一阻挡件的至少一端超出所述第一弯折部和所述第二弯折部,所述第一方向垂直于所述卷绕方向。
  2. 根据权利要求1所述的电极组件,其中,所述第一弯折部上附接有所述第一阻挡件。
  3. 根据权利要求2所述的电极组件,其中,所述第一阻挡件包括第一基层和第一粘接层,所述第一粘接层设置于所述第一基层的面向所述第一弯折部的表面;
    所述第一基层包括第一主体部和连接于所述第一主体部的第一支撑部,所述第一粘接层用于将所述第一主体部的至少部分粘接于所述第一弯折部,所述第一支撑部在所述第一方向上突出于所述第一弯折部。
  4. 根据权利要求3所述的电极组件,其中,所述第一支撑部的面向所述第一弯折部的表面的至少部分未设置所述第一粘接层。
  5. 根据权利要求4所述的电极组件,其中,所述第一弯折部的两个表面均附接有所述第一阻挡件,两个所述第一阻挡件的所述第一主体部分别设置于所述第一弯折部的两侧,两个所述第一阻挡件的所述第一支撑部均未设置所述第一粘接层。
  6. 根据权利要求3所述的电极组件,其中,所述第一支撑部的面向所述第一弯折部的表面的至少部分设置有所述第一粘接层。
  7. 根据权利要求6所述的电极组件,其中,所述第一弯折部的两个表面均附接有所述第一阻挡件,两个所述第一阻挡件的所述第一主体部分别设置于所述第一弯折部的两侧,两个所述第一阻挡件的所述第一支撑部通过所述第一粘接层相连。
  8. 根据权利要求1-7中任一项所述的电极组件,其中,在所述第一方向上,所述第一阻挡件的两端均超出所述第一弯折部。
  9. 根据权利要求8所述的电极组件,其中,在所述第一方向上,所述第一阻挡件的两端均超出所述第二弯折部。
  10. 根据权利要求1-7中任一项所述的电极组件,其中,所述电极组件还设置有第二阻挡件,所述第二阻挡件的至少一部分位于所述第一弯折部和所述第二弯折部之间;
    所述第一阻挡件和所述第二阻挡件沿所述第一方向间隔设置,所述第一阻挡件的背离所述第二阻挡件的一端超出所述第一弯折部的一端,所述第二阻挡件的背离所述第一阻挡件的一端超出所述第一弯折部的另一端。
  11. 根据权利要求1-10中任一项所述的电极组件,其中,所述电极组件还包括用于隔离所述第一极片和所述第二极片的隔离件,在所述第一方向上,所述隔离件的两端均超出所述第一弯折部和所述第二弯折部。
  12. 根据权利要求11所述的电极组件,其中,所述第一阻挡件的孔隙率小于所述隔离件的孔隙率。
  13. 根据权利要求11或12所述的电极组件,其中,所述第一阻挡件的硬度大于所述隔离件的硬度。
  14. 根据权利要求11-13中任一项所述的电极组件,其中,在所述第一方向上,所述隔离件的两端超出所述第一阻挡件。
  15. 根据权利要求11-14中任一项所述的电极组件,其中,所述隔离件的表面附接有所述第一阻挡件。
  16. 根据权利要求1-15中任一项所述的电极组件,其中,所述卷绕结构还包括与所述弯折区相连的平直区;
    所述第一阻挡件沿所述卷绕方向的两端均位于所述弯折区;或者,所述第一阻挡件沿所述卷绕方向的一端位于所述弯折区,所述第一阻挡件沿所述卷绕方向的另一端位于所述平直区;或者,所述第一阻挡件沿所述卷绕方向的两端均位于所述平直区。
  17. 根据权利要求16所述的电极组件,其中,所述正极极片还包括位于所述平直区的第一平直部和连接于所述第一平直部的正极极耳,所述第一平直部连接于所述第一弯折部,正极极耳连接于所述第一平直部沿所述第一方向的一端;
    在所述第一方向上,所述第一阻挡件的靠近所述正极极耳的一端超出所述第一弯折部和所述第二弯折部。
  18. 根据权利要求1-17中任一项所述的电极组件,其中,所述正极极片中的至少最内侧的一个弯折部为所述第一弯折部,所述负极极片中的至少最内侧的一个弯折部为所述第二弯折部。
  19. 一种电池单体,包括外壳和根据权利要求1-18中任一项所述的电极组件,所述电极组件容纳于所述外壳内。
  20. 一种电池,包括箱体和根据权利要求19所述的电池单体,所述电池单体容纳于所述箱体内。
  21. 一种用电装置,包括根据权利要求20所述的电池,所述电池用于提供电能。
  22. 一种电极组件的制造方法,包括:
    提供正极极片、负极极片和第一阻挡件;
    沿卷绕方向卷绕所述正极极片和所述负极极片以形成卷绕结构;
    其中,所述卷绕结构包括弯折区;
    所述正极极片和所述负极极片均包括位于所述弯折区的多个弯折部,所述正极极片中的至少一个弯折部为第一弯折部,所述负极极片中的至少一个弯折部为与所述第一弯折部相邻的第二弯折部;
    至少一部分所述第一阻挡件位于所述第一弯折部和所述第二弯折部之间,所述第一阻挡件用于阻挡从所述第一弯折部脱出的至少一部分离子嵌入所述第二弯折部;
    在第一方向上,所述第一阻挡件的至少一端超出所述第一弯折部和所述第二弯折部,所述第一方向垂直于所述卷绕方向。
  23. 一种电极组件的制造***,包括:
    第一提供装置,用于提供正极极片;
    第二提供装置,用于提供负极极片;
    第三提供装置,用于提供第一阻挡件;
    组装装置,用于沿卷绕方向卷绕所述正极极片和所述负极极片以形成卷绕结构;
    其中,所述卷绕结构包括弯折区;
    所述正极极片和所述负极极片均包括位于所述弯折区的多个弯折部,所述正极极片中的至少一个弯折部为第一弯折部,所述负极极片中的至少一个弯折部为与所述第一弯折部相邻的第二弯折部;
    至少一部分所述第一阻挡件位于所述第一弯折部和所述第二弯折部之间,所述第一阻挡件用于阻挡从所述第一弯折部脱出的至少一部分离子嵌入所述第二弯折部;
    在第一方向上,所述第一阻挡件的至少一端超出所述第一弯折部和所述第二弯折部,所述第一方向垂直于所述卷绕方向。
PCT/CN2021/093351 2021-05-12 2021-05-12 电极组件、电池单体、电池以及用电装置 WO2022236736A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023528305A JP2023549798A (ja) 2021-05-12 2021-05-12 電極アセンブリ、電池セル、電池及び電力消費装置
CN202180007973.6A CN115623875B (zh) 2021-05-12 2021-05-12 电极组件、电池单体、电池以及用电装置
KR1020237015594A KR20230084546A (ko) 2021-05-12 2021-05-12 전극 조립체, 배터리 셀, 배터리 및 전기 장치
PCT/CN2021/093351 WO2022236736A1 (zh) 2021-05-12 2021-05-12 电极组件、电池单体、电池以及用电装置
EP21923593.4A EP4117078A4 (en) 2021-05-12 2021-05-12 ELECTRODE ARRANGEMENT, BATTERY CELL, BATTERY AND ELECTRICAL DEVICE
US17/847,200 US20220367918A1 (en) 2021-05-12 2022-06-23 Electrode assembly, battery cell, battery and electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093351 WO2022236736A1 (zh) 2021-05-12 2021-05-12 电极组件、电池单体、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,200 Continuation US20220367918A1 (en) 2021-05-12 2022-06-23 Electrode assembly, battery cell, battery and electric device

Publications (1)

Publication Number Publication Date
WO2022236736A1 true WO2022236736A1 (zh) 2022-11-17

Family

ID=83998062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093351 WO2022236736A1 (zh) 2021-05-12 2021-05-12 电极组件、电池单体、电池以及用电装置

Country Status (6)

Country Link
US (1) US20220367918A1 (zh)
EP (1) EP4117078A4 (zh)
JP (1) JP2023549798A (zh)
KR (1) KR20230084546A (zh)
CN (1) CN115623875B (zh)
WO (1) WO2022236736A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032874A (ja) * 2004-07-22 2006-02-02 Tdk Corp 電気化学デバイス及びその製造方法
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN109473729A (zh) * 2018-11-05 2019-03-15 宁德新能源科技有限公司 电化学装置
CN212810367U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936202A1 (de) * 1979-09-07 1981-03-19 Varta Batterie Ag, 3000 Hannover Batteriepol fuer hochtemperaturbatterien
JP2001052679A (ja) * 1999-08-03 2001-02-23 Nec Corp 非水電解液二次電池およびその製造方法
KR200289707Y1 (ko) * 2002-06-12 2002-09-19 주식회사 코캄엔지니어링 리튬 2차 전지용 크루드 셀 및 이에 따른 리튬 2차 전지
JP4209451B1 (ja) * 2007-08-31 2009-01-14 シャープ株式会社 太陽電池モジュール
WO2012140707A1 (ja) * 2011-04-11 2012-10-18 パナソニック株式会社 薄型電池および電池デバイス
KR102498315B1 (ko) * 2014-10-24 2023-02-09 주식회사 아모그린텍 플렉서블 배터리, 이를 포함하는 보조배터리 및 시계줄
JP2018081840A (ja) * 2016-11-17 2018-05-24 株式会社Soken リチウムイオン二次電池
CN106848325B (zh) * 2017-02-15 2020-09-15 宁德时代新能源科技股份有限公司 一种二次电池极片,其制备方法,及卷绕式电芯
CN110249473B (zh) * 2017-02-24 2022-07-08 三洋电机株式会社 非水电解质二次电池
CN210006850U (zh) * 2019-08-09 2020-01-31 宁德时代新能源科技股份有限公司 一种电极组件及二次电池
CN111554982B (zh) * 2020-05-11 2021-09-07 珠海冠宇电池股份有限公司 卷绕电芯及其制备方法、电池以及电子产品
CN212161994U (zh) * 2020-06-02 2020-12-15 宁德时代新能源科技股份有限公司 电极组件及其制造装置、电池、电池模块、电池组、使用电池的装置
CN112331930B (zh) * 2020-11-10 2021-08-31 珠海冠宇电池股份有限公司 卷芯、电池以及电子产品
CN112467121A (zh) * 2020-12-03 2021-03-09 珠海冠宇电池股份有限公司 一种正极片及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032874A (ja) * 2004-07-22 2006-02-02 Tdk Corp 電気化学デバイス及びその製造方法
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN109473729A (zh) * 2018-11-05 2019-03-15 宁德新能源科技有限公司 电化学装置
CN212810367U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117078A4 *

Also Published As

Publication number Publication date
KR20230084546A (ko) 2023-06-13
JP2023549798A (ja) 2023-11-29
EP4117078A4 (en) 2024-01-17
CN115623875B (zh) 2023-12-12
EP4117078A1 (en) 2023-01-11
CN115623875A (zh) 2023-01-17
US20220367918A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
EP4075563A1 (en) Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
US20230170592A1 (en) Electrode assembly, battery cell, battery, and electric apparatus
WO2023005408A1 (zh) 电池单体、电池以及用电装置
WO2022165728A1 (zh) 电极组件、电池单体、电池及电极组件的制造设备和方法
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
CN212161993U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
US20220416360A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2023000859A1 (zh) 电池单体、电池以及用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
CN219286491U (zh) 电池单体、电池及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
WO2022236736A1 (zh) 电极组件、电池单体、电池以及用电装置
CN116569378A (zh) 电极组件及加工方法和装置、电池单体、电池和用电装置
CN215989140U (zh) 电池单体、电池以及用电装置
WO2024031255A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023245431A1 (zh) 电池单体、电池及用电设备
WO2023236219A1 (zh) 电池单体、电池及用电设备
WO2024016458A1 (zh) 电池单体、电池及用电装置
WO2024060093A1 (zh) 电池单体、电池及用电装置
CN220510145U (zh) 电池、用电设备和储能设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021923593

Country of ref document: EP

Effective date: 20220809

ENP Entry into the national phase

Ref document number: 20237015594

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023528305

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE