WO2022234383A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2022234383A1
WO2022234383A1 PCT/IB2022/053806 IB2022053806W WO2022234383A1 WO 2022234383 A1 WO2022234383 A1 WO 2022234383A1 IB 2022053806 W IB2022053806 W IB 2022053806W WO 2022234383 A1 WO2022234383 A1 WO 2022234383A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transistor
electronic device
layer
pixel
Prior art date
Application number
PCT/IB2022/053806
Other languages
English (en)
French (fr)
Inventor
池田寿雄
塚本洋介
吉住健輔
楠本直人
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023518546A priority Critical patent/JPWO2022234383A1/ja
Priority to US18/558,214 priority patent/US20240219714A1/en
Publication of WO2022234383A1 publication Critical patent/WO2022234383A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • One aspect of the present invention relates to an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a technical field of one embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes semiconductor devices, display devices, liquid crystal display devices, light-emitting devices, lighting devices, power storage devices, storage devices, imaging devices, and the like. Methods of operation or methods of their manufacture may be mentioned as an example.
  • a semiconductor device in this specification and the like refers to all devices that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are modes of a semiconductor device.
  • Storage devices, display devices, imaging devices, and electronic devices may include semiconductor devices.
  • Devices that require high-definition display panels include, for example, smartphones, tablet terminals, and notebook computers.
  • stationary display devices such as television devices and monitor devices are also required to have higher definition accompanying higher resolution.
  • devices that require the highest definition include, for example, devices for virtual reality (VR) or augmented reality (AR).
  • VR virtual reality
  • AR augmented reality
  • Display devices applicable to display panels typically include liquid crystal display devices, light-emitting devices equipped with light-emitting elements such as organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs), and electrophoretic display devices. Examples include electronic paper that performs display by, for example.
  • the basic structure of an organic EL device is to sandwich a layer containing a light-emitting organic compound between a pair of electrodes. By applying a voltage to this device, light can be obtained from the light-emitting organic compound.
  • a display device to which such an organic EL element is applied does not require a backlight, which is required in a liquid crystal display device or the like.
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • an electronic device in which a display device is incorporated in a goggle-type housing has been commercialized. Since the goggle-type terminal is worn on the head so as to cover the eyes, there is concern about adverse effects on the eyes. Therefore, it is preferable that an electronic device for VR or the like is provided with a sensor function for detecting fatigue or an abnormality from body motion.
  • an object of one embodiment of the present invention is to provide an electronic device that can detect body motion. Another object is to provide an electronic device that can detect a blinking action. Another object is to provide an electronic device that can detect an eyeball movement. Another object is to provide an electronic device that can detect a degree of fatigue. Another object is to provide an electronic device that uses a blinking motion as an input motion. Another object is to provide a novel electronic device. Another object is to provide a novel semiconductor device or the like.
  • One embodiment of the present invention relates to an electronic device having a display device including a light-emitting device and a light-receiving device and a light source inside a housing.
  • One aspect of the present invention includes a display device, a lens, a mirror, a light source, and an optical window, the display device having a light-emitting device and a light-receiving device, and the lens connecting the display device and the optical window.
  • the mirror is provided between the lens and the optical window with the reflective surface facing the optical window, the light source does not overlap the display device and the optical window, and the emitted light is oblique to the reflective surface of the mirror.
  • the light reflected by the mirror irradiates the object through the optical window, and the reflected light from the object enters the display device through the optical window and lens.
  • a transparent plate may be provided between the lens and the optical window, and the mirror may be provided on the surface of the transparent plate.
  • the mirror may be provided on the surface of the lens.
  • a short-pass filter that transmits visible light and reflects infrared light can be used for the mirror.
  • the light source preferably comprises a laser or light emitting diode emitting infrared light.
  • the optical window may be a lens.
  • the light receiving device preferably has an organic compound in the photoelectric conversion layer. Moreover, it is preferable that the light receiving device has a peak of light receiving sensitivity to infrared light. Moreover, it is preferable that a filter for cutting visible light is provided at a position overlapping with the light receiving device. Also, a light receiving device can have elements in common with a light emitting device.
  • blinking motions or eyeball motions can be detected.
  • detecting a blinking motion or an eyeball motion it is possible to estimate the degree of fatigue or perform an input motion to an electronic device.
  • a goggle-type electronic device can be formed by providing two electronic devices described above in a housing.
  • an electronic device capable of detecting body motion can be provided.
  • an electronic device capable of detecting a blinking action can be provided.
  • an electronic device capable of detecting eye movement can be provided.
  • a novel electronic device can be provided.
  • a novel semiconductor device or the like can be provided.
  • FIG. 1 is a diagram for explaining an electronic device.
  • 2A to 2D are diagrams for explaining the electronic device.
  • 3A and 3B are diagrams illustrating mirrors.
  • 3C and 3D are diagrams illustrating the light source.
  • 4A to 4C are diagrams for explaining electronic equipment.
  • FIG. 5A is a diagram illustrating an electronic device;
  • FIG. 5B is a diagram explaining a mirror.
  • 6A to 6C are diagrams for explaining electronic equipment.
  • 7A and 7B are diagrams illustrating a goggle-type electronic device.
  • FIG. 8 is a diagram showing the result of detecting a blinking action.
  • 9A and 9B are diagrams illustrating a display device.
  • 9C to 9E are diagrams illustrating pixels.
  • 10A and 10B are diagrams showing configuration examples of a display device.
  • 11A to 11D are diagrams showing configuration examples of display devices.
  • 12A to 12C are diagrams illustrating configuration examples of display devices.
  • 13A to 13D are diagrams showing configuration examples of display devices.
  • 14A to 14C are cross-sectional views illustrating the display device.
  • 15A to 15D are diagrams for explaining pixel circuits.
  • 16A and 16B are diagrams for explaining the circuit of the pixel.
  • the element may be composed of a plurality of elements as long as there is no functional problem.
  • multiple transistors operating as switches may be connected in series or in parallel.
  • the capacitor may be divided and arranged at a plurality of positions.
  • one conductor may have multiple functions such as wiring, electrode, and terminal, and in this specification, multiple names may be used for the same element. Also, even if the circuit diagram shows that the elements are directly connected, the elements may actually be connected via one or more conductors. In this specification, such a configuration is also included in the category of direct connection.
  • One embodiment of the present invention is a display device worn in front of the eye, which is an electronic device capable of detecting a blinking action.
  • the electronic device includes a display device and a light source in a housing, and the display device includes a light-emitting device (also referred to as a light-emitting element) and a light-receiving device (also referred to as a light-receiving element) in a display portion.
  • the light emitted from the light source is applied to the eye or its vicinity through the mirror, and the reflected light is detected by the light receiving device. Since the light amount of the reflected light differs between the eyelid and the eyeball, the blinking action can be detected.
  • blinking is closely related to eye fatigue, it is possible to estimate the state of fatigue of the user by detecting the number of times or intervals of blinking within a unit time, or detecting the opening and closing speed of eyelids. can. In addition, by consciously opening and closing the eyelids, it is possible to perform an input operation to the electronic device.
  • FIG. 1 is a perspective view illustrating an electronic device of one embodiment of the present invention.
  • the electronic device 20 includes a display device 30 , a lens 31 , a transparent plate 32 , a light source 33 (light sources 33 a , 33 b , 33 c and 33 d ) and an optical window 34 .
  • Mirrors 35 are provided on the surface of the transparent plate 32 .
  • 2A and 2B are diagrams when the electronic device 20 is viewed in the X direction.
  • FIG. 2C is a diagram of the electronic device 20 viewed in the Y direction. Note that in FIGS. 2A to 2C, some elements are omitted or shown with broken lines for clarity.
  • the user can see the display of the display device 30 through the lens 31, the translucent plate 32 and the optical window 34 (see FIG. 2A).
  • Various images such as movies and VR images can be displayed on the display device 30, and the user can obtain a sense of immersion and a sense of reality by visually recognizing the images mainly.
  • the light emitted from the light source 33 is irradiated via the mirror 35 and the optical window 34 with the user's eye 40 or its vicinity as the object.
  • Light reflected by the object enters the display device 30 via the optical window 34, the translucent plate 32 and the lens 31 (see FIG. 2B). Since the user's eye 40 or its vicinity has a nearly spherical shape, the light can be efficiently reflected toward the display device 30 even if the light is obliquely incident.
  • the display device 30 has a light receiving device and can detect the reflected light.
  • FIG. 1 and the like show an example in which a plurality of pairs of mirrors 35 and light sources 33 are provided, the number of pairs of mirrors 35 and light sources 33 may be one or more. By providing a plurality of pairs of mirrors 35 and light sources 33, the amount of reflected light detected by the display device 30 increases, so the SN ratio can be increased.
  • the display device 30 has a display device and a light receiving device.
  • the display device is preferably a light-emitting device such as an organic EL element that emits visible light.
  • the light receiving device has a peak of light receiving sensitivity to infrared light and the photoelectric conversion layer is formed of an organic compound.
  • the lens 31 is made of a material that transmits visible light and infrared light, and has the function of forming an image displayed on the display surface of the display device 30 on the retina inside the eye 40 .
  • one convex lens is illustrated as the lens 31 in FIG. 1 and the like, the lens 31 may be composed of a plurality of lenses. Also, a combination of a convex lens and a concave lens may be used. Also, a mirror may be provided between the display device 30 and the lens 31 or between the lenses.
  • the light receiving devices are widely arranged in a matrix in the display device 30 in the same manner as the light emitting devices, and can detect diffused reflected light with high sensitivity.
  • the transmittance of the lens 31 for visible light and infrared light is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%.
  • the translucent plate 32 is made of a material that transmits visible light and infrared light, and has mirrors 35 (mirrors 35a, 35b, 35c, 35d) in regions near the ends.
  • the mirror 35 preferably transmits visible light and reflects infrared light.
  • a mirror that transmits visible light and reflects infrared light is also called a short-pass filter or a hot mirror.
  • the transparent plate 32 and the mirror 35 can transmit visible light, they can transmit display light even within the field of view. Therefore, deterioration in display quality can be suppressed.
  • the mirror 35 may be provided in a ring shape or the like on the surface of the transparent plate 32 as shown in FIG. 3A. Moreover, when the mirror 35 does not enter the field of view, as shown in FIG. 3B, a plurality of mirrors 35 may be provided independently. In addition, even when the mirror 35 comes into the field of view, if the refractive index of the base material of the mirror 35 and the reflectance of the surface are appropriately controlled so as not to interfere with the display, the form shown in FIG. 3B should be used. can be done.
  • the transmittance of the transparent plate 32 to visible light and infrared light is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%.
  • the visible light transmittance of the mirror 35 is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%.
  • the reflectance of the mirror 35 for infrared light is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%.
  • Light source 33 preferably comprises a laser or light emitting diode that emits infrared light. Since infrared light has extremely low luminosity, it hardly affects the visual recognition of the display. Further, in order to detect a blink, it is preferable to efficiently irradiate the position of the eyelids when the eyes are closed, so it is preferable to use directional light. Therefore, when a light-emitting diode is used, it may be combined with a condenser lens.
  • infrared light a range from near-infrared light to far-infrared light can be used; It is preferable to use GaAs, GaAlAs, InGaAs, or the like can be used as a semiconductor used in the light-emitting layer of a laser or a light-emitting diode that emits near-infrared light, for example.
  • FIG. 3C shows an example of the light source 33, which has a configuration in which a light emitting diode 51 and a lens 52 are combined.
  • the light emitting diode 51 is partially embedded in a lens-shaped resin, and the light emitted from the light emitting diode 51 can be condensed by the lens 52 to suppress the diffusion of the light.
  • a light-emitting diode having such a configuration is sometimes called a bullet-shaped light-emitting diode.
  • the light source 33 may have a configuration in which a cylindrical light shielding wall 53 covering the configuration of FIG. 3C is provided. Since part of the light emitted from the light emitting diode 51 is also emitted in an oblique direction, the light shielding wall 53 can be provided to reflect or attenuate the light, thereby suppressing the diffusion of the light. Further, a lens may be provided inside the cylindrical light shielding wall 53 .
  • the light shielding wall 53 is not limited to a cylindrical shape, and the cross section perpendicular to the long axis may be polygonal or elliptical. Further, the inner surface of the light shielding wall 53 may be provided with a material that reflects or absorbs infrared light.
  • the mirror 35 (mirrors 35a, 35b, 35c, 35d) can be installed at a position overlapping the lens 31, as shown in FIG. 2C.
  • the main function of mirror 35 is to reflect light emitted from light source 33 toward optical window 34 .
  • the reflected light from the eye 40 or its vicinity can also be obtained by irradiating the light emitted from the light source 33 directly toward the optical window 34 without providing the mirror 35. can do.
  • the display quality is significantly degraded.
  • the visible light source 33 does not block the display, if the light source 33 is within the field of view, the sense of immersion is disturbed.
  • the light source 33 can be easily removed from the field of view. put away. Therefore, noise components increase when infrared light is detected by the light receiving device.
  • a light source 33 may be provided in the display device 30, and light may be emitted from the light source and reflected light may be detected.
  • the noise component increases due to the light emitted.
  • the light source 33 by providing the light source 33 so that the incident angle of the light with respect to the eye 40 is large, the light source 33 can be easily removed from the field of view. However, since the angle of reflection also increases, the amount of reflected light entering the display device 30 decreases. Therefore, as shown in FIGS. 2A and 2B, it is preferable to irradiate the light from the light source 33 through the mirror 35 toward the optical window 34 .
  • the optical window 34 corresponds to a window provided in the optical opening of the housing of the electronic device, and can be made of a material that transmits visible light and infrared light.
  • the elements the display device 30 , the lens 31 , the translucent plate 32 , the light source 33 , etc.
  • the optical window 34 may be a lens, and may have the function of adjusting the focus together with the lens 31 .
  • the optical window 34 (lens) is provided with a slide mechanism 39 to change the distance between the lens 31 and the optical window 34 (lens), thereby adjusting the diopter.
  • FIG. 2D can also be applied to other electronic devices shown in this specification.
  • the transmittance of the optical window 34 for visible light and infrared light is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%.
  • An electronic device of one embodiment of the present invention may have the structure illustrated in FIG. 5A.
  • Electronic device 21 shown in FIG. 5A is different from electronic device 20 shown in FIG. 6A and 6B are diagrams when the electronic device 21 is viewed in the X direction.
  • FIG. 6C is a diagram when the electronic device 21 is viewed in the Y direction.
  • some elements are omitted or illustrated with broken lines for clarity.
  • the transparent plate 32 By providing the mirror 35 on the surface of the lens 31, the transparent plate 32 can be eliminated. Therefore, the reflection and attenuation of light by the transparent plate 32 can be eliminated, and the visibility of the display and the light receiving sensitivity of the light receiving device can be improved.
  • the mirror 35 can be formed with a dielectric multilayer film provided on the surface of the lens 31 .
  • the mirror 35 may be provided in a ring shape or the like on the surface of the lens 31 as shown in FIG. 5B.
  • FIG. 7A and 7B are diagrams showing a goggle-type electronic device in which two electronic devices 20 shown in FIG. 1 are incorporated.
  • wearing a head are abbreviate
  • the two electronic devices 20 are placed in a housing 38 shown in dashed lines so that the optical window 34 is a window.
  • One electronic device 20 is for the right eye and the other electronic device 20 is for the left eye, and by displaying an image corresponding to each eye on each electronic device 20, the stereoscopic effect of the image can be felt.
  • the electronic device 21 shown in FIG. 5 may be applied to the goggle-type electronic device.
  • Infrared light emitted from the light source 33 is applied to the eye or its vicinity through the mirror 35, and the reflected light is detected by the light receiving device of the display device 30.
  • FIG. 8 is a diagram showing results of detecting a blinking motion using the display device 30 and the light source 33, which are components of the electronic device 20.
  • Infrared light (wavelength 850 nm) is irradiated from the light source 33 toward one eye of a person, and the amount of reflected light when blinking several times in several seconds is measured by the light receiving device of the display device 30. is.
  • the amount of light detected when the eyelid is open (reflection on the surface of the eyeball) and when the eyelid is closed (reflection on the eyelid) differ greatly, so the blinking motion could not be detected. I know there is.
  • the result is a measurement result for one eye, and by obtaining the result for both eyes using two electronic devices 20, data with further reduced noise can be obtained.
  • the state of fatigue can be estimated by detecting the number of times or intervals of blinking within a unit time, or detecting the eyelid opening/closing speed.
  • the electronic device may take actions such as displaying a display or sounding a prompt to take a break, lowering the brightness of the display, or lowering the color temperature of the display. Therefore, it is possible to deal with fatigue of the user.
  • a display or sound prompting a break when a display or sound prompting a break is output, the user may feel uncomfortable because work, entertainment, or a sense of immersion is disturbed against the user's intention. Therefore, when prompting the user to take a break, a device that emits sound, vibration, or smell may be operated to induce the user to want to take a break.
  • fatigue or illness may be detected by obtaining other information. For example, by comparing the amount of light reflected on the surface of the eyeball with that at normal times, changes in the tear film can be detected to suppress dry eye or treat dry eye symptoms.
  • the degree of fatigue may be estimated by detecting the degree of opening of the eyes (the degree of opening of the eyelids) from the amount of reflected light and comparing it with the normal state.
  • any action such as blinking with only one eye, blinking a predetermined number of times within a certain period of time, or closing the eyelids for a certain period of time or more can be assigned to the operation of the electronic device.
  • the pupil portion and the white portion of the eye have different reflectances, it is possible to perform an input operation to the electronic device by moving the eyeball. For example, a change in reflectance due to an action such as moving the pupil to one side, left or right, or moving the pupil to one side, may be detected and assigned to the operation of the electronic device.
  • operations such as power on, power off, sleep, volume adjustment, channel change, menu display, selection, decision, return, etc., and operations such as video playback, stop, pause, fast forward, fast rewind, etc. It can be assigned to opening and closing actions and eye movement actions.
  • FIG. 9A illustrates a display device 30 included in an electronic device of one embodiment of the present invention.
  • the display device 30 has a pixel array 14 , a circuit 15 , a circuit 16 , a circuit 17 , a circuit 18 and a circuit 19 .
  • the pixel array 14 has pixels 10 arranged in columns and rows.
  • Pixel 10 can have sub-pixels 11 , 12 .
  • the sub-pixel 11 has a function of emitting display light.
  • the sub-pixels 12 have a function of detecting light with which the display device 30 is irradiated.
  • sub-pixel the minimum unit in which an independent operation is performed in one "pixel" is defined as a “sub-pixel” for convenience. "Sub-pixel” may be replaced with “pixel”.
  • the sub-pixels 11 have light-emitting devices that emit visible light.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light-emitting substance of the EL element include a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescent material), and a substance that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material. ), inorganic compounds (such as quantum dot materials), and the like.
  • LEDs such as micro LED (Light Emitting Diode), can also be used as a light emitting device.
  • Subpixel 12 has a light receiving device that is sensitive to infrared light.
  • the infrared light for example, near-infrared light can be used.
  • a photoelectric conversion element that detects incident light and generates an electric charge can be used as the light receiving device.
  • the amount of charge generated is determined based on the amount of incident light.
  • a pn-type or pin-type photodiode can be used as the light receiving device.
  • an organic photodiode having an organic compound in a photoelectric conversion layer is preferably used.
  • Organic photodiodes are easy to make thinner, lighter and larger. Moreover, since the degree of freedom in shape and design is high, it can be applied to various display devices.
  • a photodiode using crystalline silicon single-crystal silicon, polycrystalline silicon, microcrystalline silicon, or the like can be used as the light-receiving device.
  • an organic EL element is used as the light-emitting device and an organic photodiode is used as the light-receiving device.
  • the organic photodiode can also be configured to have common elements with the organic EL element. Therefore, the light-receiving device can be incorporated in the display device 30 without significantly increasing the number of manufacturing steps.
  • the photoelectric conversion layer of the light-receiving device and the light-emitting layer of the light-emitting device may be formed separately, and the light-emitting device and the light-receiving device may include the same configuration in other layers.
  • Circuits 15 and 16 are driver circuits for driving the sub-pixels 11 .
  • the circuit 15 can function as a source driver, and the circuit 16 can function as a gate driver.
  • a shift register circuit or the like can be used for the circuits 15 and 16, for example. Note that the drive circuits for the sub-pixels 11 and 12 may be separated.
  • Circuits 17 and 18 are driver circuits for driving sub-pixels 12 .
  • Circuit 17 can function as a column driver and circuit 18 can function as a row driver.
  • a circuit 19 is a readout circuit for data output from the sub-pixel 12 .
  • the circuit 19 has, for example, an A/D conversion circuit, and has a function of converting analog data output from the sub-pixels 12 into digital data.
  • Circuit 19 may also include a CDS circuit that performs correlated double sampling on the output data.
  • circuits 15 to 19 may overlap with the pixel array 14 as shown in FIG. 9B. With such a structure, a display device with a narrow frame can be formed. In addition, since the drive circuit is in the lower layer of the pixel array 14, the wiring length and wiring capacity can be reduced. Therefore, the display device can operate at high speed with low power consumption. Note that the arrangement and areas of the circuits 15 to 19 shown in FIG. 9B are examples, and can be changed as appropriate. Also, part of the circuits 15 to 19 can be formed in the same layer as the pixel array 14 .
  • the circuits 15 to 19 are formed of transistors (hereinafter referred to as Si transistors) manufactured using a single crystal silicon substrate or the like, and the pixel circuits included in the pixel array 14 are transistors having a metal oxide in a channel formation region. (hereinafter referred to as an OS transistor).
  • An OS transistor can be formed using a thin film and can be stacked over a Si transistor.
  • the sub-pixels 12 can function as an input interface. Infrared light emitted from the outside of the display device 30 can be received by the sub-pixels 12 . Therefore, by analyzing the amount of infrared light detected by the sub-pixel 12, for example, blinking can be detected.
  • imaging data of an iris or the like can be acquired using a light receiving device. That is, a biometric authentication function can be added to the display device.
  • a biometric authentication function can be added to the display device.
  • the configuration may be such that the distance between the lens 31 or the display device 30 and the eye can be varied. For example, the configuration shown in FIG. 2D can be used.
  • imaging data such as eye movement or changes in pupil diameter can be obtained using a light receiving device.
  • information on the user's mind and body can be obtained.
  • one or both of the display and sound output by the display device can be changed, so that the user can perform an operation according to the user's mental and physical condition.
  • These operations are effective, for example, for VR (Virtual Reality) equipment, AR (Augmented Reality) equipment, or MR (Mixed Reality) equipment.
  • FIG. 9C to 9E are diagrams illustrating examples of layouts of sub-pixels in the pixel 10.
  • FIG. 9A shows an example in which one sub-pixel 11 and one sub-pixel 12 are arranged in the pixel 10, but as shown in FIG. 9C, a sub-pixel 11R having a red light emitting device and a green light emitting device and a sub-pixel 11B having a light-emitting device that emits blue light may be arranged in the pixel 10 .
  • color display can be performed.
  • FIG. 9C shows a layout in which the sub-pixel 11R, sub-pixel 11G, sub-pixel 11B, and sub-pixel 12 are arranged vertically and horizontally
  • the layout shown in FIG. 9D may be used.
  • a sub-pixel 11W having a light emitting device that emits white light may be provided. Since the sub-pixel 11W alone can emit white light, it is possible to suppress the emission luminance of sub-pixels of other colors when displaying white or a color close thereto. Therefore, display can be performed with power saving.
  • FIGS. 9C to 9E may be interchanged. Also, the configurations of pixels and sub-pixels are not limited to the above, and various arrangement forms can be adopted.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a device using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device that does not use a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • a structure in which light-emitting layers are separately formed or separately painted in light-emitting devices of respective colors is referred to as SBS (Side By Side) structure.
  • SBS Side By Side
  • a light-emitting device capable of emitting white light is sometimes referred to as a white light-emitting device.
  • a white light emitting device can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
  • light-emitting devices can be broadly classified into a single structure and a tandem structure.
  • a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • the light-emitting unit preferably includes one or more light-emitting layers.
  • the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
  • a device with a tandem structure preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit includes one or more light-emitting layers.
  • each light-emitting unit includes one or more light-emitting layers.
  • a structure in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units may be employed. Note that the structure for obtaining white light emission is the same as the structure of the single structure.
  • the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the tandem structure device may have a structure (BB, GG, RR, etc.) having light-emitting layers that emit light of the same color.
  • a tandem structure in which light is emitted from a plurality of layers, requires a high voltage for light emission, but requires a smaller current value to obtain the same light emission intensity as a single structure. Therefore, in the tandem structure, the current stress per light emitting unit can be reduced, and the device life can be extended.
  • the display device 30 is a display device having a light emitting device and a light receiving device.
  • a full-color display device can be realized by having three types of light-emitting devices that respectively emit red (R), green (G), and blue (B) light.
  • an EL layer an organic layer that contributes to light emission of a light-emitting device
  • an active layer an organic layer that contributes to photoelectric conversion of a light-receiving device
  • photolithography without using a shadow mask such as a metal mask. It is formed by processing into a finer pattern.
  • a display device having a high definition and a large aperture ratio which has been difficult to achieve in the past.
  • the EL layers can be separately formed, a display device with extremely vivid, high contrast, and high display quality can be realized.
  • the gap between the EL layer and the active layer it is difficult to make it less than 10 ⁇ m by a formation method using a metal mask, for example. , can be narrowed down to 1 ⁇ m or less.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, or even 50 nm or less.
  • the aperture ratio can be brought close to 100%.
  • the aperture ratio can be 50% or more, 60% or more, 70% or more, 80% or more, or even 90% or more, and less than 100%.
  • the patterns of the EL layer and the active layer themselves can also be made much smaller than when a metal mask is used.
  • the thickness varies between the center and the edge of the pattern, so the effective area that can be used as the light emitting region is smaller than the area of the entire pattern.
  • the pattern is formed by processing a film formed to have a uniform thickness, the thickness can be made uniform within the pattern, and even if the pattern is fine, almost the entire area of the pattern can emit light. It can be used as a region. Therefore, according to the above manufacturing method, both high definition and high aperture ratio can be achieved.
  • an organic film formed using FMM is often a film with an extremely small taper angle (for example, greater than 0 degree and less than 30 degrees) such that the thickness becomes thinner as it approaches the end. . Therefore, it is difficult to clearly confirm the side surface of the organic film formed by FMM because the side surface and the upper surface are continuously connected.
  • FMM Fe Metal Mask
  • the EL layer preferably has a portion with a taper angle of 30 degrees to 120 degrees, preferably 60 degrees to 120 degrees.
  • the tapered end of the object means that the angle formed by the side surface (surface) and the surface to be formed (bottom surface) is greater than 0 degree and less than 90 degrees in the area of the end. and having a cross-sectional shape in which the thickness increases continuously from the end.
  • a taper angle is an angle formed between a bottom surface (surface to be formed) and a side surface (surface) at an end of an object.
  • FIG. 10A is a schematic diagram showing part of the top surface of the display device 30.
  • the display device 30 includes a plurality of red light emitting devices 90R, green light emitting devices 90G, blue light emitting devices 90B, and light receiving devices 90S.
  • symbols R, G, B, and S are attached within the light emitting regions of each light emitting device or light receiving device for easy identification of each light emitting device.
  • the arrangement of the light emitting device 90R, the light emitting device 90G, the light emitting device 90B, and the light receiving device 90S shown in FIG. 10A corresponds to the arrangement of the sub-pixels shown in FIG. 9C.
  • a light-emitting device 90R corresponds to the light-emitting device of the sub-pixel 11R
  • a light-emitting device 90G corresponds to the light-emitting device of the sub-pixel 11G
  • a light-emitting device 90B corresponds to the light-emitting device of the sub-pixel 11B
  • a light-receiving device 90S corresponds to the light-receiving device of the sub-pixel 12.
  • Light-emitting device 90R, light-emitting device 90G, light-emitting device 90B, and light-receiving device 90S are arranged in a matrix.
  • FIG. 10A shows a configuration in which two elements are alternately arranged in one direction.
  • the arrangement method of the light-emitting devices is not limited to this, and an arrangement method such as a stripe arrangement, an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may be applied, or a pentile arrangement, a diamond arrangement, or the like may be used. can.
  • connection electrode 111C electrically connected to the common electrode 113.
  • FIG. 111 C of connection electrodes are given the electric potential (for example, anode electric potential or cathode electric potential) for supplying to the common electrode 113.
  • FIG. The connection electrode 111C is provided outside the display area where the light emitting devices 90R and the like are arranged. Further, in FIG. 10A, the common electrode 113 is indicated by a dashed line.
  • connection electrodes can be provided along the outer periphery of a display area.
  • it may be provided along one side of the periphery of the display area, or may be provided over two or more sides of the periphery of the display area. That is, when the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped, L-shaped, U-shaped (square bracket-shaped), square, or the like.
  • FIG. 10B is a schematic cross-sectional view corresponding to dashed-dotted line A1-A2 and dashed-dotted line C1-C2 in FIG. 10A.
  • FIG. 10B shows a schematic cross-sectional view of the light-emitting device 90B, the light-emitting device 90R, the light-receiving device 90S, and the connection electrode 111C.
  • the light-emitting device 90G which is not shown in the schematic cross-sectional view, can have the same configuration as the light-emitting device 90B or the light-emitting device 90R, and the description thereof can be used hereinafter.
  • the light emitting device 90B has a pixel electrode 111, an organic layer 112B, an organic layer 114, and a common electrode 113.
  • FIG. The light emitting device 90R has a pixel electrode 111, an organic layer 112R, an organic layer 114, and a common electrode 113.
  • FIG. The light receiving device 90S has a pixel electrode 111, an organic layer 115, an organic layer 114, and a common electrode 113.
  • the organic layer 114 and the common electrode 113 are commonly provided for the light emitting device 90B, the light emitting device 90R, and the light receiving device 90S.
  • the organic layer 114 can also be referred to as a common layer.
  • the pixel electrodes 111 are separated from each other and provided on the insulating layer 101 between the light emitting devices and between the light emitting device and the light receiving device.
  • the organic layer 112R contains a light-emitting organic compound that emits light having a peak in at least the red wavelength range.
  • the organic layer 112B contains a light-emitting organic compound that emits light having a peak in at least the blue wavelength range.
  • the organic layer 115 has a photoelectric conversion material that is sensitive to the wavelength region of visible light or infrared light.
  • Each of the organic layer 112R and the organic layer 112B can also be called an EL layer.
  • Organic layer 115 can also be referred to as an active layer.
  • Organic layer 112R, organic layer 112B, and organic layer 115 may each have one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the organic layer 114 can have a structure without a light-emitting layer.
  • organic layer 114 includes one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the uppermost layer that is, the layer in contact with the organic layer 114
  • the uppermost layer is preferably a layer other than the light-emitting layer.
  • an electron-injection layer, an electron-transport layer, a hole-injection layer, a hole-transport layer, or a layer other than these layers be provided to cover the light-emitting layer, and the layer and the organic layer 114 are in contact with each other. . In this way, when each light-emitting device is manufactured, the reliability of the light-emitting device can be improved by protecting the upper surface of the light-emitting layer with another layer.
  • a pixel electrode 111 is provided for each element. Also, the common electrode 113 and the organic layer 114 are provided as a continuous layer common to each light emitting device. A conductive film having a property of transmitting visible light is used for one of the pixel electrodes and the common electrode 113, and a conductive film having a reflective property is used for the other. By making each pixel electrode translucent and the common electrode 113 reflective, a bottom emission type display device can be obtained. By making the display device light, a top emission display device can be obtained. Note that by making both the pixel electrodes and the common electrode 113 transparent, a dual-emission display device can be obtained.
  • An insulating layer 131 is provided to cover the edge of the pixel electrode 111 .
  • the ends of the insulating layer 131 are preferably tapered.
  • the end of the object being tapered means that the angle formed by the surface and the surface to be formed is greater than 0 degree and less than 90 degrees in the region of the end, and It refers to having a cross-sectional shape that continuously increases in thickness.
  • the surface can be gently curved. Therefore, coverage with a film formed over the insulating layer 131 can be improved.
  • Examples of materials that can be used for the insulating layer 131 include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like. be done.
  • an inorganic insulating material may be used as the insulating layer 131 .
  • inorganic insulating materials that can be used for the insulating layer 131 include oxides or nitrides such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, or hafnium oxide. be able to. Yttrium oxide, zirconium oxide, gallium oxide, tantalum oxide, magnesium oxide, lanthanum oxide, cerium oxide, neodymium oxide, and the like may also be used.
  • the two organic layers are spaced apart with a gap between them.
  • the organic layer 112R, the organic layer 112B, and the organic layer 115 are preferably provided so as not to contact each other. This can suitably prevent current from flowing through two adjacent organic layers and causing unintended light emission. Therefore, the contrast can be increased, and a display device with high display quality can be realized.
  • the organic layer 112R, the organic layer 112B, and the organic layer 115 preferably have a taper angle of 30 degrees or more.
  • the angle between the side surface (surface) and the bottom surface (formation surface) at the end is 30 degrees or more and 120 degrees or less, preferably 45 degrees or more and 120 degrees or less. It is preferably 60 degrees or more and 120 degrees or less.
  • each of the organic layer 112R, the organic layer 112B, and the organic layer 115 preferably has a taper angle of 90 degrees or its vicinity (for example, 80 degrees or more and 100 degrees or less).
  • a protective layer 121 is provided on the common electrode 113 .
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light-emitting device from above.
  • the protective layer 121 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
  • a laminated film of an inorganic insulating film and an organic insulating film can be used as the protective layer 121 .
  • a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable.
  • the organic insulating film functions as a planarizing film. As a result, the upper surface of the organic insulating film can be flattened, so that the coverage of the inorganic insulating film thereon can be improved, and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, an uneven shape due to the structure below may be formed. This is preferable because it can reduce the impact.
  • a structure for example, a color filter, an electrode of a touch sensor, or a lens array
  • connection portion 130 the common electrode 113 is provided on the connection electrode 111 ⁇ /b>C so as to be in contact therewith, and the protective layer 121 is provided to cover the common electrode 113 .
  • An insulating layer 131 is provided to cover the end of the connection electrode 111C.
  • FIG. 10B A configuration example of a display device partially different from that in FIG. 10B will be described below. Specifically, an example in which the insulating layer 131 is not provided is shown.
  • 11A to 11D show examples in which the side surface of the pixel electrode 111 and the side surface of the organic layer 112R, the organic layer 112B, or the organic layer 115 approximately match each other.
  • organic layer 114 is provided over the top and sides of organic layer 112R, organic layer 112B, and organic layer 115.
  • the organic layer 114 can prevent the pixel electrode 111 and the common electrode 113 from coming into contact with each other and causing an electrical short.
  • FIG. 11B shows an example in which the organic layer 112R, the organic layer 112B, the organic layer 115, and the insulating layer 125 provided in contact with the side surface of the pixel electrode 111 are provided.
  • the insulating layer 125 can effectively suppress electrical shorts between the pixel electrode 111 and the common electrode 113 and leak current therebetween.
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • a hafnium film, a tantalum oxide film, and the like are included.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an ALD method to the insulating layer 125, the insulating layer 125 with few pinholes and excellent function of protecting the organic layer can be obtained. can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • a sputtering method, a CVD method, a PLD method, an ALD method, or the like can be used to form the insulating layer 125 .
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • a resin layer 126 is provided between two adjacent light-emitting devices or between a light-emitting device and a light-receiving device so as to fill the gap between two pixel electrodes facing each other and the gap between two organic layers facing each other. It is Since the surfaces on which the organic layer 114, the common electrode 113, and the like are formed can be planarized by the resin layer 126, it is possible to prevent the common electrode 113 from being disconnected due to poor coverage of a step between adjacent light-emitting devices. can be done.
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied as the resin layer 126. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used.
  • a photosensitive resin can be used as the resin layer 126 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • a material that absorbs visible light is preferably used for the resin layer 126 .
  • a material that absorbs visible light is used for the resin layer 126, light emitted from the EL layer can be absorbed by the resin layer 126, stray light from adjacent pixels can be blocked, and color mixture can be suppressed. Therefore, a display device with high display quality can be provided.
  • an insulating layer 125 and a resin layer 126 are provided on the insulating layer 125 . Since the insulating layer 125 prevents the organic layer 112R and the like from contacting the resin layer 126, impurities such as moisture contained in the resin layer 126 can be prevented from diffusing into the organic layer 112R and the like, so that highly reliable display can be achieved. can be a device.
  • a reflective film for example, a metal film containing one or more selected from silver, palladium, copper, titanium, and aluminum
  • a mechanism may be provided to improve the light extraction efficiency by reflecting emitted light with the reflective film.
  • FIG. 12A to 12C show examples in which the width of the pixel electrode 111 is larger than the width of the organic layer 112R, the organic layer 112B, or the organic layer 115.
  • FIG. The organic layer 112 ⁇ /b>R and the like are provided inside the edge of the pixel electrode 111 .
  • FIG. 12A shows an example in which an insulating layer 125 is provided.
  • the insulating layer 125 is provided to cover the side surfaces of the organic layers of the light-emitting device or the light-receiving device and part of the upper surface and side surfaces of the pixel electrode 111 .
  • FIG. 12B shows an example in which a resin layer 126 is provided.
  • the resin layer 126 is positioned between two adjacent light-emitting devices or between a light-emitting device and a light-receiving device, and is provided to cover the side surfaces of the organic layers and the upper and side surfaces of the pixel electrodes 111 .
  • FIG. 12C shows an example in which both the insulating layer 125 and the resin layer 126 are provided.
  • An insulating layer 125 is provided between the organic layer 112 ⁇ /b>R and the like and the resin layer 126 .
  • FIG. 13A to 13D show examples in which the width of the pixel electrode 111 is smaller than the width of the organic layer 112R, the organic layer 112B, or the organic layer 115.
  • FIG. The organic layer 112 ⁇ /b>R and the like extend outside beyond the edge of the pixel electrode 111 .
  • FIG. 13B shows an example with an insulating layer 125 .
  • the insulating layer 125 is provided in contact with the side surfaces of the organic layers of two adjacent light emitting devices. Note that the insulating layer 125 may be provided to cover not only the side surfaces of the organic layer 112R and the like, but also a portion of the upper surface thereof.
  • FIG. 13C shows an example with a resin layer 126.
  • the resin layer 126 is positioned between two adjacent light-emitting devices and is provided to cover part of the side surfaces and top surface of the organic layer 112R and the like. Note that the resin layer 126 may be in contact with the side surfaces of the organic layer 112R and the like, and may not cover the upper surface.
  • FIG. 13D shows an example in which both the insulating layer 125 and the resin layer 126 are provided.
  • An insulating layer 125 is provided between the organic layer 112 ⁇ /b>R and the like and the resin layer 126 .
  • FIG. 14A is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 10A.
  • the configuration of the light-emitting device 90B, the light-emitting device 90R, and the light-receiving device 90S is illustrated as an example of the configuration shown in FIG. 12C, other configurations described above may be used.
  • the pixel electrode 111 is electrically connected to one of the source and drain of the transistor 136 .
  • a transistor including a metal oxide in a channel formation region (hereinafter referred to as an OS transistor) can be used as the transistor 136, for example.
  • OS transistors have higher mobility and better electrical characteristics than amorphous silicon.
  • the crystallization process in the manufacturing process of polycrystalline silicon is unnecessary, and can be formed in a wiring process or the like.
  • the transistor 135 Si transistor having silicon in the channel formation region formed over the substrate 60 without using a bonding step or the like.
  • the substrate 60 a monocrystalline silicon substrate, an SOI substrate, a glass substrate having monocrystalline silicon or polycrystalline silicon on its surface, or the like can be typically used.
  • the transistor 136 is a transistor forming a pixel circuit.
  • a pixel circuit having a light-emitting device has a configuration different from that of a pixel circuit having a light-receiving device. Details of these circuits will be described later.
  • the transistor 135 is a transistor that forms a functional circuit such as a driver circuit of the pixel circuit, a memory circuit, or an arithmetic circuit. That is, since the pixel circuit can be formed over the functional circuit, a display device with a narrow frame can be formed.
  • a metal oxide with an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used.
  • an OS transistor Since an OS transistor has a large energy gap in a semiconductor layer, it exhibits extremely low off-current characteristics of several yA/ ⁇ m (current value per 1 ⁇ m channel width).
  • the off-current value of the OS transistor per 1 ⁇ m channel width at room temperature is 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A) or less.
  • the off current value of the Si transistor per 1 ⁇ m channel width at room temperature is 1 fA (1 ⁇ 10 ⁇ 15 A) or more and 1 pA (1 ⁇ 10 ⁇ 12 A) or less. Therefore, it can be said that the off-state current of the OS transistor is about ten digits lower than the off-state current of the Si transistor.
  • the OS transistor has characteristics different from the Si transistor, such as impact ionization, avalanche breakdown, short channel effect, and the like, and can form a circuit with high breakdown voltage and high reliability.
  • variations in electrical characteristics due to non-uniform crystallinity, which is a problem in Si transistors, are less likely to occur in OS transistors.
  • the semiconductor layer included in the OS transistor is, for example, In-M containing indium, zinc, and M (one or more of metals such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, and hafnium).
  • a film represented by a -Zn-based oxide can be used.
  • An In-M-Zn-based oxide can be typically formed by a sputtering method. Alternatively, it may be formed using an ALD (atomic layer deposition) method.
  • an oxide (IGZO) containing indium (In), gallium (Ga), and zinc (Zn) can be used as the In-M-Zn-based oxide.
  • an oxide (IAZO) containing indium (In), aluminum (Al), and zinc (Zn) may be used.
  • an oxide (IAGZO) containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) may be used.
  • the atomic ratio of the metal elements in the sputtering target used for forming the In-M-Zn-based oxide by sputtering preferably satisfies In ⁇ M and Zn ⁇ M.
  • the atomic ratio of the semiconductor layers to be deposited includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
  • the semiconductor layer has a carrier density of 1 ⁇ 10 17 /cm 3 or less, preferably 1 ⁇ 10 15 /cm 3 or less, more preferably 1 ⁇ 10 13 /cm 3 or less, more preferably 1 ⁇ 10 11 /cm 3 or less.
  • An oxide semiconductor with a carrier density of 3 or less, more preferably less than 1 ⁇ 10 10 /cm 3 and greater than or equal to 1 ⁇ 10 ⁇ 9 /cm 3 can be used.
  • Such an oxide semiconductor is called a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. It can be said that the oxide semiconductor has a low defect state density and stable characteristics.
  • the material is not limited to these, and a material having an appropriate composition may be used according to the required semiconductor characteristics and electrical characteristics (field effect mobility, threshold voltage, etc.) of the transistor.
  • the semiconductor layer has appropriate carrier density, impurity concentration, defect density, atomic ratio between metal element and oxygen, interatomic distance, density, and the like. .
  • the display device shown in FIG. 14A has an OS transistor and a light-emitting device with an MML (metal maskless) structure.
  • MML metal maskless
  • leakage current that can flow through the transistor and leakage current that can flow between adjacent light-emitting elements also referred to as lateral leakage current, side leakage current, or the like
  • an observer can observe any one or more of sharpness of the image, sharpness of the image, and a high contrast ratio.
  • a structure in which leakage current that can flow in a transistor and lateral leakage current between light-emitting elements are extremely low enables display with extremely low light leakage (also referred to as pure black display) during black display. .
  • each light-emitting device is exemplified with different configurations for B and R, but the present invention is not limited to this.
  • an organic layer 112W that emits white light is provided, and colored layers 114B (blue) and 114R (red) are provided so as to overlap the organic layer 112W to form light emitting devices 90B and 90R, A method of coloring may also be used.
  • the light emitting device 90G (not shown) is provided with an organic layer 112W and a colored layer 114G (green).
  • the organic layer 112W can have, for example, a tandem structure in which EL layers that emit light of R, G, and B are connected in series. Alternatively, a structure in which light-emitting layers emitting light of R, G, and B are connected in series may be used.
  • the colored layers 114R, 114G, and 114B for example, red, green, and blue color filters can be used.
  • the filter 114IR may be provided so as to overlap with the organic layer 115 .
  • the filter 114IR preferably has the characteristic of transmitting infrared light and cutting at least visible light.
  • the organic layer 115 preferably has high sensitivity mainly to infrared light, but may also have sensitivity to wavelengths such as visible light. Therefore, the reflected light or the like of the light emitted from the light emitting device is detected and becomes a noise component. Therefore, it is preferable to provide the filter 114IR for cutting visible light so as to overlap with the organic layer 115 .
  • a pixel circuit may be formed using a transistor 117 included in the substrate 60, and one of the source or drain of the transistor 117 and the pixel electrode 111 may be electrically connected. Note that the filter 114IR shown in FIG. 14B may be applied to FIGS. 14A and 14C.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a pixel of a display device of one embodiment of the present invention includes subpixels 11 and 12 .
  • the pixel circuit PIX1 of the sub-pixel 11 has a light emitting device that emits visible light.
  • the pixel circuit PIX2 of the sub-pixel 12 has a light receiving device.
  • the pixel circuit PIX1 of the sub-pixel 11 has a light emitting device EL1, a transistor M1, a transistor M2, a transistor M3 and a capacitor C1.
  • a light emitting device EL1 an example using a light-emitting diode is shown as the light-emitting device EL1.
  • An organic EL element that emits visible light is preferably used for the light-emitting device EL1.
  • the transistor M1 has a gate electrically connected to the wiring G1, one of the source and the drain electrically connected to the wiring S1, and the other of the source and the drain electrically connected to one electrode of the capacitor C1 and the gate of the transistor M2. connected to each other.
  • One of the source and the drain of the transistor M2 is electrically connected to the wiring V2, and the other is electrically connected to the anode of the light emitting device EL1 and one of the source and the drain of the transistor M3.
  • the transistor M3 has a gate electrically connected to the wiring G2 and the other of the source and the drain electrically connected to the wiring V0.
  • a cathode of the light emitting device EL1 is electrically connected to the wiring V1.
  • a constant potential is supplied to each of the wiring V1 and the wiring V2.
  • Light can be emitted by setting the anode side of the light emitting device EL1 to a high potential and the cathode side to a low potential.
  • the transistor M1 is controlled by a signal supplied to the wiring G1 and functions as a selection transistor for controlling the selection state of the pixel circuit PIX1.
  • the transistor M2 functions as a drive transistor that controls the current flowing through the light emitting device EL1 according to the potential supplied to its gate.
  • the potential supplied to the wiring S1 is supplied to the gate of the transistor M2, and the luminance of the light emitting device EL1 can be controlled according to the potential.
  • the transistor M3 is controlled by a signal supplied to the wiring G2. Accordingly, the potential between the transistor M3 and the light-emitting device EL1 can be reset to a constant potential supplied from the wiring V0, and the potential to the gate of the transistor M2 is applied while the source potential of the transistor M2 is stabilized. can be written.
  • FIG. 15B shows an example of a pixel circuit PIX2 different from the pixel circuit PIX1.
  • the pixel circuit PIX2 has a boosting function.
  • the pixel circuit PIX2 has a light emitting device EL2, a transistor M4, a transistor M5, a transistor M6, a transistor M7, a capacitor C2 and a capacitor C3.
  • an example using a light-emitting diode is shown as the light-emitting device EL2.
  • the pixel circuit PIX2 can be used for all the sub-pixels 11 (sub-pixel 11R, sub-pixel 11G, sub-pixel 11B) included in the pixel 10 .
  • the pixel circuit PIX2 may be used for one or two of the sub-pixels 11R, 11G, and 11B.
  • the transistor M4 has a gate electrically connected to the wiring G1, one of the source and the drain electrically connected to the wiring S4, and the other of the source and the drain connected to one electrode of the capacitor C2 and one electrode of the capacitor C3. and the gate of transistor M6.
  • the transistor M5 has a gate electrically connected to the wiring G6, one of the source and the drain electrically connected to the wiring S5, and the other of the source and the drain electrically connected to the other electrode of the capacitor C3.
  • One of the source and drain of the transistor M6 is electrically connected to the wiring V2, and the other is electrically connected to the anode of the light emitting device EL2 and one of the source and drain of the transistor M7.
  • the transistor M7 has a gate electrically connected to the wiring G2 and the other of the source and the drain electrically connected to the wiring V0.
  • a cathode of the light emitting device EL2 is electrically connected to the wiring V1.
  • the transistor M4 is controlled by a signal supplied to the wiring G1
  • the transistor M5 is controlled by a signal supplied to the wiring G6.
  • the transistor M6 functions as a drive transistor that controls the current flowing through the light emitting device EL2 according to the potential supplied to its gate.
  • the light emission brightness of the light emitting device EL2 can be controlled according to the potential supplied to the gate of the transistor M6.
  • the transistor M7 is controlled by a signal supplied to the wiring G2.
  • the potential between the transistor M6 and the light-emitting device EL2 can be reset to a constant potential supplied from the wiring V0, and the potential is written to the gate of the transistor M6 while the source potential of the transistor M6 is stabilized. be able to. Further, by setting the potential supplied from the wiring V0 to the same potential as that of the wiring V1 or a potential lower than that of the wiring V1, light emission of the light emitting device EL2 can be suppressed.
  • the gate of the transistor M6 is supplied with the potential "D1" of the line S4 through the transistor M4, and at the same timing, the other electrode of the capacitor C3 is supplied with the reference potential “ Vref " through the transistor M5. At this time, "D1- Vref " is held in the capacitor C3.
  • the gate of the transistor M6 is made floating, and the potential "D2" of the wiring S5 is supplied to the other electrode of the capacitor C3 through the transistor M5.
  • the potential "D2" is a potential for addition.
  • This action can generate a high voltage in the pixel circuit. Therefore, the voltage input to the pixel circuit can be lowered, and the power consumption of the driver circuit can be reduced.
  • the pixel circuit PIX2 may have the configuration shown in FIG. 15C.
  • the pixel circuit PIX2 shown in FIG. 15C differs from the pixel circuit PIX2 shown in FIG. 15B in that it has a transistor M8.
  • the gate of transistor M8 is electrically connected to line G1, one of its source and drain is electrically connected to the other of the source and drain of transistor M5 and the other electrode of capacitor C3, and the other of the source and drain is connected to line V0. is electrically connected to One of the source and drain of the transistor M5 is connected to the wiring S4.
  • the operation of supplying the reference potential and the addition potential to the other electrode of the capacitor C3 via the transistor M5 is performed as described above.
  • two wirings S4 and S5 are required, and it is necessary to alternately rewrite the reference potential and the addition potential in the wiring S5.
  • the transistor M8 is increased, the line S5 can be reduced because a dedicated path for supplying the reference potential is provided. Further, the gate of the transistor M8 can be connected to the wiring G1, and the wiring V0 can be used as a wiring for supplying a reference potential, so that the number of wirings connected to the transistor M8 is not increased. In addition, since the reference potential and the addition potential are not alternately rewritten with one wiring, high-speed operation with low power consumption is possible.
  • the inversion potential "D1B” of "D1” may be used as the reference potential " Vref ".
  • a potential about three times the potential that can be input from the wiring S4 or S5 can be supplied to the gate of the transistor M6.
  • an inversion potential means a potential that has the same (or approximately the same) absolute value of difference from a certain reference potential and is different from the original potential.
  • an image may be displayed by causing the light-emitting device to emit light in pulses.
  • the light-emitting device By shortening the driving time of the light-emitting device, power consumption and heat generation of the display device can be reduced.
  • an organic EL element is suitable because of its excellent frequency characteristics.
  • the frequency can be, for example, 1 kHz or more and 100 MHz or less.
  • the pixel circuit PIX3 of the sub-pixel 12 is shown in FIG. 15D.
  • the pixel circuit PIX3 has a light receiving device PD, a transistor M9, a transistor M10, a transistor M11, a transistor M12 and a capacitor C4.
  • a photodiode is shown as the light receiving device PD.
  • the light receiving device PD has a cathode electrically connected to the wiring V1 and an anode electrically connected to one of the source and drain of the transistor M9.
  • the transistor M9 has a gate electrically connected to the wiring G3, and the other of the source and the drain is electrically connected to one electrode of the capacitor C4, one of the source and the drain of the transistor M10 and the gate of the transistor M11.
  • the transistor M10 has a gate electrically connected to the wiring G4 and the other of the source and the drain electrically connected to the wiring V3.
  • One of the source and the drain of the transistor M11 is electrically connected to the wiring V4, and the other of the source and the drain is electrically connected to one of the source and the drain of the transistor M12.
  • the transistor M12 has a gate electrically connected to the wiring G5 and the other of the source and the drain electrically connected to the wiring OUT.
  • a constant potential is supplied to each of the wiring V1, the wiring V3, and the wiring V4.
  • the wiring V3 is supplied with a potential lower than that of the wiring V1.
  • the transistor M10 is controlled by a signal supplied to the wiring G5 and has a function of resetting the potential of the node connected to the gate of the transistor M11 to the potential supplied to the wiring V3.
  • the transistor M9 is controlled by a signal supplied to the wiring G3, and has a function of controlling the timing at which the potential of the node changes according to the current flowing through the light receiving device PD.
  • the transistor M11 functions as an amplifying transistor that outputs according to the potential of the node.
  • the transistor M12 is controlled by a signal supplied to the wiring G6 and functions as a selection transistor for reading an output corresponding to the potential of the node by an external circuit connected to the wiring OUT.
  • the transistors M1 to M12 included in the pixel circuits PIX1 to PIX3 are preferably transistors in which metal oxides (oxide semiconductors) are used for semiconductor layers in which channels are formed.
  • a transistor using a metal oxide which has a wider bandgap and a lower carrier density than silicon, can achieve extremely low off-state current. Therefore, with the small off-state current, charge accumulated in the capacitor connected in series with the transistor can be held for a long time.
  • the transistor M1, the transistor M4, the transistor M5, the transistor M8, the transistor M9, and the transistor M10 whose source or drain is connected to the capacitor C1, the capacitor C2, the capacitor C3, or the capacitor C4 in particular include an oxide semiconductor.
  • Applied transistors are preferably used.
  • the manufacturing cost can be reduced.
  • a transistor in which silicon is used as a semiconductor in which a channel is formed can be used for the transistors M1 to M12.
  • highly crystalline silicon such as single crystal silicon or polycrystalline silicon because high field-effect mobility can be achieved and high-speed operation is possible.
  • At least one of the transistors M1 to M12 may be formed using an oxide semiconductor, and the rest may be formed using silicon.
  • FIGS. 15A to 15D show an example using an n-channel transistor, a p-channel transistor can also be used.
  • the transistor included in the pixel circuit PIX1, the transistor included in the pixel circuit PIX2, and the transistor included in the pixel circuit PIX3 are preferably formed side by side on the same substrate. Further, among the wirings connected to the pixel circuits PIX1 to PIX3, the wirings denoted by common reference numerals in FIGS. 15A to 15D may be common wirings.
  • the effective area occupied by each pixel circuit can be reduced, and a high-definition light receiving section or display section can be realized.
  • FIG. 16A is an example of a circuit diagram of the sub-pixels 11 (sub-pixel 11R, sub-pixel 11G, sub-pixel 11B) and sub-pixel 12 included in the pixel 10.
  • the wiring G1 and the wiring G2 can be electrically connected to the gate driver (FIG. 9A, circuit 16). Further, the wirings G3 to G5 can be electrically connected to a row driver (circuit 18 in FIG. 9A). The wirings S1 to S3 can be electrically connected to the source driver (circuit 15 in FIG. 9A). The wiring OUT can be electrically connected to the column driver (circuit 17 in FIG. 9A) and the reading circuit (circuit 19 in FIG. 9A).
  • a power supply circuit that supplies a constant potential can be electrically connected to the wirings V0 to V4, a low potential can be supplied to the wirings V0 and V3, and a high potential can be supplied to the wirings V1, V2, and V4.
  • the anode of the light receiving device PD of the sub-pixel 12 may be electrically connected to the wiring V1, and the other of the source or drain of the transistor M10 may be electrically connected to the wiring V5.
  • the wiring V5 can be supplied with a potential higher than the potential supplied to the wiring V1.
  • the wiring V5 may be electrically connected to the wiring V4.
  • a power supply line or the like can be shared between the subpixels 11 and 12, so that the number of wirings can be reduced and the pixel density can be increased.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

身体の動作を検出することができる電子機器を提供する。 眼前に装着する表示機器であって、瞬き動作の検出が可能な電子機器である。当該電子機器は、表示装置および光源を筐体内に有し、表示装置は、表示部に発光デバイスおよび受光デバイスを有する。光源から射出された光はミラーを介して眼またはその近傍に照射され、その反射光を受光デバイスで検出する。当該反射光の光量は、瞼と眼球で異なるため、瞬きの動作を検出することができる。瞬き動作を検出することで、使用者の疲労状態を推測することができる。

Description

電子機器
本発明の一態様は、電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの動作方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、ノート型コンピュータなどがある。また、テレビジョン装置、モニター装置などの据え置き型のディスプレイ装置においても、高解像度化に伴う高精細化が求められている。さらに、最も高精細度が要求される機器としては、例えば、仮想現実(VR:Virtual Reality)、または拡張現実(AR:Augmented Reality)向けの機器がある。
また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子または発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特開2002−324673号公報
VR向けとしては、例えば、ゴーグル型の筐体に表示装置を組み込んだ電子機器が製品化されている。ゴーグル型端末は眼を覆うように頭部に装着して利用するため、眼に対する悪影響が懸念される。したがって、VR向けの電子機器などには、身体の動作から疲労または異常を検知するセンサ機能が設けられていることが好ましい。
したがって、本発明の一態様は、身体の動作を検出することができる電子機器を提供することを目的の一つとする。または、瞬き動作を検出することができる電子機器を提供することを目的の一つとする。または、眼球の動作を検出することができる電子機器を提供することを目的の一つとする。または、疲労度を検出することができる電子機器を提供することを目的の一つとする。または、瞬き動作を入力動作とする電子機器を提供することを目的の一つとする。または、新規な電子機器を提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、発光デバイスおよび受光デバイスを有する表示装置および光源を筐体内部に有する電子機器に関する。
本発明の一態様は、表示装置と、レンズと、ミラーと、光源と、光学窓と、を有し、表示装置は、発光デバイスおよび受光デバイスを有し、レンズは、表示装置と光学窓との間に設けられ、ミラーは、レンズと光学窓との間において、反射面を光学窓側にして設けられ、光源は、表示装置および光学窓に重ならず、射出光がミラーの反射面に斜めに入射する位置に設けられ、ミラーで反射した射出光は、光学窓を介して対象物に照射され、対象物による反射光が光学窓およびレンズを介して表示装置に入射される電子機器である。
レンズと光学窓との間に透光板を有し、ミラーは、透光板の表面に設けられていてもよい。
または、ミラーは、レンズの表面に設けられていてもよい。また、ミラーには、可視光を透過し、赤外光を反射するショートパスフィルタを用いることができる。
光源は、赤外光を射出するレーザまたは発光ダイオードを有することが好ましい。
光学窓は、レンズであってもよい。
受光デバイスは、光電変換層に有機化合物を有することが好ましい。また、受光デバイスは、赤外光に受光感度のピークを有することが好ましい。また、受光デバイスと重なる位置に可視光をカットするフィルタが設けられていることが好ましい。また、受光デバイスは、発光デバイスと共通の要素を有することができる。
対象物が眼球および瞼であるとき、瞬き動作または眼球の動作を検出することができる。瞬き動作または眼球の動作の検出により、疲労度の推測、または電子機器の入力動作を行うことができる。
上記記載の電子機器を筐体内に二つ設けることで、ゴーグル型の電子機器を形成することができる。
本発明の一態様により、身体の動作を検出することができる電子機器を提供することができる。または、瞬き動作を検出することができる電子機器を提供することができる。または、眼球の動作を検出することができる電子機器を提供することができる。または、疲労度を検出することができる電子機器を提供することができる。または、瞬き動作を入力動作とする電子機器を提供することができる。または、新規な電子機器を提供することができる。または、新規な半導体装置などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1は、電子機器を説明する図である。
図2A乃至図2Dは、電子機器を説明する図である。
図3Aおよび図3Bは、ミラーを説明する図である。図3Cおよび図3Dは、光源を説明する図である。
図4A乃至図4Cは、電子機器を説明する図である。
図5Aは、電子機器を説明する図である。図5Bは、ミラーを説明する図である。
図6A乃至図6Cは、電子機器を説明する図である。
図7Aおよび図7Bは、ゴーグル型の電子機器を説明する図である。
図8は、瞬き動作を検出した結果を示す図である。
図9Aおよび図9Bは、表示装置を説明する図である。図9C乃至図9Eは、画素を説明する図である。
図10Aおよび図10Bは、表示装置の構成例を示す図である。
図11A乃至図11Dは、表示装置の構成例を示す図である。
図12A乃至図12Cは、表示装置の構成例を示す図である。
図13A乃至図13Dは、表示装置の構成例を示す図である。
図14A乃至図14Cは、表示装置を説明する断面図である。
図15A乃至図15Dは、画素の回路を説明する図である。
図16Aおよび図16Bは、画素の回路を説明する図である。
実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、回路図上では単一の要素として図示されている場合であっても、機能的に不都合がなければ、当該要素が複数で構成されてもよい。例えば、スイッチとして動作するトランジスタは、複数が直列または並列に接続されてもよい場合がある。また、キャパシタを分割して複数の位置に配置する場合もある。
また、一つの導電体が、配線、電極および端子などの複数の機能を併せ持っている場合があり、本明細書においては、同一の要素に対して複数の呼称を用いる場合がある。また、回路図上で要素間が直接接続されているように図示されている場合であっても、実際には当該要素間が一つ以上の導電体を介して接続されている場合があり、本明細書ではこのような構成でも直接接続の範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様の電子機器について説明する。
本発明の一態様は、眼前に装着する表示機器であって、瞬き動作の検出が可能な電子機器である。当該電子機器は、表示装置および光源を筐体内に有し、表示装置は、表示部に発光デバイス(発光素子ともいう)および受光デバイス(受光素子ともいう)を有する。
光源から射出された光はミラーを介して眼またはその近傍に照射され、その反射光を受光デバイスで検出する。当該反射光の光量は、瞼と眼球で異なるため、瞬きの動作を検出することができる。
瞬き動作は、眼の疲労との関連性が強いため、瞬きの単位時間内における回数または間隔の検出、または瞼の開閉速度等の検出を行うことで、使用者の疲労状態を推測することができる。また、意識的な瞼の開閉動作を行うことで、電子機器への入力動作を行うこともできる。
図1は、本発明の一態様の電子機器を説明する斜視図である。電子機器20には、表示装置30、レンズ31、透光板32、光源33(光源33a、33b、33c、33d)および光学窓34を備える。透光板32の表面には、ミラー35(ミラー35a、35b、35c、35d)が設けられている。また、図2A、図2Bは、電子機器20をX方向に見たときの図である。図2Cは、電子機器20をY方向に見たときの図である。なお、図2A乃至図2Cにおいては、明瞭化のため、一部の要素を省略または破線で図示している。
使用者は光学窓34近傍に眼40を近づけることで、表示装置30の表示をレンズ31、透光板32および光学窓34を介して見ることができる(図2A参照)。表示装置30には映画、VR映像など様々な画像を表示することができ、使用者は当該画像を主として視認することから没入感、臨場感を得ることができる。
また、使用者の眼40またはその近傍を対象物として、光源33から射出された光がミラー35および光学窓34を介して照射される。そして、対象物で反射した光(反射光)は、光学窓34、透光板32およびレンズ31を介して表示装置30に入射される(図2B参照)。使用者の眼40またはその近傍は球面に近い形状であるため、光を斜めから入射しても効率よく表示装置30の方向に光を反射させることができる。表示装置30は受光デバイスを有しており、当該反射光を検出することができる。
光源33から射出された光の眼球表面の反射率と瞼(皮膚)の反射率は異なるため、当該反射光を検出することで、瞬き動作を検出することができる。なお、図1等では、一対のミラー35および光源33が複数設けられた例を示しているが、一対のミラー35および光源33は一つ以上であればよい。一対のミラー35および光源33を複数備えることで、表示装置30で検出する反射光の光量が多くなるため、SN比を高めることができる。
表示装置30は、表示デバイスおよび受光デバイスを有する。表示デバイスは、可視光を発する有機EL素子等の発光デバイスであることが好ましい。また、受光デバイスは、赤外光に受光感度のピークを有し、かつ光電変換層を有機化合物で形成することが好ましい。当該構成とすることで、表示デバイスと受光デバイスで共通の要素を有することができ、デバイス構成および製造工程を簡略化することができる。表示装置30の構成の詳細は後述する。
レンズ31は可視光および赤外光を透過する材料で形成され、表示装置30の表示面に表示された画像を眼40の内部にある網膜に結像させる機能を有する。なお、図1等では、レンズ31として一つの凸レンズを例示しているが、レンズ31を複数のレンズで構成してもよい。また、凸レンズと凹レンズの組み合わせであってもよい。また、表示装置30とレンズ31との間、またはレンズ間にミラーが設けられていてもよい。
なお、レンズ31と表示装置30の位置が固定である場合、瞼および眼球表面は表示装置が有する受光デバイスには結像しないが、光量の変化は十分に検出することができる。また、受光デバイスは、表示装置30内において発光デバイスと同様にマトリクス状に広く配置されており、拡散した反射光を感度よく検出することができる。
なお、レンズ31の可視光および赤外光(光源33が射出する光の波長)に対する透過率は、80%以上100%未満が好ましく、90%以上100%未満がさらに好ましい。
透光板32は、可視光および赤外光を透過する材料で形成され、端部近傍の領域にミラー35(ミラー35a、35b、35c、35d)を有する。ミラー35は、可視光を透過し、赤外光を反射することが好ましい。可視光を透過し赤外光を反射するミラーは、ショートパスフィルタまたはホットミラーとも呼ばれ、例えば、透光板32の表面に設けられた誘電体多層膜で反射面を形成することができる。
透光板32およびミラー35は、可視光を透過させることができるため、視野内にあっても表示の光を透過させることができる。したがって、表示品位の低下を抑制することができる。
なお、ミラー35は、図3Aに示すように、透光板32の表面にリング状などの形態で設けられていてもよい。また、ミラー35が視野に入らない場合は、図3Bに示すように、複数のミラー35を独立して設けてもよい。また、ミラー35が視野に入る場合であっても、ミラー35の基材の屈折率および表面の反射率などが適切に制御され、表示の妨げとならない場合は、図3Bに示す形態とすることができる。
透光板32の可視光および赤外光(光源33が射出する光の波長)に対する透過率は、80%以上100%未満が好ましく、90%以上100%未満がさらに好ましい。また、ミラー35の可視光に対する透過率は、80%以上100%未満が好ましく、90%以上100%未満がさらに好ましい。また、ミラー35の赤外光(光源33が射出する光の波長)に対する反射率は、80%以上100%未満が好ましく、90%以上100%未満がさらに好ましい。
光源33は、赤外光を射出するレーザまたは発光ダイオードを有することが好ましい。赤外光は視感度が極めて小さいため、表示の視認に影響を与えることが少ない。また、瞬きを検出するには眼を閉じたときの瞼の位置に効率よく光を照射することが好ましいことから、指向性のある光を用いることが好ましい。したがって、発光ダイオードを用いる場合は、集光レンズと組み合わせてもよい。
赤外光としては、近赤外光から遠赤外光まで用いることができるが、遠赤外光は熱源などがノイズとなるため、近赤外域(波長720乃至2500nm)にピークを有する光を用いることが好ましい。近赤外光を発するレーザまたは発光ダイオードの発光層に用いられる半導体としては、例えば、GaAs、GaAlAs、InGaAsなどを用いることができる。
例えば、図3Cは光源33の一例であり、発光ダイオード51とレンズ52を組み合わせた構成である。発光ダイオード51は、一部がレンズ形状となった樹脂に埋め込まれた構成を有し、発光ダイオード51から射出された光をレンズ52で集光し、光の拡散を抑えることができる。当該構成の発光ダイオードは、砲弾型発光ダイオードと呼ぶこともある。
また、光源33は、図3Dに示すように、図3Cの構成を覆う筒状の遮光壁53を設けた構成としてもよい。発光ダイオード51から射出された一部の光は斜め方向にも射出されるため、遮光壁53を設けることで、当該光を反射または減衰することができ、光の拡散を抑制することができる。また、筒状の遮光壁53内にさらにレンズを設けてもよい。なお、遮光壁53は円筒状に限らず、長軸に垂直な断面は多角形または楕円形であってもよい。また、遮光壁53の内面には赤外光を反射する材料または吸収する材料が設けられていてもよい。
ミラー35(ミラー35a、35b、35c、35d)は、図2Cに示すように、レンズ31と重なる位置に設置することができる。ミラー35の主の機能は、光源33から射出される光を光学窓34の方向に反射させることである。
なお、図4Aに示すように、ミラー35を設けず、光源33から射出される光が直接光学窓34に向かって照射されるようにすることでも眼40またはその近傍からの反射光を得ることはできる。しかし、光源33によって表示の一部が遮られるため、表示品位を著しく低下させてしまう。または、視認される光源33が表示を遮らなくても、光源33が視野内にある場合は没入感を妨げてしまう。
また、図4Bに示すように、光源33を表示装置30とレンズ31との間に設けることで、光源33を視野から外しやすくなるが、レンズ31表面で反射する光が表示装置30に入ってしまう。したがって、受光デバイスで赤外光を検出する際のノイズ成分が増大してしまう。
また、図4Cに示すように、表示装置30内に光源33を設け、当該光源から光を射出させて反射光を検出する構成とすることもできるが、図4Bと同様にレンズ31表面で反射する光により、ノイズ成分が増大してしまう。
また、図示はしていないが、図4Aまたは図4Bにおいて、眼40に対する光の入射角が大きくなるように光源33を設けることで、光源33を視野から外しやすくなる。ただし、反射角も大きくなるため、表示装置30に入る反射光の光量が少なくなってしまう。したがって、図2A、図2Bに示すように、光源33の光はミラー35を介して光学窓34に向かって照射させることが好ましい。
光学窓34は電子機器の筐体の光学的な開口部に設けられる窓に相当し、可視光および赤外光を透過する材料で形成することができる。光学窓34近傍に眼40を近づけることで、電子機器20の筐体内に設けられる要素(表示装置30、レンズ31、透光板32、光源33等)の作用を受けることができる。なお、光学窓34はレンズであってもよく、レンズ31と合わせて焦点を調整する機能を有していてもよい。例えば、図2Dに示すように光学窓34(レンズ)にスライド機構39を設け、レンズ31と光学窓34(レンズ)との距離を可変できる構成とすることで、視度調整を行うことができる。なお、図2Dに示す構成は、本明細書に示す他の電子機器にも適用することができる。
なお、光学窓34の可視光および赤外光(光源33が射出する光の波長)に対する透過率は、80%以上100%未満が好ましく、90%以上100%未満がさらに好ましい。
また、本発明の一態様の電子機器は、図5Aに示す構成であってもよい。図5Aに示す電子機器21は、ミラー35(ミラー35a、35b、35c、35d)がレンズ31の表面に設けられている点が図1に示す電子機器20と異なる。図6A、図6Bは、電子機器21をX方向に見たときの図である。図6Cは、電子機器21をY方向に見たときの図である。なお、図6A乃至図6Cにおいては、明瞭化のため、一部の要素を省略または破線で図示している。
ミラー35をレンズ31の表面に設けることで、透光板32を不要にすることができる。したがって、透光板32による光の反射および減衰をなくすことができ、表示の視認性および受光デバイスでの受光感度を向上させることができる。
例えば、ミラー35は、レンズ31表面に設けられた誘電体多層膜で形成することができる。なお、ミラー35は、図5Bに示すように、レンズ31の表面にリング状などの形態で設けられていてもよい。
図7A、図7Bは、図1に示す電子機器20を2つ組み込んだゴーグル型の電子機器を示す図である。なお、頭部に装着するためのバンド等は図示を省略している。
2つの電子機器20は、光学窓34が窓になるように破線で示す筐体38内に配置される。一方の電子機器20は右眼用、他方の電子機器20は左眼用になり、それぞれの電子機器20でそれぞれの眼に対応した画像を表示することで、画像の立体感を感じることができる。なお、当該ゴーグル型電子機器に図5に示す電子機器21を適用してもよい。
2つの電子機器20を用いることにより、両眼における瞬きを検出することができる。光源33から射出された赤外光はミラー35を介して眼またはその近傍に照射され、その反射光を表示装置30が有する受光デバイスで検出する。当該反射光の光量は、瞼と眼球で異なるため、瞬きの動作を検出することができる。
また、通常、瞬きは両眼で同時に行われるため、2つの電子機器20を用いることにより、瞬きの検出感度を高めることができる。
図8は、電子機器20の構成要素である表示装置30および光源33を用いて、瞬き動作を検出した結果を示す図である。光源33から人の片眼に向けて赤外光(波長850nm)を照射し、数秒間の間に数回の瞬きを行ったときの反射光の光量を表示装置30の受光デバイスで測定した結果である。
図8に示すように、瞼が開いているとき(眼球表面での反射)と瞼が閉じているとき(瞼での反射)では検出される光量が大きく異なることから、瞬き動作を検出できていることがわかる。当該結果は片眼での測定結果であり、2つの電子機器20を用いて両眼の結果を得ることにより、よりノイズを低減させたデータを得ることができる。
瞬き動作は、眼の疲労との関連性が強いため、瞬きの単位時間内における回数または間隔の検出、または瞼の開閉速度等の検出を行うことで、疲労状態を推測することができる。
疲労が進んでいることが推測される瞬き動作が検出された場合は、休憩を促す表示または音声を出す、表示の輝度を下げる、または表示の色温度を下げるなどの動作を電子機器が行うことで、使用者の疲労に対する対処を行うことができる。
なお、休憩を促す表示または音声を出した場合、使用者の意図に反して作業、娯楽、または没入感が妨げられたとして、使用者が不快に感じることがある。したがって、休憩を促す場合は、音、振動、またはにおいなどを出す機器を動作させ、使用者が自ら休憩を取りたいと意識するように誘導してもよい。
なお、上記では、瞬き動作で疲労を検出する例を挙げたが、他の情報を得ることで疲労または疾病を検出してもよい。例えば、眼球表面の反射光量を正常時と比較し、涙液層の変化を検出してドライアイの抑制、またはドライアイ症状の対処を行うことができる。また、眼の開度(瞼の開度)を反射光量で検出し、正常時と比較して疲労度を推測してもよい。
また、意識的な瞼の開閉動作で電子機器への入力動作を行うこともできる。例えば、片眼だけで瞬きをする、一定時間内に決められた回数の瞬きをする、一定時間以上瞼を閉じる、などのいずれかの動作を電子機器の操作に割り当てることができる。
また、瞳の部分と白目の部分の反射率が異なるため、眼球を動かす動作で電子機器への入力動作を行うこともできる。例えば、瞳を左右の一方に寄せる、または上下の一方に寄せる、などの動作を行うことによる反射率の変化を検出し、電子機器の操作に割り当ててもよい。
例えば、電源オン、電源オフ、スリープ、音量調整、チャンネル変更、メニュー表示、選択、決定、戻る、などの操作、および動画の再生、停止、一時停止、早送り、早戻しなどの操作を上記瞼の開閉動作および眼球を動かす動作に割り当てることができる。
図9Aは、本発明の一態様の電子機器が有する表示装置30を説明する図である。表示装置30は、画素アレイ14と、回路15と、回路16と、回路17と、回路18と、回路19を有する。画素アレイ14は、列方向および行方向に配置された画素10を有する。
画素10は、副画素11、12を有することができる。例えば、副画素11は、表示用の光を発する機能を有する。副画素12は、表示装置30に照射された光を検出する機能を有する。
なお、本明細書では、一つの「画素」の中で独立した動作が行われる最小単位を便宜的に「副画素」と定義して説明を行うが、「画素」を「領域」と置き換え、「副画素」を「画素」と置き換えてもよい。
副画素11は、可視光を発する発光デバイスを有する。発光デバイスとしては、OLED(Organic Light Emitting Diode)またはQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)、無機化合物(量子ドット材料など)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
副画素12は、赤外光に感度を有する受光デバイスを有する。赤外光としては、例えば、近赤外光を用いることができる。受光デバイスには、入射する光を検出し電荷を発生させる光電変換素子を用いることができる。受光デバイスでは、入射する光量に基づき、発生する電荷量が決まる。受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。
受光デバイスとしては、有機化合物を光電変換層に有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化および大面積化が容易である。また、形状およびデザインの自由度が高いため、様々な表示装置に適用できる。または、結晶性のシリコン(単結晶シリコン、多結晶シリコン、微結晶シリコンなど)を用いたフォトダイオードを受光デバイスに用いることもできる。
本発明の一態様では、発光デバイスとして有機EL素子を用い、受光デバイスとして有機フォトダイオードを用いる。有機フォトダイオードは、有機EL素子と共通の要素を有する構成とすることもできる。そのため、作製工程を大幅に増やすことなく、表示装置30に受光デバイスを内蔵することができる。例えば、受光デバイスの光電変換層と発光デバイスの発光層とを作り分け、それ以外の層で、発光デバイスと受光デバイスとで同一の構成を含むようにしてもよい。
回路15および回路16は、副画素11を駆動するためのドライバ回路である。回路15はソースドライバ、回路16はゲートドライバとしての機能を有することができる。回路15および回路16には、例えば、シフトレジスタ回路などを用いることができる。なお、副画素11、12の駆動回路を分けてもよい。
回路17および回路18は、副画素12を駆動するためのドライバ回路である。回路17はカラムドライバ、回路18はロードライバとしての機能を有することができる。回路17および回路18には、例えば、シフトレジスタ回路またはデコーダ回路などを用いることができる。
回路19は、副画素12が出力するデータの読み出し回路である。回路19は、例えば、A/D変換回路を有し、副画素12から出力されたアナログデータをデジタルデータに変換する機能を有する。また、回路19に、出力データに対して相関二重サンプリング処理を行うCDS回路が含まれていてもよい。
なお、図9Bに示すように、回路15乃至回路19が画素アレイ14と重なる構成としてもよい。当該構成とすることで、狭額縁の表示装置を形成することができる。また、駆動回路が画素アレイ14の下層にあることで配線長および配線容量などを削減することができる。したがって、高速動作ができ、かつ低消費電力で動作する表示装置とすることができる。なお、図9Bに示す回路15乃至回路19の配置、面積は一例であり、適宜変更することができる。また、回路15乃至回路19の一部は、画素アレイ14と同一の層に形成することもできる。
当該構成は、例えば、回路15乃至回路19を単結晶シリコン基板などに作製されたトランジスタ(以下、Siトランジスタ)で形成し、画素アレイ14が有する画素回路をチャネル形成領域に金属酸化物を有するトランジスタ(以下、OSトランジスタ)で形成することができる。OSトランジスタは薄膜で形成することができ、Siトランジスタ上に積層して形成することができる。
副画素12は、入力インターフェイスとしての機能を有することができる。表示装置30の外側から発せられた赤外光を副画素12で受光することができる。したがって、副画素12で検出した赤外光の光量を解析することで、例えば瞬き動作を検出することができる。
また、受光デバイスを用いて、虹彩などの撮像データを取得することができる。つまり、表示装置に生体認証機能を付加させることができる。虹彩を受光デバイスに結像するには、レンズ31または表示装置30と眼との距離を可変できる構成とすればよい。例えば、図2Dに示す構成を用いることができる。
また、受光デバイスを用いて、目の動き、または瞳孔径の変化などの撮像データを取得することができる。当該画像データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示装置が出力する表示および音声の一方または双方を変化させるなど、ユーザーの心身の状態に合わせた動作を行うことができる。これらの動作は、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器に有効である。
図9C乃至図9Eは、画素10内における副画素のレイアウトの例を説明する図である。図9Aでは、画素10内に副画素11および副画素12を一つずつ配置した例を示したが、図9Cに示すように、赤色を発する発光デバイスを有する副画素11R、緑色を発する発光デバイスを有する副画素11G、青色を発する発光デバイスを有する副画素11Bを画素10内に配置してもよい。当該構成を用いることで、カラー表示を行うことができる。
なお、図9Cは、副画素11R、副画素11G、副画素11B、副画素12を縦横に並べるレイアウトであるが、図9Dに示すレイアウトであってもよい。
さらに、図9Eに示すように、白色を発する発光デバイスを有する副画素11Wが設けられていてもよい。副画素11Wは単独で白色光を発することができるため、白色またはそれに近い色の表示では、その他の色の副画素の発光輝度を抑えることができる。したがって、省電力で表示を行うことができる。
なお、図9C乃至図9Eに示すそれぞれの副画素の配置は入れ替えてもよい。また、画素および副画素の構成は上記に限られず、様々な配置形態を採用することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、表示装置30として用いることのできる発光装置、およびその構成例について説明する。
なお、本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いないデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
また、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、および赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、2以上の発光層の各々の発光が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
なお、タンデム構造のデバイスは、同色の光を射出する発光層を有する構成(BB、GG、RRなど)であってもよい。複数の層から発光が得られるタンデム構造は、発光に高い電圧を要するが、シングル構造と同じ発光強度を得るための電流値は小さくなる。したがって、タンデム構造では、発光ユニットあたりの電流ストレスを少なくすることができ、素子寿命を延ばすこともできる。
表示装置30は、発光デバイスと受光デバイスを有する表示装置である。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光デバイスを有することで、フルカラーの表示装置を実現できる。
本発明の一態様は、EL層(発光デバイスの発光に寄与する有機層)および活性層(受光デバイスの光電変換に寄与する有機層)をメタルマスクなどのシャドーマスクを用いることなく、フォトリソグラフィ法により微細なパターンに加工して形成する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
異なる色のEL層、またはEL層と活性層との間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光デバイス間または発光デバイスと受光デバイスとの間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
さらに、EL層および活性層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
FMM(Fine Metal Mask)を用いて形成された有機膜は、端部に近いほど厚さが薄くなるような、極めてテーパー角の小さな(例えば0度より大きく30度未満)膜となる場合が多い。そのため、FMMを用いて形成された有機膜は、その側面と上面が連続的につながるため、側面を明確に確認することは困難である。一方、本発明の一態様においては、FMMを用いることなく加工されたEL層を有するため、明確な側面を有する。特に、本発明の一態様は、EL層のテーパー角が、30度以上120度以下、好ましくは60度以上120度以下である部分を有することが好ましい。
なお、本明細書等において、対象物の端部がテーパー形状であるとは、その端部の領域において側面(表面)と被形成面(底面)との成す角度が0度より大きく90度未満であり、端部から連続的に厚さが増加するような断面形状を有することをいう。また、テーパー角とは、対象物の端部における、底面(被形成面)と側面(表面)との成す角をいう。
以下では、より具体的な例について説明する。
図10Aは、表示装置30の上面の一部を示す概略図である。表示装置30は、赤色を呈する発光デバイス90R、緑色を呈する発光デバイス90G、および青色を呈する発光デバイス90B、および受光デバイス90Sを、それぞれ複数有する。図10Aでは、各発光デバイスの区別を簡単にするため、各発光デバイスまたは受光デバイスの発光領域内にR、G、B、Sの符号を付している。
なお、図10Aに示す発光デバイス90R、発光デバイス90G、発光デバイス90B、および受光デバイス90Sの配置は、図9Cに示す副画素の配置に対応している。発光デバイス90Rは副画素11Rが有する発光デバイス、発光デバイス90Gは副画素11Gが有する発光デバイス、発光デバイス90Bは副画素11Bが有する発光デバイス、受光デバイス90Sは副画素12が有する受光デバイスに対応する。
発光デバイス90R、発光デバイス90G、発光デバイス90B、および受光デバイス90Sは、それぞれマトリクス状に配列している。図10Aは、一方向に2つの素子が交互に配列する構成を示している。なお、発光デバイスの配列方法はこれに限られず、ストライプ配列、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
また、図10Aには、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cは、共通電極113に供給するための電位(例えばアノード電位、またはカソード電位)が与えられる。接続電極111Cは、発光デバイス90Rなどが配列する表示領域の外に設けられる。また図10Aには、共通電極113を破線で示している。
接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状、L字状、コの字状(角括弧状)、または四角形などとすることができる。
図10Bは、図10A中の一点鎖線A1−A2、および一点鎖線C1−C2に対応する断面概略図である。図10Bには、発光デバイス90B、発光デバイス90R、受光デバイス90S、および接続電極111Cの断面概略図を示している。
なお、断面概略図に示されない発光デバイス90Gについては、発光デバイス90Bまたは発光デバイス90Rと同様の構成とすることができ、以降においては、これらの説明を援用することができる。
発光デバイス90Bは、画素電極111、有機層112B、有機層114、および共通電極113を有する。発光デバイス90Rは、画素電極111、有機層112R、有機層114、および共通電極113を有する。受光デバイス90Sは、画素電極111、有機層115、有機層114、および共通電極113を有する。有機層114と共通電極113は、発光デバイス90B、発光デバイス90R、および受光デバイス90Sに共通に設けられる。有機層114は、共通層ともいうことができる。各発光デバイス間、および発光デバイスと受光デバイスとの間で、画素電極111は互いに離隔して絶縁層101上に設けられている。
有機層112Rは、少なくとも赤色の波長域にピークを有する光を発する発光性の有機化合物を有する。有機層112Bは、少なくとも青色の波長域にピークを有する光を発する発光性の有機化合物を有する。有機層115は、可視光または赤外光の波長域に感度を有する光電変換材料を有する。有機層112R、および有機層112Bは、それぞれEL層とも呼ぶことができる。また、有機層115は、活性層と呼ぶことができる。
有機層112R、有機層112B、および有機層115は、それぞれ電子注入層、電子輸送層、正孔注入層、および正孔輸送層のうち、一以上を有していてもよい。有機層114は、発光層を有さない構成とすることができる。例えば、有機層114は、電子注入層、電子輸送層、正孔注入層、および正孔輸送層のうち、一以上を有する。
ここで、有機層112R、有機層112B、および有機層115の積層構造のうち、最も上側に位置する層、すなわち有機層114と接する層は、発光層以外の層とすることが好ましい。例えば、発光層を覆って、電子注入層、電子輸送層、正孔注入層、正孔輸送層、またはこれら以外の層を設け、当該層と、有機層114とが接する構成とすることが好ましい。このように、各発光デバイスを作製する際に、発光層の上面を他の層で保護した状態とすることで、発光デバイスの信頼性を向上させることができる。
画素電極111は、それぞれ素子毎に設けられている。また、共通電極113および有機層114は、各発光デバイスに共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
画素電極111の端部を覆って、絶縁層131が設けられている。絶縁層131の端部は、テーパー形状であることが好ましい。なお、本明細書等において、対象物の端部がテーパー形状であるとは、その端部の領域において表面と被形成面との成す角度が0度より大きく90度未満であり、端部から連続的に厚さが増加するような断面形状を有することをいう。
また、絶縁層131に有機樹脂を用いることで、その表面を緩やかな曲面とすることができる。そのため、絶縁層131の上に形成される膜の被覆性を高めることができる。
絶縁層131に用いることのできる材料としては、例えばアクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等が挙げられる。
または、絶縁層131として、無機絶縁材料を用いてもよい。絶縁層131に用いることのできる無機絶縁材料としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または酸化ハフニウムなどの、酸化物または窒化物を用いることができる。また、酸化イットリウム、酸化ジルコニウム、酸化ガリウム、酸化タンタル、酸化マグネシウム、酸化ランタン、酸化セリウム、および酸化ネオジム等を用いてもよい。
図10Bに示すように、異なる色の発光デバイス間、および発光デバイスと受光デバイスとの間において、2つの有機層は離隔して設けられ、これらの間に隙間が設けられている。このように、有機層112R、有機層112B、および有機層115が、互いに接しないように設けられていることが好ましい。これにより、隣接する2つの有機層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
有機層112R、有機層112B、および有機層115は、テーパー角が30度以上であることが好ましい。有機層112R、有機層112B、および有機層115は、端部における側面(表面)と底面(被形成面)との角度が、30度以上120度以下、好ましくは45度以上120度以下、より好ましくは60度以上120度以下であることが好ましい。または、有機層112R、有機層112B、および有機層115は、テーパー角がそれぞれ90度またはその近傍(例えば80度以上100度以下)であることが好ましい。
共通電極113上には、保護層121が設けられている。保護層121は、上方から各発光デバイスに水などの不純物が拡散することを防ぐ機能を有する。
保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
接続部130では、接続電極111C上に共通電極113が接して設けられ、共通電極113を覆って保護層121が設けられている。また、接続電極111Cの端部を覆って絶縁層131が設けられている。
以下では、図10Bとは一部の構成が異なる表示装置の構成例について説明する。具体的には、絶縁層131を設けない場合の例を示す。
図11A乃至図11Dでは、画素電極111の側面と、有機層112R、有機層112B、または有機層115の側面とが概略一致している場合の例を示している。
図11Aでは、有機層114が、有機層112R、有機層112B、および有機層115の上面および側面を覆って設けられている。有機層114により、画素電極111と共通電極113とが接し、電気的にショートしてしまうことを防ぐことができる。
図11Bでは、有機層112R、有機層112B、および有機層115、並びに画素電極111の側面に接して設けられる絶縁層125を有する例を示している。絶縁層125により、画素電極111と共通電極113との電気的なショート、およびこれらの間のリーク電流を効果的に抑制することができる。
絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、および窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、および酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜および窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、有機層を保護する機能に優れた絶縁層125を形成することができる。
なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
図11Cでは、隣接する2つの発光デバイス間または発光デバイスと受光デバイスとの間において、対向する2つの画素電極の隙間、および対向する2つの有機層の隙間を埋めるように、樹脂層126が設けられている。樹脂層126により、有機層114、共通電極113等の被形成面を平坦化することができるため、隣接する発光デバイス間の段差の被覆不良により、共通電極113が断線してしまうことを防ぐことができる。
樹脂層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、樹脂層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等を適用することができる。また、樹脂層126として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、樹脂層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
また、樹脂層126として、可視光を吸収する材料を用いると好適である。樹脂層126に可視光を吸収する材料を用いると、EL層からの発光を樹脂層126により吸収することが可能となり、隣接する画素からの迷光を遮断し、混色を抑制することができる。したがって、表示品位の高い表示装置を提供することができる。
図11Dでは、絶縁層125と、絶縁層125上に樹脂層126が設けられている。絶縁層125により、有機層112R等と樹脂層126とが接しないため、樹脂層126に含まれる水分などの不純物が、有機層112R等に拡散することを防ぐことができ、信頼性の高い表示装置とすることができる。
また、絶縁層125と、樹脂層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、およびアルミニウムなどの中から選ばれる一または複数を含む金属膜)を設け、発光層から射出される光を当該反射膜で反射させることで、光取り出し効率を向上させる機構を設けてもよい。
図12A乃至図12Cは、画素電極111の幅が、有機層112R、有機層112B、または有機層115の幅よりも大きい場合の例を示している。有機層112R等は、画素電極111の端部よりも内側に設けられている。
図12Aは、絶縁層125を有する場合の例を示している。絶縁層125は、発光デバイスまたは受光デバイスが有する有機層の側面と、画素電極111の上面の一部および側面を覆って設けられている。
図12Bは、樹脂層126を有する場合の例を示している。樹脂層126は、隣接する2つの発光デバイス間または発光デバイスと受光デバイスとの間に位置し、有機層の側面、および画素電極111の上面および側面を覆って設けられている。
図12Cは、絶縁層125と樹脂層126の両方を有する場合の例を示している。有機層112R等と樹脂層126との間には、絶縁層125が設けられている。
図13A乃至図13Dは、画素電極111の幅が、有機層112R、有機層112B、または有機層115の幅よりも小さい場合の例を示している。有機層112Rなどは、画素電極111の端部を超えて外側に延在している。
図13Bは、絶縁層125を有する例を示している。絶縁層125は、隣接する2つの発光デバイスの有機層の側面に接して設けられている。なお、絶縁層125は、有機層112R等の側面だけでなく、上面の一部を覆って設けられていてもよい。
図13Cは、樹脂層126を有する例を示している。樹脂層126は、隣接する2つの発光デバイスの間に位置し、有機層112R等の側面および上面の一部を覆って設けられている。なお、樹脂層126は、有機層112R等の側面に接し、上面を覆わない構成としてもよい。
図13Dは、絶縁層125と樹脂層126の両方を有する場合の例を示している。有機層112R等と樹脂層126との間には、絶縁層125が設けられている。
次に、画素電極111より下層にある要素の構成例、および白色発光デバイスを用いる例などについて説明する。図14Aは、図10A中の一点鎖線A1−A2に対応する断面概略図である。なお、発光デバイス90B、発光デバイス90R、受光デバイス90Sの構成は、図12Cに示した構成を一例として図示しているが、前述したその他の構成であってもよい。
画素電極111は、トランジスタ136のソースまたはドレインの一方と電気的に接続される。トランジスタ136には、例えば、チャネル形成領域に金属酸化物を有するトランジスタ(以下、OSトランジスタ)を用いることができる。OSトランジスタは非晶質シリコンよりも移動度が高く、電気特性に優れている。また、多結晶シリコンの製造工程にある結晶化工程は不要であり、配線工程などで形成することができる。
したがって、基板60に形成されているチャネル形成領域にシリコンを有するトランジスタ135(Siトランジスタ)上に貼り合わせ工程などを用いずに形成することができる。基板60としては、代表的に単結晶シリコン基板、SOI基板、単結晶シリコンまたは多結晶シリコンを表面に有するガラス基板などを用いることができる。
ここで、トランジスタ136は画素回路を構成するトランジスタである。なお、発光デバイスを有する画素回路は、受光デバイスを有する画素回路と異なる構成を有する。これらの回路の詳細は後述する。
また、トランジスタ135は、画素回路の駆動回路、メモリ回路、演算回路などの機能回路を構成するトランジスタである。すなわち、機能回路上に画素回路を形成することができるため、狭額縁の表示装置を形成することができる。
OSトランジスタに用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。
OSトランジスタは半導体層のエネルギーギャップが大きいため、数yA/μm(チャネル幅1μmあたりの電流値)という極めて低いオフ電流特性を示す。室温下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、または1yA(1×10−24A)以下とすることができる。なお、室温下における、チャネル幅1μmあたりのSiトランジスタのオフ電流値は、1fA(1×10−15A)以上1pA(1×10−12A)以下である。したがって、OSトランジスタのオフ電流は、Siトランジスタのオフ電流よりも10桁程度低いともいえる。
また、OSトランジスタは、インパクトイオン化、アバランシェ降伏、および短チャネル効果などが生じないなどSiトランジスタとは異なる特徴を有し、高耐圧で信頼性の高い回路を形成することができる。また、Siトランジスタでは問題となる結晶性の不均一性に起因する電気特性のばらつきもOSトランジスタでは生じにくい。
OSトランジスタが有する半導体層は、例えばインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属の一つまたは複数)を含むIn−M−Zn系酸化物で表記される膜とすることができる。In−M−Zn系酸化物は、代表的には、スパッタリング法で形成することができる。または、ALD(Atomic layer deposition)法を用いて形成してもよい。
例えば、In−M−Zn系酸化物として、インジウム(In)、ガリウム(Ga)および亜鉛(Zn)を含む酸化物(IGZO)を用いることができる。または、インジウム(In)、アルミニウム(Al)および亜鉛(Zn)を含む酸化物(IAZO)を用いてもよい。または、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)および亜鉛(Zn)を含む酸化物(IAGZO)を用いてもよい。
In−M−Zn系酸化物をスパッタリング法で形成するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=1:3:2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等、またはそれらの近傍の組成であることが好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
半導体層としては、キャリア密度の低い酸化物半導体を用いる。例えば、半導体層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。当該酸化物半導体は欠陥準位密度が低く、安定な特性を有する酸化物半導体であるといえる。
なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア密度および不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
なお、図14Aに示す表示装置は、OSトランジスタを有し、且つMML(メタルマスクレス)構造の発光デバイスを有する構成である。当該構成とすることで、トランジスタに流れうるリーク電流、および隣接する発光素子間に流れうるリーク電流(横リーク電流、サイドリーク電流などともいう)を、極めて低くすることができる。また、上記構成とすることで、表示装置に画像を表示した場合に、観察者が画像のきれ、画像の鋭さ、および高いコントラスト比のいずれか一または複数を観測できる。なお、トランジスタに流れうるリーク電流、および発光素子間の横リーク電流が極めて低い構成とすることで、黒表示時に生じうる光漏れなどが限りなく少ない表示(真黒表示ともいう)とすることができる。
図14Aでは、各発光デバイスの発光層をB、Rでそれぞれ異なる構成について例示したが、これに限定されない。例えば、図14Bに示すように白色発光を行う有機層112Wを設け、有機層112Wに重畳するように、着色層114B(青色)、114R(赤色)を設けて発光デバイス90B、90Rを形成し、カラー化する方式を用いてもよい。なお、図示していない発光デバイス90Gには、有機層112Wおよび着色層114G(緑色)が設けられる。
有機層112Wとしては、例えば、R、G、Bのそれぞれの発光を行うEL層を直列に接続したタンデム構造を有することができる。または、R、G、Bのそれぞれの発光を行う発光層を直列に接続した構造を用いてもよい。着色層114R、114G、114Bとしては、例えば、赤色、緑色、青色のカラーフィルタなどを用いることができる。
また、有機層115と重畳するようにフィルタ114IRを設けてもよい。フィルタ114IRは、赤外光を透過し、少なくとも可視光をカットする特性を有することが好ましい。有機層115は、主に赤外光に対して高い感度を有することが好ましいが、可視光などの波長に対しても感度を有することがある。そのため、発光デバイスが発する光の反射光等が検出され、ノイズ成分となってしまう。したがって、有機層115と重畳するように可視光をカットするフィルタ114IRを設けることが好ましい。
また、図14Cに示すように、基板60が有するトランジスタ117で画素回路を構成し、トランジスタ117のソースまたはドレインの一方と画素電極111を電気的に接続してもよい。なお、図14Bに示すフィルタ114IRは、図14A、図14Cに適用してもよい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、表示装置30が有する画素の回路について説明する。
本発明の一態様の表示装置の画素は、副画素11、12を有する。副画素11の画素回路PIX1は、可視光を発する発光デバイスを有する。副画素12の画素回路PIX2は、受光デバイスを有する。
図15Aに副画素11の画素回路PIX1の一例を示す。画素回路PIX1は、発光デバイスEL1、トランジスタM1、トランジスタM2、トランジスタM3およびキャパシタC1を有する。ここでは、発光デバイスEL1として、発光ダイオードを用いた例を示している。発光デバイスEL1には、可視光を発する有機EL素子を用いることが好ましい。
トランジスタM1は、ゲートが配線G1と電気的に接続し、ソースまたはドレインの一方が配線S1と電気的に接続し、ソースまたはドレインの他方が、キャパシタC1の一方の電極およびトランジスタM2のゲートと電気的に接続する。トランジスタM2のソースまたはドレインの一方は配線V2と電気的に接続し、他方は発光デバイスEL1のアノードおよびトランジスタM3のソースまたはドレインの一方と電気的に接続する。トランジスタM3は、ゲートが配線G2と電気的に接続し、ソースまたはドレインの他方が配線V0と電気的に接続する。発光デバイスEL1のカソードは、配線V1と電気的に接続する。
配線V1および配線V2には、それぞれ定電位が供給される。発光デバイスEL1のアノード側を高電位、カソード側を低電位にすることで発光を行うことができる。トランジスタM1は、配線G1に供給される信号により制御され、画素回路PIX1の選択状態を制御するための選択トランジスタとして機能する。また、トランジスタM2は、ゲートに供給される電位に応じて発光デバイスEL1に流れる電流を制御する駆動トランジスタとして機能する。
トランジスタM1が導通状態のとき、配線S1に供給される電位がトランジスタM2のゲートに供給され、その電位に応じて発光デバイスEL1の発光輝度を制御することができる。トランジスタM3は、配線G2に供給される信号により制御される。これにより、トランジスタM3と発光デバイスEL1との間の電位を配線V0から供給される一定の電位にリセットすることができ、トランジスタM2のソース電位を安定化させた状態でトランジスタM2のゲートへの電位書き込みを行うことができる。
図15Bに画素回路PIX1とは異なる画素回路PIX2の一例を示す。画素回路PIX2は昇圧機能を有する。画素回路PIX2は、発光デバイスEL2、トランジスタM4、トランジスタM5、トランジスタM6、トランジスタM7、キャパシタC2およびキャパシタC3を有する。ここでは、発光デバイスEL2として、発光ダイオードを用いた例を示している。画素回路PIX2は、画素10が有する全ての副画素11(副画素11R、副画素11G、副画素11B)に用いることができる。また、副画素11R、副画素11G、副画素11Bのうち、いずれか一つまたは二つに画素回路PIX2を用いてもよい。
トランジスタM4は、ゲートが配線G1と電気的に接続し、ソースまたはドレインの一方が配線S4と電気的に接続し、ソースまたはドレインの他方が、キャパシタC2の一方の電極、キャパシタC3の一方の電極およびトランジスタM6のゲートと電気的に接続する。トランジスタM5は、ゲートが配線G6と電気的に接続し、ソースまたはドレインの一方が配線S5と電気的に接続し、ソースまたはドレインの他方が、キャパシタC3の他方の電極と電気的に接続する。
トランジスタM6のソースまたはドレインの一方は配線V2と電気的に接続し、他方は、発光デバイスEL2のアノードおよびトランジスタM7のソースまたはドレインの一方と電気的に接続する。トランジスタM7は、ゲートが配線G2と電気的に接続し、ソースまたはドレインの他方が配線V0と電気的に接続する。発光デバイスEL2のカソードは、配線V1と電気的に接続する。
トランジスタM4は、配線G1に供給される信号により制御され、トランジスタM5は配線G6に供給される信号により制御される。トランジスタM6は、ゲートに供給される電位に応じて発光デバイスEL2に流れる電流を制御する駆動トランジスタとして機能する。
トランジスタM6のゲートに供給された電位に応じて発光デバイスEL2の発光輝度を制御することができる。トランジスタM7は、配線G2に供給される信号により制御される。トランジスタM6と発光デバイスEL2との間の電位を配線V0から供給される一定の電位にリセットすることができ、トランジスタM6のソース電位を安定化させた状態でトランジスタM6のゲートへの電位書き込みを行うことができる。また、配線V0から供給される電位を配線V1と同じ電位、または配線V1よりも低い電位とすることで発光デバイスEL2の発光を抑えることができる。
以下に、画素回路PIX2が有する昇圧機能を説明する。
まず、トランジスタM6のゲートにトランジスタM4を介して配線S4の電位“D1”を供給し、これと重なるタイミングでキャパシタC3の他方の電極にトランジスタM5を介して基準電位“Vref”を供給する。このとき、キャパシタC3には“D1−Vref”が保持される。次に、トランジスタM6のゲートをフローティングとし、トランジスタM5を介してキャパシタC3の他方の電極に配線S5の電位“D2”を供給する。ここで、電位“D2”は加算用の電位である。
このとき、キャパシタC3の容量値をC、キャパシタC2の容量値をC、トランジスタM6のゲートの容量値をCM6とすると、トランジスタM6のゲートの電位は、D1+(C/(C+C+CM6))×(D2−Vref))となる。ここで、Cの値がC+CM6の値より十分に大きい場合を想定すると、C/(C+C+CM6)は1に近似する。したがって、トランジスタM6のゲートの電位は“D1+(D2−Vref)”に近似するといえる。そして、D1=D2であって、Vref=0であれば、“D1+(D2−Vref))”=“2D1”となる。
つまり、回路を適切に設計すれば、配線S4またはS5から入力できる電位の約2倍の電位をトランジスタM6のゲートに供給できることになる。
当該作用により、画素回路内で高い電圧を生成することができる。したがって、画素回路に入力する電圧を低くすることができ、駆動回路の消費電力を低減させることができる。
また、画素回路PIX2は、図15Cに示す構成であってもよい。図15Cに示す画素回路PIX2は、トランジスタM8を有する点が図15Bに示す画素回路PIX2と異なる。トランジスタM8のゲートは配線G1と電気的に接続され、ソースまたはドレインの一方はトランジスタM5のソースまたはドレインの他方およびキャパシタC3の他方の電極と電気的に接続され、ソースまたはドレインの他方は配線V0と電気的に接続される。また、トランジスタM5のソースまたはドレインの一方は、配線S4と接続される。
図15Bに示す画素回路PIX2では、上述したようにトランジスタM5を介して基準電位および加算用の電位をキャパシタC3の他方の電極に供給する動作が行われる。この場合、配線S4、S5の2本が必要であり、配線S5では基準電位と加算用の電位を交互に書き換える必要がある。
図15Cに示す画素回路PIX2では、トランジスタM8は増えるが、基準電位を供給する専用の経路が設けられるため、配線S5を削減することができる。また、トランジスタM8のゲートは配線G1と接続することができ、基準電位を供給する配線には配線V0を用いることができるため、トランジスタM8と接続する配線は増加しない。また、一つの配線で基準電位と加算用の電位を交互に書き換えることがないため、低消費電力で高速動作が可能である。
なお、図15Bおよび図15Cでは、基準電位“Vref”として“D1”の反転電位“D1B”を用いてもよい。この場合は、配線S4またはS5から入力できる電位の約3倍の電位をトランジスタM6のゲートに供給できることになる。なお、反転電位とは、ある基準電位との差の絶対値が同じ(または概略同じ)であって、元の電位とは異なる電位を意味する。元の電位を“D1”、反転電位を“D1B”、基準電位をVとするとき、V=(D1+D1B)/2の関係であればよい。
本実施の形態の表示装置では、発光デバイスをパルス状に発光させることで、画像を表示してもよい。発光デバイスの駆動時間を短縮することで、表示装置の消費電力の低減、および発熱の抑制を図ることができる。特に、有機EL素子は周波数特性が優れているため、好適である。周波数は、例えば、1kHz以上100MHz以下とすることができる。
図15Dに、副画素12の画素回路PIX3の一例を示す。画素回路PIX3は、受光デバイスPD、トランジスタM9、トランジスタM10、トランジスタM11、トランジスタM12およびキャパシタC4を有する。ここでは、受光デバイスPDとして、フォトダイオードを用いた例を示している。
受光デバイスPDは、カソードが配線V1と電気的に接続し、アノードがトランジスタM9のソースまたはドレインの一方と電気的に接続する。トランジスタM9は、ゲートが配線G3と電気的に接続し、ソースまたはドレインの他方がキャパシタC4の一方の電極、トランジスタM10のソースまたはドレインの一方およびトランジスタM11のゲートと電気的に接続する。トランジスタM10は、ゲートが配線G4と電気的に接続し、ソースまたはドレインの他方が配線V3と電気的に接続する。トランジスタM11は、ソースまたはドレインの一方が配線V4と電気的に接続し、ソースまたはドレインの他方がトランジスタM12のソースまたはドレインの一方と電気的に接続する。トランジスタM12は、ゲートが配線G5と電気的に接続し、ソースまたはドレインの他方が配線OUTと電気的に接続する。
配線V1、配線V3および配線V4には、それぞれ定電位が供給される。受光デバイスPDを逆バイアスで駆動させる場合には、配線V3に、配線V1の電位よりも低い電位を供給する。トランジスタM10は、配線G5に供給される信号により制御され、トランジスタM11のゲートに接続するノードの電位を配線V3に供給される電位にリセットする機能を有する。トランジスタM9は、配線G3に供給される信号により制御され、受光デバイスPDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM11は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM12は、配線G6に供給される信号により制御され、上記ノードの電位に応じた出力を配線OUTに接続する外部回路で読み出すための選択トランジスタとして機能する。
ここで、画素回路PIX1乃至PIX3が有するトランジスタM1乃至M12には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタを適用することが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続されたキャパシタに蓄積した電荷を長期間に亘って保持することが可能である。
そのため、特にキャパシタC1、キャパシタC2、キャパシタC3またはキャパシタC4にソースまたはドレインの一方または他方が接続されるトランジスタM1、トランジスタM4、トランジスタM5、トランジスタM8、トランジスタM9およびトランジスタM10には、酸化物半導体が適用されたトランジスタを用いることが好ましい。副画素12に酸化物半導体が適用されたトランジスタを用いることで、回路構成および動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。
また、これ以外のトランジスタも同様に酸化物半導体を適用したトランジスタを用いることで、作製コストを低減することができる。
また、トランジスタM1乃至トランジスタM12に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコンまたは多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
また、トランジスタM1乃至M12のうち、一つ以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
なお、図15A乃至図15Dにおいては、nチャネル型のトランジスタを用いた例を図示しているが、pチャネル型のトランジスタを用いることもできる。
画素回路PIX1が有するトランジスタ、画素回路PIX2が有するトランジスタおよび画素回路PIX3が有するトランジスタは、同一基板上に並べて形成されることが好ましい。また、画素回路PIX1乃至PIX3に接続される配線のうち、図15A乃至図15Dにおいて共通の符号で示されている配線は、共通配線としてもよい。
また、受光デバイスPD、発光デバイスEL1または発光デバイスEL2と重なる位置に、トランジスタおよびキャパシタの一方または双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な受光部または表示部を実現できる。
図16Aは、画素10に含まれる副画素11(副画素11R、副画素11G、副画素11B)、副画素12の回路図の例である。配線G1および配線G2は、ゲートドライバ(図9A、回路16)と電気的に接続することができる。また、配線G3乃至配線G5は、ロードライバ(図9A、回路18)と電気的に接続することができる。配線S1乃至S3は、ソースドライバ(図9A、回路15)と電気的に接続することができる。配線OUTは、カラムドライバ(図9A、回路17)および読み出し回路(図9A、回路19)と電気的に接続することができる。
配線V0乃至V4には定電位を供給する電源回路を電気的に接続することができ、配線V0、V3には低電位、配線V1、V2、V4には高電位を供給することができる。
また、図16Bに示すように、副画素12の受光デバイスPDのアノードを配線V1に電気的に接続し、トランジスタM10のソースまたはドレインの他方を配線V5に電気的に接続する構成としてもよい。このとき、配線V5は、配線V1に供給される電位よりも高い電位を供給することができる。または、配線V5は、配線V4と電気的に接続されていてもよい。
本発明の一態様では、副画素11、副画素12で電源線などを共有することができるため、配線数を少なくすることができ、画素密度を高めることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
C1:キャパシタ、C2:キャパシタ、C3:キャパシタ、C4:キャパシタ、G1:配線、G2:配線、G3:配線、G4:配線、G5:配線、G6:配線、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4:トランジスタ、M5:トランジスタ、M6:トランジスタ、M7:トランジスタ、M8:トランジスタ、M9:トランジスタ、M10:トランジスタ、M11:トランジスタ、M12:トランジスタ、PIX1:画素回路、PIX2:画素回路、PIX3:画素回路、S1:配線、S3:配線、S4:配線、S5:配線、V0:配線、V1:配線、V2:配線、V3:配線、V4:配線、V5:配線、10:画素、11:副画素、11B:副画素、11G:副画素、11R:副画素、11W:副画素、12:副画素、14:画素アレイ、15:回路、16:回路、17:回路、18:回路、19:回路、20:電子機器、21:電子機器、30:表示装置、31:レンズ、32:透光板、33:光源、33a:光源、33b:光源、33c:光源、33d:光源、34:光学窓、35:ミラー、35a:ミラー、35b:ミラー、35c:ミラー、35d:ミラー、38:筐体、39:スライド機構、40:眼、51:発光ダイオード、52:レンズ、53:遮光壁、60:基板、90B:発光デバイス、90G:発光デバイス、90R:発光デバイス、90S:受光デバイス、101:絶縁層、111:画素電極、111C:接続電極、112B:有機層、112R:有機層、112W:有機層、113:共通電極、114:有機層、114B:着色層、114G:着色層、114IR:フィルタ、114R:着色層、115:有機層、117:トランジスタ、121:保護層、125:絶縁層、126:樹脂層、130:接続部、131:絶縁層、135:トランジスタ、136:トランジスタ

Claims (13)

  1.  表示装置と、レンズと、ミラーと、光源と、光学窓と、を有し、
     前記表示装置は、発光デバイスおよび受光デバイスを有し、
     前記レンズは、前記表示装置と前記光学窓との間に設けられ、
     前記ミラーは、前記レンズと前記光学窓との間において、反射面を前記光学窓側にして設けられ、
     前記光源は、前記表示装置および前記光学窓に重ならず、射出光が前記ミラーの前記反射面に斜めに入射する位置に設けられ、
     前記ミラーで反射した前記射出光は、前記光学窓を介して対象物に照射され、
     前記対象物による反射光が前記光学窓および前記レンズを介して前記表示装置に入射される電子機器。
  2.  請求項1において、
     前記レンズと前記光学窓との間に透光板を有し、
     前記ミラーは、前記透光板の表面に設けられている電子機器。
  3.  請求項1において、
     前記ミラーは、前記レンズの表面に設けられている電子機器。
  4.  請求項1または3のいずれか一項において、
     前記ミラーは、可視光を透過し、赤外光を反射する誘電体多層膜である電子機器。
  5.  請求項1乃至4のいずれか一項において、
     前記光源は、赤外光を射出するレーザまたは発光ダイオードを有する電子機器。
  6.  請求項1乃至5のいずれか一項において、
     前記光学窓は、レンズである電子機器。
  7.  請求項1乃至6のいずれか一項において、
     前記受光デバイスは、光電変換層に有機化合物を有する電子機器。
  8.  請求項1乃至7のいずれか一項において、
     前記受光デバイスは、赤外光に受光感度のピークを有する電子機器。
  9.  請求項1乃至8のいずれか一項において、
     前記受光デバイスと重なる位置に可視光をカットするフィルタが設けられている電子機器。
  10.  請求項1乃至9のいずれか一項において、
     前記受光デバイスは、前記発光デバイスと共通の要素を有する電子機器。
  11.  請求項1乃至10のいずれか一項において、
     前記対象物は眼球および瞼であり、瞬き動作または前記眼球の動作を検出する電子機器。
  12.  請求項11において、
     前記瞬き動作または前記眼球の動作を検出することにより、疲労度の推測または電子機器の入力動作を行う電子機器。
  13.  請求項1乃至12のいずれか一項に記載の電子機器を筐体内に二つ有するゴーグル型の電子機器。
PCT/IB2022/053806 2021-05-07 2022-04-25 電子機器 WO2022234383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023518546A JPWO2022234383A1 (ja) 2021-05-07 2022-04-25
US18/558,214 US20240219714A1 (en) 2021-05-07 2022-04-25 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079056 2021-05-07
JP2021-079056 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234383A1 true WO2022234383A1 (ja) 2022-11-10

Family

ID=83932113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/053806 WO2022234383A1 (ja) 2021-05-07 2022-04-25 電子機器

Country Status (3)

Country Link
US (1) US20240219714A1 (ja)
JP (1) JPWO2022234383A1 (ja)
WO (1) WO2022234383A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433760B1 (en) * 1999-01-14 2002-08-13 University Of Central Florida Head mounted display with eyetracking capability
JP2002362943A (ja) * 2001-06-08 2002-12-18 Asahi Techno Glass Corp 光学デバイス用基板と光学デバイスおよび光学デバイスの製造方法
JP2007531579A (ja) * 2004-04-01 2007-11-08 ウィリアム・シー・トーチ 目の動きをモニターするバイオセンサ、コミュニケーター及びコントローラー並びにそれらの使用方法
US20170177075A1 (en) * 2015-12-16 2017-06-22 Google Inc. In-cell gaze tracking for near-eye display
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
JP2019531782A (ja) * 2016-09-07 2019-11-07 バルブ コーポレーション アイトラッキング用途のためのセンサフュージョンのシステムおよび方法
US10706600B1 (en) * 2018-03-30 2020-07-07 Facebook Technologies, Llc Head-mounted display devices with transparent display panels for color deficient user

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433760B1 (en) * 1999-01-14 2002-08-13 University Of Central Florida Head mounted display with eyetracking capability
JP2002362943A (ja) * 2001-06-08 2002-12-18 Asahi Techno Glass Corp 光学デバイス用基板と光学デバイスおよび光学デバイスの製造方法
JP2007531579A (ja) * 2004-04-01 2007-11-08 ウィリアム・シー・トーチ 目の動きをモニターするバイオセンサ、コミュニケーター及びコントローラー並びにそれらの使用方法
US20170177075A1 (en) * 2015-12-16 2017-06-22 Google Inc. In-cell gaze tracking for near-eye display
JP2019531782A (ja) * 2016-09-07 2019-11-07 バルブ コーポレーション アイトラッキング用途のためのセンサフュージョンのシステムおよび方法
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
US10706600B1 (en) * 2018-03-30 2020-07-07 Facebook Technologies, Llc Head-mounted display devices with transparent display panels for color deficient user

Also Published As

Publication number Publication date
US20240219714A1 (en) 2024-07-04
JPWO2022234383A1 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
TWI698995B (zh) 光電裝置及電子機器
JP2023052370A (ja) 表示装置及び電子機器
CN115148764A (zh) 发光设备、显示设备、摄像设备和电子器材
US20210028239A1 (en) Light-emitting device, and electronic apparatus
WO2022234383A1 (ja) 電子機器
WO2022175776A1 (ja) 電子機器
US20220085135A1 (en) Organic light-emitting device, display apparatus, photoelectric conversion apparatus, electronic apparatus, illuminating apparatus, and moving object
JP7516207B2 (ja) 有機発光装置、表示装置、及び電子機器
KR20220135169A (ko) 발광 장치, 표시장치, 촬상 장치 및 전자기기
JP2022114845A (ja) 発光装置、表示装置、撮像装置、及び電子機器
JP2022085287A (ja) 発光装置
WO2023233760A1 (ja) 発光装置、表示装置、光電変換装置、電子機器、および、発光装置の製造方法
US20240087487A1 (en) Semiconductor device and electronic device
US20230247864A1 (en) Display device and electronic device
US20240172506A1 (en) Light emitting apparatus, display apparatus, photoelectric conversion apparatus, electronic device, illumination apparatus, and moving body
US20230113155A1 (en) Electronic device
WO2024018322A1 (ja) 電子機器
US20230047907A1 (en) Light emitting device, photoelectric conversion device, electronic equipment, illumination device, and moving body
JP2023177215A (ja) 発光装置、表示装置、光電変換装置、電子機器、および、発光装置の製造方法
US20240215417A1 (en) Light-emitting element
US20240049562A1 (en) Display device and method for manufacturing display device
US20230099575A1 (en) Display device, eyeglasses, camera, and method of manufacturing display device
JP2024074234A (ja) 発光装置、表示装置、光電変換装置、電子機器、照明装置及び移動体
WO2024127814A1 (ja) 有機発光素子
JP2024100595A (ja) 発光装置、表示装置、光電変換装置、電子機器、照明装置、移動体、および、発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18558214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798725

Country of ref document: EP

Kind code of ref document: A1