WO2022234803A1 - Method for dispersing granular bodies, and electrostatic adsorption device - Google Patents

Method for dispersing granular bodies, and electrostatic adsorption device Download PDF

Info

Publication number
WO2022234803A1
WO2022234803A1 PCT/JP2022/019083 JP2022019083W WO2022234803A1 WO 2022234803 A1 WO2022234803 A1 WO 2022234803A1 JP 2022019083 W JP2022019083 W JP 2022019083W WO 2022234803 A1 WO2022234803 A1 WO 2022234803A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrode
adsorption
opening
conductive
Prior art date
Application number
PCT/JP2022/019083
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 杉本
将平 山崎
勝 田中
弘行 伊澤
Original Assignee
昭和電工マテリアルズ株式会社
俊之 杉本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社, 俊之 杉本 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023518675A priority Critical patent/JPWO2022234803A1/ja
Publication of WO2022234803A1 publication Critical patent/WO2022234803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Definitions

  • the present invention relates to a powder dispersion method and an electrostatic adsorption device.
  • the above method utilizes the self-aggregation phenomenon of particles, and is a suitable technique when arranging particles in a close-packed arrangement or when forming a particle film.
  • an object of the present invention is to provide a method for dispersing granular material and an electrostatic adsorption device that can dispose the granular material at a predetermined position on a base material.
  • a first electrode having a static dissipative or conductive placement portion, and an insulating adsorption having an opening pattern facing the placement portion and opening toward the placement portion is provided.
  • a second electrode having a portion; It is characterized in that the compounded particles to which conductive powder particles having a smaller particle diameter than the particles are attached are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening of the adsorption part.
  • a method for dispersing granular material is provided.
  • the adsorption portion in which the conductive powder is accommodated in the opening is used as the base material, or the conductive powder in the opening is transferred to a predetermined base material.
  • the conductive powder particles can be arranged at predetermined positions on the substrate (for example, the conductive powder particles can be spaced apart from each other and arranged two-dimensionally).
  • the above method can fill the opening with the granular material without using a squeegee or the like, damage to the granular material can be reduced.
  • the method according to the present invention is characterized in that it is easy to cause the compounded particles to fly up to the adsorption portion until the conductive granular material is accommodated in the opening having a predetermined opening pattern, and It has the advantage of being able to resupply or recycle the mixed particles to the placement section by gravity or an appropriate conveying means, and is more efficient than the method using a solvent, etc. It can be said that this is a method capable of arranging the granules.
  • the particle size of the medium particles may be 10 to 100 times the particle size of the conductive powder. In this case, the efficiency of accommodating the conductive granular material in the opening of the adsorption portion is further improved.
  • the particle size of the conductive powder may be 2 to 20 ⁇ m.
  • the method for dispersing powder or granular material may further include a step for removing powder or granular material other than the conductive powder or granular material housed in the opening, which adheres to the adsorption portion. good.
  • Another aspect of the present invention is a first electrode having a static dissipative or conductive arrangement portion for arranging particles, and an opening pattern facing the arrangement portion and opening toward the arrangement portion. and a second electrode having an insulating adsorption portion.
  • Such an electrostatic adsorption device can be used as a device for dispersing powder particles by using mixed particles in which conductive powder particles having a smaller particle size than the medium particles are adhered to the medium particles. .
  • the present invention it is possible to provide a method for dispersing granular material and an electrostatic adsorption device that can dispose granular material at a predetermined position on a substrate.
  • FIG. 1 is a diagram showing a schematic configuration of an electrostatic adsorption device used in a method for dispersing powder particles according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing compounded particles.
  • FIG. 3(a) is a plan view schematically showing an example of the adsorption portion
  • FIG. 3(b) is a sectional view taken along line Ib--Ib of FIG. 3(a).
  • FIG. 4 is a cross-sectional view schematically showing a state in which conductive powder particles are accommodated in the opening of the adsorption section;
  • FIG. 3 is a schematic diagram showing a schematic configuration of an electrostatic adsorption device used in a method for dispersing powder particles according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing compounded particles.
  • FIG. 3(a) is a plan view schematically showing an example of the adsorption portion
  • FIG. 3(b) is a sectional view taken along line Ib-
  • FIG. 11 is a plan view schematically showing an example of another opening pattern of the adsorption section; It is a schematic diagram for demonstrating the dispersion
  • 1 is an enlarged photograph of an adsorption electrode obtained in Example 1.
  • the upper limit value or lower limit value of the numerical range at one stage may be replaced with the upper limit value or lower limit value of the numerical range at another stage.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • an aggregate of a plurality of granular materials is also referred to as a "granular material". The same is true for mediator particles and blended particles.
  • a first electrode having an arrangement portion having static electricity dissipative properties or conductivity, and an opening pattern facing the arrangement portion and opening toward the arrangement portion are provided.
  • a second electrode having an insulating adsorption portion; Blended particles obtained by adhering electrically conductive powder having a particle size smaller than that of the intermediate particles to the media particles are brought into contact with the adsorption section, and the conductive powder is accommodated in the opening of the adsorption section.
  • FIG. 1 is a diagram showing a schematic configuration of an electrostatic adsorption device used in the method for dispersing powder or granular material according to the present embodiment.
  • the electrostatic adsorption device 1 includes a lower electrode (first electrode) 4 having an arrangement portion 2 and an upper electrode having an adsorption portion 5 arranged above the arrangement portion 2 in the gravitational direction and facing the arrangement portion 2. (second electrode) 7; Blended particles are arranged in the arrangement portion 2 .
  • the lower electrode 4 is composed of the electrode main body 3 and the placement portion 2
  • the upper electrode 7 is composed of the electrode main body 6 and the adsorption portion 5 .
  • the electrode main body and the arrangement portion may be integrated.
  • the material of the electrode main body 3 constituting the lower electrode 4 a material having static electricity dissipative property or conductivity can be used.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metals and glass.
  • the shape of the electrode main body 3 is not particularly limited, but may be, for example, a flat plate shape, a roll shape, or the like.
  • a material having static electricity dissipative property or conductivity can be used as a material for the arrangement portion 2.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metal, glass, and conductive resin such as conductive polytetrafluoroethylene (PTFE).
  • PTFE conductive polytetrafluoroethylene
  • the shape of the placement portion 2 is not particularly limited as long as the compounded particles can be placed thereon. , and a side surface, and may be open in the direction of the suction portion. The placement shown in FIG. 1 can accommodate more compounded particles.
  • the lower electrode in which the electrode main body and the arrangement portion are integrated for example, one made of a material having a surface resistivity of 10 13 ⁇ or less such as metal or glass can be used.
  • the static electricity dissipative placement portion may have a surface resistivity of 10 13 ⁇ or less, or 10 6 ⁇ or more.
  • the conductive placement portion may have a surface resistivity of 10 6 ⁇ or less, or 10 ⁇ 3 ⁇ or more.
  • the blended particles to be arranged in the arrangement portion are obtained by adhering electrically conductive powder particles having a smaller particle size than the medium particles to the medium particles.
  • FIG. 2 is a schematic diagram showing blended particles. As shown in FIG. 2, the blended particles P are composed of mediator particles 10 and conductive powder particles 12 adhered to the surfaces of the mediator particles.
  • the mediator particles 10 may be particles having static electricity dissipative properties or conductivity, and particles containing a material having a surface resistivity of 10 13 ⁇ or less can be used.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used.
  • carbon particles, metal particles such as solder, glass particles, and inorganic particles having static electricity diffusion properties can be used. These can be used individually by 1 type or in combination of 2 or more types.
  • the mediator particles 10 may be spherical or substantially spherical, and may be provided with concave portions, convex portions, or concave portions and convex portions on the surface.
  • the particle size of the mediator particles 10 may be 30 to 500 ⁇ m, 40 to 400 ⁇ m, or 50 to 300 ⁇ m from the viewpoint of suppressing aggregation of the blended particles and facilitating movement of the blended particles. good too.
  • mediator particles having an average particle diameter within the above range may be used.
  • the average particle diameter of particles or granules is obtained by measuring the particle diameter of 100 particles or granules by observation using a scanning electron microscope (SEM), and calculating the average value thereof. obtained by taking When the particles or granular materials are not spherical such as having protrusions, the particle size of the particles or granular materials is the diameter of a circle circumscribing the particles or granular materials in the SEM image.
  • the mediator particles 10 are placed in the arrangement portion of the electrostatic adsorption device, and when an electric field is applied under predetermined conditions described later, the mediator particles 10 move from the lower electrode (first electrode) to the upper electrode (second electrode). It may be selected by a method of confirming that it moves toward (jumps up) and comes into contact with the adsorption portion.
  • the conductive powder 12 for example, metal particles such as gold, silver, nickel, copper, solder, etc.; conductive coated particles and the like. Metals that coat the non-conductive particles include gold, silver, nickel, copper, solder, and the like, and may have a multilayer structure.
  • the electrically conductive powder may have an insulating coating (for example, insulating fine particles) on at least a part of the outer surface of the powder.
  • the conductive powder may contain a conductive material and function as a conductive material.
  • the electrically conductive powder also includes an insulating powder having conductivity imparted by moisture adsorption or moisture absorption. Examples of insulating powder include glass, ceramics, plastics, silicon rubber, and rubber such as butyl rubber.
  • the conductive powders can be used singly or in combination of two or more.
  • the conductive powder particles 12 may be spherical or substantially spherical, and include conductive powder particles and a plurality of insulating fine particles provided on at least part of the outer surface of the powder particles. It may be a composite particle comprising
  • the particle size of the conductive powder 12 may be 1 to 40 ⁇ m, 1.5 to 30 ⁇ m, or 2 to 20 ⁇ m.
  • conductive particles having an average particle size within the above range may be used.
  • the particle diameter of the mediating particles that constitute the compounded particles P may be 5 to 200 times the particle diameter of the conductive powder particles from the viewpoint of efficiently adsorbing the conductive powder particles to the adsorption part. It may be 10 to 150 times, or 10 to 100 times.
  • the blended particles P can be prepared by mixing medium particles and conductive powder.
  • the mixing method is not particularly limited, for example, a known mixing means such as a stirrer may be used, or a container containing medium particles and conductive powder may be shaken. Mixing is preferably carried out within a range that does not damage the medium particles and the granular material.
  • the mixing ratio of the mediator particles and the conductive powder can be appropriately set so that the conductive powder and grains are sufficiently adhered to the surface of the mediator particles. If the blending amount of the conductive powder is too large, aggregation of the conductive powder tends to occur. is preferred.
  • the electrode body 6 constituting the upper electrode 7 one having static electricity dissipative properties or conductivity can be used.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metals and glass.
  • the shape of the electrode main body 6 is not particularly limited, but may be, for example, a flat plate shape, a roll shape, or the like.
  • the adsorption portion 5 is provided with an opening pattern (a plurality of openings 72) that opens toward the placement portion.
  • An insulating material can be used as the material of the adsorption portion 5 .
  • materials with surface resistivities greater than 10 13 ⁇ can be used.
  • the shape of the adsorption portion 5 is not particularly limited as long as it has the opening pattern described above, and may be a film or a film formed on the surface of the electrode body 6 , which is separated from the electrode body 6 . It may be a film that can be used.
  • FIG. 3 is a plan view schematically showing an example of a suction portion
  • (b) of FIG. 3 is a cross-sectional view taken along line Ib-Ib of (a) of FIG.
  • the suction unit 5 shown in FIG. 3A is provided with a plurality of openings (recesses) 72 having a predetermined pattern (opening pattern).
  • the predetermined pattern (opening pattern) may be a regular arrangement.
  • the opening 72 of the suction portion 5 is preferably tapered such that the opening area increases from the bottom portion 72a side of the opening portion 72 toward the surface 5a side of the suction portion 5 . That is, as shown in FIGS. 3A and 3B, the width of the bottom portion 72a of the opening 72 (the width a in FIGS. 3A and 3B) is the surface 5a of the opening 72. is preferably narrower than the width of the opening in (width b in FIGS. 3(a) and 3(b)).
  • the size (width a, width b, volume, taper angle, depth, etc.) of the opening 72 may be set according to the size of the electrically conductive granular material to be accommodated.
  • the width b of the opening can be 1.0 to 1.5 times, or 1.05 to 1.45 times, the particle size of the conductive powder.
  • the particle size of the mediator particles can be 2.0 to 110 times, and can be 2.5 to 100 times, the width b of the opening.
  • the shape of the opening 72 may be a shape other than the shape shown in FIGS. 3(a) and 3(b).
  • the shape of the opening on the surface 5a may be oval, triangular, quadrangular, polygonal, etc., other than circular as shown in FIG. 3(a).
  • the bottom portion 72a may also have a shape other than a flat surface, such as a mountain shape, a valley shape, or an aggregate of fine projections.
  • FIG. 4 is a cross-sectional view schematically showing a state in which conductive powder particles are accommodated in the opening of the adsorption part. Removing particles (surplus particles) other than the conductive particles accommodated in the opening, and transferring the accommodated conductive particles to an adhesive substrate or the like From the viewpoint of facilitating the
  • the shape of the opening 72 can be set so as to be -20 to 80%, preferably -15 to 60%, of the particle size d.
  • X is a positive value
  • it means a state in which the conductive granules protrude from the surface 5a of the adsorption portion as shown in FIG. 4
  • X is a negative value means a state in which the conductive granules do not protrude from the surface 5a of the adsorption portion, in other words, are buried.
  • the adsorption portion 5 As materials for forming the adsorption portion 5, for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and organic materials such as various resins can be used.
  • the opening 72 of the adsorption section can be formed by a known method such as photolithography, nanoimprinting, or the like.
  • the adsorption portion 5 may be a single layer, or may be composed of a plurality of layers such as a laminate of a base layer and an opening layer provided with an opening.
  • the adsorption part 5 is a laminate, for example, it is a film comprising a base layer such as PET and an opening layer formed using a photocurable resin composition by a method such as photolithography or nanoimprinting.
  • the opening pattern can be set as appropriate so that the particles can be dispersed in the desired arrangement.
  • the openings of round holes are provided in series in a grid pattern, but they can be staggered by 60°, for example, as shown in FIG.
  • the opening pattern may be formed by aligning the openings, or by randomly providing the openings.
  • the lower electrode 4 and the upper electrode 7 are arranged with a predetermined distance therebetween, and the distance between the electrodes can be 0.5 to 100 mm, and even 1 to 20 mm. Well, it may be from 2 to 15 mm.
  • the lower electrode 4 may be movable in the electrostatic adsorption device 1, and in this case, it becomes easy to continuously supply the compounded particles.
  • the bottom electrode can be provided on the surface of a belt or cylindrical roller.
  • the upper electrode 7 may be movable, and in this case, it becomes easy to continuously supply adsorption portions for adsorbing conductive powder particles.
  • the upper electrode can be provided on the surface of a belt or cylindrical roller.
  • the power supply 8 may be anything that can form an electric field between the lower electrode and the upper electrode, and for example, a known high voltage power supply can be used.
  • the high voltage power supply may be a DC power supply or an AC power supply.
  • the control unit 9 can have functions such as adjustment of applied voltage and application time, for example.
  • an electric field is formed between the first electrode and the second electrode, and the medium particles arranged in the arrangement section have a smaller particle size than the medium particles.
  • the blended particles to which the conductive powder particles are adhered are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening of the adsorption part.
  • FIG. 6A and 6B are schematic diagrams for explaining the method for dispersing the granular material according to the present embodiment.
  • FIG. 6A shows a lower electrode (first electrode) and an upper electrode (second electrode).
  • Figure 2 shows the motion of compounded particles when an electric field is applied between The compounded particles, which are charged to the opposite polarity to the upper electrode in the placement portion, rise due to electrostatic attraction. The compounded particles that have risen come into contact with the adsorption section.
  • the conductive powder particles 12 having small particle size and adhering to the surface of the medium particles 10 having a large particle size may directly enter the opening 72 of the adsorption section, but in many cases this is not the case.
  • the compounded particles that come into contact with the adsorption part may drop due to the recoil of collision or gravity, but in most cases, they remain attached due to electrostatic attraction, like the compounded particles P1 shown in FIG. is. Only one layer of the compounded particles P1 is attached so as to cover the adsorption portion. Since the compounded particles P1 are charged with a polarity opposite to the voltage of the upper electrode, the electrostatic field formed between the upper electrode and the lower electrode is reduced.
  • the compounded particles P2 charged to the opposite polarity to the upper electrode rise from the arrangement portion due to electrostatic attraction and collide with the compounded particles P1 adhering to the upper electrode. be able to.
  • the blended particles P2 that have collided give an electric charge to the blended particles P1, and the charged blended particles P2 lose their electric charge and fall naturally, and the electric charge of the blended particles P1 increases.
  • the mixed particles P2 reciprocate between the upper electrode and the lower electrode.
  • the electrostatic repulsive force between the mediator particles and the conductive granules increases.
  • the electrically conductive granular material is discharged toward the opening, and the electrically conductive granular material enters the opening.
  • the mixed particles can be brought into contact with the adsorption portion until the conductive powdery grains 12 are accommodated in the openings 72 having a predetermined opening pattern.
  • an electrode in which the conductive powder particles 12 are housed in the opening 72 of the adsorption unit 5, that is, the electrode 20 with conductive powder particles is obtained.
  • the electric field intensity to be applied may be 0.1 to 30 kV/cm, may be 0.5 to 30 kV/cm, or may be 1 to 20 kV/cm.
  • the application of the electric field may be continuous or intermittent.
  • the application time of the electric field can be appropriately set according to the amount of the conductive powder or granular material to be accommodated in the openings 72 having a predetermined opening pattern.
  • a predetermined amount of conductive powder particles are adsorbed to the opening of the adsorption part due to the action of reducing the electric field caused by the adsorption of the conductive powder particles to the insulating adsorption part 5 . It is also possible to stop the electrostatic adsorption of the electrically conductive powder at this point. That is, since the strength of the electric field between the lower electrode 4 and the electrode 20 with conductive powder particles becomes smaller as the conductive powder particles adhere to the adsorption part 5, the mixed particles in the placement part disappear. In addition to this, by sufficiently reducing the electric field between the electrodes, it is also possible to stop the jumping of the blended particles.
  • the electric field can be sufficiently weakened until the electric field becomes sufficiently weak. It is possible to cause the adsorbing part to adsorb powder or granular material having properties.
  • the conductive powder-coated electrode 20 may be used as a base material in which the adsorption portion 5 is separated from the electrode main body 6 and conductive powder particles are spaced apart and two-dimensionally arranged. It may also be used to transfer conductive granules onto a conductive substrate.
  • the method for dispersing powder or granular material of the present embodiment includes a step for removing powder or granular material (excess particles) other than the conductive powder or granular material accommodated in the opening, adhering to the adsorption unit ( hereinafter, may be also referred to as excess particle removal step).
  • the surplus particle removal step can be performed before transferring the electrically conductive granular material contained in the opening onto a predetermined adhesive base material.
  • the particles removed from the adsorption unit may be recovered and recycled, and it is preferable to recover and recycle at least the powder particles having conductivity among the surplus particles.
  • Methods for removing excess particles include physical removal means such as air blow, brush, and squeegee, and electrostatic removal means such as ionizers.
  • the first electrode and the second electrode are arranged on the lower side and the upper side with respect to the direction of gravity, respectively. may be horizontal or may be inclined with respect to the direction of gravity. Also in these cases, the first electrode and the second electrode can be configured in the same manner as described above.
  • the granular material can be arranged at a predetermined position on the substrate while reducing the damage to the granular material.
  • the electrostatic adsorption device of the present embodiment includes a first electrode having a dissipative or conductive arrangement portion, and an insulating electrode having an opening pattern facing the arrangement portion and opening toward the arrangement portion. and a second electrode having an adsorption part having
  • the electrostatic chucking device of the present embodiment can have a configuration similar to that of the electrostatic chucking device used in the method for dispersing powder particles described above.
  • the present invention also provides the following inventions [1] to [5].
  • a first electrode having a static dissipative or conductive placement portion, and an insulating adsorption portion provided with an opening pattern facing the placement portion and opening toward the placement portion. and a second electrode, by forming an electric field between the first electrode and the second electrode of the electrostatic adsorption device, the mediator particles arranged in the placement section are more likely to be particles than the mediator particles.
  • Blended particles to which conductive powder particles having a small diameter are attached are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening part of the adsorption part. distribution method.
  • [2] The method for dispersing powder particles according to the above [1], wherein the particle size of the medium particles is 10 to 100 times the particle size of the conductive powder particles.
  • [3] The method for dispersing powder particles according to the above [1] or [2], wherein the particle size of the powder particles having conductivity is 2 to 20 ⁇ m.
  • a first electrode having a static dissipative or conductive placement portion, and an insulating suction portion provided with an opening pattern facing the placement portion and opening toward the placement portion. and a second electrode.
  • Example 1 A device having the same configuration as the electrostatic adsorption device 1 according to the above-described embodiment was prepared, a brass plate was used as the lower electrode 4, and one main surface was coated with the imprint film of Production Example 1 as the upper electrode 7. A brass plate was used and the distance between the electrodes was set to 8.0 mm.
  • FIG. 7 shows an enlarged photograph of the adsorbing portion (imprint film) obtained in this way, in which the conductive coated particles, which are particles having conductivity, are housed in the openings.
  • FIG. 7 is a photograph of the surface of the imprint film at a microscope magnification of 600 times.
  • Electrostatic adsorption apparatus 2... Arrangement part, 3... Electrode main body, 4... Lower electrode (first electrode), 5... Adsorption part, 6... Electrode main body, 7... Upper electrode (second electrode), 8 Power supply 9 Control unit 10 Mediating particles 12 Conductive granular material 20 Electrode with conductive granular material 72 Opening P Mixed particles.

Abstract

This method for dispersing granular bodies is characterized by being used in an electrostatic attracting device 1 provided with: a first electrode 4 equipped with an arrangement part 2 that has electrostatic diffusivity or conductivity; and a second electrode 7 equipped with an attracting part 5 that faces the arrangement part 2, that has insulation properties, and that is provided with an opening pattern that opens toward the arrangement part side. The method is further characterized in that, by forming an electric field between the first electrode 4 and the second electrode 7, blended particles P, which are arranged on the arrangement part 2 and which are obtained by attaching to intermediate particles 10 conductive granular bodies 12 having a particle diameter smaller than that of the intermediate particles, are brought into contact with the attracting part 5, thereby causing the conductive granular bodies 12 to be accommodated in openings 72 of the attracting part.

Description

粉粒体の分散方法、及び静電吸着装置Method for dispersing powder and granular material, and electrostatic adsorption device
 本発明は、粉粒体の分散方法、及び静電吸着装置に関する。 The present invention relates to a powder dispersion method and an electrostatic adsorption device.
 基材上に粉粒体を二次元的に配列する方法として、球状粒子を分散した分散液に基板を浸漬させ、その基板を引き上げた後、分散媒を乾燥して除去するディップコート法や、移流集積法などが知られている(例えば、下記特許文献1を参照)。 As a method for two-dimensionally arranging powder particles on a base material, there is a dip coating method in which a substrate is immersed in a dispersion liquid in which spherical particles are dispersed, the substrate is pulled up, and then the dispersion medium is dried and removed. An advective accumulation method and the like are known (see, for example, Patent Document 1 below).
特開2009-223154号公報JP 2009-223154 A
 上記の方法は、粒子の自己集積現象を利用しており、粒子を最密充填配置するときや粒子膜を形成するときに好適な技術であるが、バイオチップ、化学チップ等への触媒微粒子のパターニング、材料毎に制約や課題が異なるインクジェット描画代替技術等のように、基材の所定の位置に粉粒体を配置することの需要もある。 The above method utilizes the self-aggregation phenomenon of particles, and is a suitable technique when arranging particles in a close-packed arrangement or when forming a particle film. There is also a demand for arranging powder or granular material at a predetermined position on a substrate, such as in patterning, ink-jet drawing alternative technology that has different restrictions and problems for each material, and the like.
 そこで、本発明は、基材の所定の位置に粉粒体を配置することができる粉粒体の分散方法、及び静電吸着装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for dispersing granular material and an electrostatic adsorption device that can dispose the granular material at a predetermined position on a base material.
 本発明の一側面は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の第一の電極と第二の電極との間に電界を形成することにより、配置部に配置された、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子、を吸着部に接触させて、吸着部の開口部に導電性を有する粉粒体を収容することを特徴とする粉粒体の分散方法を提供する。 According to one aspect of the present invention, a first electrode having a static dissipative or conductive placement portion, and an insulating adsorption having an opening pattern facing the placement portion and opening toward the placement portion is provided. a second electrode having a portion; It is characterized in that the compounded particles to which conductive powder particles having a smaller particle diameter than the particles are attached are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening of the adsorption part. Provided is a method for dispersing granular material.
 上記の方法によれば、開口部に導電性を有する粉粒体が収容された吸着部を基材とする、或いは、開口部の導電性を有する粉粒体を所定の基材に移すことで、基材の所定の位置に導電性を有する粉粒体を配置(例えば、導電性を有する粉粒体を互いに離間させて二次元的に配置)することができる。また、上記の方法は、スキージ等を用いずに粉粒体を開口部へ充填できることから、粉粒体へのダメージを小さくすることができる。 According to the above-described method, the adsorption portion in which the conductive powder is accommodated in the opening is used as the base material, or the conductive powder in the opening is transferred to a predetermined base material. Alternatively, the conductive powder particles can be arranged at predetermined positions on the substrate (for example, the conductive powder particles can be spaced apart from each other and arranged two-dimensionally). In addition, since the above method can fill the opening with the granular material without using a squeegee or the like, damage to the granular material can be reduced.
 また、本発明に係る方法は、所定の開口パターンを有する開口部に導電性を有する粉粒体が収容されるまで配合粒子を吸着部に飛昇させることが容易であること、吸着部に接触した後の配合粒子を重力或いは適当な搬送手段によって配置部に再供給或いはリサイクルすることができることなどの利点を有しており、溶媒を用いる方法などに比較して効率よく基材の所定の位置に粉粒体を配置することができる方法といえる。 In addition, the method according to the present invention is characterized in that it is easy to cause the compounded particles to fly up to the adsorption portion until the conductive granular material is accommodated in the opening having a predetermined opening pattern, and It has the advantage of being able to resupply or recycle the mixed particles to the placement section by gravity or an appropriate conveying means, and is more efficient than the method using a solvent, etc. It can be said that this is a method capable of arranging the granules.
 媒介粒子の粒径は、導電性を有する粉粒体の粒径の10~100倍であってもよい。この場合、吸着部の開口部に導電性を有する粉粒体を収容する効率が更に向上する。 The particle size of the medium particles may be 10 to 100 times the particle size of the conductive powder. In this case, the efficiency of accommodating the conductive granular material in the opening of the adsorption portion is further improved.
 導電性を有する粉粒体の粒径は2~20μmであってもよい。 The particle size of the conductive powder may be 2 to 20 μm.
 上記の粉粒体の分散方法は、上記吸着部に付着している、開口部に収容されている導電性を有する粉粒体以外の粉粒体を除去するための工程を更に備えていてもよい。 The method for dispersing powder or granular material may further include a step for removing powder or granular material other than the conductive powder or granular material housed in the opening, which adheres to the adsorption portion. good.
 本発明の他の一側面は、粒子を配置する静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置を提供する。 Another aspect of the present invention is a first electrode having a static dissipative or conductive arrangement portion for arranging particles, and an opening pattern facing the arrangement portion and opening toward the arrangement portion. and a second electrode having an insulating adsorption portion.
 このような静電吸着装置は、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子を用いることにより、粉粒体の分散装置として用いることができる。 Such an electrostatic adsorption device can be used as a device for dispersing powder particles by using mixed particles in which conductive powder particles having a smaller particle size than the medium particles are adhered to the medium particles. .
 本発明によれば、基材の所定の位置に粉粒体を配置することができる粉粒体の分散方法、及び静電吸着装置を提供することができる。 According to the present invention, it is possible to provide a method for dispersing granular material and an electrostatic adsorption device that can dispose granular material at a predetermined position on a substrate.
本発明の一実施形態に係る粉粒体の分散方法で用いられる静電吸着装置の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic configuration of an electrostatic adsorption device used in a method for dispersing powder particles according to an embodiment of the present invention; 配合粒子を示す模式図である。FIG. 3 is a schematic diagram showing compounded particles. 図3の(a)は吸着部の一例を模式的に示す平面図であり、図3の(b)は図3の(a)のIb-Ib線における断面図である。FIG. 3(a) is a plan view schematically showing an example of the adsorption portion, and FIG. 3(b) is a sectional view taken along line Ib--Ib of FIG. 3(a). 吸着部の開口部に導電性を有する粉粒体が収容された状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a state in which conductive powder particles are accommodated in the opening of the adsorption section; 吸着部の別の開口パターンの一例を模式的に示す平面図である。FIG. 11 is a plan view schematically showing an example of another opening pattern of the adsorption section; 粉粒体の分散方法を説明するための模式図である。It is a schematic diagram for demonstrating the dispersion|distribution method of a granular material. 実施例1で得られた吸着電極の拡大写真である。1 is an enlarged photograph of an adsorption electrode obtained in Example 1. FIG.
 以下、場合により図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as the case may be. However, the present invention is not limited to the following embodiments.
 なお、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、本明細書では、便宜上、複数の粉粒体の集合も「粉粒体」と称する。媒介粒子や配合粒子についても同様である。 In addition, in the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one stage may be replaced with the upper limit value or lower limit value of the numerical range at another stage. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples. In addition, in this specification, for the sake of convenience, an aggregate of a plurality of granular materials is also referred to as a "granular material". The same is true for mediator particles and blended particles.
[粉粒体の分散方法]
 本実施形態の粉粒体の分散方法は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の第一の電極と第二の電極との間に電界を形成することにより、配置部に配置された、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子、を吸着部に接触させて、吸着部の開口部に導電性を有する粉粒体を収容する。
[Method of dispersing powder]
In the method for dispersing powder particles of the present embodiment, a first electrode having an arrangement portion having static electricity dissipative properties or conductivity, and an opening pattern facing the arrangement portion and opening toward the arrangement portion are provided. a second electrode having an insulating adsorption portion; Blended particles obtained by adhering electrically conductive powder having a particle size smaller than that of the intermediate particles to the media particles are brought into contact with the adsorption section, and the conductive powder is accommodated in the opening of the adsorption section. .
 図1は、本実施形態に係る粉粒体の分散方法で用いられる静電吸着装置の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of an electrostatic adsorption device used in the method for dispersing powder or granular material according to the present embodiment.
 静電吸着装置1は、配置部2を有する下部電極(第一の電極)4と、配置部2よりも重力方向の上方側に配置され、配置部2と対向する吸着部5を有する上部電極(第二の電極)7と、下部電極4及び上部電極7に接続された電源8と、電源8に接続された制御部9とを備える。配置部2には、配合粒子が配置される。 The electrostatic adsorption device 1 includes a lower electrode (first electrode) 4 having an arrangement portion 2 and an upper electrode having an adsorption portion 5 arranged above the arrangement portion 2 in the gravitational direction and facing the arrangement portion 2. (second electrode) 7; Blended particles are arranged in the arrangement portion 2 .
 静電吸着装置1においては、下部電極4が電極本体3と配置部2とから構成されており、上部電極7が電極本体6と吸着部5とから構成されている。下部電極は電極本体と配置部とが一体となっていてもよい。 In the electrostatic adsorption device 1 , the lower electrode 4 is composed of the electrode main body 3 and the placement portion 2 , and the upper electrode 7 is composed of the electrode main body 6 and the adsorption portion 5 . In the lower electrode, the electrode main body and the arrangement portion may be integrated.
 下部電極4を構成する電極本体3の材質としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス等が挙げられる。電極本体3の形状としては、特に限定されないが、例えば、平板状、ロール状などであってもよい。 As the material of the electrode main body 3 constituting the lower electrode 4, a material having static electricity dissipative property or conductivity can be used. For example, a material having a surface resistivity of 10 13 Ω or less can be used, and specific examples include metals and glass. The shape of the electrode main body 3 is not particularly limited, but may be, for example, a flat plate shape, a roll shape, or the like.
 配置部2の材質としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス、及び、導電性ポリテトラフルオロエチレン(PTFE)等の導電性樹脂などが挙げられる。配置部2の形状としては、配合粒子を配置できるものであれば特に限定されず、電極本体3の表面に形成された膜若しくはフィルムであってもよく、配合粒子を収容できる形状、例えば、底面及び側面を有し、吸着部方向に開口している形状であってもよい。図1に示される配置部は、より多くの配合粒子を収容することができる。 As a material for the arrangement portion 2, a material having static electricity dissipative property or conductivity can be used. For example, a material having a surface resistivity of 10 13 Ω or less can be used, and specific examples include metal, glass, and conductive resin such as conductive polytetrafluoroethylene (PTFE). The shape of the placement portion 2 is not particularly limited as long as the compounded particles can be placed thereon. , and a side surface, and may be open in the direction of the suction portion. The placement shown in FIG. 1 can accommodate more compounded particles.
 電極本体と配置部とが一体である下部電極としては、例えば、金属、ガラス等の表面抵抗率が1013Ω以下の材料から構成されるものを用いることができる。 As the lower electrode in which the electrode main body and the arrangement portion are integrated, for example, one made of a material having a surface resistivity of 10 13 Ω or less such as metal or glass can be used.
 静電気拡散性の配置部は、表面抵抗率が1013Ω以下であってもよく、10Ω以上であってもよい。導電性の配置部は、表面抵抗率が10Ω以下であってもよく、10-3Ω以上であってもよい。 The static electricity dissipative placement portion may have a surface resistivity of 10 13 Ω or less, or 10 6 Ω or more. The conductive placement portion may have a surface resistivity of 10 6 Ω or less, or 10 −3 Ω or more.
 配置部に配置させる配合粒子は、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させてなるものである。図2は、配合粒子を示す模式図である。図2に示すように、配合粒子Pは、媒介粒子10と、媒介粒子の表面に付着した導電性を有する粉粒体12とから構成される。 The blended particles to be arranged in the arrangement portion are obtained by adhering electrically conductive powder particles having a smaller particle size than the medium particles to the medium particles. FIG. 2 is a schematic diagram showing blended particles. As shown in FIG. 2, the blended particles P are composed of mediator particles 10 and conductive powder particles 12 adhered to the surfaces of the mediator particles.
 媒介粒子10としては、静電気拡散性又は導電性を有している粒子であればよく、表面抵抗率が1013Ω以下の材料を含む粒子を用いることができる。例えば、カーボン粒子、はんだ等の金属粒子、ガラス粒子、静電気拡散性を有する無機粒子を用いることができる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。 The mediator particles 10 may be particles having static electricity dissipative properties or conductivity, and particles containing a material having a surface resistivity of 10 13 Ω or less can be used. For example, carbon particles, metal particles such as solder, glass particles, and inorganic particles having static electricity diffusion properties can be used. These can be used individually by 1 type or in combination of 2 or more types.
 媒介粒子10は、球状又は略球状であってもよく、表面に凹部、凸部、又は凹部及び凸部が設けられていてもよい。 The mediator particles 10 may be spherical or substantially spherical, and may be provided with concave portions, convex portions, or concave portions and convex portions on the surface.
 媒介粒子10の粒径は、配合粒子の凝集を抑制しつつ配合粒子を移動させやすくする観点から、30~500μmであってもよく、40~400μmであってもよく、50~300μmであってもよい。 The particle size of the mediator particles 10 may be 30 to 500 μm, 40 to 400 μm, or 50 to 300 μm from the viewpoint of suppressing aggregation of the blended particles and facilitating movement of the blended particles. good too.
 本実施形態においては、平均粒径が上記範囲である媒介粒子を用いてもよい。なお、本明細書において粒子若しくは粉粒体の平均粒径は、粒子若しくは粉粒体100個について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、それらの平均値を取ることにより得られる。なお、粒子若しくは粉粒体が突起を有するなどの球形ではない場合、粒子若しくは粉粒体の粒径は、SEMの画像における粒子若しくは粉粒体に外接する円の直径とする。 In the present embodiment, mediator particles having an average particle diameter within the above range may be used. In the present specification, the average particle diameter of particles or granules is obtained by measuring the particle diameter of 100 particles or granules by observation using a scanning electron microscope (SEM), and calculating the average value thereof. obtained by taking When the particles or granular materials are not spherical such as having protrusions, the particle size of the particles or granular materials is the diameter of a circle circumscribing the particles or granular materials in the SEM image.
 また、媒介粒子10は、静電吸着装置の配置部に配置して、後述する所定の条件で電界を印加したときに、下部電極(第一の電極)から上部電極(第二の電極)に向かって移動し(飛昇し)、吸着部に接触することを確認する方法により選定してもよい。 In addition, the mediator particles 10 are placed in the arrangement portion of the electrostatic adsorption device, and when an electric field is applied under predetermined conditions described later, the mediator particles 10 move from the lower electrode (first electrode) to the upper electrode (second electrode). It may be selected by a method of confirming that it moves toward (jumps up) and comes into contact with the adsorption portion.
 導電性を有する粉粒体12としては、例えば、金、銀、ニッケル、銅、ハンダ等の金属粒子、カーボン粒子、ガラス、セラミック、プラスチック等の非導電性粒子を金属等の導電物質で被覆した導電被覆粒子などが挙げられる。非導電性粒子を被覆する金属としては、金、銀、ニッケル、銅、ハンダ等が挙げられ、多層構造を有していてもよい。また、導電性を有する粉粒体は、粉粒体の外表面の少なくとも一部に絶縁性被覆(例えば、絶縁性微粒子など)が存在していてもよい。また、導電性を有する粉粒体は、導電性の材料を含み、導電材料として機能するものであってもよい。なお、導電性を有する粉粒体には、絶縁性の粉粒体が水分の吸着又は吸湿等によって導電性が付与されたものも包含される。絶縁性の粉粒体としては、例えば、ガラス、セラミック、プラスチック、シリコンゴム及びブチルゴム等のゴムなどが挙げられる。 As the conductive powder 12, for example, metal particles such as gold, silver, nickel, copper, solder, etc.; conductive coated particles and the like. Metals that coat the non-conductive particles include gold, silver, nickel, copper, solder, and the like, and may have a multilayer structure. Further, the electrically conductive powder may have an insulating coating (for example, insulating fine particles) on at least a part of the outer surface of the powder. Further, the conductive powder may contain a conductive material and function as a conductive material. In addition, the electrically conductive powder also includes an insulating powder having conductivity imparted by moisture adsorption or moisture absorption. Examples of insulating powder include glass, ceramics, plastics, silicon rubber, and rubber such as butyl rubber.
 導電性を有する粉粒体は、一種を単独で又は二種以上を組み合わせて用いることができる。 The conductive powders can be used singly or in combination of two or more.
 導電性を有する粉粒体12は、球状又は略球状であってもよく、導電性を有する粉粒体と、この粉粒体の外表面の少なくとも一部に設けられた複数の絶縁性微粒子とを備える複合粒子であってもよい。 The conductive powder particles 12 may be spherical or substantially spherical, and include conductive powder particles and a plurality of insulating fine particles provided on at least part of the outer surface of the powder particles. It may be a composite particle comprising
 導電性を有する粉粒体12の粒径は、1~40μmであってもよく、1.5~30μmであってもよく、2~20μmであってもよい。 The particle size of the conductive powder 12 may be 1 to 40 μm, 1.5 to 30 μm, or 2 to 20 μm.
 本実施形態においては、平均粒径が上記範囲である導電性を有する粉粒体を用いてもよい。 In the present embodiment, conductive particles having an average particle size within the above range may be used.
 配合粒子Pを構成する媒介粒子の粒径は、導電性を有する粉粒体を効率よく吸着部に吸着させる観点から、導電性を有する粉粒体の粒径の5~200倍であってもよく、10~150倍であってもよく、10~100倍であってもよい。 The particle diameter of the mediating particles that constitute the compounded particles P may be 5 to 200 times the particle diameter of the conductive powder particles from the viewpoint of efficiently adsorbing the conductive powder particles to the adsorption part. It may be 10 to 150 times, or 10 to 100 times.
 配合粒子Pは、媒介粒子と、導電性を有する粉粒体とを混合することにより調製することができる。混合方法は特に限定されないが、例えば、撹拌機等の公知の混合手段を用いてもよく、媒介粒子及び導電性を有する粉粒体を入れた容器を振とうしてもよい。混合は、媒介粒子及び粉粒体が損傷しない範囲で行うことが好ましい。 The blended particles P can be prepared by mixing medium particles and conductive powder. Although the mixing method is not particularly limited, for example, a known mixing means such as a stirrer may be used, or a container containing medium particles and conductive powder may be shaken. Mixing is preferably carried out within a range that does not damage the medium particles and the granular material.
 媒介粒子と導電性を有する粉粒体との配合割合は、媒介粒子の表面に導電性を有する粉粒体を充分に付着させるように適宜設定することができる。なお、導電性を有する粉粒体の配合量が多すぎると導電性を有する粉粒体の凝集が生じやすいため、導電性を有する粉粒体の凝集を抑制できる範囲で配合割合を設定することが好ましい。 The mixing ratio of the mediator particles and the conductive powder can be appropriately set so that the conductive powder and grains are sufficiently adhered to the surface of the mediator particles. If the blending amount of the conductive powder is too large, aggregation of the conductive powder tends to occur. is preferred.
 上部電極7を構成する電極本体6としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス等が挙げられる。電極本体6の形状としては、特に限定されないが、例えば、平板状、ロール状などであってもよい。 As the electrode body 6 constituting the upper electrode 7, one having static electricity dissipative properties or conductivity can be used. For example, a material having a surface resistivity of 10 13 Ω or less can be used, and specific examples include metals and glass. The shape of the electrode main body 6 is not particularly limited, but may be, for example, a flat plate shape, a roll shape, or the like.
 吸着部5は、配置部側に開口する開口パターン(複数の開口部72)が設けられている。吸着部5の材質としては、絶縁性材料を用いることができる。例えば、表面抵抗率が1013Ω超の材料を用いることができる。吸着部5の形状としては、上記の開口パターンが設けられているものであれば特に限定されず、電極本体6の表面に形成された膜若しくはフィルムであってもよく、電極本体6とは分離可能なフィルムであってもよい。 The adsorption portion 5 is provided with an opening pattern (a plurality of openings 72) that opens toward the placement portion. An insulating material can be used as the material of the adsorption portion 5 . For example, materials with surface resistivities greater than 10 13 Ω can be used. The shape of the adsorption portion 5 is not particularly limited as long as it has the opening pattern described above, and may be a film or a film formed on the surface of the electrode body 6 , which is separated from the electrode body 6 . It may be a film that can be used.
 図3の(a)は吸着部の一例を模式的に示す平面図であり、図3の(b)は図3の(a)のIb-Ib線における断面図である。図3(a)に示す吸着部5は、所定のパターン(開口パターン)を有する複数の開口部(凹部)72が設けられている。所定のパターン(開口パターン)は規則的な配置であってもよい。 (a) of FIG. 3 is a plan view schematically showing an example of a suction portion, and (b) of FIG. 3 is a cross-sectional view taken along line Ib-Ib of (a) of FIG. The suction unit 5 shown in FIG. 3A is provided with a plurality of openings (recesses) 72 having a predetermined pattern (opening pattern). The predetermined pattern (opening pattern) may be a regular arrangement.
 吸着部5の開口部72は、開口部72の底部72a側から吸着部5の表面5a側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。すなわち、図3(a)及び図3(b)に示すように、開口部72の底部72aの幅(図3(a)及び図3(b)における幅a)は、開口部72の表面5aにおける開口の幅(図3(a)及び図3(b)における幅b)よりも狭いことが好ましい。そして、開口部72のサイズ(幅a、幅b、容積、テーパ角度及び深さ等)は、収容する導電性を有する粉粒体のサイズに応じて設定すればよい。 The opening 72 of the suction portion 5 is preferably tapered such that the opening area increases from the bottom portion 72a side of the opening portion 72 toward the surface 5a side of the suction portion 5 . That is, as shown in FIGS. 3A and 3B, the width of the bottom portion 72a of the opening 72 (the width a in FIGS. 3A and 3B) is the surface 5a of the opening 72. is preferably narrower than the width of the opening in (width b in FIGS. 3(a) and 3(b)). The size (width a, width b, volume, taper angle, depth, etc.) of the opening 72 may be set according to the size of the electrically conductive granular material to be accommodated.
 例えば、開口の幅bは、導電性を有する粉粒体の粒径に対して、1.0~1.5倍とすることができ、1.05~1.45倍とすることができる。また、媒介粒子の粒径は、開口の幅bに対して、2.0~110倍とすることができ、2.5~100倍とすることができる。 For example, the width b of the opening can be 1.0 to 1.5 times, or 1.05 to 1.45 times, the particle size of the conductive powder. In addition, the particle size of the mediator particles can be 2.0 to 110 times, and can be 2.5 to 100 times, the width b of the opening.
 なお、開口部72の形状は図3(a)及び図3(b)に示す形状以外の形状であってもよい。例えば、表面5aにおける開口の形状は、図3(a)に示すような円形以外に、楕円形、三角形、四角形、多角形等であってよい。底部72aについても、平面以外の形状であってもよく、例えば、山型、谷型、微細な突起の集合体等であってよい。 The shape of the opening 72 may be a shape other than the shape shown in FIGS. 3(a) and 3(b). For example, the shape of the opening on the surface 5a may be oval, triangular, quadrangular, polygonal, etc., other than circular as shown in FIG. 3(a). The bottom portion 72a may also have a shape other than a flat surface, such as a mountain shape, a valley shape, or an aggregate of fine projections.
 図4は、吸着部の開口部に導電性を有する粉粒体が収容された状態を模式的に示す断面図である。開口部に収容されている導電性を有する粉粒体以外の粉粒体(余剰粒子)を除去すること、及び、収容された導電性を有する粉粒体を粘着性基材などに転写することが容易とする観点から、開口部72に収容された導電性を有する粉粒体の吸着部とは反対側の頂点と、吸着部の表面5aとの距離Xが、導電性を有する粉粒体の粒径dの-20~80%となるように、好ましくは-15~60%となるように開口部72の形状を設定することができる。なお、Xがプラスの値である場合は、図4に示されるように、導電性を有する粉粒体が吸着部の表面5aから突出している状態を意味し、Xがマイナスの値である場合は、導電性を有する粉粒体が吸着部の表面5aから突出していない、換言すれば埋没している状態を意味する。 FIG. 4 is a cross-sectional view schematically showing a state in which conductive powder particles are accommodated in the opening of the adsorption part. Removing particles (surplus particles) other than the conductive particles accommodated in the opening, and transferring the accommodated conductive particles to an adhesive substrate or the like From the viewpoint of facilitating the The shape of the opening 72 can be set so as to be -20 to 80%, preferably -15 to 60%, of the particle size d. In addition, when X is a positive value, it means a state in which the conductive granules protrude from the surface 5a of the adsorption portion as shown in FIG. 4, and when X is a negative value means a state in which the conductive granules do not protrude from the surface 5a of the adsorption portion, in other words, are buried.
 吸着部5を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。吸着部の開口部72は、フォトリソグラフ法、ナノインプリント等の公知の方法によって形成することができる。また、吸着部5は、単層であってもよく、基体層と開口部が設けられた開口部層との積層体のように複数の層から構成されていてもよい。吸着部5が積層体である場合、例えば、PET等の基体層上に、光硬化性樹脂組成物を用い、フォトリソグラフ法、ナノインプリント等の方法によって形成された開口部層との備えるフィルムであってもよい。 As materials for forming the adsorption portion 5, for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and organic materials such as various resins can be used. The opening 72 of the adsorption section can be formed by a known method such as photolithography, nanoimprinting, or the like. Also, the adsorption portion 5 may be a single layer, or may be composed of a plurality of layers such as a laminate of a base layer and an opening layer provided with an opening. When the adsorption part 5 is a laminate, for example, it is a film comprising a base layer such as PET and an opening layer formed using a photocurable resin composition by a method such as photolithography or nanoimprinting. may
 開口パターンは、目的とする配置で粉粒体を分散できるよう、適宜設定することができる。図3の(a)に示す吸着部5においては、丸孔の開口部が直列で格子状に設けられているが、例えば、図5に示すように、60°千鳥にすることもできる。また、開口パターンは、開口部が整列して設けられていてもよく、ランダムに設けられているものであってもよい。 The opening pattern can be set as appropriate so that the particles can be dispersed in the desired arrangement. In the adsorption part 5 shown in FIG. 3A, the openings of round holes are provided in series in a grid pattern, but they can be staggered by 60°, for example, as shown in FIG. In addition, the opening pattern may be formed by aligning the openings, or by randomly providing the openings.
 静電吸着装置1において、下部電極4と上部電極7とは所定の間隔を設けて配置されており、その電極間距離は0.5~100mmとすることができ、1~20mmであってもよく、2~15mmであってもよい。 In the electrostatic chucking device 1, the lower electrode 4 and the upper electrode 7 are arranged with a predetermined distance therebetween, and the distance between the electrodes can be 0.5 to 100 mm, and even 1 to 20 mm. Well, it may be from 2 to 15 mm.
 静電吸着装置1において下部電極4は移動可能であってもよく、この場合、配合粒子を連続的に供給することが容易となる。例えば、ベルト又は円柱状のローラーの表面に下部電極を設けることができる。 The lower electrode 4 may be movable in the electrostatic adsorption device 1, and in this case, it becomes easy to continuously supply the compounded particles. For example, the bottom electrode can be provided on the surface of a belt or cylindrical roller.
 静電吸着装置1において上部電極7は移動可能であってもよく、この場合、導電性を有する粉粒体を吸着させる吸着部を連続的に供給することが容易となる。例えば、ベルト又は円柱状のローラーの表面に上部電極を設けることができる。 In the electrostatic adsorption device 1, the upper electrode 7 may be movable, and in this case, it becomes easy to continuously supply adsorption portions for adsorbing conductive powder particles. For example, the upper electrode can be provided on the surface of a belt or cylindrical roller.
 電源8は、下部電極及び上部電極の間に電界を形成できるものであればよく、例えば、公知の高圧電源を用いることができる。高圧電源は、直流電源であってもよく、交流電源であってもよい。 The power supply 8 may be anything that can form an electric field between the lower electrode and the upper electrode, and for example, a known high voltage power supply can be used. The high voltage power supply may be a DC power supply or an AC power supply.
 制御部9は、例えば、印加する電圧の調整、印加時間等の機能を有することができる。 The control unit 9 can have functions such as adjustment of applied voltage and application time, for example.
 本実施形態の粉粒体の分散方法においては、第一の電極及び第二の電極の間に電界を形成して、配置部に配置された、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子、を吸着部に接触させて、吸着部の開口部に導電性を有する粉粒体を収容する。 In the method for dispersing the granular material of the present embodiment, an electric field is formed between the first electrode and the second electrode, and the medium particles arranged in the arrangement section have a smaller particle size than the medium particles. The blended particles to which the conductive powder particles are adhered are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening of the adsorption part.
 ここで、吸着部の開口部に導電性を有する粉粒体が収容される機構について推察も交えて説明する。図6は、本実施形態に係る粉粒体の分散方法を説明するための模式図であり、図6の(a)は、下部電極(第一の電極)及び上部電極(第二の電極)の間に電界を印加したときの配合粒子の動きを示す。配置部で上部電極と逆極性に帯電している配合粒子は静電引力によって上昇する。上昇した配合粒子は吸着部に接触する。このとき、粒径の大きい媒介粒子10の表面に付着している粒径の小さい導電性を有する粉粒体12が吸着部の開口部72に直接入る場合もあるが、そうならない場合が多い。吸着部に接触した配合粒子は、衝突の反動や重力で落下する場合もあるが、ほとんどの場合は、図6の(a)中に示される配合粒子P1のように静電引力で付着したままである。この配合粒子P1は吸着部を覆うように1層分だけ付着している。配合粒子P1は上部電極の電圧とは逆極性に帯電しているため、上部電極と下部電極との間に形成される静電界は低下する。しかしながら、充分に大きな電界が印加されている状況では、配置部から、上部電極と逆極性に帯電した配合粒子P2が静電引力によって上昇し、上部電極に付着している配合粒子P1と衝突することができる。衝突した配合粒子P2から配合粒子P1に電荷が与えられ、電荷を与えた配合粒子P2は電荷を失って自然落下するとともに、配合粒子P1が持つ電荷は増加する。このような過程を繰りかえすことで、配合粒子P2は上部電極と下部電極との間を往復運動する。配合粒子P1が充分大きな電荷を持つようになると、媒介粒子と導電性を有する粉粒体との間の静電反発力が大きくなるので、上部電極からの静電吸引力が働いている開口部に向けて導電性を有する粉粒体が放出され、開口部に導電性を有する粉粒体が入ることになる。 Here, the mechanism by which the conductive granular material is accommodated in the opening of the adsorption part will be explained with conjecture. 6A and 6B are schematic diagrams for explaining the method for dispersing the granular material according to the present embodiment. FIG. 6A shows a lower electrode (first electrode) and an upper electrode (second electrode). Figure 2 shows the motion of compounded particles when an electric field is applied between The compounded particles, which are charged to the opposite polarity to the upper electrode in the placement portion, rise due to electrostatic attraction. The compounded particles that have risen come into contact with the adsorption section. At this time, the conductive powder particles 12 having small particle size and adhering to the surface of the medium particles 10 having a large particle size may directly enter the opening 72 of the adsorption section, but in many cases this is not the case. The compounded particles that come into contact with the adsorption part may drop due to the recoil of collision or gravity, but in most cases, they remain attached due to electrostatic attraction, like the compounded particles P1 shown in FIG. is. Only one layer of the compounded particles P1 is attached so as to cover the adsorption portion. Since the compounded particles P1 are charged with a polarity opposite to the voltage of the upper electrode, the electrostatic field formed between the upper electrode and the lower electrode is reduced. However, when a sufficiently large electric field is applied, the compounded particles P2 charged to the opposite polarity to the upper electrode rise from the arrangement portion due to electrostatic attraction and collide with the compounded particles P1 adhering to the upper electrode. be able to. The blended particles P2 that have collided give an electric charge to the blended particles P1, and the charged blended particles P2 lose their electric charge and fall naturally, and the electric charge of the blended particles P1 increases. By repeating such a process, the mixed particles P2 reciprocate between the upper electrode and the lower electrode. When the compounded particles P1 have a sufficiently large electric charge, the electrostatic repulsive force between the mediator particles and the conductive granules increases. The electrically conductive granular material is discharged toward the opening, and the electrically conductive granular material enters the opening.
 本実施形態においては、所定の開口パターンを有する開口部72に導電性を有する粉粒体12が収容されるまで配合粒子を吸着部に接触させることができる。こうして、図6の(b)に示すように、吸着部5の開口部72に導電性を有する粉粒体12が収容された電極、すなわち導電性粉粒体付き電極20が得られる。 In this embodiment, the mixed particles can be brought into contact with the adsorption portion until the conductive powdery grains 12 are accommodated in the openings 72 having a predetermined opening pattern. In this way, as shown in FIG. 6B, an electrode in which the conductive powder particles 12 are housed in the opening 72 of the adsorption unit 5, that is, the electrode 20 with conductive powder particles is obtained.
 印加する電界強度としては、0.1~30kV/cmとすることができ、0.5~30kV/cmであってもよく、1~20kV/cmであってもよい。 The electric field intensity to be applied may be 0.1 to 30 kV/cm, may be 0.5 to 30 kV/cm, or may be 1 to 20 kV/cm.
 電界の印加は、連続的であってもよく、断続的であってもよい。 The application of the electric field may be continuous or intermittent.
 電界の印加時間としては、所定の開口パターンを有する開口部72に収容させる導電性を有する粉粒体の量に応じて適宜設定することができる。 The application time of the electric field can be appropriately set according to the amount of the conductive powder or granular material to be accommodated in the openings 72 having a predetermined opening pattern.
 本実施形態においては、絶縁性の吸着部5に導電性を有する粉粒体が吸着することによる電界の減少作用によって、吸着部の開口部に所定量の導電性を有する粉粒体が吸着した時点で導電性を有する粉粒体の静電吸着を止めることもできる。すなわち、下部電極4及び導電性粉粒体付き電極20間の電界の強さは吸着部5に導電性を有する粉粒体が付着すればするほど小さくなることから、配置部の配合粒子がなくなること以外に、電極間の電界を十分に小さくすることで配合粒子の飛昇を止めることもできる。この現象を利用し、例えば、下部電極4を移動可能にする或いは配置部への配合粒子の補充を行うことで十分な量の配合粒子を供給できるようにすれば、電界が十分弱くなるまで導電性を有する粉粒体を吸着部に吸着させることができる。 In the present embodiment, a predetermined amount of conductive powder particles are adsorbed to the opening of the adsorption part due to the action of reducing the electric field caused by the adsorption of the conductive powder particles to the insulating adsorption part 5 . It is also possible to stop the electrostatic adsorption of the electrically conductive powder at this point. That is, since the strength of the electric field between the lower electrode 4 and the electrode 20 with conductive powder particles becomes smaller as the conductive powder particles adhere to the adsorption part 5, the mixed particles in the placement part disappear. In addition to this, by sufficiently reducing the electric field between the electrodes, it is also possible to stop the jumping of the blended particles. By utilizing this phenomenon, for example, by making the lower electrode 4 movable or by replenishing the placement portion with the compounded particles so that a sufficient amount of compounded particles can be supplied, the electric field can be sufficiently weakened until the electric field becomes sufficiently weak. It is possible to cause the adsorbing part to adsorb powder or granular material having properties.
 導電性粉粒体付き電極20は、吸着部5を電極本体6から分離して導電性を有する粉粒体が離間して二次元的に配置された基材として用いてもよく、所定の粘着性基材上に導電性を有する粉粒体を移すために用いてもよい。 The conductive powder-coated electrode 20 may be used as a base material in which the adsorption portion 5 is separated from the electrode main body 6 and conductive powder particles are spaced apart and two-dimensionally arranged. It may also be used to transfer conductive granules onto a conductive substrate.
 本実施形態の粉粒体の分散方法は、吸着部に付着している、開口部に収容されている導電性を有する粉粒体以外の粉粒体(余剰粒子)を除去するための工程(以下、余剰粒子除去工程ともいう)を更に備えていてもよい。余剰粒子除去工程は、開口部に収容されている導電性を有する粉粒体を、所定の粘着性基材上に転写する前に行うことができる。この場合、吸着部から除去された粒子を回収してリサイクルしてもよく、余剰粒子のうちの少なくとも導電性を有する粉粒体を回収してリサイクルすることが好ましい。 The method for dispersing powder or granular material of the present embodiment includes a step for removing powder or granular material (excess particles) other than the conductive powder or granular material accommodated in the opening, adhering to the adsorption unit ( hereinafter, may be also referred to as excess particle removal step). The surplus particle removal step can be performed before transferring the electrically conductive granular material contained in the opening onto a predetermined adhesive base material. In this case, the particles removed from the adsorption unit may be recovered and recycled, and it is preferable to recover and recycle at least the powder particles having conductivity among the surplus particles.
 余剰粒子を除去する方法としては、エアブロー、ブラシ、スキージ等の物理的に除去する手段、イオナイザー等の静電的に除去する手段が挙げられる。 Methods for removing excess particles include physical removal means such as air blow, brush, and squeegee, and electrostatic removal means such as ionizers.
 上述した静電吸着装置では、第一の電極と第二の電極がそれぞれ重力方向に対して下側及び上側に配置されているが、本実施形態の粉粒体の分散方法においては、配合粒子の移動方向が、水平であってもよく、重力方向に対して傾斜していてもよい。これらの場合においても、第一の電極及び第二の電極は上記と同様の構成とすることができる。 In the above-described electrostatic adsorption device, the first electrode and the second electrode are arranged on the lower side and the upper side with respect to the direction of gravity, respectively. may be horizontal or may be inclined with respect to the direction of gravity. Also in these cases, the first electrode and the second electrode can be configured in the same manner as described above.
 本実施形態の粉粒体の分散方法によれば、粉粒体へのダメージを小さくしつつ、基材の所定の位置に粉粒体を配置することができる。 According to the method of dispersing the granular material of the present embodiment, the granular material can be arranged at a predetermined position on the substrate while reducing the damage to the granular material.
[静電吸着装置]
 本実施形態の静電吸着装置は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える。
[Electrostatic adsorption device]
The electrostatic adsorption device of the present embodiment includes a first electrode having a dissipative or conductive arrangement portion, and an insulating electrode having an opening pattern facing the arrangement portion and opening toward the arrangement portion. and a second electrode having an adsorption part having
 本実施形態の静電吸着装置は、上述した粉粒体の分散方法に用いられる静電吸着装置と同様の構成を有することができる。 The electrostatic chucking device of the present embodiment can have a configuration similar to that of the electrostatic chucking device used in the method for dispersing powder particles described above.
 また、本発明は、下記[1]~[5]の発明を提供する。
[1] 静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の第一の電極と第二の電極との間に電界を形成することにより、配置部に配置された、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子、を吸着部に接触させて、吸着部の開口部に導電性を有する粉粒体を収容することを特徴とする、粉粒体の分散方法。
[2] 媒介粒子の粒径が、導電性を有する粉粒体の粒径の10~100倍である、上記[1]に記載の粉粒体の分散方法。
[3] 導電性を有する粉粒体の粒径が、2~20μmである、上記[1]又は[2]に記載の粉粒体の分散方法。
[4] 吸着部に付着している、開口部に収容されている導電性を有する粉粒体以外の粉粒体を除去するための工程を更に備える、上記[1]~[3]のいずれかに記載の粉粒体の分散方法。
[5] 静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える、静電吸着装置。
The present invention also provides the following inventions [1] to [5].
[1] A first electrode having a static dissipative or conductive placement portion, and an insulating adsorption portion provided with an opening pattern facing the placement portion and opening toward the placement portion. and a second electrode, by forming an electric field between the first electrode and the second electrode of the electrostatic adsorption device, the mediator particles arranged in the placement section are more likely to be particles than the mediator particles. Blended particles to which conductive powder particles having a small diameter are attached are brought into contact with the adsorption part, and the conductive powder particles are accommodated in the opening part of the adsorption part. distribution method.
[2] The method for dispersing powder particles according to the above [1], wherein the particle size of the medium particles is 10 to 100 times the particle size of the conductive powder particles.
[3] The method for dispersing powder particles according to the above [1] or [2], wherein the particle size of the powder particles having conductivity is 2 to 20 μm.
[4] Any one of the above [1] to [3], further comprising a step of removing particles other than the electrically conductive particles accommodated in the opening that adhere to the adsorption part. The method for dispersing the granular material according to 1.
[5] A first electrode having a static dissipative or conductive placement portion, and an insulating suction portion provided with an opening pattern facing the placement portion and opening toward the placement portion. and a second electrode.
 以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[配合粒子の調製]
(調製例1)
 ガラス製の容器に、媒介粒子として平均粒径が150μmであるカーボン粒子(日本カーボン(株)製、製品名「NICA beads ICB-15020」)120質量部、及び導電性を有する粉粒体としてプラスチックのコア粒子の表面にNiめっきを施した平均粒径3μmの導電被覆粒子1質量部を入れ、容器を振って混ぜ合わせることにより配合粒子1を得た。なお、得られた配合粒子1を走査型電子顕微鏡により観察して、媒介粒子であるカーボン粒子の表面に、導電性を有する粉粒体である導電被覆粒子が付着していることを確認した。
[Preparation of compounded particles]
(Preparation Example 1)
In a glass container, 120 parts by mass of carbon particles having an average particle size of 150 μm (manufactured by Nippon Carbon Co., Ltd., product name “NICA beads ICB-15020”) as medium particles, and plastic as a conductive powder 1 part by mass of conductive coated particles having an average particle diameter of 3 μm and having Ni-plated surfaces on the core particles of No. 1 were added and mixed by shaking the container to obtain compounded particles 1 . The compounded particles 1 thus obtained were observed with a scanning electron microscope, and it was confirmed that conductive coating particles, which are conductive particles, adhered to the surfaces of the carbon particles, which were mediator particles.
[インプリントフィルムの作製]
(作製例1)
 厚さ50μmのPETフィルム上にUV硬化性樹脂を塗布し、図5に示すものと同様のパターンを有するインプリントモールドを押圧しながらUVを照射することにより、基体層上に、図5に示すものと同様の開口パターンで開口部が設けられたインプリントフィルムを用意した。なお、開口部の形状については、図3の(b)におけるa、b及びcがそれぞれ、4.0μm、4.4μm及び4.0μmであった。また、インプリントフィルムにおける隣接する開口の最短距離は6.0μmであった。
[Preparation of imprint film]
(Production example 1)
A UV curable resin was applied onto a PET film having a thickness of 50 μm, and an imprint mold having a pattern similar to that shown in FIG. An imprint film provided with openings in the same opening pattern as the one was prepared. As for the shape of the opening, a, b and c in FIG. 3(b) were 4.0 μm, 4.4 μm and 4.0 μm, respectively. The shortest distance between adjacent openings in the imprint film was 6.0 μm.
(実施例1)
 上述した実施形態に係る静電吸着装置1と同様の構成を有する装置を用意し、下部電極4として真鍮板を用い、上部電極7として一方の主面を作製例1のインプリントフィルムで被覆した真鍮板を用い、電極間距離を8.0mmに設定した。
(Example 1)
A device having the same configuration as the electrostatic adsorption device 1 according to the above-described embodiment was prepared, a brass plate was used as the lower electrode 4, and one main surface was coated with the imprint film of Production Example 1 as the upper electrode 7. A brass plate was used and the distance between the electrodes was set to 8.0 mm.
 真鍮板(下部電極)の表面に配合粒子1を配置し、電極間に6.0kVの電圧を印加して、配合粒子を飛昇させて吸着部であるインプリントフィルムに接触させた。その後、ブラシを用いて余剰粒子の除去を行った。こうして得られた、開口部に導電性を有する粉粒体である導電被覆粒子が収容された吸着部(インプリントフィルム)の拡大写真を図7に示す。図7は、インプリントフィルムの表面の顕微鏡倍率600倍の写真である。 The mixed particles 1 were placed on the surface of the brass plate (lower electrode), and a voltage of 6.0 kV was applied between the electrodes to cause the mixed particles to fly up and contact the imprint film, which is the adsorption part. After that, excess particles were removed using a brush. FIG. 7 shows an enlarged photograph of the adsorbing portion (imprint film) obtained in this way, in which the conductive coated particles, which are particles having conductivity, are housed in the openings. FIG. 7 is a photograph of the surface of the imprint film at a microscope magnification of 600 times.
 図7に示されるインプリントフィルムにおいては、各開口部に導電被覆粒子が収容されていることが確認された。  In the imprint film shown in Fig. 7, it was confirmed that the conductive coated particles were accommodated in each opening.
 1…静電吸着装置、2…配置部、3…電極本体、4…下部電極(第一の電極)、5…吸着部、6…電極本体、7…上部電極(第二の電極)、8…電源、9…制御部、10…媒介粒子、12…導電性を有する粉粒体、20…導電性粉粒体付き電極、72…開口部、P…配合粒子。 DESCRIPTION OF SYMBOLS 1... Electrostatic adsorption apparatus, 2... Arrangement part, 3... Electrode main body, 4... Lower electrode (first electrode), 5... Adsorption part, 6... Electrode main body, 7... Upper electrode (second electrode), 8 Power supply 9 Control unit 10 Mediating particles 12 Conductive granular material 20 Electrode with conductive granular material 72 Opening P Mixed particles.

Claims (5)

  1.  静電気拡散性又は導電性を有する配置部、を有する第一の電極と、前記配置部と対向し、前記配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の前記第一の電極と前記第二の電極との間に電界を形成することにより、
     前記配置部に配置された、媒介粒子に該媒介粒子よりも粒径が小さい導電性を有する粉粒体を付着させた配合粒子、を前記吸着部に接触させて、前記吸着部の開口部に前記導電性を有する粉粒体を収容することを特徴とする、粉粒体の分散方法。
    A first electrode having an arrangement portion having static electricity dissipative properties or conductivity; and an insulating adsorption portion having an opening pattern facing the arrangement portion and opening toward the arrangement portion. By forming an electric field between the first electrode and the second electrode of an electrostatic adsorption device comprising two electrodes,
    The compounded particles, which are arranged in the arrangement portion and are formed by adhering conductive powder particles having a smaller particle size than the mediation particles to the mediation particles, are brought into contact with the adsorption portion, and are placed in the opening portion of the adsorption portion. A method for dispersing a powder or granular material, comprising accommodating the powder or granular material having conductivity.
  2.  前記媒介粒子の粒径が、前記導電性を有する粉粒体の粒径の10~100倍である、請求項1に記載の粉粒体の分散方法。 The method for dispersing powder particles according to claim 1, wherein the particle size of the medium particles is 10 to 100 times the particle size of the conductive powder particles.
  3.  前記導電性を有する粉粒体の粒径が、2~20μmである、請求項1又は2に記載の粉粒体の分散方法。 The method for dispersing powder particles according to claim 1 or 2, wherein the particle diameter of the powder particles having conductivity is 2 to 20 µm.
  4.  前記吸着部に付着している、前記開口部に収容されている前記導電性を有する粉粒体以外の粉粒体を除去するための工程を更に備える、請求項1~3のいずれか一項に記載の粉粒体の分散方法。 4. The method according to any one of claims 1 to 3, further comprising a step of removing powder particles other than the conductive powder particles housed in the opening and adhering to the adsorption part. 3. The method for dispersing the granular material according to 1.
  5.  静電気拡散性又は導電性を有する配置部、を有する第一の電極と、
     前記配置部と対向し、前記配置部側に開口する開口パターンが設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える、静電吸着装置。
    a first electrode having a static dissipative or conductive placement portion;
    and a second electrode having an insulating adsorption portion facing the placement portion and provided with an opening pattern opening toward the placement portion.
PCT/JP2022/019083 2021-05-07 2022-04-27 Method for dispersing granular bodies, and electrostatic adsorption device WO2022234803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518675A JPWO2022234803A1 (en) 2021-05-07 2022-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079168 2021-05-07
JP2021079168 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234803A1 true WO2022234803A1 (en) 2022-11-10

Family

ID=83932728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019083 WO2022234803A1 (en) 2021-05-07 2022-04-27 Method for dispersing granular bodies, and electrostatic adsorption device

Country Status (3)

Country Link
JP (1) JPWO2022234803A1 (en)
TW (1) TW202246810A (en)
WO (1) WO2022234803A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137122A (en) * 2006-12-04 2008-06-19 Tatsuo Shiyouji Coating method with fine particle
JP2012521306A (en) * 2009-07-10 2012-09-13 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Structure production using nanoparticles
JP2012523311A (en) * 2009-04-09 2012-10-04 インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ Method for arranging fine particles on a substrate by physical pressure
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137122A (en) * 2006-12-04 2008-06-19 Tatsuo Shiyouji Coating method with fine particle
JP2012523311A (en) * 2009-04-09 2012-10-04 インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ Method for arranging fine particles on a substrate by physical pressure
JP2012521306A (en) * 2009-07-10 2012-09-13 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Structure production using nanoparticles
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device

Also Published As

Publication number Publication date
TW202246810A (en) 2022-12-01
JPWO2022234803A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US11845216B2 (en) 3D printed electronics using directional plasma jet
KR102206027B1 (en) Thin film fabricating apparatus and manufacturing method of orgarnic light emitting device using the same
KR101758370B1 (en) In-process orientation of particles in a direct-write ink to control electrical characteristics of an electrical component being fabricated
EP2298045B1 (en) An apparatus, a method for establishing a conductive pattern on a planar insulating substrate, the planar insulating substrate and a chipset thereof
US6836304B2 (en) Method of manufacturing an image display medium capable of displaying an image repeatedly, and image display medium capable of displaying an image repeatedly
WO2021095726A1 (en) Method for dispersing conductive particles, and electrostatic adsorption device
WO2009023584A2 (en) Device and method of forming electrical path with carbon nanotubes
CN111727112A (en) Method of manufacturing a material layer, method of manufacturing a three-dimensional object, material layer forming apparatus, and additive manufacturing system
JP2022172307A (en) Manufacturing method of all-solid battery
JP5301269B2 (en) Masks and methods for electrokinetic deposition and patterning processes on substrates
WO2022234803A1 (en) Method for dispersing granular bodies, and electrostatic adsorption device
JP4910332B2 (en) Method for producing carbon material thin film
KR101382738B1 (en) Apparatus and method for forming pattern by electrostactic spray, and method for manufacturing display panel
JP2008169275A (en) Polymeric microparticle and method for producing the same
JP2024029650A (en) Conductive particle dispersion method and electrostatic adsorption device
WO2008044668A1 (en) Powder coating, method for production of coated material, and coated material
JP2024029651A (en) Conductive particle dispersion method and electrostatic adsorption device
WO2022239124A1 (en) Solder particle classifying method, monodispersed solder particle, and solder particle classifying system
US5340617A (en) Electrostatic patterning of multi-layer module lamina
JP7047317B2 (en) Manufacturing method and manufacturing equipment for hierarchical structure
JP2008137122A (en) Coating method with fine particle
JP6074453B2 (en) Apparatus and method for forming conductive pattern on insulating flat substrate, insulating flat substrate, and chip set thereof
CN104228324A (en) Device and method for forming conductive patterns on flat insulated substrate, flat insulated substrate with conductive patterns and chipset formed on the flat insulated substrate
JPH05173146A (en) Method for scattering spacer over substrate
KR20060074480A (en) Toner particle for e-paper panel and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE