WO2022227842A1 - 一种液体传感器及其制作方法、液体传感*** - Google Patents

一种液体传感器及其制作方法、液体传感*** Download PDF

Info

Publication number
WO2022227842A1
WO2022227842A1 PCT/CN2022/078599 CN2022078599W WO2022227842A1 WO 2022227842 A1 WO2022227842 A1 WO 2022227842A1 CN 2022078599 W CN2022078599 W CN 2022078599W WO 2022227842 A1 WO2022227842 A1 WO 2022227842A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive element
liquid
resin
liquid sensor
signal output
Prior art date
Application number
PCT/CN2022/078599
Other languages
English (en)
French (fr)
Inventor
任中伟
王江川
亢佳萌
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2022227842A1 publication Critical patent/WO2022227842A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present application relates to the field of detection technology, and in particular, to a liquid sensor, a method for making the same, and a liquid sensing system.
  • Liquid is a liquid object, it has no definite shape, in a fixed container, its volume and shape are fixed under the environment of constant pressure and temperature. However, due to its fluidity, the uncontrollable flow of liquids will affect production and life in some environments. Therefore, it is often necessary to monitor the liquid level and leakage of liquids (especially specific liquids, such as acid solution, alkaline solution, salt solution, etc.), and it is urgent to provide a simple device that can detect whether the target position is in contact with liquid.
  • the present application provides a liquid sensor, which can detect the contact situation of a liquid containing positive ions.
  • the present application provides a liquid sensor, which adopts the following technical solutions:
  • the liquid sensor includes:
  • Sensitive element the sensitive element is located on the substrate, the sensitive element is formed by printing conductive paste and then cured at room temperature, the sensitive element includes conductive particles and resin, and the sensitive element can be exposed to external liquid. After positive ions, the positive ions are attached to the resin between the conductive particles, and the resistance of the sensitive element is reduced;
  • a signal input lead and a signal output lead, the signal input lead and the signal output lead are respectively connected to both ends of the sensing element.
  • the liquid sensor further includes an encapsulation layer, the encapsulation layer is located above the layer where the sensitive element is located, and an opening is provided at the position of the sensitive element.
  • the material of the encapsulation layer is epoxy resin, acrylic resin, silicone, silicone resin, polyurethane, polyester resin or polyimide.
  • the conductive paste comprises: 30%-95% of conductive filler, 5%-70% of organic resin carrier and 0%-5% of auxiliary agent.
  • the material of the substrate is polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyimide, polyamide, low density polyethylene , thermoplastic elastomer, thermoplastic polyurethane elastomer rubber, glass, ceramics, silicon wafer, polytetrafluoroethylene, wood.
  • the signal input lead and the signal output lead are formed by heating and curing after printing with conductive paste.
  • the sensitive element contacts metal cations or hydrogen ions in an acid solution, an alkaline solution or a salt solution
  • the metal cations or hydrogen ions are attached to the resin between the conductive particles, and the sensitive The resistance of the element is reduced.
  • the present application provides a method for manufacturing a liquid sensor, which adopts the following technical solutions:
  • the manufacturing method of the liquid sensor includes:
  • the conductive paste comprising conductive particles and resin
  • the sensitive element pattern is cured at room temperature to obtain a sensitive element. After the sensitive element is exposed to positive ions in an external liquid, the positive ions can be attached to the resin between the conductive particles. The resistance of the sensitive element is reduced;
  • a signal input lead and a signal output lead are made, and the signal input lead and the signal output lead are respectively connected to both ends of the sensitive element.
  • the conductive paste before using the conductive paste to print the sensitive element pattern on the substrate, use the conductive paste to print the signal input lead pattern and the signal output lead pattern on the substrate, and obtain the a signal input lead and the signal output lead.
  • the application provides a liquid sensing system, which adopts the following technical solutions:
  • the liquid sensing system includes:
  • a power supply unit which is connected with the signal input lead and the signal output lead in the liquid sensor to form a loop;
  • the electrical property measuring unit is connected in the loop, and is used for measuring the resistance change of the sensitive element in the liquid sensor;
  • An analysis unit connected with the electrical performance measurement unit, is used for determining the resistance change, and determining the contact with the external liquid according to the resistance change.
  • the application provides a liquid sensor, a manufacturing method thereof, and a liquid sensing system.
  • the liquid sensor includes a sensitive element, and the sensitive element is formed by printing a conductive paste and then cured at room temperature.
  • the conductive paste includes conductive particles and resin, and the sensitive element contacts After the positive ions in the external liquid, the positive ions are attached to the resin between the conductive particles, and the resistance of the sensitive element is reduced, so that the resistance of the sensitive element can be measured through the signal input lead and the signal output lead, and the liquid containing positive ions can be detected. (such as acid solution, alkali solution or salt solution) contact situation.
  • FIG. 1 is a schematic view of the microstructure of a conductive structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a liquid sensor provided by an embodiment of the present application.
  • FIG. 3 is a schematic view of the microstructure of the sensitive element provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram 1 of positive ion positions provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram 2 of positive ion positions provided by the embodiment of the present application.
  • FIG. 6 is a flowchart of a method for manufacturing a liquid sensor provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a liquid sensing system provided by an embodiment of the present application.
  • the applicant further found that at the beginning of the contact, the resistance decreased rapidly, and with the extension of time, the rate of resistance decreased gradually slowed down until the resistance reached a steady state. That is, within a certain period of time, the longer the contact time, the more obvious the decrease in resistance. And the higher the concentration of positive ions in the liquid containing positive ions, the more obvious the decrease in resistance when the contact time is the same.
  • FIG. 1 is a schematic view of the microstructure of the conductive structure provided in the embodiment of the application.
  • the principle of the improvement of electrical properties by the presence of positive ions is as follows: the addition of positive ions A increases the holes in the entire system of the conductive structure. The number of ions reduces the difficulty of electrons passing through the resin C between the conductive particles B, and the electrons can be transferred from the conductive particles B to the positive ions A first, and then from the positive ions A to the adjacent conductive particles B, thereby improving the the electrical properties of the conductive structures.
  • FIG. 2 is a schematic structural diagram of the liquid sensor provided by the embodiment of the present application
  • FIG. 3 is provided by the embodiment of the present application.
  • Schematic diagram of the microstructure of the sensitive element, the liquid sensor includes:
  • Sensitive element 2 is located on substrate 1. Sensing element 2 is formed by printing conductive paste and then cured at room temperature. Sensing element 2 includes conductive particles 21 and resin 22. Sensing element 2 can contact positive ions in external liquids. After A, the positive ions A are attached to the resin 22 between the conductive particles 21, and the resistance of the sensitive element 2 is reduced;
  • the signal input lead 3 and the signal output lead 4 are respectively connected to both ends of the sensitive element 2 .
  • the positive ions A can be attached to the resin 22 between the conductive particles 21 in various ways.
  • FIG. 4 FIG.
  • FIG. 5 is a schematic diagram of the positive ion position provided by the embodiment of the application two, the positive ion A is embedded in the conductive particles 21 and the resin 22.
  • the gap between them is medium, which is not limited in this embodiment of the present application.
  • the positive ions A may also be attached to the conductive particles 21 .
  • the above contact methods may include soaking, spraying, dripping or coating.
  • the sizes and positions of the conductive particles 21 and the resin 22 in FIG. 3 are only examples and not limited. In practice, the conductive particles 21 may be in contact with each other. After the sensitive element 2 contacts the positive ion A, multiple paths can exist in the sensitive element 2 at the same time, such as the path formed by the connection of the conductive particles 21, the path formed by the conductive particles 21 through the resin 22, and the conductive particles 21 through the resin 22 and the positive electrodes on it. The path formed by the ions A, the path formed by the conductive particles 21 through the positive ions A, and the like.
  • the sensitive element 2 Since the sensitive element 2 is formed by printing a conductive paste and then cured at room temperature, the sensitive element 2 includes conductive particles 21 and a resin 22. After the sensitive element 2 contacts the positive ions A in the external liquid, the positive ions A adhere to the conductive particles 21. On the resin 22, the resistance of the sensitive element 2 is reduced, so that the resistance of the sensitive element 2 is measured through the signal input lead 3 and the signal output lead 4, and the liquid (such as an acid solution, an alkaline solution or a salt solution) containing positive ions A can be detected. contact situation.
  • the liquid such as an acid solution, an alkaline solution or a salt solution
  • the liquid sensor can be used for liquid level detection in a container, liquid leakage detection, and the like.
  • the liquid sensor is set at the highest liquid level of the container. If the amount of liquid in the container reaches the highest liquid level, the liquid sensor is in contact with the liquid, and the positive ions A in the liquid are attached to the resin 22 between the conductive particles 21. The resistance of the sensitive element 2 is reduced, so as to realize the detection of the liquid level; alternatively, the liquid sensor is arranged at a leak-prone position on the liquid storage tank. If the liquid leaks, the liquid sensor contacts the liquid, and the positive ions A in the liquid adhere to On the resin 22 between the conductive particles 21, the resistance of the sensitive element 2 is reduced, so that liquid leakage detection can be quickly realized.
  • the more positive ions A are attached to the sensitive element 2 the more obvious the improvement of the electrical performance of the sensitive element 2 is.
  • the amount of positive ions A attached can be affected by factors such as the contact time, contact area, and concentration of positive ions A between the liquid containing positive ions A and the sensitive element 2. Therefore, in the application process of the liquid sensor in the embodiments of the present application, if If other factors remain unchanged, and only one factor changes, factors such as contact time, contact area, or the concentration of positive ions A can also be qualitatively characterized or quantitatively analyzed according to the resistance change of the sensitive element 2 .
  • the liquid sensor in the embodiment of the present application further includes an encapsulation layer 5 .
  • the encapsulation layer 5 is located above the layer where the sensitive element 2 is located, and an opening is provided at the position of the sensitive element 2 .
  • the encapsulation layer 5 can play the role of fixing and protecting various structures in the liquid sensor, and improve the structural stability of the liquid sensor.
  • the material of the encapsulation layer 5 in the embodiment of the present application is epoxy resin, acrylic resin, silicone, silicone resin, polyurethane, polyester resin or polyimide.
  • the encapsulation layer 5 may be an off-the-shelf film material, or may be formed by curing a material with fluidity.
  • the material of the substrate 1 in the embodiment of the present application may be polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyimide, poly Flexible materials such as amide, low density polyethylene, thermoplastic elastomer, thermoplastic polyurethane elastomer rubber, etc., can also be hard materials such as glass, ceramics, silicon wafers, PTFE, and wood.
  • the conductive paste used for making the sensitive element 2 in the embodiment of the present application may include the following components: 30%-95% of conductive filler, 5%-70% of organic resin carrier and 0%-5% of auxiliary agent, The above percentages are all weight percentages.
  • the weight percentage of the conductive filler can be: 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% %;
  • the weight percentage of the organic resin carrier can be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70% %;
  • the weight percentage of the adjuvant can be 0, 0.1%, 0.2%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% or 5%.
  • the conductive filler, organic resin carrier and auxiliary agent in the conductive paste in the embodiments of the present application may be selected with reference to the following contents.
  • the conductive filler is one or a mixture of at least two of gold, silver, copper, iron, nickel, aluminum, graphene, carbon black, graphite, silver-coated copper powder, and the like.
  • the shape of the conductive filler is one of flake, spherical, linear, rod, needle, dendritic, etc., or a mixture of at least two.
  • the conductive filler is silver powder, specifically spherical silver powder, flake silver powder or a mixture of the two.
  • the organic resin carrier in the embodiments of the present application includes a resin (either a thermoplastic resin or a thermosetting resin), and optionally a solvent, a curing agent, and the like.
  • the resin in the embodiments of the present application may be one or at least two of polyester resin, polyurethane resin, epoxy resin, acrylic resin, phenolic resin, alkyd resin, silicone resin, vinyl acetate resin, and polyimide resin. a mixture of species.
  • the solvent in the embodiments of the present application can be selected from ethanol, isopropanol, n-propanol, ethylene glycol, propylene glycol, glycerol, n-butanol, ethylene glycol propyl ether, ethylene glycol butyl ether, diethylene glycol Diethyl ether, diethylene glycol propyl ether, diethylene glycol butyl ether, propylene glycol propyl ether, propylene glycol butyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, ethylene glycol propyl ether acetate, ethylene glycol butyl Ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propylene glycol propyl ether acetate, propylene glycol
  • the curing agent in the embodiments of the present application may be one or more of an isocyanate-based curing agent, a phenolic resin-based curing agent, and an amine-based curing agent.
  • the auxiliary agent may be one of wetting agent, dispersing agent, adhesion promoter, coupling agent, leveling agent, thixotropic agent, antioxidant, defoaming agent, acid-base balance agent, etc. species or several.
  • the signal input lead 3 and the signal output lead 4 in the embodiment of the present application may be metal wires (such as copper wires), conductive glue, or conductive structures formed by heating and curing after printing with conductive paste.
  • the signal input lead 3 and the signal output lead 4 are both formed by heating and curing after printing with conductive paste, so as to simplify the connection between the signal input lead 3 and the signal output lead 4 and the sensitive element 2 . electrical connection.
  • the metal cations or hydrogen ions are attached to the resin 22 between the conductive particles 21, and the sensitive element 2 resistance decreases.
  • Metal cations and hydrogen ions have strong polarities, and the effect of improving the electrical performance of the sensitive element 2 is more obvious, and the detection sensitivity and accuracy of the liquid sensor are higher.
  • the metal cation is one or more of sodium ion, lithium ion, and potassium ion.
  • FIG. 6 is a flowchart of the method for manufacturing a liquid sensor provided by an embodiment of the present application. include:
  • Step S1 providing a substrate.
  • Step S2 using conductive paste to print the pattern of the sensitive element on the substrate, the conductive paste includes conductive particles and resin.
  • forming processes such as screen printing, stencil printing, flexographic printing, pad printing, transfer printing, extrusion dispensing, and coating can be used, and conductive pastes can be used to make sensitive element graphics on the substrate.
  • Step S3 curing the pattern of the sensitive element at room temperature to obtain a sensitive element. After the sensitive element contacts the positive ions in the external liquid, the positive ions are attached to the resin between the conductive particles, and the resistance of the sensitive element is reduced.
  • the above degree of curing is sufficient as long as the surface layer of the sensitive element is solvent-free.
  • the reason is that, if there is a solvent, the substance that can ionize positive ions is easily soluble in water, but insoluble in the solvent, and the presence of the solvent will hinder the adhesion of positive ions.
  • the sensitive element can be surface dry or whole dry, which is not limited here.
  • the resistance of the sensitive element obtained after step S3 is mainly between ten ohms and infinity (non-conductive), which is specific to the conductive paste.
  • the type is related to the curing time at room temperature.
  • Step S4 making a signal input lead and a signal output lead, and the signal input lead and the signal output lead are respectively connected to both ends of the sensitive element.
  • the step of making the signal input lead and the signal output lead can be located before the sensitive element is made, or after the sensitive element is made.
  • the conductive paste to print the sensitive element pattern on the substrate use the conductive paste to print the signal input lead pattern and the signal output lead pattern on the substrate, and obtain the signal input lead and signal output after heating and curing.
  • the lead wire can avoid the influence of the heating process on the sensitive components.
  • the above heating temperature can be 120°C ⁇ 200°C, and the heating time can be 10min ⁇ 80min.
  • forming processes such as screen printing, stencil printing, flexographic printing, pad printing, transfer printing, extrusion dispensing, coating, etc. can be used, and conductive paste is used to make signal input leads and Signal output leads.
  • conductive glue, metal wires, etc. can also be used as signal input leads and signal output leads.
  • the metal wire can be electrically connected to the sensitive element by means of welding, conductive adhesive bonding and the like.
  • FIG. 7 is a schematic structural diagram of the liquid sensing system provided by the embodiment of the present application.
  • the liquid sensing system includes:
  • At least one liquid sensor 10 according to any one of the above;
  • the power supply unit 20, the power supply unit 20 is connected with the signal input lead and the signal output lead in the liquid sensor 10 to form a loop;
  • an electrical property measuring unit 30 the electrical property measuring unit 30 is connected in the loop, and is used for measuring the resistance of the sensitive element in the liquid sensor 10;
  • the analyzing unit 40 is connected to the electrical performance measuring unit 30, and is used for determining the resistance change, and determining the contact with the external liquid according to the resistance change.
  • the above power supply unit 20 may be direct current, alternating current, battery, capacitor, etc.
  • the power supply unit 20 may only supply power to the liquid sensor 10, the electrical performance measurement unit 30 and the analysis unit 40 are self-powered, or the power supply unit 20 may be the electrical performance measurement unit 30. Power is supplied together with the analysis unit 40; the above electrical performance measurement unit 30 can determine the resistance change of the sensitive element by measuring current, voltage, resistance, etc.
  • the working process of the above liquid sensing system may include: measuring the resistance in the loop formed by the signal input lead, the sensitive element and the signal output lead in real time by the electrical performance measuring unit 30, determining the resistance change in real time by the analyzing unit 40, and according to the resistance change Determine the contact with the external liquid, wherein, if the resistance does not change, the target external liquid is not contacted, and if the resistance becomes smaller, the target external liquid has been contacted.
  • the liquid sensing system can be used to detect the contact of acid solution, alkali solution or salt solution.
  • the acid solution can be a sulfuric acid solution or a hydrochloric acid solution with a concentration of 1% to 10%
  • the alkali solution can be a sodium hydroxide solution or a potassium hydroxide solution with a concentration of 1% to 10%
  • the salt solution can be a concentration of 1% to 10%. % sodium chloride solution or potassium chloride solution.
  • the size of the sensitive element is 180 mm in length, 0.8 mm in width, and 20 microns in thickness as an example, and the contact method is immersion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种液体传感器及其制作方法、液体传感***,涉及检测技术领域。液体传感器包括:基材(1);敏感元件(2),敏感元件(2)位于基材(1)上,敏感元件(2)由导电浆料印制后室温固化形成,敏感元件(2)包括导电颗粒(21)和树脂(22),敏感元件(2)可在接触外界液体中的正离子(A)后,使得正离子(A)附着于导电颗粒(21)之间的树脂(22)上,从而敏感元件(2)的电阻降低;信号输入引线(3)和信号输出引线(4),信号输入引线(3)和信号输出引线(4)分别连接于敏感元件(2)的两端。液体传感器能够检测含正离子的液体的接触情况。

Description

一种液体传感器及其制作方法、液体传感***
本申请要求于2021年04月28提交中国专利局,申请号为202110468682.9,申请名称为“一种液体传感器及其制作方法、液体传感***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及检测技术领域,尤其涉及一种液体传感器及其制作方法、液体传感***。
背景技术
液体是处于液态的物体,它没有确定的形状,在固定容器中,它的体积和形状在压力及温度不变的环境下,是固定不变的。但由于其具有流动性,在一些环境下液体的不可控流动会对生产、生活造成影响。因此,常常需要对液体(尤其是特定液体,如酸溶液、碱溶液、盐溶液等)的液位、泄漏情况等进行监控,急需提供一种可检测目标位置是否接触液体的简易设备。
申请内容
本申请提供一种液体传感器,可以检测含正离子的液体的接触情况。
第一方面,本申请提供一种液体传感器,采用如下技术方案:
所述液体传感器包括:
基材;
敏感元件,所述敏感元件位于所述基材上,所述敏感元件由导电浆料印制后室温固化形成,所述敏感元件包括导电颗粒和树脂,所述敏感元件可在接触外界液体中的正离子后,所述正离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低;
信号输入引线和信号输出引线,所述信号输入引线和信号输出引线分别连接于所述敏感元件的两端。
可选地,所述液体传感器还包括封装层,所述封装层位于所述敏感元件所在层上方,且在所述敏感元件位置处设置有开口。
可选地,所述封装层的材质为环氧树脂、丙烯酸树脂、硅酮、有机硅树脂、聚氨酯、聚酯树脂或者聚酰亚胺。
可选地,按重量百分比计,所述导电浆料包括:导电填料30%~95%,有机树脂载体5%~70%和助剂0%~5%。
可选地,所述基材的材质为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚萘二甲酸 乙二醇酯、聚酰亚胺、聚酰胺、低密度聚乙烯、热塑性弹性体、热塑性聚氨酯弹性体橡胶、玻璃、陶瓷、硅片、聚四氟、木质中的一种。
可选地,所述信号输入引线和所述信号输出引线由导电浆料印制后加热固化形成。
可选地,所述敏感元件接触酸溶液、碱溶液或者盐溶液中的金属阳离子或者氢离子后,所述金属阳离子或者氢离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低。
第二方面,本申请提供一种液体传感器的制作方法,采用如下技术方案:
所述液体传感器的制作方法包括:
提供一基材;
使用导电浆料在所述基材上印制敏感元件图形,所述导电浆料包括导电颗粒和树脂;
在室温下使所述敏感元件图形固化,得到敏感元件,所述敏感元件可在接触外界液体中的正离子后,所述正离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低;
制作信号输入引线和信号输出引线,所述信号输入引线和信号输出引线分别连接所述敏感元件的两端。
可选地,在使用导电浆料在所述基材上印制敏感元件图形之前,在所述基材上使用导电浆料印制信号输入引线图形和信号输出引线图形,加热固化后得到所述信号输入引线和所述信号输出引线。
第三方面,本申请提供一种液体传感***,采用如下技术方案:
所述液体传感***包括:
至少一个以上任一项所述的液体传感器;
供电单元,所述供电单元与所述液体传感器中的信号输入引线和信号输出引线连接,构成回路;
电性能测量单元,所述电性能测量单元连接于所述回路中,用于测量所述液体传感器中的敏感元件的电阻变化;
分析单元,与所述电性能测量单元连接,用于确定电阻变化,并根据电阻变化确定接触外界液体情况。
本申请提供了一种液体传感器及其制作方法、液体传感***,该液体传感器包括敏感元件,敏感元件由导电浆料印制后室温固化形成,导电浆料包括导电颗粒和树脂,敏感元件接触外界液体中的正离子后,正离子附着于导电颗粒之间的树脂上,敏感元件的电阻降 低,从而通过信号输入引线和信号输出引线测量敏感元件的电阻大小,即可检测含正离子的液体(如酸溶液、碱溶液或者盐溶液)的接触情况。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的导电结构的微观结构示意图;
图2为本申请实施例提供的液体传感器的结构示意图;
图3为本申请实施例提供的敏感元件的微观结构示意图;
图4为本申请实施例提供的正离子位置示意图一;
图5为本申请实施例提供的正离子位置示意图二;
图6为本申请实施例提供的液体传感器的制作方法流程图;
图7为本申请实施例提供的液体传感***的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
传统导电浆料(包括导电颗粒和树脂)应用过程中,需经过印刷、喷涂或转印的方式在基材上形成图形,在150℃~300℃的温度下烘干固化,才能形成导电结构,若不加热固化则电阻非常大甚至不导通,无法应用。而本申请的申请人在研发过程中发现,导电浆料印制成图形,室温放置固化后(表干即可),接触含有正离子的液体,可使其电阻大幅降低(降低50%以上,甚至达99%以上),得到导电结构。申请人进一步发现,在刚开始接触时,电阻迅速降低,随着时间的延长,电阻降低的速度逐渐减慢,直至电阻达到稳定状态。也就是说,在一定时间内,接触时间越长,电阻降低越明显。且含正离子的液体中正离子的浓度越大,接触时间相同时,电阻降低越明显。
如图1所示,图1为本申请实施例提供的导电结构的微观结构示意图,正离子的存在对电学性能的提升的原理如下:正离子A的加入增加了导电结构整个体系中的空穴的数量,降低了电子穿过导电颗粒B之间的树脂C的难度,电子可先从导电颗粒B转移到正离子A上,再从正离子A转移到相邻的导电颗粒B上,从而提高了导电结构的电学性能。
基于上述新发现,本申请实施例提供一种液体传感器,具体地,如图2和图3所示,图2为本申请实施例提供的液体传感器的结构示意图,图3为本申请实施例提供的敏感元件的微观结构示意图,该液体传感器包括:
基材1;
敏感元件2,敏感元件2位于基材1上,敏感元件2由导电浆料印制后室温固化形成,敏感元件2包括导电颗粒21和树脂22,敏感元件2可在接触外界液体中的正离子A后,正离子A附着于导电颗粒21之间的树脂22上,敏感元件2的电阻降低;
信号输入引线3和信号输出引线4,信号输入引线3和信号输出引线4分别连接于敏感元件2的两端。
敏感元件2接触外界液体中的正离子A后,正离子A附着于导电颗粒21之间的树脂22上的方式可以有多种,比如,如图4所示,图4为本申请实施例提供的正离子位置示意图一,正离子A附着在树脂22的表面,或者,如图5所示,图5为本申请实施例提供的正离子位置示意图二,正离子A嵌入导电颗粒21和树脂22之间的缝隙中等,本申请实施例对此不进行限定。另外,正离子A也可以附着于导电颗粒21上。以上接触方式可包括浸泡、喷淋、滴加或者涂覆等方式。
需要说明的是,图3中导电颗粒21、树脂22的尺寸和位置仅为示例并非限定,实际中导电颗粒21之间会存在相互接触的情况。敏感元件2接触正离子A后,敏感元件2中可以同时存在多种通路,如导电颗粒21连接形成的通路,导电颗粒21通过树脂22形成的通路,导电颗粒21通过树脂22及其上的正离子A形成的通路,导电颗粒21通过正离子A形成的通路等。
由于敏感元件2由导电浆料印制后室温固化形成,敏感元件2包括导电颗粒21和树脂22,敏感元件2接触外界液体中的正离子A后,正离子A附着于导电颗粒21之间的树脂22上,敏感元件2的电阻降低,从而通过信号输入引线3和信号输出引线4测量敏感元件2的电阻大小,即可检测含正离子A的液体(如酸溶液、碱溶液或者盐溶液)的接触情况。
该液体传感器可以用于容器中液位检测、液体泄漏检测等。例如,将液体传感器设置 于容器最高液位位置处,若容器中液体的量到达最高液位,则液体传感器与液体接触,液体中的正离子A附着于导电颗粒21之间的树脂22上,敏感元件2的电阻降低,从而实现对液位的检测;或者,将液体传感器设置于储液罐上易泄漏位置处,若液体泄漏,则液体传感器与液体接触,液体中的正离子A附着于导电颗粒21之间的树脂22上,敏感元件2的电阻降低,快速实现液体泄漏检测。
需要补充的是,敏感元件2上正离子A附着越多,对敏感元件2的电学性能的提升越明显。正离子A附着的多少可以由含正离子A的液体与敏感元件2的接触时间、接触面积、正离子A的浓度等因素影响,所以在本申请实施例中的液体传感器的应用过程中,若其他因素不变,仅一个因素变化,则还可以根据敏感元件2的电阻变化定性表征或定量分析接触时间、接触面积或者正离子A的浓度等因素。
可选地,如图2所示,本申请实施例中的液体传感器还包括封装层5,封装层5位于敏感元件2所在层上方,且在敏感元件2位置处设置有开口。封装层5可以起到固定、保护液体传感器中各结构的作用,提高液体传感器的结构稳定性。本申请实施例中的封装层5的材质为环氧树脂、丙烯酸树脂、硅酮、有机硅树脂、聚氨酯、聚酯树脂或者聚酰亚胺。封装层5可以为现成的膜材,也可以由具有流动性的物质固化后形成。
可选地,本申请实施例中的基材1的材质可以为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚酰胺、低密度聚乙烯、热塑性弹性体、热塑性聚氨酯弹性体橡胶等柔性材料,也可以为玻璃、陶瓷、硅片、聚四氟、木质等硬质材料。
可选地,本申请实施例中用于制作敏感元件2的导电浆料可以包括以下组分:导电填料30%~95%,有机树脂载体5%~70%和助剂0%~5%,以上百分比均为重量百分比。其中,导电填料的重量百分比可以为:30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或者95%;有机树脂载体的重量百分比可以为5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%或者70%;助剂的重量百分比可以为0、0.1%、0.2%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或者5%。
示例性地,本申请实施例中导电浆料中的导电填料、有机树脂载体和助剂可以参考以下内容进行选择。
导电填料
本申请实施例中,导电填料为金、银、铜、铁、镍、铝、石墨烯、炭黑、石墨、银包铜粉等中的一种或者至少两种组成的混合物。导电填料的形状为片状、球状、线形、棒状、 针状、树枝状等中的一种或者至少两种组成的混合物。优选地,导电填料为银粉,具体可以为球状银粉、片状银粉或者二者的混合物。
有机树脂载体
本申请实施例中的有机树脂载体包括树脂(热塑性树脂或热固性树脂均可),还可选地包含溶剂、固化剂等。
本申请实施例中的树脂可以为聚酯树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、酚醛树脂、醇酸树脂、有机硅树脂、氯醋树脂、聚酰亚胺树脂中的一种或者至少两种组成的混合物。
本申请实施例中的溶剂可选为乙醇、异丙醇、正丙醇、乙二醇、丙二醇、丙三醇、正丁醇、乙二醇丙醚、乙二醇丁醚、二乙二醇***、二乙二醇丙醚、二乙二醇丁醚、丙二醇丙醚、丙二醇丁醚、二丙二醇***、二丙二醇丙醚、二丙二醇丁醚、乙二醇丙醚醋酸酯、乙二醇丁醚醋酸酯、二乙二醇***醋酸酯、二乙二醇丙醚醋酸酯、二乙二醇丁醚醋酸酯、丙二醇丙醚醋酸酯、丙二醇丁醚醋酸酯、二丙二醇***醋酸酯、二丙二醇丙醚醋酸酯、二丙二醇丁醚醋酸酯、异佛尔酮和松油醇中的一种或者至少两种组成的混合物。
本申请实施例中的固化剂可以为异氰酸酯类固化剂、酚醛树脂类固化剂、胺类固化剂中的一种或几种。
助剂
本申请实施例中,助剂可以为润湿剂、分散剂、附着力促进剂、偶联剂、流平剂、触变剂、抗氧剂、消泡剂、酸碱平衡剂等中的一种或几种。
可选地,本申请实施例中的信号输入引线3和信号输出引线4可以为金属线(如铜线)、导电胶或者由导电浆料印制后加热固化形成的导电结构等。示例性地,本申请实施例中选择,信号输入引线3和信号输出引线4均由导电浆料印制后加热固化形成,以简化信号输入引线3和信号输出引线4与敏感元件2之间的电连接方式。
可选地,本申请实施例中敏感元件2接触酸溶液、碱溶液或者盐溶液中的金属阳离子或者氢离子后,金属阳离子或者氢离子附着于导电颗粒21之间的树脂22上,敏感元件2的电阻降低。金属阳离子、氢离子具有较强的极性,对敏感元件2的电学性能的提升效果更明显,液体传感器检测的灵敏度和准确度更高。示例性地,金属阳离子为钠离子、锂离子、钾离子中的一种或几种。
本申请提供一种液体传感器的制作方法,用于制作以上所述的液体传感器,如图6所 示,图6为本申请实施例提供的液体传感器的制作方法流程图,该液体传感器的制作方法包括:
步骤S1、提供一基材。
步骤S2、使用导电浆料在基材上印制敏感元件图形,导电浆料包括导电颗粒和树脂。
本申请实施例中可以使用丝网印刷、钢网印刷、柔版印刷、移印、转印、挤出式点胶、涂覆等成型工艺,使用导电浆料在基材上制作敏感元件图形。
步骤S3、在室温下使敏感元件图形固化,得到敏感元件,敏感元件可在接触外界液体中的正离子后,正离子附着于导电颗粒之间的树脂上,敏感元件的电阻降低。
以上固化的程度只要是能够满足敏感元件的表层无溶剂即可,原因在于,若有溶剂,由于能够电离出正离子的物质易溶于水,不溶于溶剂,溶剂的存在会阻碍正离子的附着。敏感元件可以为表干,也可以为整体干燥,此处不进行限定。
以长180毫米,宽0.8毫米,厚20微米的敏感元件为例,经步骤S3后得到的敏感元件的电阻大小主要在十几欧到无限大(不导通)之间,具体跟导电浆料的种类和室温固化时间有关。
步骤S4、制作信号输入引线和信号输出引线,信号输入引线和信号输出引线分别连接敏感元件的两端。
其中制作信号输入引线和信号输出引线的步骤,可以位于制作敏感元件之前,也可以位于制作敏感元件之后。可选地,在使用导电浆料在基材上印制敏感元件图形之前,在基材上使用导电浆料印制信号输入引线图形和信号输出引线图形,加热固化后得到信号输入引线和信号输出引线,可以避免加热过程对敏感元件的影响。以上加热温度可以为120℃~200℃,加热时间为10min~80min。
本申请实施例中可以使用丝网印刷、钢网印刷、柔版印刷、移印、转印、挤出式点胶、涂覆等成型工艺,使用导电浆料在基材上制作信号输入引线和信号输出引线。
当然也可以通过导电胶、金属线等作为信号输入引线和信号输出引线。使用金属线时,可通过焊接、导电胶粘接等方式将金属线与敏感元件电连接。
此外,本申请实施例提供一种液体传感***,具体地,如图7所示,图7为本申请实施例提供的液体传感***的结构示意图,该液体传感***包括:
至少一个以上任一项所述的液体传感器10;
供电单元20,供电单元20与液体传感器10中的信号输入引线和信号输出引线连接, 构成回路;
电性能测量单元30,电性能测量单元30连接于回路中,用于测量液体传感器10中的敏感元件的电阻;
分析单元40,与电性能测量单元30连接,用于确定电阻变化,并根据电阻变化确定接触外界液体情况。
以上供电单元20可以为直流电、交流电、电池、电容等,供电单元20可以仅为液体传感器10供电,电性能测量单元30和分析单元40自供电,也可以由供电单元20为电性能测量单元30和分析单元40一并供电;以上电性能测量单元30可通过测量电流、电压、电阻等确定敏感元件的电阻变化。
以上液体传感***的工作过程可包括:通过电性能测量单元30实时测量信号输入引线、敏感元件和信号输出引线形成的回路中的电阻,通过分析单元40实时确定电阻变化情况,并根据电阻变化确定接触外界液体情况,其中,若电阻无变化,则未接触目标外界液体,若电阻变小,则已接触目标外界液体。
该液体传感***可用于检测酸溶液、碱溶液或者盐溶液的接触情况。酸溶液可以为浓度为1%~10%的硫酸溶液或者盐酸溶液,碱溶液可以为浓度为1%~10%的氢氧化钠溶液或者氢氧化钾溶液,盐溶液可以为浓度为1%~10%的氯化钠溶液或者氯化钾溶液。
实施例
需要说明的是,在以上各实施例中,以敏感元件尺寸为长180毫米,宽0.8毫米,厚20微米为例,接触方式均为浸泡。
Figure PCTCN2022078599-appb-000001
Figure PCTCN2022078599-appb-000002
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种液体传感器,其特征在于,包括:
    基材;
    敏感元件,所述敏感元件位于所述基材上,所述敏感元件由导电浆料印制后室温固化形成,所述敏感元件包括导电颗粒和树脂,所述敏感元件可在接触外界液体中的正离子后,所述正离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低;
    信号输入引线和信号输出引线,所述信号输入引线和信号输出引线分别连接于所述敏感元件的两端。
  2. 根据权利要求1所述的液体传感器,其特征在于,还包括封装层,所述封装层位于所述敏感元件所在层上方,且在所述敏感元件位置处设置有开口。
  3. 根据权利要求2所述的液体传感器,其特征在于,所述封装层的材质为环氧树脂、丙烯酸树脂、硅酮、有机硅树脂、聚氨酯、聚酯树脂或者聚酰亚胺。
  4. 根据权利要求1所述的液体传感器,其特征在于,按重量百分比计,所述导电浆料包括:导电填料30%~95%,有机树脂载体5%~70%和助剂0%~5%。
  5. 根据权利要求1所述的液体传感器,其特征在于,所述基材的材质为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚酰胺、低密度聚乙烯、热塑性弹性体、热塑性聚氨酯弹性体橡胶、玻璃、陶瓷、硅片、聚四氟、木质中的一种。
  6. 根据权利要求1所述的液体传感器,其特征在于,所述信号输入引线和所述信号输出引线由导电浆料印制后加热固化形成。
  7. 根据权利要求1所述的液体传感器,其特征在于,所述敏感元件接触酸溶液、碱溶液或者盐溶液中的金属阳离子或者氢离子后,所述金属阳离子或者氢离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低。
  8. 一种液体传感器的制作方法,其特征在于,包括:
    提供一基材;
    使用导电浆料在所述基材上印制敏感元件图形,所述导电浆料包括导电颗粒和树脂;
    在室温下使所述敏感元件图形固化,得到敏感元件,所述敏感元件可在接触外界液体中的正离子后,所述正离子附着于所述导电颗粒之间的所述树脂上,所述敏感元件的电阻降低;
    制作信号输入引线和信号输出引线,所述信号输入引线和信号输出引线分别连接所述敏感元件的两端。
  9. 根据权利要求8所述的液体传感器的制作方法,其特征在于,在使用导电浆料在所述基材上印制敏感元件图形之前,在所述基材上使用导电浆料印制信号输入引线图形和信号输出引线图形,加热固化后得到所述信号输入引线和所述信号输出引线。
  10. 一种液体传感***,其特征在于,包括:
    至少一个如权利要求1~7任一项所述的液体传感器;
    供电单元,所述供电单元与所述液体传感器中的信号输入引线和信号输出引线连接,构成回路;
    电性能测量单元,所述电性能测量单元连接于所述回路中,用于测量所述液体传感器中的敏感元件的电阻;
    分析单元,与所述电性能测量单元连接,用于确定电阻变化,并根据电阻变化确定接触外界液体情况。
PCT/CN2022/078599 2021-04-28 2022-03-01 一种液体传感器及其制作方法、液体传感*** WO2022227842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110468682.9 2021-04-28
CN202110468682.9A CN113203774A (zh) 2021-04-28 2021-04-28 一种液体传感器及其制作方法、液体传感***

Publications (1)

Publication Number Publication Date
WO2022227842A1 true WO2022227842A1 (zh) 2022-11-03

Family

ID=77029499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078599 WO2022227842A1 (zh) 2021-04-28 2022-03-01 一种液体传感器及其制作方法、液体传感***

Country Status (2)

Country Link
CN (1) CN113203774A (zh)
WO (1) WO2022227842A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203774A (zh) * 2021-04-28 2021-08-03 北京梦之墨科技有限公司 一种液体传感器及其制作方法、液体传感***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672297A (en) * 1995-10-27 1997-09-30 The Dow Chemical Company Conductive composite articles based on expandable and contractible particulate matrices
CN101464126A (zh) * 2009-01-09 2009-06-24 清华大学 一种测量曲面间隙和力的集成化柔顺式传感器的制备方法
CN101937737A (zh) * 2010-09-27 2011-01-05 彩虹集团公司 一种低温固化导电浆料及其制备方法
CN105229452A (zh) * 2013-03-21 2016-01-06 国家科学和工业研究组织 改进的化学阻抗传感器
JP2018168226A (ja) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 ペースト状銀粉組成物、接合体の製造方法および銀膜の製造方法
US20190072439A1 (en) * 2017-09-06 2019-03-07 Regents Of The University Of Minnesota Additively manufactured flexible electronic sensors and conductive compositions used therein
CN111192705A (zh) * 2020-01-07 2020-05-22 北京梦之墨科技有限公司 一种液态金属导电浆料、电子器件及其制作方法
CN113203774A (zh) * 2021-04-28 2021-08-03 北京梦之墨科技有限公司 一种液体传感器及其制作方法、液体传感***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9792838B2 (en) * 2011-06-30 2017-10-17 Abbott Point Of Care Inc. Methods and devices for determining sensing device usability
CN103323498B (zh) * 2013-07-09 2015-03-25 山东师范大学 基于石墨烯碳纳米管复合材料的电阻式相对湿度传感器
CN108022669B (zh) * 2016-11-03 2020-06-12 北京中科纳通电子技术有限公司 一种手机触摸屏专用超低温固化激光蚀刻导电银浆
EP3676607A4 (en) * 2017-09-01 2021-06-30 3M Innovative Properties Company SENSOR ELEMENT FOR RESPIRATORY DEVICE
CN108333227B (zh) * 2018-01-12 2021-03-23 五邑大学 一种柔性气体传感器及其制备方法
CN109682866B (zh) * 2019-01-07 2020-08-04 华中科技大学 基于磷钼酸分子修饰的碳纳米管气敏传感器
JP7371620B2 (ja) * 2019-03-29 2023-10-31 東レ株式会社 導電パターンの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672297A (en) * 1995-10-27 1997-09-30 The Dow Chemical Company Conductive composite articles based on expandable and contractible particulate matrices
CN101464126A (zh) * 2009-01-09 2009-06-24 清华大学 一种测量曲面间隙和力的集成化柔顺式传感器的制备方法
CN101937737A (zh) * 2010-09-27 2011-01-05 彩虹集团公司 一种低温固化导电浆料及其制备方法
CN105229452A (zh) * 2013-03-21 2016-01-06 国家科学和工业研究组织 改进的化学阻抗传感器
JP2018168226A (ja) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 ペースト状銀粉組成物、接合体の製造方法および銀膜の製造方法
US20190072439A1 (en) * 2017-09-06 2019-03-07 Regents Of The University Of Minnesota Additively manufactured flexible electronic sensors and conductive compositions used therein
CN111192705A (zh) * 2020-01-07 2020-05-22 北京梦之墨科技有限公司 一种液态金属导电浆料、电子器件及其制作方法
CN113203774A (zh) * 2021-04-28 2021-08-03 北京梦之墨科技有限公司 一种液体传感器及其制作方法、液体传感***

Also Published As

Publication number Publication date
CN113203774A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Li et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications
Yeom et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes
CN103247667B (zh) Oled面板及其制作方法与封装效果的检测方法
WO2022227842A1 (zh) 一种液体传感器及其制作方法、液体传感***
CN108613761A (zh) 一种柔性三维接触力传感器
CN107560766A (zh) 压阻传感器和用于压阻传感器的压敏元件
Hsiao et al. Printed micro-sensors for simultaneous temperature and humidity detection
US10663419B2 (en) Silicon oil sensor
CN101290240A (zh) 柔性薄膜Ni电阻传感器及其制备方法
KR20200106745A (ko) 용이한 압력 분포 확인 구조를 갖는 압저항형 압력센서
CN203572879U (zh) 一种柔性片状材料表面电阻的测量装置
JP2006284198A (ja) 抵抗器ならびにそれを用いた電流測定装置および方法
US20170277303A1 (en) Electrical Property Detection Device and Method for Touch Electrode
CN108226641A (zh) 一种锂离子电池正极材料电导率的测试方法
US7119556B2 (en) Probe for surface-resistivity measurement and method for measuring surface resistivity
KR20190001987A (ko) 재사용이 가능한 누설감지센서
WO2022227839A1 (zh) 一种电子器件及其制作方法
JP2017075854A (ja) 感温素子
CN213957215U (zh) 一种高分子电阻型湿敏元件
De Rijk et al. Single layer piezoresistive polyimide pressure sensor based on carbon nanotubes
CN102928487A (zh) 平板式工作电极及其制作方法
CN107764883A (zh) 一种印制式二氧化氮气敏传感器及其制备方法
CN109632831B (zh) 采用传感器的检测方法
TWI517989B (zh) 一種網版印刷離子選擇電極
US11287395B2 (en) Capacitive gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794322

Country of ref document: EP

Kind code of ref document: A1