WO2022227725A1 - 成槽施工方法 - Google Patents

成槽施工方法 Download PDF

Info

Publication number
WO2022227725A1
WO2022227725A1 PCT/CN2022/072674 CN2022072674W WO2022227725A1 WO 2022227725 A1 WO2022227725 A1 WO 2022227725A1 CN 2022072674 W CN2022072674 W CN 2022072674W WO 2022227725 A1 WO2022227725 A1 WO 2022227725A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill bit
electrodes
groove
construction method
mud
Prior art date
Application number
PCT/CN2022/072674
Other languages
English (en)
French (fr)
Inventor
宋青杰
于卓伟
周鹏
Original Assignee
北京三一智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三一智造科技有限公司 filed Critical 北京三一智造科技有限公司
Publication of WO2022227725A1 publication Critical patent/WO2022227725A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/02Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
    • B02C13/06Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ
    • E02D5/187Bulkheads or similar walls made solely of concrete in situ the bulkheads or walls being made continuously, e.g. excavating and constructing bulkheads or walls in the same process, without joints
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/14Component parts for trench excavators, e.g. indicating devices travelling gear chassis, supports, skids
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0023Cast, i.e. in situ or in a mold or other formwork
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder
    • E02D2300/002Concrete
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • E02D2300/0029Steel; Iron

Definitions

  • the present application relates to the technical field of building construction, in particular to a groove-forming construction method.
  • the common construction equipment is double-wheel milling, grab bucket, rotary drilling rig, three-axis mixer, excavator, etc.
  • the diameter of the groove is generally between 0.8 and 1.5m.
  • different equipment is used for construction according to different depths and trough diameters of different strata. According to the influence of different hardness rock formations and engineering, use different mechanical equipment or replace different drill bits.
  • hydraulic grab equipment is usually used to construct grooves; when entering strongly weathered rock layers or slightly weathered rock layers with low strength After that, it needs to be replaced with double-wheel milling equipment to realize rock drilling; and when the formation is hard rock, it is necessary to use impact drilling or rotary drilling rigs to construct first to form lead holes, and then use double-wheel milling system to continue rock drilling. Enter to complete.
  • the main purpose of the present application is to provide a trough-forming construction method to solve the problems of high cost and low efficiency caused by the replacement of construction equipment due to changes in the geological structure in the prior art.
  • the present application provides a groove-forming construction method, comprising the following steps: determining a groove-forming position; constructing a guide wall to form a guide wall groove; placing a rectangular drill bit into the bottom of the guide wall groove; The plasma breaks up the rock formation to form the trough section; cleans the bottom and side walls of the trough section; hoisting the reinforcement cage and pouring concrete.
  • the rectangular drill bit includes an insulating seat, a plurality of high electrodes and a plurality of low electrodes, the plurality of high electrodes are arranged on the insulating seat at intervals, and the insulating seat is provided with a liquid channel for the liquid to pass through, and two adjacent high electrodes are arranged on the insulating seat at intervals.
  • a low electrode is arranged between, and the outer sides of the plurality of high electrodes and the outer sides of the plurality of low electrodes form a rectangle.
  • the length and width of the rectangle enclosed by the outer sides of the plurality of high electrodes and the outer sides of the plurality of low electrodes are equal to or smaller than the length and width of the groove segment.
  • the length and width of the slot segment are respectively integer multiples of the length and width of the rectangle enclosed by the outer sides of the plurality of high electrodes and the outer sides of the plurality of low electrodes.
  • the rectangular drill bit further comprises a central high electrode arranged on the insulating base, a plurality of high electrodes and a plurality of low electrodes are arranged around the central high electrode, and the central high electrode has a central jet hole and a side jet hole for the liquid to pass through.
  • the jet holes penetrate through the upper and lower surfaces of the central high electrode and communicate with the liquid channel, and the side jet holes are arranged on the side surface of the central high electrode and communicate with the central jet hole.
  • slag cleaning is performed by water or mud or gas while the rock formation is broken up with plasma generated by a rectangular drill bit.
  • the following steps are further included: using the plasma generated by the rectangular drill bit to crush the soil layer, Wall protection and slag removal are carried out through mud; or, the soil layer is excavated with a hydraulic grab, and wall protection and slag removal are carried out through mud.
  • the method before the step of crushing the rock formation with the plasma generated by the rectangular drill bit, the method further includes the following step: making a mud pool at a position with a preset distance from the groove-forming position.
  • the following step is further included: preparing mud by using bentonite, water and soda ash.
  • the following step is further included: measuring and setting out according to the grooved position to determine the center point of the grooved position and determine the position of the guide wall.
  • the technical solution of the present application has the following advantages: plasma is generated by a rectangular drill bit and a plasma channel is formed, and the plasma channel is formed with high temperature and high pressure. Under the action of high temperature, the pressure in the plasma channel rises sharply, causing the plasma channel to expand. And penetrate the rock, breaking the surrounding rock. Plasma is used to crush various rock formations, with good rock breaking effect, no need to replace construction equipment, high construction efficiency and low construction cost.
  • Fig. 1 shows the schematic flow chart of the trough-forming construction method provided by the present application
  • Fig. 2 shows the three-dimensional schematic diagram of the rectangular drill bit provided by the present application
  • Figure 3 shows a schematic front view of the rectangular drill bit of Figure 2;
  • Figure 4 shows a schematic side view of the rectangular drill bit of Figure 2;
  • Fig. 5 shows the perspective view of the high electrode, the center high electrode and the first connection seat of the rectangular drill bit of Fig. 2;
  • FIG. 6 shows a schematic top view of the high electrode, the center high electrode and the first connection seat of FIG. 5;
  • FIG. 7 shows a schematic side view of the high electrode, the central high electrode and the first connection seat of FIG. 5;
  • FIG. 8 shows a schematic bottom view of the high electrode, the central high electrode and the first connection seat of FIG. 5;
  • Fig. 9 shows the perspective view of the low electrode and the second connection seat of the rectangular drill bit of Fig. 2;
  • FIG. 10 shows a schematic top view of the low electrode and the second connection seat of FIG. 9;
  • FIG. 11 shows a schematic side view of the low electrode and the second connection base of FIG. 9 .
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the trough-forming construction method of the present embodiment comprises the following steps:
  • the guide wall is constructed to form a guide wall groove.
  • the construction of the guide wall is referred to as the guide wall construction.
  • the guide wall plays the role of guiding the groove, storing the mud to stabilize the liquid level, maintaining the stability of the upper soil body, and preventing the soil body from slumping, which is directly related to the smooth Grooving and Grooving Accuracy.
  • the formation is broken up by plasma generated by a rectangular drill bit to form the groove segments.
  • the bottom and side walls of the groove section are cleaned, referred to as wall brushing and bottom cleaning.
  • the side wall of the groove section is cleaned by the wall brushing device, the wall brushing device can adopt the structure in the prior art, and the bottom cleaning method can be adopted in the prior art, which will not be described in detail here.
  • a rectangular drill is used to generate plasma and form a plasma channel.
  • the formation of the plasma channel is accompanied by high temperature and high pressure. Under the action of high temperature, the pressure in the plasma channel rises sharply, making the plasma channel Swells and penetrates the rock, shattering the surrounding rock. Plasma is used to crush various rock formations, with good rock breaking effect, no need to replace construction equipment, high construction efficiency and low construction cost.
  • the construction sequence of the guide wall is digging grooves - pouring the cushion layer - binding the steel bar - supporting the formwork - pouring the concrete - removing the formwork and setting the support - backfilling.
  • the soil body on the side wall of the guide wall ditch is the outer soil form when the guide wall is poured into concrete. It is necessary to prevent the width of the guide wall ditch from being over-excavated or the soil wall from collapsing.
  • the guide wall is the guide in the initial stage of the trough forming operation.
  • the rectangular drill bit includes an insulating seat 10 , a plurality of high electrodes 20 and a plurality of low electrodes 30 , and the plurality of high electrodes 20 are arranged on the insulating seat 10 at intervals, and the insulating seat 10 There is a liquid channel for the liquid to pass through, a low electrode 30 is arranged between two adjacent high electrodes 20 , and the outer sides of the plurality of high electrodes 20 and the outer sides of the plurality of low electrodes 30 form a rectangle.
  • the liquid is passed into the liquid channel on the insulating base 10, so that the liquid fills the gap between the high electrode 20 and the low electrode 30, and high voltage and low voltage are respectively applied to the high electrode 20 and the low electrode 30.
  • Voltage the plasma channel is formed under the action of the voltage.
  • the formation of the plasma channel is accompanied by high temperature and high pressure. Under the action of high temperature, the pressure in the plasma channel rises sharply, causing the plasma channel to expand and break down the rock, making the surrounding rocks The crushing and rock breaking effect is good, the construction efficiency is high, and the construction cost is reduced.
  • the outer sides of the plurality of high electrodes 20 and the outer sides of the plurality of low electrodes 30 form a rectangle, and the rectangular pile foundation can be constructed.
  • the continuous wall body includes a plurality of groove sections, and the continuous wall groove can be formed by repeated construction with a small-sized drill bit, or the entire wall body groove can be formed directly by a large drill bit at one time.
  • the length and width of the rectangle enclosed by the outer sides of the plurality of high electrodes 20 and the outer sides of the plurality of low electrodes 30 are smaller than the length and width of the groove segment. According to the size of the groove, you can choose a rectangular drill with a suitable proportion, and you can choose a rectangular drill that is the same as or smaller than the size of the groove.
  • the length and width of the rectangle are 9 meters and the width is 6 meters, and the construction of the groove is completed in one pass.
  • the length and width of the slot segment are respectively integer multiples of the length and width of the rectangle enclosed by the outer sides of the plurality of high electrodes 20 and the outer sides of the plurality of low electrodes 30 . Wherein, the integer is 1, 2 or 3, etc.
  • the rectangular drill bit further includes a central high electrode 60 disposed on the insulating base 10 , a plurality of high electrodes 20 and a plurality of low electrodes 30 are arranged around the central high electrode 60 , and the central high electrode 60 has a center for the liquid to pass through. Jet holes 61 and side jet holes 62.
  • the central jet hole 61 penetrates the upper and lower surfaces of the central high electrode 60 and communicates with the liquid channel.
  • the side jet holes 62 are arranged on the side of the central high electrode 60 and communicate with the central jet hole 61.
  • a high voltage is applied to the central high electrode 60, and a plasma channel is formed under the action of the voltage. The formation of the plasma channel is accompanied by high temperature and high pressure.
  • the pressure in the plasma channel rises sharply, causing the plasma channel to expand and strike. Pierce the surrounding rocks to break the surrounding rocks.
  • the arrangement of the high electrode 20 can form a ring-shaped rock crushing effect, and the central high electrode 60 can also achieve the rock crushing effect at the central position, which further improves the rock crushing effect.
  • the rectangular drill bit further includes a first connecting seat 40 detachably arranged on the insulating seat 10 , and the plurality of high electrodes 20 are fixed on the first connecting seat 40 .
  • a connecting seat 40 is square.
  • the plurality of high electrodes 20 are connected to the first connection seat 40 by a connection method such as welding.
  • the first connection seat 40 may not be provided, and the plurality of high electrodes 20 may be detachably provided on the insulating seat 10 .
  • the rectangular drill bit further includes a second connection seat 50 detachably arranged on the insulating seat 10 , and the plurality of low electrodes 30 are fixed on the second connection seat 50 .
  • the two connecting bases 50 are square.
  • the plurality of low electrodes 30 are connected to the second connection base 50 by a connection method such as welding.
  • the second connection base 50 may not be provided, and the plurality of low electrodes 30 may be detachably provided on the insulating base 10 .
  • first connection base 40 and the second connection base 50 are respectively connected to the insulating base 10 by bolts.
  • first connecting seat 40 and the second connecting seat 50 are respectively provided with through holes for bolts to pass through, and the bolts pass through the through holes and are threadedly connected to the threaded holes on the insulating seat 10 .
  • the rectangle is a square, which can realize the construction of a square pile foundation.
  • the rectangle may be a rectangle.
  • the first connection seat 40 , the second connection seat 50 and the insulating seat 10 are all rectangular.
  • the insulating base 10 is in a square shape, which is convenient for mating with the insulating base 10 .
  • the insulating base 10 includes an upper block and a lower block arranged on the lower surface of the upper block, the size of the lower block is smaller than that of the upper block, the first connecting seat 40 is fixed on the lower block, and the second connecting seat 50 is fixed on the lower part of the upper block. on the surface.
  • “up” and “down” refer to the “up” and “down” of the rectangular drill when it is in use.
  • the insulating seat 10 may also be circular, etc., but is not limited to this.
  • the central high electrode 60 is in the shape of a pyramid with a large upper and a small lower, the edge of the central high electrode 60 is arc-shaped, and the central high electrode 60 forms a funnel-shaped structure, which can facilitate the spraying of liquid.
  • the central jet hole 61 is in the shape of a pyramid with a large upper and a smaller lower, which further improves the spraying effect.
  • the central high electrode 60 may also be in the shape of a truncated cone with a large upper and a lower lower.
  • the side jet hole 62 is provided with one and is triangular.
  • the side jet holes can also be trapezoidal or circular.
  • a high voltage is applied to the high electrode 20 and the central high electrode 60, and a low voltage is applied to the low electrode 30.
  • a plasma channel is formed inside the rock, and the plasma channel is formed with high temperature and high pressure.
  • the pressure in the plasma channel rises sharply, causing the plasma channel to expand and crack the rock.
  • the liquid is an insulating liquid; when the rising edge of the voltage is greater than or equal to 100ns, the liquid is ionized to form a plasma channel, and the plasma channel forms At the same time, accompanied by high temperature and high pressure, under the action of high temperature, the pressure in the plasma channel rises sharply, causing the plasma channel to expand and form a shock wave.
  • the shock wave penetrates the rock, and the liquid is electrolyte at this time.
  • the slag is cleaned by water while the rock formation is broken by the plasma generated by the rectangular drill bit, and the slag can be cleaned only by water, saving raw materials such as bentonite, water and soda ash.
  • the water is input into the liquid channel of the rectangular drill bit through the transfer pump, and is ejected from the bottom of the rectangular drill bit, carrying the drilled gravel, etc. to flow upward along the groove wall and flow into the mixing tank, and then separate the water from the sand and gravel, etc.
  • the water can be reused, thus forming a circular loop.
  • Separation equipment in the prior art is used to separate water from gravel and the like, and the separated gravel and other sediments are transported to the desired construction site by a transport vehicle, which is referred to as outbound transport of sediments.
  • a transport vehicle which is referred to as outbound transport of sediments.
  • Make a clear water pool at a preset distance from the trough position and the clear water pool is used to store water.
  • the slag is cleaned by mud.
  • the mud is input into the liquid channel of the rectangular drill bit through the transfer pump, and is ejected from the bottom of the rectangular drill bit, carrying the drilled gravel and the like to flow upward along the groove wall and flow into the mixing Then, the mud is separated from the sand and gravel, and the separated mud can be reused to form a circulation loop.
  • the mud or water flows into the groove section through the drill pipe and the groove wall, and the high-pressure gas is ejected from the high-pressure gas pipe and mixed with the mud or water, forming a gas-liquid mixing section inside the drill pipe.
  • a negative pressure is formed below it, which is continuously supplemented by the mud or water in the lower part of the section, and the sediment at the bottom of the tank enters the drill pipe driven by the movement of the mud or water, and is discharged out of the tank with the mud or water into the mixing tank, and then
  • the mud or water is separated from the gravel, etc., and the separated mud or water can be reused.
  • the rock is broken by plasma, the broken particles are very small, and the slag can be cleaned by the gas lift reverse circulation method.
  • the following step is further included: using the plasma generated by the rectangular drill bit to degrade the soil layer Broken, and walled and slag cleaned through mud.
  • the function of the mud is to form an impermeable mud skin on the groove wall, so that the hydrostatic pressure of the mud can effectively act on the groove wall, prevent the seepage of groundwater and the peeling of the groove wall, and maintain the stability of the wall surface.
  • the mud also has suspended soil. slag and the function of carrying the slag out of the ground.
  • hydraulic grapples are used to excavate the soil layer, and mud is used for wall protection and slag removal.
  • the following step is further included: making a mud pool at a position with a preset distance from the groove-forming position.
  • the mud pool is used to store mud.
  • the mud is circulated by a mud pump for transportation and recovery.
  • the mud circulation pipeline is composed of a mud pump and a pipeline.
  • the mud should be separated and purified to improve the reuse rate of the mud as much as possible.
  • the circulating mud is separated and purified , Although a lot of soil slag mixed in it was removed, it did not restore its original wall protection performance, because during the use of the mud, it had to contact with the foundation soil and groundwater, and form a mud skin on the surface of the groove wall, which would consume The bentonite, soda ash and other components in the mud are polluted by the cement in the concrete, which weakens the wall protection performance. Therefore, after the circulating mud is separated and purified, its performance indicators need to be adjusted to restore its original wall protection performance. This is mud During the construction, the performance indicators of the mud should be tested frequently and if it is found that it does not meet the requirements of the indicators, it should be adjusted in time to ensure the safety of the construction.
  • the following step is further included: preparing mud by using bentonite, water and soda ash. Put bentonite, water and soda ash into the mixer for stirring, and after stirring, form mud, and store the prepared mud in the mud pool.
  • the following steps are further included between the step of determining the position of the groove and the step of constructing the guide wall: measuring and setting out the line according to the position of the groove, so as to determine the center point of the position of the groove and determine the position of the guide wall, Then, the construction of the guide wall is carried out according to the position of the payout; it is convenient for the excavation of the guide wall and the excavation of the groove, so as to ensure the accuracy of the groove in the later stage.
  • the groove length and groove width select the appropriate proportion of rectangular drill bit, use the plasma pile driver to directly discharge the hard rock according to the position of the groove, and use water, mud or gas to discharge the slag at the same time of crushing;
  • the side wall and bottom of the groove section are mechanically brushed and cleaned respectively.
  • Reinforcement cages are hoisted and concrete poured into grooves.
  • the above-mentioned construction method has low equipment failure rate, simple and effective construction method, can adapt to rock formations with different groove diameters and different hardness, and is superior to the traditional rotary drilling rig and double-wheel groove milling machine in terms of work efficiency, work cost and application range. and other equipment to construct the pile foundation construction method; control the current through the plasma equipment, and then control the electrode to control the size of the broken rock mass, clear the slag into a groove, and greatly shorten the groove formation time.
  • the plasma pulse is used to break the rock to form a groove, and there is no need for rotary digging holes, etc., which can improve the verticality of the groove and meet the requirements of high precision.
  • the requirements of the mud pump are also reduced, and even the mud pipe can be reduced to increase the lift.
  • the high electrode, the central high electrode and the low electrode are reasonably arranged, the discharge part is fully covered, and the crushing efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Earth Drilling (AREA)

Abstract

一种成槽施工方法,其包括以下步骤:确定成槽位置;构筑导墙,以形成导墙槽;将矩形钻头置入导墙槽的底部;利用矩形钻头产生的等离子体对岩层进行破碎,以形成槽段;对槽段的底部和侧壁进行清理;吊装钢筋笼并灌注混凝土。该施工方法通过矩形钻头产生等离子体并形成等离子通道,等离子通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并击穿岩石,使得周围的岩石破碎。采用等离子体对各种岩层进行破碎,破岩效果好,不需要更换施工设备,施工效率高,降低了施工成本。

Description

成槽施工方法
相关申请的交叉引用
本申请要求在2021年4月30日提交中国专利局、申请号为202110488116.4、发明名称为“成槽施工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑施工技术领域,具体涉及一种成槽施工方法。
背景技术
目前,在桩工连续墙领域中,常见施工设备为双轮铣、抓斗、旋挖钻机、三轴搅拌、挖机等,其成槽直径一般在0.8~1.5m之间。在成槽方式上,针对不同地层不同深度不同槽径,采用不同设备进行施工。根据不同硬度岩层地层及工程的影响,采用不同机械设备或者更换不同钻头,例如,针对近地表土层,通常采用液压式抓斗设备施工成槽;进入强风化岩层或者强度较低的微风化岩层后,需要更换为双轮铣装备,实现入岩钻进;而当地层为硬岩时,需要采用冲击钻或旋挖钻机先行施工,形成引孔,然后采用双轮铣***,继续入岩钻进,方可完工。
由于传统工法,不同的施工设备均存在其明显针对的地质性质,成孔或成槽施工过程中需要更换机械设备,施工方法繁琐、成本高、施工效率低。
发明内容
本申请的主要目的在于提供一种成槽施工方法,以解决现有技术中因地质结构变化而更换施工设备导致的高成本、低效率的问题。
为实现上述目的,本申请提供了一种成槽施工方法,包括以下步骤:确定成槽位置;构筑导墙,以形成导墙槽;将矩形钻头置入导墙槽的底部;利用矩形钻头产生的等离子体对岩层进行破碎,以形成槽段;对槽段的底部和侧壁进行清理;吊装钢筋笼并灌注混凝土。
可选地,矩形钻头包括绝缘座、多个高电极及多个低电极,多个高电极间隔设置在绝缘座上,绝缘座上设有供液体通过的液体通道,相邻的两个高电极之间设置一个低电极,多个高电极的外侧和多个低电极的外侧围成矩形。
可选地,多个高电极的外侧和多个低电极的外侧围成的矩形的长度和宽度等于或小于槽段的长度和宽度。
可选地,槽段的长度和宽度分别是多个高电极的外侧和多个低电极的外侧围成的矩形的长度和宽度的整数倍。
可选地,矩形钻头还包括设置在绝缘座上的中心高电极,多个高电极及多个低电极围绕中心高电极设置,中心高电极具有供液体通过的中心射流孔和侧射流孔,中心射流孔贯穿中心高电极的上下表面并与液体通道连通,侧射流孔设置在中心高电极的侧面上且与中心射流孔连通。
可选地,在利用矩形钻头产生的等离子体对岩层进行破碎的同时通过水或泥浆或气体进行清渣。
可选地,在将矩形钻头置入导墙槽的底部的步骤和利用矩形钻头产生的等离子体对岩层进行破碎的步骤之间还包括以下步骤:利用矩形钻头产生的等离子体对土层破碎,并通过泥浆进行护壁和清渣;或者,利用液压抓斗对土层进行挖掘,并通过泥浆进行护壁和清渣。
可选地,在利用矩形钻头产生的等离子体对岩层进行破碎的步骤之前还包括以下步骤:在距离成槽位置预设距离的位置处制作泥浆池。
可选地,在利用矩形钻头产生的等离子体对岩层进行破碎的步骤之前还包括以下步骤:通过膨润土、水以及纯碱制备泥浆。
可选地,在确定成槽位置的步骤和构筑导墙的步骤之间还包括以下步骤:根据成槽位置进行测量放线,以确定成槽位置的中心点和确定导墙的位置。
本申请技术方案,具有如下优点:通过矩形钻头产生等离子体并形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并击穿岩石,使得周围的岩石破碎。采用等离子体对各种岩层进行破碎,破岩效果好,不需要更换施工设备,施工效率高,降低施工成本。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请提供的成槽施工方法的流程示意图;
图2示出了本申请提供的矩形钻头的立体示意图;
图3示出了图2的矩形钻头的主视示意图;
图4示出了图2的矩形钻头的侧视示意图;
图5示出了图2的矩形钻头的高电极、中心高电极及第一连接座的立体示意图;
图6示出了图5的高电极、中心高电极及第一连接座的俯视示意图;
图7示出了图5的高电极、中心高电极及第一连接座的侧视示意图;
图8示出了图5的高电极、中心高电极及第一连接座的仰视示意图;
图9示出了图2的矩形钻头的低电极及第二连接座的立体示意图;
图10示出了图9的低电极及第二连接座的俯视示意图;
图11示出了图9的低电极及第二连接座的侧视示意图。
附图标记说明:
10、绝缘座;20、高电极;30、低电极;40、第一连接座;50、第二连接座;60、中心高电极;61、中心射流孔;62、侧射流孔。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普 通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1所示,本实施例的成槽施工方法包括以下步骤:
确定成槽位置;
构筑导墙,以形成导墙槽,构筑导墙简称导墙施工,导墙起着成槽导向、存储泥浆稳定液位、维护上部土体稳定、防止土体坍落等作用,直接关系着顺利成槽和成槽的精度。
将矩形钻头置入导墙槽的底部;
利用矩形钻头产生的等离子体对岩层进行破碎,以形成槽段。
对槽段的底部和侧壁进行清理,简称刷壁和清底。通过刷壁器对槽段的侧壁进行刷壁清洗,刷壁器采用现有技术中的结构即可,清底采用现有技术中的方法即可,在此不再详细赘述。
吊装钢筋笼并灌注混凝土。吊装钢筋笼之前需要制作钢筋笼,将制作好的钢筋笼通过吊车吊装。混凝土浇筑是成槽质量保障的最关键环节,施工时必须严格控制混凝土的配比度以及各种材料的指标性能,保障混凝土的塌落度、流动性、和易性及扩散度,防止离析现象发生,严格控制导管浇筑水下混凝土的施工程序及施工质量,保障成槽的强度性能。吊装钢筋笼并灌注混凝土的具体方法均采用现有技术中的方法即可,在此不再详细赘述。
应用本实施例的成槽施工方法,通过矩形钻头产生等离子体并形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并击穿岩石,使得周围的岩石破碎。 采用等离子体对各种岩层进行破碎,破岩效果好,不需要更换施工设备,施工效率高,降低施工成本。
在本实施例中,导墙施工的顺序为挖槽-浇筑垫层-绑扎钢筋-支模板-浇灌混凝土-拆模板并设置支撑-回填土,在导墙施工全过程中,要保持导墙沟内不积水,导墙沟侧壁土体是导墙浇捣混凝土时的外侧土模,应防止导墙沟宽度超挖或土壁坍塌,导墙施工时基底应和土面密贴,以防槽内泥浆渗入导墙后面,导墙是成槽作业在起始阶段的导向物,必须保证导墙的内净宽度尺寸与内壁面的垂直精度达到有关规范的要求。导墙制作好后自然养护到预设强度以上时,方可进行成槽作业,在此之前禁止车辆和起重机等重型机械靠近导墙。导墙施工的施工方法采用现有技术中的方法即可,在此不再详细赘述。
在本实施例中,如图2至图4所示,矩形钻头包括绝缘座10、多个高电极20及多个低电极30,多个高电极20间隔设置在绝缘座10上,绝缘座10上设有供液体通过的液体通道,相邻的两个高电极20之间设置一个低电极30,多个高电极20的外侧和多个低电极30的外侧围成矩形。矩形钻头钻岩层时,向绝缘座10上的液体通道内通入液体,使得液体充满高电极20和低电极30之间的间隙处,在高电极20和低电极30上分别施加高电压和低电压,在电压的作用下形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并击穿岩石,使得周围的岩石破碎,破岩效果好,施工效率高,降低施工成本。多个高电极20的外侧和多个低电极30的外侧围成矩形,可以对矩形桩基础进行施工。
在本实施例中,连续墙体包括多个槽段,既可以使用小尺寸钻头重复多次施工形成连续墙槽,也可以大钻头直接一次施工形成整个墙体槽。具体而言,多个高电极20的外侧和多个低电极30的外侧围成的矩形的长度和宽度小于槽段的长度和宽度。根据槽的尺寸可以选择合适比例的矩形钻头,可以选择与槽的尺寸相同或小于槽的尺寸的矩形钻头,例如,当槽段的长度为9米,宽度为 6米时,矩形的长度和宽度均为3米,通过六次完成槽段的施工,或者,矩形的长度为9米,宽度为6米,通过一次就完成槽段的施工。可选地,槽段的长度和宽度分别是多个高电极20的外侧和多个低电极30的外侧围成的矩形的长度和宽度的整数倍。其中,整数为1、2或3等。
在本实施例中,矩形钻头还包括设置在绝缘座10上的中心高电极60,多个高电极20及多个低电极30围绕中心高电极60设置,中心高电极60具有供液体通过的中心射流孔61和侧射流孔62,中心射流孔61贯穿中心高电极60的上下表面并与液体通道连通,侧射流孔62设置在中心高电极60的侧面上且与中心射流孔61连通。中心高电极60上施加高电压,在电压的作用下形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并击穿周围的岩石,使周围的岩石破碎。高电极20的设置可以形成环形碎岩效果,中心高电极60的设置可以在中心位置处也可以实现碎岩效果,进一步提高碎岩效果。
在本实施例中,如图5至图8所示,矩形钻头还包括可拆卸地设置在绝缘座10上的第一连接座40,多个高电极20固定在第一连接座40上,第一连接座40呈正方形。维修或更换高电极20时,只需要将第一连接座40从绝缘座10上拆卸下来即可,然后对高电极20进行维修或更换,不需要拆卸绝缘座10,方便维修。多个高电极20与第一连接座40采用焊接等连接方式连接。当然,也可以不设置第一连接座40,多个高电极20可拆卸地设置绝缘座10上。
在本实施例中,如图9至图11所示,矩形钻头还包括可拆卸地设置在绝缘座10上的第二连接座50,多个低电极30固定在第二连接座50上,第二连接座50呈正方形。维修或更换低电极30时,只需要将第二连接座50从绝缘座10上拆卸下来即可,然后对低电极30进行维修或更换,不需要拆卸绝缘座10,方便维修。多个低电极30与第二连接座50采用焊接等连接方式连接。当然,也可以不设置第二连接座50,多个低电极30可拆卸地设置绝缘座10上。
可选地,第一连接座40和第二连接座50分别通过螺栓与绝缘座10连接。具体地,第一连接座40和第二连接座50上分别设有供螺栓穿设的通孔,螺栓穿过通孔与绝缘座10上的螺纹孔螺纹连接。
在本实施例中,矩形为正方形,可以实现方形桩基础的施工。作为可替换的实施方式,矩形可以为长方形,此时第一连接座40、第二连接座50以及绝缘座10均呈长方形。
在本实施例中,如图2至图8所示,绝缘座10呈正方形,便于与绝缘座10配合。绝缘座10包括上方块和设置在上方块的下表面上的下方块,下方块的尺寸小于上方块的尺寸,第一连接座40固定在下方块上,第二连接座50固定在上方块的下表面上。其中,“上”、“下”是指矩形钻头在使用时的“上”、“下”。当然,绝缘座10也可以呈圆形等,并不局限于此。
在本实施例中,中心高电极60呈上大下小的棱台状,中心高电极60的棱边呈弧形,中心高电极60形成漏斗状结构,可以便于喷洒液体。可选地,中心射流孔61呈上大下小的棱台状,进一步提高喷洒效果。当然,中心高电极60也可以呈上大下小的圆台状。
在本实施例中,侧射流孔62设有一个且呈三角形。当然,侧射流孔也可以呈梯形或圆形等。
下面对矩形钻头的工作原理进行说明:
高电极20和中心高电极60上施加高电压,低电极30施加低电压,当电压的上升沿小于100ns时,在岩石的内部形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨胀并挤裂岩石,此时液体为绝缘液;当电压的上升沿大于等于100ns时,液体发生电离形成等离子通道,等离子体通道形成的同时伴随着高温高压,在高温的作用下,等离子通道内的压力急剧升高,使得等离子通道膨 胀并形成冲击波,冲击波击穿岩石,此时液体为电解液。
在本实施例中,在利用矩形钻头产生的等离子体对岩层进行破碎的同时通过水进行清渣,仅通过水就可以清渣,节约膨润土、水以及纯碱等原料。水通过输送泵输入矩形钻头的液体通道中,并从矩形钻头的底部喷出,携带钻下的砂砾等沿槽壁向上流动并流入混合池中,然后将水从砂砾等中分离出来,分离处理的水可以重复利用,由此形成一个循环回路。采用现有技术中的分离设备将水从砂砾等中分离出来,分离出来的砂砾等沉渣通过运输车运输至所要的施工地,简称沉渣外运。在距离成槽位置预设距离的位置处制作清水池,清水池用于储存水。作为可替换的实施方式,通过泥浆进行清渣,此时泥浆通过输送泵输入矩形钻头的液体通道中,并从矩形钻头的底部喷出,携带钻下的砂砾等沿槽壁向上流动并流入混合池中,然后将泥浆从砂砾等中分离出来,分离处理的泥浆可以重复利用,由此形成一个循环回路,或者,通过气体进行清渣,通过空气压缩机将高压气体输入高压气管中,高压气管与钻杆连接,泥浆或水通过钻杆和槽壁之间流入槽段中,高压气体从高压气管喷出后与泥浆或水混合,在钻杆的内部形成一个气液混合段,由于密度较低,在其下方形成负压,由该段下部的泥浆或水不断补充,槽底沉渣在泥浆或水运动的带动下进入钻杆,随泥浆或水排出槽外并排入混合池中,然后将泥浆或水从砂砾等中分离出来,分离处理的泥浆或水可以重复利用,利用等离子体破碎岩石时破碎颗粒很小,可以利用气举反循环方式进行清渣。
在本实施例中,在将矩形钻头置入导墙槽的底部的步骤和利用矩形钻头产生的等离子体对岩层进行破碎的步骤之间还包括以下步骤:利用矩形钻头产生的等离子体对土层破碎,并通过泥浆进行护壁和清渣。泥浆的作用是在槽壁上形成不透水的泥皮,从而使泥浆的静水压力有效地作用在槽壁上,防止地下水的渗水和槽壁的剥落,保持壁面的稳定,同时泥浆还有悬浮土渣和将土渣携带出地面的功能。作为可替换的实施方式,利用液压抓斗对土层进行挖掘,并通 过泥浆进行护壁和清渣。
在本实施例中,在利用矩形钻头产生的等离子体对岩层进行破碎的步骤之前还包括以下步骤:在距离成槽位置预设距离的位置处制作泥浆池。泥浆池用于储存泥浆,泥浆循环采用泥浆泵输送、回收,由泥浆泵和管路组成泥浆循环管路,在施工过程中,由于泥浆要与地下水、泥土、砂石、混凝土接触,其中难免会混入细微的泥沙颗粒、水泥成分等,必然会使泥浆受到污染而变质,因此,泥浆使用一个循环之后,要对泥浆进行分离净化,尽可能提高泥浆的重复使用率,循环泥浆经过分离净化之后,虽然清除了许多混入其间的土渣,但并未恢复其原有的护壁性能,因为泥浆在使用过程中,要与地基土、地下水接触,并在槽壁表面形成泥皮,这就会消耗泥浆中的膨润土、纯碱等成分,并受混凝土中水泥成分的污染而削弱了护壁性能,因此,循环泥浆经过分离净化之后,还需调整其性能指标,恢复其原有的护壁性能,这就是泥浆的再生处理,施工中要经常测试泥浆的性能指标发现不符合指标要求时要及时调整处理,以保证施工安全。
在本实施例中,在利用矩形钻头产生的等离子体对岩层进行破碎的步骤之前还包括以下步骤:通过膨润土、水以及纯碱制备泥浆。将膨润土、水以及纯碱等放入搅拌器中进行搅拌,搅拌后形成泥浆,将制备好的泥浆储存在泥浆池中。
在本实施例中,在确定成槽位置的步骤和构筑导墙的步骤之间还包括以下步骤:根据成槽位置进行测量放线,以确定成槽位置的中心点和确定导墙的位置,然后根据放线位置进行导墙的施工;便于导墙的开挖和槽的开挖,进而保证后期成槽精度。
下面对成槽的施工步骤进行说明:
根据成槽位置进行测量放线;
根据放线位置进行导墙施工;
按照地层进行泥浆制备,将制备好的泥浆储存在泥浆池中;
根据槽长和槽宽选择合适比例的矩形钻头,根据成槽位置采用等离子体桩机直接放电破碎硬岩,在破碎的同时,利用水、泥浆或气体进行排渣;
对槽段的侧壁和底部分别进行机械刷壁和清底。
钢筋笼吊装并进行混凝土灌注成槽。
上述的施工方法设备故障率低、工法简单有效,可适应不同槽径、不同硬度的岩石地层,在工作效率、工作成本以及应用范围方面均优于传统的采用旋挖钻机、双轮铣槽机等设备施工桩基础的施工方法;通过等离子体设备控制电流,进而控制电极来控制破碎岩体的大小,清渣成槽,大大缩短成槽时间。
从以上的描述中,可以看出,本申请的上述的实施例实现了如下技术效果:
1、通过高电极和低电极交叉布置,实现地下连续墙、方桩等多种方形桩基础施工,即采用脉冲放电的方式直接对岩石破碎成槽,尤其适用在岩层施工,省略了各种不同规格的钻具及与之能力匹配的动力设备,相比传统的旋挖钻机、双轮铣槽机等设备施工桩基础,施工方法简单,钻进效率大幅度提高,施工效率提高,施工成本大幅度降低,且结构简单,制造成本与维护成本低,可适应不同岩层的破碎,配合不同型号的矩形钻头还可以进行不同孔径的连续墙施工。
2、根据槽径大小不同利用等离子脉冲破岩成槽,不需要旋挖引孔等,可以提高成槽的垂直度,满足高精度要求的工地;通过等离子体设备控制电极,进而控制破碎岩体大小来满足排渣颗粒大小,泥浆泵的要求也降低,甚至泥浆管可以减少以增大扬程。
3、高电极、中心高电极及低电极合理配置,放电部位全覆盖,破碎效率高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (10)

  1. 一种成槽施工方法,其特征在于,包括以下步骤:
    确定成槽位置;
    构筑导墙,以形成导墙槽;
    将矩形钻头置入所述导墙槽的底部;
    利用所述矩形钻头产生的等离子体对岩层进行破碎,以形成槽段;
    对所述槽段的底部和侧壁进行清理;
    吊装钢筋笼并灌注混凝土。
  2. 根据权利要求1所述的成槽施工方法,其特征在于,所述矩形钻头包括绝缘座(10)、多个高电极(20)及多个低电极(30),多个所述高电极(20)间隔设置在所述绝缘座(10)上,所述绝缘座(10)上设有供液体通过的液体通道,相邻的两个所述高电极(20)之间设置一个所述低电极(30),多个所述高电极(20)的外侧和多个所述低电极(30)的外侧围成矩形。
  3. 根据权利要求2所述的成槽施工方法,其特征在于,多个所述高电极(20)的外侧和多个所述低电极(30)的外侧围成的矩形的长度和宽度等于或小于所述槽段的长度和宽度。
  4. 根据权利要求3所述的成槽施工方法,其特征在于,所述槽段的长度和宽度分别是多个所述高电极(20)的外侧和多个所述低电极(30)的外侧围成的矩形的长度和宽度的整数倍。
  5. 根据权利要求2所述的成槽施工方法,其特征在于,所述矩形钻头还包括设置在所述绝缘座(10)上的中心高电极(60),多个所述高电极(20)及多 个所述低电极(30)围绕所述中心高电极(60)设置,所述中心高电极(60)具有供液体通过的中心射流孔(61)和侧射流孔(62),所述中心射流孔(61)贯穿所述中心高电极(60)的上下表面并与所述液体通道连通,所述侧射流孔(62)设置在所述中心高电极(60)的侧面上且与所述中心射流孔(61)连通。
  6. 根据权利要求1所述的成槽施工方法,其特征在于,在利用所述矩形钻头产生的等离子体对岩层进行破碎的同时通过水或泥浆或气体进行清渣。
  7. 根据权利要求1所述的成槽施工方法,其特征在于,在将矩形钻头置入所述导墙槽的底部的步骤和利用所述矩形钻头产生的等离子体对岩层进行破碎的步骤之间还包括以下步骤:
    利用所述矩形钻头产生的等离子体对土层破碎,并通过泥浆进行护壁和清渣;
    或者,
    利用液压抓斗对土层进行挖掘,并通过泥浆进行护壁和清渣。
  8. 根据权利要求7所述的成槽施工方法,其特征在于,在利用所述矩形钻头产生的等离子体对岩层进行破碎的步骤之前还包括以下步骤:
    在距离成槽位置预设距离的位置处制作泥浆池。
  9. 根据权利要求7所述的成槽施工方法,其特征在于,在利用所述矩形钻头产生的等离子体对岩层进行破碎的步骤之前的步骤中还包括以下步骤:
    通过膨润土、水以及纯碱制备泥浆。
  10. 根据权利要求1所述的成槽施工方法,其特征在于,在确定成槽位置的步骤和构筑导墙的步骤之间还包括以下步骤:
    根据成槽位置进行测量放线,以确定成槽位置的中心点和确定导墙的位置。
PCT/CN2022/072674 2021-04-30 2022-01-19 成槽施工方法 WO2022227725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110488116.4A CN113123388A (zh) 2021-04-30 2021-04-30 成槽施工方法
CN202110488116.4 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227725A1 true WO2022227725A1 (zh) 2022-11-03

Family

ID=76781221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072674 WO2022227725A1 (zh) 2021-04-30 2022-01-19 成槽施工方法

Country Status (2)

Country Link
CN (1) CN113123388A (zh)
WO (1) WO2022227725A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123388A (zh) * 2021-04-30 2021-07-16 北京三一智造科技有限公司 成槽施工方法
CN114217662B (zh) * 2021-11-23 2022-09-20 华中科技大学 一种高电压脉冲碎岩技术的匹配电压波头确定方法及***
CN114352191B (zh) * 2022-01-11 2023-11-21 北京三一智造科技有限公司 一种地层弱化预处理方法及成孔方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120712A (zh) * 2013-04-28 2014-10-29 杨哲 一种地下连续墙的施工方法
CN104563882A (zh) * 2013-10-27 2015-04-29 中国石油化工集团公司 等离子钻井钻头
CN105178288A (zh) * 2015-07-31 2015-12-23 中铁隧道集团有限公司 高架桥下地下连续墙施工方法
JP2018053573A (ja) * 2016-09-29 2018-04-05 国立研究開発法人海洋研究開発機構 地盤掘削装置
CN109537574A (zh) * 2018-11-23 2019-03-29 福建建中建设科技股份有限公司 一种极硬岩中地下连续墙的施工工艺
CN111364444A (zh) * 2020-03-19 2020-07-03 中铁六局集团有限公司 浅埋岩层段地连墙成槽施工方法
US20200224498A1 (en) * 2019-01-11 2020-07-16 China University Of Petroleum (East China) Multi-path combined high-low voltage plasma drilling method, drill bit for drilling and drill bit apparatus for drilling
CN111519679A (zh) * 2020-05-21 2020-08-11 中铁二十二局集团轨道工程有限公司 一种地连墙入微风化岩快速成槽施工方法
CN112227955A (zh) * 2020-11-04 2021-01-15 北京三一智造科技有限公司 脉冲破岩钻头及脉冲破岩钻机
CN113123388A (zh) * 2021-04-30 2021-07-16 北京三一智造科技有限公司 成槽施工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204492660U (zh) * 2015-01-27 2015-07-22 中国建筑土木建设有限公司 一种地连墙施工矩形冲击钻钻头
CN104695866A (zh) * 2015-04-02 2015-06-10 江汉石油钻头股份有限公司 一种多射流有体式三牙轮钻头
CN206942668U (zh) * 2017-07-06 2018-01-30 中铁八局集团昆明铁路建设有限公司 一种地连墙施工斜岩槽段矩形冲击钻钻头
CN207568495U (zh) * 2017-12-05 2018-07-03 中国建筑股份有限公司 用于地连墙成槽施工的矩形冲击钻头
US10577767B2 (en) * 2018-02-20 2020-03-03 Petram Technologies, Inc. In-situ piling and anchor shaping using plasma blasting

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120712A (zh) * 2013-04-28 2014-10-29 杨哲 一种地下连续墙的施工方法
CN104563882A (zh) * 2013-10-27 2015-04-29 中国石油化工集团公司 等离子钻井钻头
CN105178288A (zh) * 2015-07-31 2015-12-23 中铁隧道集团有限公司 高架桥下地下连续墙施工方法
JP2018053573A (ja) * 2016-09-29 2018-04-05 国立研究開発法人海洋研究開発機構 地盤掘削装置
CN109537574A (zh) * 2018-11-23 2019-03-29 福建建中建设科技股份有限公司 一种极硬岩中地下连续墙的施工工艺
US20200224498A1 (en) * 2019-01-11 2020-07-16 China University Of Petroleum (East China) Multi-path combined high-low voltage plasma drilling method, drill bit for drilling and drill bit apparatus for drilling
CN111364444A (zh) * 2020-03-19 2020-07-03 中铁六局集团有限公司 浅埋岩层段地连墙成槽施工方法
CN111519679A (zh) * 2020-05-21 2020-08-11 中铁二十二局集团轨道工程有限公司 一种地连墙入微风化岩快速成槽施工方法
CN112227955A (zh) * 2020-11-04 2021-01-15 北京三一智造科技有限公司 脉冲破岩钻头及脉冲破岩钻机
CN113123388A (zh) * 2021-04-30 2021-07-16 北京三一智造科技有限公司 成槽施工方法

Also Published As

Publication number Publication date
CN113123388A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022227725A1 (zh) 成槽施工方法
JP7266228B2 (ja) 超長尺・小口径ボアホールパイル工法
CN104120716A (zh) 一种泥浆护壁钻孔灌注桩施工方法
AU2021106928A4 (en) Construction method for excavation of deep pit with triaxial mixing pile waterstop curtains and rotary bored cast-in-place pile supports
CN106351241B (zh) 紧临既有线大跨度连续梁深水基础施工方法
CN111519679A (zh) 一种地连墙入微风化岩快速成槽施工方法
CN111236216A (zh) 桥梁钻孔桩的施工方法
CN113174961B (zh) 一种基坑边坡支护方法
CN111705786A (zh) 一种复合地层地下连续墙与钻孔灌注桩竖向结合施工的方法
CN114108654A (zh) 一种承压水上船坞侵入基坑区域清障施工方法
CN112609690A (zh) 一种填海地质复杂区域旋挖钻孔灌注桩的施工方法
CN113863273A (zh) 一种邻近运营铁路的钻孔桩的施工方法
CN112144514A (zh) 旋挖钻机遇易塌砂卵石地层成孔成桩的简易方法
CN111764417A (zh) 河岸围堰结构拆除施工方法
CN111608459A (zh) 一种地下防空洞区域地下连续墙施工方法
CN111749292A (zh) 一种管线密集区地连墙成槽施工工艺
CN112962579B (zh) 一种临海推填区地下连续墙的施工方法
CN112982381A (zh) 一种抗滑桩的施工方法
CN112575794A (zh) 一种深厚淤泥地质基坑围护结构及其施工方法
CN111576393A (zh) 临近地铁的地下连续墙施工方法
O’Brien et al. Construction of the Plastic Concrete Cut-off Wall at Hinze Dam
CN113585237B (zh) 地连墙接头及地连墙施工方法
CN113373915B (zh) 一种钢立柱桩结构补强的方法
CN117845952A (zh) 复杂条件下基坑桩墙一体化支护施工方法
CN114753352A (zh) 一种富水砂卵石地质群桩成孔施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794207

Country of ref document: EP

Kind code of ref document: A1