WO2022227168A1 - 驱动电路、数据驱动方法以及显示面板 - Google Patents

驱动电路、数据驱动方法以及显示面板 Download PDF

Info

Publication number
WO2022227168A1
WO2022227168A1 PCT/CN2021/096479 CN2021096479W WO2022227168A1 WO 2022227168 A1 WO2022227168 A1 WO 2022227168A1 CN 2021096479 W CN2021096479 W CN 2021096479W WO 2022227168 A1 WO2022227168 A1 WO 2022227168A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
quiescent current
electrical
electrical module
initial
Prior art date
Application number
PCT/CN2021/096479
Other languages
English (en)
French (fr)
Inventor
蓝庆生
Original Assignee
惠州华星光电显示有限公司
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州华星光电显示有限公司, Tcl华星光电技术有限公司 filed Critical 惠州华星光电显示有限公司
Priority to US17/418,889 priority Critical patent/US20240029607A1/en
Publication of WO2022227168A1 publication Critical patent/WO2022227168A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0272Details of drivers for data electrodes, the drivers communicating data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present application relates to the technical field of panel manufacturing, and in particular, to a process method for a flexible conductive wire, a flexible conductive wire and a display device.
  • the present application provides a driving circuit, a data driving method and a display panel, which can reduce the power consumption of the display panel and ensure the display quality of the display panel.
  • the present application provides a driving circuit, including:
  • the initial quiescent current of the electrical module is reduced, and when the input voltage and the output voltage of the electrical module have a difference, maintain or increase After increasing the initial quiescent current of the electrical module for a preset time, the initial quiescent current of the electrical module is reduced.
  • the initial quiescent current of the electrical module is reduced to a first quiescent current, and the first quiescent current is 30% to 100% of the initial quiescent current Eighty percent.
  • the first quiescent current is fifty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module is reduced to a second quiescent current, the The second quiescent current is thirty percent to eighty percent of the initial quiescent current.
  • the second quiescent current is fifty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module is reduced to The first quiescent current
  • the first quiescent current is 30% to 80% of the initial quiescent current
  • the third quiescent current is 110% to 100% of the initial quiescent current one hundred fifty.
  • the preset time is between 0.5 microseconds and 2 microseconds.
  • the electrical sub-module includes a comparator and a control unit, the comparator is used to compare whether there is a difference between the output voltage and the input voltage of the electrical module; when the input voltage and the output voltage of the electrical module are equal, the The control unit is configured to reduce the initial quiescent current of the electrical module after maintaining or increasing the initial quiescent current of the electrical module for a preset time.
  • the driving circuit includes an interface receiving module, a digital shifting module, a data temporary storage module, a data latching module, a level conversion module and a digital/analog conversion module.
  • the output terminal is connected to the input terminal of the data temporary storage module, the output terminal of the data temporary storage module is connected to the input terminal of the data latch module, and the output terminal of the data latch module is connected to the output terminal of the level conversion module.
  • the input is electrically connected, the output terminal of the level conversion module is connected to the input terminal of the digital/analog conversion module, and the output terminal of the digital/analog conversion module is electrically connected to the input terminal of the electronic sub-module.
  • the present application also provides a data-driven method, comprising:
  • the initial quiescent current of the electrical module is decreased.
  • the present application further provides a display panel, including a driving circuit and a pixel, the driving circuit is used to drive the pixel to emit light, and the driving circuit includes:
  • the initial quiescent current of the electrical module is reduced, and when the input voltage and the output voltage of the electrical module have a difference, maintain or increase After increasing the initial quiescent current of the electrical module for a preset time, the initial quiescent current of the electrical module is reduced.
  • the initial quiescent current of the electrical module is reduced to a first quiescent current, and the first quiescent current is 30% of the initial quiescent current to eighty percent.
  • the first quiescent current is fifty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module is reduced to a second quiescent current current, the second quiescent current is 30% to 80% of the initial quiescent current.
  • the second quiescent current is fifty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module is reduced to The first quiescent current
  • the first quiescent current is 30% to 80% of the initial quiescent current
  • the third quiescent current is 110% of the initial quiescent current to one hundred and fifty percent.
  • the preset time is between 0.5 microseconds and 2 microseconds.
  • the preset time is between 1 microsecond and 1.5 microseconds.
  • the electrical sub-module includes a comparator and a control unit, the comparator is used to compare whether there is a difference between the output voltage and the input voltage of the electrical module; when the input voltage and the output voltage of the electrical module are equal, the The control unit is configured to reduce the initial quiescent current of the electrical module after maintaining or increasing the initial quiescent current of the electrical module for a preset time.
  • the driving circuit includes an interface receiving module, a digital shifting module, a data temporary storage module, a data latching module, a level conversion module and a digital/analog conversion module.
  • the output terminal is connected to the input terminal of the data temporary storage module, the output terminal of the data temporary storage module is connected to the input terminal of the data latch module, and the output terminal of the data latch module is connected to the output terminal of the level conversion module.
  • the input is electrically connected, the output terminal of the level conversion module is connected to the input terminal of the digital/analog conversion module, and the output terminal of the digital/analog conversion module is electrically connected to the input terminal of the electronic sub-module.
  • the embodiments of the present application disclose a driving circuit, a data driving method, and a display panel.
  • the driving circuit includes an electrical module and an electrical sub-module.
  • the electrical sub-module is connected to the electrical module, and the electrical sub-module is used to detect whether the input voltage and the output voltage of the electrical module have a difference; wherein, when the input voltage and the output voltage of the electrical module are equal, reduce The initial quiescent current of the electrical module, when there is a difference between the input voltage and the output voltage of the electrical module, after maintaining or increasing the initial quiescent current of the electrical module for a preset time, reduce the initial quiescent current of the electrical module current.
  • the initial quiescent current of the electrical module is reduced, so that the display panel operates in a low power consumption environment
  • the initial quiescent current preset time of the electrical module so that the output driving force of the driving circuit becomes stronger, and the display panel is quickly charged, so that The display panel can not only save power consumption, but also ensure that the panel can be fully charged when charging, so as to ensure the display quality of the display panel.
  • FIG. 1 is a schematic structural diagram of a driving circuit provided by an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a driving circuit provided by an embodiment of the present application.
  • FIG. 3 is a comparison diagram of the power consumption of the drive circuit provided by the embodiment of the present application and the drive circuit in the prior art;
  • FIG. 4 is a schematic flowchart of a data-driven method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • the present application provides a driving circuit, a data driving method and a display panel. Each of them will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • FIG. 1 is a schematic structural diagram of a driving circuit provided by the present application.
  • the driving circuit 100 includes an electrical module 10 and an electrical sub-module 20 .
  • the electrical sub-module 20 is connected to the electrical module 10 .
  • the electrical sub-module 20 is used to detect whether there is a difference between the input voltage VAA and the output voltage VSS of the electrical module 10 . Wherein, when the input voltage VAA and the output voltage VSS of the electrical module 10 are equal, the initial quiescent current of the electrical module 10 is reduced.
  • the initial quiescent current of the electrical module 10 is decreased to reduce the power consumption of the driving circuit 100 .
  • the quiescent current (I_bias) of the internal electrical module of the driving circuit 100 is reduced.
  • the I_bias current directly affects the driving force of the output channel of the driving circuit 100 (the rise and fall time of the output channel). The smaller the I_bias current, the weaker the driving force of the output channel of the driving circuit 100, and the slower the rise and fall times.
  • the method of reducing the I_bias current will cause the output driving force of the driving circuit 100 to become weaker, and the rise time and fall time of the output channel will become slower, and finally the output channel of the driving circuit 100 cannot charge the panel. full.
  • the gray scale voltages required by each gray scale are different.
  • the gray-scale voltage needs to be increased, if the output driving force of the driving circuit 100 is insufficient, the rise time and the fall time of the output channel will be slow, and eventually the output channel of the driving circuit 100 will not be able to fully charge the panel. This will affect the display quality of the display panel.
  • the present application detects whether there is a difference between the input voltage VAA and the output voltage VSS of the electrical module 10 . When the input voltage VAA and the output voltage VSS of the electrical module 10 are equal, it means that the driving circuit 100 can drive the display panel to display at a low voltage, which can save the power consumption of the display panel.
  • the gray-scale voltage needs to be increased.
  • the output driving force of the driving circuit 100 will be insufficient, and the rise time and fall time of the output channel will be slowed down, and finally the output channel of the driving circuit 100 will not be able to fully charge the display panel. . This will affect the display quality of the display panel.
  • the present application reduces the initial quiescent current of the electrical module 10 after maintaining or increasing the initial quiescent current of the electrical module 10 for a preset time.
  • the output driving force of the driving circuit 100 can be increased in the process of increasing the gray-scale voltage, and the display panel can be quickly charged.
  • the display panel can not only save power consumption, but also ensure that the panel can be fully charged when charging, thereby ensuring the display quality of the display panel.
  • the electrical module 10 can amplify the data voltage input into the electrical module 10 .
  • the electronic sub-module 20 may include a comparator and a control unit.
  • the comparator may be used to compare whether the output voltage VSS of the electrical module 10 and the input voltage VAA have a difference.
  • the control unit may control to maintain or increase the initial quiescent current of the electrical module 10 for a preset time, and then decrease the initial quiescent current of the electrical module 10 .
  • the initial quiescent current of the electrical module 10 is reduced to a first quiescent current, and the first quiescent current is 30% to 100% of the initial quiescent current eighty.
  • the initial quiescent current of the electrical module 10 can be reduced to the first quiescent current.
  • the first quiescent current may be 30 percent of the initial quiescent current, 40 percent of the initial quiescent current, 50 percent of the initial quiescent current, or 80 percent of the initial quiescent current, or the like.
  • the initial quiescent current of the electrical module 10 can also be reduced to an initial quiescent current of other proportions.
  • the initial quiescent current of the electrical module 10 is reduced to the first quiescent current.
  • the first quiescent current is fifty percent of the initial quiescent current.
  • the degree of reducing the initial quiescent current of the electrical module 10 can be matched with the size of the display panel.
  • the larger the size of the display panel the smaller the degree to which the initial quiescent current of the electrical module 10 can be reduced.
  • the smaller the size of the display panel the greater the degree of reduction of the initial quiescent current of the electrical module 10 .
  • the initial quiescent current of the electrical module 10 is reduced to the second quiescent current after maintaining the initial quiescent current of the electrical module 10 for a preset time.
  • the second quiescent current is thirty percent to eighty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module 10 can make the output driving force of the driving circuit 100 stronger and quickly charge the display panel during the process of increasing the gray-scale voltage. While saving the power consumption of the display panel, it is ensured that the driving circuit 100 can be fully charged when the panel is charged. After the panel is fully charged, the initial quiescent current of the electrical module 10 is reduced to the second quiescent current. The second quiescent current is thirty percent to eighty percent of the initial quiescent current. In this way, the power consumption of the driving circuit 100 can be reduced.
  • the initial quiescent current of the electrical module 10 may be reduced to the second quiescent current.
  • the second quiescent current is 30 percent of the initial quiescent current, 40 percent of the initial quiescent current, 50 percent of the initial quiescent current, or 80 percent of the initial quiescent current, or the like.
  • the initial quiescent current of the electrical module 10 can also be reduced to an initial quiescent current of other proportions.
  • the initial quiescent current of the electrical module 10 is reduced to the second quiescent current after maintaining the initial quiescent current of the electrical module 10 for a preset time.
  • the second quiescent current is fifty percent of the initial quiescent current.
  • the initial quiescent current of the electrical module is reduced to the first quiescent current Quiescent Current.
  • the first quiescent current is 30% to 80% of the initial quiescent current
  • the third quiescent current is 110% to 150% of the initial quiescent current.
  • the gray-scale voltage needs to be increased.
  • the output driving force of the driving circuit 100 can be made stronger in the process of increasing the gray-scale voltage. , to quickly charge the display panel. While saving power consumption of the display panel, it is ensured that the driving circuit 100 can be fully charged when charging the panel. After the panel is fully charged, the initial quiescent current of the electrical module 10 is reduced to 30% to 80% of the initial quiescent current. . This enables the drive circuit 100 to reduce power consumption.
  • the initial quiescent current of the electrical module 10 can be reduced to 30 percent of the initial quiescent current, 40 percent of the initial quiescent current, 50 percent of the initial quiescent current, or 100 percent of the initial quiescent current. 80/80 of the initial quiescent current, etc.
  • the initial quiescent current of the electrical module 10 can also be reduced to an initial quiescent current of other proportions.
  • the preset time is between 0.5 microseconds and 2 microseconds.
  • the preset time may be 0.5 microseconds, 0.6 microseconds, 0.7 microseconds, 1 microsecond, 1.2 microseconds, 1.5 microseconds, or 2 microseconds. It can be understood that the preset time can be adjusted according to the size of the display panel. In general, the preset time should be set so that when the input voltage VAA and the output voltage VSS of the electrical module 10 have a difference, after maintaining or increasing the initial quiescent current of the electrical module 10 for the preset time, the driving circuit 100 can Charge the display panel to saturation.
  • the driving circuit 100 includes an interface receiving module 30 , a data displacement module 40 , a data temporary storage module 50 , a data latch module 60 , a level conversion module 70 and a digital/analog conversion module 80 .
  • the output terminals of the interface receiving module 30 and the data shifting module 40 are connected to the input terminal of the data temporary storage module 50 .
  • the output terminal of the data temporary storage module 50 is connected to the input terminal of the data latch module 60 .
  • the output terminal of the data latch module 60 is electrically connected to the input of the level conversion module 70 .
  • the output terminal of the level conversion module 70 is connected to the input terminal of the digital/analog conversion module 80 .
  • the output terminal of the digital/analog conversion module 80 is electrically connected to the input terminal of the electronic sub-module 20 .
  • the interface receiving module 30 is configured to receive differential data, and transmit the differential data to the data temporary storage module 50 in the form of serial signals.
  • the data displacement module 40 sends a clock signal, so that the data is temporarily stored in the data temporary storage module 50 in the form of a parallel signal.
  • the data temporary storage module 50 transmits the stored data to the data latch module 60 .
  • the data latch module 60 stores data input from the data temporary storage module 50 .
  • the level conversion module 70 is used to increase the voltage level of the data stored in the data latch module 60 .
  • the digital/analog conversion module 80 is used to convert the voltage input by the level conversion module 70 into a digital signal, and transmit the digital signal to the electrical module 10 .
  • the gamma voltage can be converted into a gray-scale voltage through the driving circuit 100 .
  • the driving circuit 100 of the present application includes an electrical module 10 and an electrical sub-module 20 .
  • the electrical sub-module 20 is connected to the electrical module 10 .
  • the electrical sub-module 20 is used to detect whether there is a difference between the input voltage and the output voltage of the electrical module 10 . Wherein, when the input voltage and the output voltage of the electrical module 10 are equal, the initial quiescent current of the electrical module 10 is reduced. When there is a difference between the input voltage and the output voltage of the electrical module 10 , after maintaining or increasing the initial quiescent current of the electrical module 10 for a preset time, the initial quiescent current of the electrical module 10 is reduced to reduce the power consumption of the driving circuit 100 .
  • the initial quiescent current is regulated by detecting whether there is a difference between the input voltage and the output voltage of the electrical module 10 .
  • the initial quiescent current of the electrical module 10 is reduced, so that the display panel operates in a low power consumption environment.
  • the initial quiescent current of the electrical module 10 is maintained or increased for a preset time, which can make the output driving force of the driving circuit 100 stronger and quickly charge the display panel, so that the The display panel can not only save power consumption, but also ensure that the panel can be fully charged when charging, so as to ensure the display quality of the display panel.
  • FIG. 3 is a comparison diagram of the power consumption of the driving circuit provided by the present application and the driving circuit in the prior art.
  • the drive circuit of the prior art reduces the initial quiescent current of the electrical module to 0.5 times the initial quiescent current to continuously charge the display panel.
  • the gray-scale voltage required by the display panel has changed.
  • 0.5 times the initial quiescent current is used to continuously charge the display panel.
  • the prior art method takes too long in the process of voltage change. Since the change time of the gray-scale voltage is very short, the driving circuit cannot fully charge the display panel when charging, resulting in poor display quality.
  • the present application keeps the initial power supply input voltage as a preset time. It can be seen from FIG. 3 that the driving circuit 100 used in the present application takes a relatively short time during the voltage conversion process. In this way, it can be ensured that the display panel is fully charged during the change of the gray-scale voltage, thereby ensuring the display quality of the display panel. In the process that the gray-scale voltage does not change, the initial quiescent current of the electrical module is reduced to 0.5 times the initial quiescent current to continuously charge the display panel and reduce power consumption. Therefore, the use of the driving circuit 100 of the present application can reduce power consumption while ensuring the display quality of the display panel.
  • FIG. 4 is a schematic flowchart of the data-driven method provided by the present application.
  • the present application provides a data-driven method, and the data-driven method includes the steps:
  • the input voltage and output voltage of the electrical module are detected. Whether there is a difference between the output voltage and the input voltage of the electrical module is determined by the comparator. Of course, other methods may also be used to detect whether there is a difference between the input voltage and the output voltage of the electrical module, which will not be described in detail in this application.
  • the driving circuit can drive the display panel to display at a low voltage, which can save the power consumption of the display panel.
  • the gray-scale voltage needs to be increased.
  • the output driving force of the drive circuit will be insufficient, and the rise time and fall time of the output channel will become slower, and eventually the output channel of the drive circuit will not be able to fully charge the panel, which will affect the Display quality of the display panel.
  • the initial quiescent current of the electrical module is reduced. In this way, in the process of increasing the gray-scale voltage, the output driving force of the driving circuit can be made stronger, and the display panel can be charged quickly. While saving the power consumption of the display panel, it is ensured that the driving circuit can be fully charged when the panel is charged, so as to ensure the display quality of the display panel.
  • the output driving force of the driving circuit can be increased to quickly charge the display panel. While the power consumption of the display panel is saved, it is ensured that the panel can be fully charged when charging, and the display quality of the display panel is guaranteed. At the same time, when the data driving force does not need to be improved, the display panel can be made to work in a low power consumption state.
  • FIG. 5 is a schematic structural diagram of a display panel provided by the present application.
  • the present application provides a display panel 1000 .
  • the display panel 1000 includes a data driver 101 , a scan driver 102 and pixels 103 .
  • the data driver 101 includes a plurality of driving circuits 100 , and the data driver 101 is used to drive the data lines 105 .
  • the scan driver 102 is used to drive the scan lines 104 .
  • the data line 105 and the driving scan line 104 intersect to form a pixel area.
  • the pixel 103 is arranged in the pixel area.
  • the data driver 101 and the scan driver 102 jointly drive the pixels 103 so that the pixels 103 emit light.
  • the driving circuit 100 is the driving circuit 100 of the above embodiment. Since the driving circuit 100 has been described in detail in the above embodiments, the driving circuit 100 will not be described in detail in this application.
  • the display panel 1000 provided by the present application can be used in an electronic device, and the electronic device can be a smart phone (smartphone), a tablet computer (tablet) personal computer), mobile phone, video phone, e-book reader, desktop PC, laptop PC), netbook computer, workstation, server, personal digital assistant, portable media player at least one of multimedia player), MP3 player, mobile medical machine, camera, game console, digital camera, car navigation system, electronic billboard, ATM or wearable device.
  • the display panel 1000 provided by the present application adopts the driving circuit 100 , and the driving circuit 100 regulates the initial quiescent current of the electrical module by detecting whether there is a difference between the input voltage and the output voltage of the electrical module 10 .
  • the driving circuit 100 regulates the initial quiescent current of the electrical module by detecting whether there is a difference between the input voltage and the output voltage of the electrical module 10 .
  • the input voltage and the output voltage of the electrical module are equal, reducing the initial quiescent current of the electrical module enables the display panel 1000 to operate in a low power consumption environment.
  • the input voltage and the output voltage of the electrical module have a difference value, maintaining or increasing the initial quiescent current preset time of the electrical module. In this way, the output driving force of the driving circuit 100 can be improved, and the display panel 1000 can be quickly charged.
  • the power consumption of the display panel 1000 is saved, and the driving circuit 100 can be fully charged when charging the panel, thereby improving the display quality of the display panel.
  • a driving circuit, a data driving method and a display panel provided by the present application have been introduced in detail above.
  • the principles and implementations of the present application are described with specific examples in this paper.
  • the descriptions of the above embodiments are only used to help understanding The method of the present application and its core idea; at the same time, for those skilled in the art, according to the idea of the present application, there will be changes in the specific implementation and application scope. Application restrictions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

驱动电路及对应的数据驱动方法、显示面板,驱动电路(100)包括电学模块(10)和电学子模块(20),当电学模块(10)的输入电压和输出电压相等时,降低电学模块(10)的初始静态电流,当电学模块(10)的输入电压和输出电压具有差值时,保持或增大电学模块(10)的初始静态电流预设时间后,降低电学模块(10)的初始静态电流。显示面板(1000)包括驱动电路(100)和像素(103),驱动电路(100)用于驱动像素(103)发光,降低显示面板(1000)的功耗。

Description

驱动电路、数据驱动方法以及显示面板 技术领域
本申请涉及面板制造技术领域,特别涉及一种柔性导电线制程方法、柔性导电线及显示装置。
背景技术
随着智能化信息社会的蓬勃发展,人们对显示技术的需求越来越迫切、广泛,要求也更加严苛。面板产业显示技术自20世纪90年代开始迅速发展并逐步走向成熟。平板显示具有清晰度高、图像色彩好、省电、轻薄、便于携带等优点,已被广泛应用于各种类型的智能终端、家庭影院等,具有广阔的市场前景。为满足市场需求,显示器逐步往大尺寸和高分辨率方向发展,面板尺寸越大,分辨率越高意味着面板驱动电路的负载也会增大,面板的耗电问题成了人们关心和急需解决的问题。现有的显示面板在降低显示面板功耗时,无法保证显示面板的显示质量。
技术问题
本申请提供一驱动电路、数据驱动方法以及显示面板,可以降低显示面板功耗的同时,保证显示面板的显示质量。
技术解决方案
本申请提供一种驱动电路,包括:
电学模块;
电学子模块,与所述电学模块连接;
其中,当所述电学子模块侦测电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
其中,当所述电学模块的输入电压和输出电压相等时,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为初始静态电流的百分之三十至百分之八十。
其中,所述第一静态电流为初始静态电流的百分之五十。
其中,当所述电学模块的输入电压和输出电压具有差值时,保持所述电学模块的初始静态电流预设时间后,将所述电学模块的初始静态电流降低到第二静态电流,所述第二静态电流为初始静态电流的百分之三十至百分之八十。
其中,所述第二静态电流为初始静态电流的百分之五十。
其中,当所述电学模块的输入电压和输出电压具有差值时,将所述电学模块的初始静态电流增大到第三静态电流预设时间后,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为初始静态电流的百分之三十至百分之八十,所述第三静态电流为初始静态电流的百分之一百一十至百分之一百五十。
其中,所述预设时间为0.5微秒至2微秒之间。
其中,所述电学子模块包括比较器和控制单元,所述比较器用于比较所述电学模块的输出电压和输入电压是否具有差值;当所述电学模块的输入电压和输出电压相等时,所述控制单元用于控制保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
其中,所述驱动电路包括接口接收模块、数字移位模块、数据暂存模块、数据锁存模块、电平转换模块以及数位/类比转换模块,所述接口接收模块和所述数字移位模块的输出端与所述数据暂存模块的输入端连接,所述数据暂存模块的输出端与数据锁存模块的输入端连接,所述数据锁存模块的输出端与所述电平转换模块的输入电连接,所述电平转换模块的输出端与所述数位/类比转换模块的输入端连接,所述数位/类比转换模块的输出端与所述电学子模块的输入电连接。
本申请还提供一种数据驱动方法,包括:
检测电学模块的输入电压和输出电压是否具有差值;
当所述电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流;
当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
本申请还提供一种显示面板,包括驱动电路和像素,所述驱动电路用于驱动所述像素发光,所述驱动电路包括:
电学模块;
电学子模块,与所述电学模块连接;
其中,当所述电学子模块侦测电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
其中,当所述电学模块的输入电压和输出电压相等时,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十。
其中,所述第一静态电流为所述初始静态电流的百分之五十。
其中,当所述电学模块的输入电压和输出电压具有差值时,保持所述电学模块的所述初始静态电流预设时间后,将所述电学模块的所述初始静态电流降低到第二静态电流,所述第二静态电流为所述初始静态电流的百分之三十至百分之八十。
其中,所述第二静态电流为所述初始静态电流的百分之五十。
其中,当所述电学模块的输入电压和输出电压具有差值时,将所述电学模块的初始静态电流增大到第三静态电流预设时间后,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十,所述第三静态电流为所述初始静态电流的百分之一百一十至百分之一百五十。
其中,所述预设时间为0.5微秒至2微秒之间。
其中,所述预设时间为1微秒至1.5微秒之间。
其中,所述电学子模块包括比较器和控制单元,所述比较器用于比较所述电学模块的输出电压和输入电压是否具有差值;当所述电学模块的输入电压和输出电压相等时,所述控制单元用于控制保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
其中,所述驱动电路包括接口接收模块、数字移位模块、数据暂存模块、数据锁存模块、电平转换模块以及数位/类比转换模块,所述接口接收模块和所述数字移位模块的输出端与所述数据暂存模块的输入端连接,所述数据暂存模块的输出端与数据锁存模块的输入端连接,所述数据锁存模块的输出端与所述电平转换模块的输入电连接,所述电平转换模块的输出端与所述数位/类比转换模块的输入端连接,所述数位/类比转换模块的输出端与所述电学子模块的输入电连接。
有益效果
本申请实施例公开了驱动电路、数据驱动方法以及显示面板。驱动电路包括电学模块和电学子模块。电学子模块与所述电学模块连接,所述电学子模块用于检测所述电学模块的输入电压和输出电压是否具有差值;其中,当所述电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。通过检测电学模块的输入电压和输出电压是否具有差值,当所述电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,使得显示面板在低功耗的环境下运行,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间,使得驱动电路的输出驱动力变强,快速给显示面板充电,使得显示面板既能够节省功耗,同时确保给面板充电时能够充饱,保证显示面板的显示质量。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的驱动电路结构示意图;
图2为本申请实施例提供的驱动电路结构框图;
图3为本申请实施例提供的驱动电路与现有技术中驱动电路功耗的比较图;
图4为本申请实施例提供的数据驱动方法的流程示意图;
图5为本申请实施例提供的显示面板结构示意图。
本发明的实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请提供一种驱动电路、数据驱动方法以及显示面板。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参阅图1,图1为本申请提供的驱动电路结构示意图。其中,驱动电路100包括电学模块10和电学子模块20。电学子模块20与电学模块10连接。电学子模块20用于检测电学模块10的输入电压VAA和输出电压VSS是否具有差值。其中,当电学模块10的输入电压VAA和输出电压VSS相等时,降低电学模块10的初始静态电流。当电学模块10的输入电压VAA和输出电压VSS具有差值时,保持或增大电学模块10的初始静态电流预设时间后,降低电学模块10的初始静态电流以减少驱动电路100的功耗。
需要说明的是,现在的显示面板为了追求低功耗,会通过降低驱动电路100内部电学模块的静态电流(I_bias)来实现。I_bias电流会直接影响到驱动电路100输出通道的驱动力(输出通道的上升和下降时间),I_bias电流越大,驱动电路100输出通道的驱动力越强,上升和下降时间越快。I_bias电流越小,驱动电路100输出通道的驱动力越弱,上升和下降时间越慢。
为了降低驱动电路100功耗,采用减小I_bias电流的方式会导致驱动电路100的输出驱动力变弱,输出通道的上升时间和下降时间都变慢,最终导致驱动电路100输出通道给面板充电无法充满。
其中,显示面板在显示过程中,每一灰阶所需要的灰阶电压是不同的。当灰阶电压需要提升时,如果驱动电路100的输出驱动力不足,输出通道的上升时间和下降时间都变慢,最终导致驱动电路100输出通道给面板充电无法充满。这样会影响显示面板的显示质量。本申请通过检测电学模块10的输入电压VAA和输出电压VSS是否具有差值。当电学模块10的输入电压VAA和输出电压VSS相等时,说明驱动电路100可以保持在低电压的情况下驱动显示面板显示,这时能够节省显示面板的功耗。当电学模块10的输入电压VAA和输出电压VSS具有差值时,说明需要提高灰阶电压。这时如果继续在低电压的情况下驱动显示面板,会使得驱动电路100的输出驱动力不足,输出通道的上升时间和下降时间都变慢,最终导致驱动电路100输出通道给显示面板充电无法充满。这样会影响显示面板的显示质量。本申请保持或增大电学模块10的初始静态电流预设时间后,降低电学模块10的初始静态电流。这样能够在需要提高灰阶电压的过程中,提升驱动电路100的输出驱动力,快速给显示面板充电。使得显示面板既能够节省功耗,同时确保给面板充电时能够充满,从而保证显示面板的显示质量。
需要说明的是,电学模块10能够放大输入到电学模块10中的数据电压。电学子模块20可以包括比较器和控制单元。比较器可以用来比较电学模块10的输出电压VSS和输入电压VAA是否具有差值。当电学模块10的输入电压VAA和输出电压VSS相等时,控制单元可以控制保持或增大电学模块10的初始静态电流预设时间后,降低电学模块10的初始静态电流。
其中,当电学模块10的输入电压VAA和输出电压VSS相等时,将电学模块10的初始静态电流降低到第一静态电流,第一静态电流为初始静态电流的百分之三十至百分之八十。
可以理解的是,当电学模块10的输入电压VAA和输出电压VSS相等时,说明驱动电路100可以保持在低电压的情况下驱动显示面板显示。为了降低显示面板的功耗,可以将电学模块10的初始静态电流降低到第一静态电流。第一静态电流可以为百分之三十的初始静态电流、百分之四十的初始静态电流、百分之五十的初始静态电流或百分之八十的初始静态电流等。另外,当需要节省显示面板功耗时,还可以将电学模块10的初始静态电流降低到其他比例的初始静态电流。
具体的,当电学模块10的输入电压VAA和输出电压VSS相等时,将电学模块10的初始静态电流降低到第一静态电流。第一静态电流为百分之五十的初始静态电流。这样能够降低驱动电路100的功耗,同时又能够使得输出驱动力不会太弱而导致给面板充电时间过长或者导致无法给面板充电充满。
另外,当电学模块10的输入电压VAA和输出电压VSS相等时,降低电学模块10的初始静态电流的程度可以与显示面板的尺寸相匹配。一般情况下,显示面板的尺寸越大,则可以降低电学模块10的初始静态电流的程度较小。反之,显示面板的尺寸越小,则可以降低电学模块10的初始静态电流的程度较大。
其中,当电学模块10的输入电压VAA和输出电压VSS具有差值时,保持电学模块10的初始静态电流预设时间后,将电学模块10的初始静态电流降低到第二静态电流。第二静态电流为初始静态电流的百分之三十至百分之八十。
需要说明的是,当电学模块10的输入电压VAA和输出电压VSS具有差值时,说明需要提高灰阶电压。保持电学模块10的初始静态电流预设时间,能够在需要提高灰阶电压的过程中,使得驱动电路100的输出驱动力变强,快速给显示面板充电。使显示面板节省功耗的同时,确保驱动电路100给面板充电时能够充满。面板充电充满后,将电学模块10的初始静态电流降低到第二静态电流。第二静态电流为初始静态电流的百分之三十至百分之八十。这样能够降低驱动电路100的功耗。为了降低显示面板的功耗,可以将电学模块10的初始静态电流降低到第二静态电流。第二静态电流为百分之三十的初始静态电流、百分之四十的初始静态电流、百分之五十的初始静态电流或百分之八十的初始静态电流等。另外,当需要节省显示面板功耗时,还可以将电学模块10的初始静态电流降低到其他比例的初始静态电流。
其中,当电学模块10的输入电压VAA和输出电压VSS具有差值时,保持电学模块10的初始静态电流预设时间后,将电学模块10的初始静态电流降低到第二静态电流。第二静态电流为百分之五十的初始静态电流。这样能够降低驱动电路100的功耗,同时又能够使得输出驱动力不会太弱而导致给面板充电时间过长,或者导致无法给面板充电充满。
其中,当电学模块10的输入电压VAA和输出电压VSS具有差值时,将电学模块10的初始静态电流增大到第三静态电流预设时间后,将电学模块的初始静态电流降低到第一静态电流。第一静态电流为初始静态电流的百分之三十至百分之八十,第三静态电流为初始静态电流的百分之一百一十至百分之一百五十。
当电学模块10的输入电压VAA和输出电压VSS具有差值时,说明需要提高灰阶电压。将电学模块10的初始静态电流增大到百分之一百一十至一百五十的初始静态电流后,能够在需要提高灰阶电压的过程中,使得驱动电路100的输出驱动力变强,快速给显示面板充电。使得显示面板节省功耗的同时,确保驱动电路100给面板充电时能够充满.面板充电充满后,将电学模块10的初始静态电流降低到百分之三十至百分之八十的初始静态电流。这样使得驱动电路100能够降低功耗。为了降低显示面板的功耗,可以将电学模块10的初始静态电流降低到百分之三十的初始静态电流、百分之四十的初始静态电流、百分之五十的初始静态电流或百分之八十的初始静态电流等。另外,当需要节省显示面板功耗时,还可以将电学模块10的初始静态电流降低到其他比例的初始静态电流。
其中,预设时间为0.5微秒至2微秒之间。
需要说明的是,预设时间可以为0.5微秒、0.6微秒、0.7微秒、1微秒、1.2微秒、1.5微秒或2微秒等。可以理解的是,预设时间可以根据显示面板的尺寸进行调整。通常情况下,预设时间的设定要满足:在电学模块10的输入电压VAA和输出电压VSS具有差值时,保持或增大电学模块10的初始静态电流预设时间后,驱动电路100能够将显示面板充电饱和。
请参阅图2,图2为本申请提供的驱动电路结构框图。其中,驱动电路100包括接口接收模块30、数据位移模块40、数据暂存模块50、数据锁存模块60、电平转换模块70以及数位/类比转换模块80。接口接收模块30和数据位移模块40的输出端与数据暂存模块50的输入端连接。数据暂存模块50的输出端与数据锁存模块60的输入端连接。数据锁存模块60的输出端与电平转换模块70的输入电连接。电平转换模块70的输出端与数位/类比转换模块80的输入端连接。数位/类比转换模块80的输出端与电学子模块20的输入电连接。
需要说明的是,接口接收模块30用于接收差分数据,并将差分数据以串行信号的形式传输给数据暂存模块50。在接口接收模块30将串行信号传输给数据暂存模块50时,数据位移模块40发出时钟信号,使得数据以并行信号的形式暂存到数据暂存模块50中。数据暂存模块50将存储的数据传输到数据锁存模块60。数据锁存模块60存储从数据暂存模块50输入的数据。电平转换模块70用于将存储在数据锁存模块60中数据的电压电平升高。数位/类比转换模块80用于将电平转换模块70输入的电压转换为数位信号,并将数位信号传输给电学模块10。通过驱动电路100能够使得伽玛电压转换为灰阶电压。
本申请的驱动电路100包括电学模块10和电学子模块20。电学子模块20与电学模块10连接。电学子模块20用于检测电学模块10的输入电压和输出电压是否具有差值。其中,当电学模块10的输入电压和输出电压相等时,降低电学模块10的初始静态电流。当电学模块10的输入电压和输出电压具有差值时,保持或增大电学模块10的初始静态电流预设时间后,降低电学模块10的初始静态电流以减少驱动电路100的功耗。通过检测电学模块10的输入电压和输出电压是否具有差值,以调控初始静态电流。当电学模块10的输入电压和输出电压相等时,降低电学模块10的初始静态电流,使得显示面板在低功耗的环境下运行。当电学模块10的输入电压和输出电压具有差值时,保持或增大电学模块10的初始静态电流预设时间,这样能够使得驱动电路100的输出驱动力变强,快速给显示面板充电,使得显示面板既能够节省功耗,同时确保给面板充电时能够充满,保证显示面板显示质量。
请参阅图3,图3为本申请提供的驱动电路与现有技术中驱动电路功耗的比较图。结合附图可知,现有技术的驱动电路将电学模块的初始静态电流降低到0.5倍初始静态电流给显示面板持续充电。当电学模块的输入电压和输出电压具有差值时,说明显示面板需要的灰阶电压发生变化,这时采用0.5倍初始静态电流给显示面板持续充电。从图3中可知,现有技术方式在电压变化过程中,需要花费的时间过长。由于灰阶电压的变化时间非常短,这样会使得驱动电路给显示面板充电时不能充满,导致显示质量不佳。当电学模块的输入电压和输出电压具有差值时,本申请保持初始电源输入电压为预设时间。从图3可知,本申请采用的驱动电路100在电压转换过程中,花费的时间较短。这样可以确保在灰阶电压的变化过程中,给显示面板充满电,保证显示面板的显示质量。在灰阶电压不发生变化的过程中,将电学模块的初始静态电流降低到0.5倍初始静态电流,给显示面板持续充电,降低功耗。因此,采用本申请的驱动电路100能够在降低功耗的同时,保证显示面板的显示质量。
请参阅图4,图4为本申请提供的数据驱动方法的流程示意图。其中,本申请提供一种数据驱动方法,数据驱动方法包括步骤:
201、检测电学模块的输入电压和输出电压是否具有差值。
需要说明的是,首先检测电学模块的输入电压和输出电压。通过比较器来确定电学模块的输出电压和输入电压是否具有差值。当然,还可以采用其他方式来检测电学模块的输入电压和输出电压是否具有差值,本申请中不一一赘述。
202、当电学模块的输入电压和输出电压相等时,降低电学模块的初始静态电流。
需要说明的是,当电学模块的输入电压和输出电压相等时,说明驱动电路可以保持在低电压的情况下驱动显示面板显示,这时能够节省显示面板的功耗。
203、当电学模块的输入电压和输出电压具有差值时,保持或增大电学模块的初始静态电流预设时间后,降低电学模块的初始静态电流。
需要说明的是,当电学模块的输入电压和输出电压具有差值时,说明需要提高灰阶电压。这时如果继续在低电压的情况下驱动显示面板,会导致驱动电路的输出驱动力不足,输出通道的上升时间和下降时间都变慢,最终使得驱动电路输出通道给面板充电无法充满,进而影响显示面板的显示质量。本申请保持或增大电学模块的初始静态电流预设时间后,降低了电学模块的初始静态电流。这样能够在需要提高灰阶电压的过程中,使得驱动电路的输出驱动力变强,快速给显示面板充电。在节省显示面板的功耗的同时,确保驱动电路给面板充电时能够充满,保证显示面板的显示质量。
由于采用本申请的数据驱动方法,可以在需要提高数据驱动力时,提升驱动电路的输出驱动力,快速给显示面板充电。使显示面板节省功耗的同时,确保给面板充电时能够充满,保证显示面板显示质量。同时在不需要提高数据驱动力时,可以使得显示面板在低功耗状态下工作。
请参阅图5,图5为本申请提供的显示面板结构示意图。其中,本申请提供一种显示面板1000。显示面板1000包括数据驱动器101、扫描驱动器102以及像素103。数据驱动器101包括多个驱动电路100,数据驱动器101用于驱动数据线105。扫描驱动器102用于驱动扫描线104。数据线105和驱动扫描线104相交形成像素区域.像素区域内设置有像素103。数据驱动器101和扫描驱动器102共同驱动像素103使得像素103发光。驱动电路100为以上实施例的驱动电路100。由于上述实施例中已经对驱动电路100已经进行详细的描述,本申请中对驱动电路100不再过多赘述。
本申请提供的显示面板1000可以用于电子设备中,电子设备可以为智能手机(smartphone)、平板电脑(tablet personal computer)、移动电话(mobile phone)、视频电话机、电子书阅读器(e-book reader)、台式计算机(desktop PC)、手提电脑(laptop PC)、上网本(netbook computer)、工作站(workstation)、服务器、个人数字助理(personal digital assistant)、便携式媒体播放器(portable multimedia player)、MP3播放器、移动医疗机器、照相机、游戏机、数码相机、车载导航仪、电子广告牌、自动取款机或可穿戴设备(wearable device)中的至少一个。
本申请提供的显示面板1000采用了驱动电路100,该驱动电路100通过检测电学模块10的输入电压和输出电压是否具有差值,以调控电学模块的初始静态电流。当电学模块的输入电压和输出电压相等时,降低电学模块的初始静态电流使得显示面板1000在低功耗的环境下运行。当电学模块的输入电压和输出电压具有差值时,保持或增大电学模块的初始静态电流预设时间。这样能够提升驱动电路100的输出驱动力,快速给显示面板1000充电。使得显示面板1000节省功耗的同时,确保驱动电路100给面板充电时能够充满,提升显示面板的显示质量。
以上对本申请所提供的一种驱动电路、数据驱动方法以及显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种驱动电路,其中,包括:
    电学模块;
    电学子模块,与所述电学模块连接;
    其中,当所述电学子模块侦测电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
  2. 根据权利要求1所述的驱动电路,其中,当所述电学模块的输入电压和输出电压相等时,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十。
  3. 根据权利要求2所述的驱动电路,其中,所述第一静态电流为所述初始静态电流的百分之五十。
  4. 根据权利要求1所述的驱动电路,其中,当所述电学模块的输入电压和输出电压具有差值时,保持所述电学模块的所述初始静态电流预设时间后,将所述电学模块的所述初始静态电流降低到第二静态电流,所述第二静态电流为所述初始静态电流的百分之三十至百分之八十。
  5. 根据权利要求4所述的驱动电路,其中,所述第二静态电流为所述初始静态电流的百分之五十。
  6. 根据权利要求1所述的驱动电路,其中,当所述电学模块的输入电压和输出电压具有差值时,将所述电学模块的初始静态电流增大到第三静态电流预设时间后,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十,所述第三静态电流为所述初始静态电流的百分之一百一十至百分之一百五十。
  7. 根据权利要求1所述的驱动电路,其中,所述预设时间为0.5微秒至2微秒之间。
  8. 根据权利要求1所述的驱动电路,其中,所述电学子模块包括比较器和控制单元,所述比较器用于比较所述电学模块的输出电压和输入电压是否具有差值;当所述电学模块的输入电压和输出电压相等时,所述控制单元用于控制保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
  9. 根据权利要求1所述的驱动电路,其中,所述驱动电路包括接口接收模块、数字移位模块、数据暂存模块、数据锁存模块、电平转换模块以及数位/类比转换模块,所述接口接收模块和所述数字移位模块的输出端与所述数据暂存模块的输入端连接,所述数据暂存模块的输出端与数据锁存模块的输入端连接,所述数据锁存模块的输出端与所述电平转换模块的输入电连接,所述电平转换模块的输出端与所述数位/类比转换模块的输入端连接,所述数位/类比转换模块的输出端与所述电学子模块的输入电连接。
  10. 一种数据驱动方法,其中,包括:
    检测电学模块的输入电压和输出电压是否具有差值;
    当所述电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流;
    当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
  11. 一种显示面板,其中,包括驱动电路和像素,所述驱动电路用于驱动所述像素发光,所述驱动电路包括:
    电学模块;
    电学子模块,与所述电学模块连接;
    其中,当所述电学子模块侦测电学模块的输入电压和输出电压相等时,降低所述电学模块的初始静态电流,当所述电学模块的输入电压和输出电压具有差值时,保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
  12. 根据权利要求11所述的显示面板,其中,当所述电学模块的输入电压和输出电压相等时,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十。
  13. 根据权利要求12所述的显示面板,其中,所述第一静态电流为所述初始静态电流的百分之五十。
  14. 根据权利要求11所述的显示面板,其中,当所述电学模块的输入电压和输出电压具有差值时,保持所述电学模块的所述初始静态电流预设时间后,将所述电学模块的所述初始静态电流降低到第二静态电流,所述第二静态电流为所述初始静态电流的百分之三十至百分之八十。
  15. 根据权利要求14所述的显示面板,其中,所述第二静态电流为所述初始静态电流的百分之五十。
  16. 根据权利要求11所述的显示面板,其中,当所述电学模块的输入电压和输出电压具有差值时,将所述电学模块的初始静态电流增大到第三静态电流预设时间后,将所述电学模块的初始静态电流降低到第一静态电流,所述第一静态电流为所述初始静态电流的百分之三十至百分之八十,所述第三静态电流为所述初始静态电流的百分之一百一十至百分之一百五十。
  17. 根据权利要求11所述的显示面板,其中,所述预设时间为0.5微秒至2微秒之间。
  18. 根据权利要求11所述的显示面板,其中,所述预设时间为1微秒至1.5微秒之间。
  19. 根据权利要求11所述的显示面板,其中,所述电学子模块包括比较器和控制单元,所述比较器用于比较所述电学模块的输出电压和输入电压是否具有差值;当所述电学模块的输入电压和输出电压相等时,所述控制单元用于控制保持或增大所述电学模块的初始静态电流预设时间后,降低所述电学模块的初始静态电流。
  20. 根据权利要求11所述的显示面板,其中,所述驱动电路包括接口接收模块、数字移位模块、数据暂存模块、数据锁存模块、电平转换模块以及数位/类比转换模块,所述接口接收模块和所述数字移位模块的输出端与所述数据暂存模块的输入端连接,所述数据暂存模块的输出端与数据锁存模块的输入端连接,所述数据锁存模块的输出端与所述电平转换模块的输入电连接,所述电平转换模块的输出端与所述数位/类比转换模块的输入端连接,所述数位/类比转换模块的输出端与所述电学子模块的输入电连接。
PCT/CN2021/096479 2021-04-29 2021-05-27 驱动电路、数据驱动方法以及显示面板 WO2022227168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,889 US20240029607A1 (en) 2021-04-29 2021-05-27 Drive circuit, data-driven method and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110471388.3 2021-04-29
CN202110471388.3A CN113192452A (zh) 2021-04-29 2021-04-29 驱动电路、数据驱动方法以及显示面板

Publications (1)

Publication Number Publication Date
WO2022227168A1 true WO2022227168A1 (zh) 2022-11-03

Family

ID=76980396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096479 WO2022227168A1 (zh) 2021-04-29 2021-05-27 驱动电路、数据驱动方法以及显示面板

Country Status (3)

Country Link
US (1) US20240029607A1 (zh)
CN (1) CN113192452A (zh)
WO (1) WO2022227168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333683B (zh) * 2022-02-22 2023-06-13 重庆长安汽车股份有限公司 一种降低显示设备静态电流的***及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402215A (zh) * 2001-07-06 2003-03-12 Lg电子株式会社 电流驱动类型的显示器的驱动电路和驱动方法
US6545530B1 (en) * 2001-12-05 2003-04-08 Linear Technology Corporation Circuit and method for reducing quiescent current in a voltage reference circuit
CN1457146A (zh) * 2002-05-07 2003-11-19 三星电子株式会社 控制静态电流的ab类放大器
US20150042395A1 (en) * 2013-08-06 2015-02-12 Novatek Microelectronics Corp. Source driver and method to reduce peak current therein
CN105070260A (zh) * 2015-08-25 2015-11-18 深圳市华星光电技术有限公司 一种电压调节电路
US20170092184A1 (en) * 2015-09-30 2017-03-30 Himax Technologies Limited Driving apparatus and method for driving display panel thereof
CN108962119A (zh) * 2018-08-01 2018-12-07 京东方科技集团股份有限公司 电平转移电路及其驱动方法、显示装置
CN109326247A (zh) * 2018-12-14 2019-02-12 惠科股份有限公司 一种驱动电路、驱动方法及显示装置
CN212627857U (zh) * 2020-08-18 2021-02-26 湖南中部芯谷科技有限公司 一种低静态电流电平转换电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976097B2 (ja) * 2004-11-30 2007-09-12 日本テキサス・インスツルメンツ株式会社 増幅器
US20060145749A1 (en) * 2004-12-30 2006-07-06 Dipankar Bhattacharya Bias circuit having reduced power-up delay
CN101630944B (zh) * 2008-07-17 2012-10-17 联咏科技股份有限公司 可提升反应速度的驱动电路
TWI428880B (zh) * 2010-08-03 2014-03-01 Himax Tech Ltd 動態偏壓驅動裝置及其方法
TWI454057B (zh) * 2011-03-31 2014-09-21 Raydium Semiconductor Corp 源極驅動器之輸出緩衝器
KR102055841B1 (ko) * 2013-03-05 2019-12-13 삼성전자주식회사 출력 버퍼 회로 및 이를 포함하는 소스 구동 회로
KR102074230B1 (ko) * 2013-09-23 2020-02-06 삼성전자주식회사 슬루율이 개선된 버퍼 회로 및 이를 포함하는 소스 구동 회로
CN106251808B (zh) * 2016-08-24 2018-07-20 中国科学院上海高等研究院 一种用于amoled列驱动电路的输出缓冲器
JP7431528B2 (ja) * 2019-08-08 2024-02-15 株式会社東芝 半導体増幅回路
KR20210076341A (ko) * 2019-12-16 2021-06-24 엘지디스플레이 주식회사 디스플레이 장치, 데이터 구동 회로 및 데이터 구동 방법
KR20220143227A (ko) * 2021-04-15 2022-10-25 삼성디스플레이 주식회사 출력 버퍼, 데이터 구동부, 및 이를 포함하는 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402215A (zh) * 2001-07-06 2003-03-12 Lg电子株式会社 电流驱动类型的显示器的驱动电路和驱动方法
US6545530B1 (en) * 2001-12-05 2003-04-08 Linear Technology Corporation Circuit and method for reducing quiescent current in a voltage reference circuit
CN1457146A (zh) * 2002-05-07 2003-11-19 三星电子株式会社 控制静态电流的ab类放大器
US20150042395A1 (en) * 2013-08-06 2015-02-12 Novatek Microelectronics Corp. Source driver and method to reduce peak current therein
CN105070260A (zh) * 2015-08-25 2015-11-18 深圳市华星光电技术有限公司 一种电压调节电路
US20170092184A1 (en) * 2015-09-30 2017-03-30 Himax Technologies Limited Driving apparatus and method for driving display panel thereof
CN108962119A (zh) * 2018-08-01 2018-12-07 京东方科技集团股份有限公司 电平转移电路及其驱动方法、显示装置
CN109326247A (zh) * 2018-12-14 2019-02-12 惠科股份有限公司 一种驱动电路、驱动方法及显示装置
CN212627857U (zh) * 2020-08-18 2021-02-26 湖南中部芯谷科技有限公司 一种低静态电流电平转换电路

Also Published As

Publication number Publication date
CN113192452A (zh) 2021-07-30
US20240029607A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US8040334B2 (en) Method of driving display device
KR100454994B1 (ko) 램 내장 드라이버 및 그것을 사용한 표시 유닛 및 전자 기기
US8564522B2 (en) Reduced-power communications within an electronic display
CN107342063B (zh) 公共电压驱动电路及显示装置
CN102157136B (zh) 液晶显示器及其驱动方法
US11769444B2 (en) Display panel and display device with virtual pixel circuit
CN101593481A (zh) 显示器及其信号传输方法与源极驱动器的驱动方法
WO2021164650A1 (zh) 显示面板的驱动方法、其驱动电路及显示装置
CN101197111A (zh) 补偿馈通电压显示装置
CN112102771A (zh) 像素电路、驱动方法和显示装置
WO2022227168A1 (zh) 驱动电路、数据驱动方法以及显示面板
WO2020151439A1 (zh) 像素电路及其驱动方法、显示面板及显示装置
US11620935B2 (en) Pixel circuit and driving method thereof, display panel, and display device
US8878764B2 (en) Driving method and related device for reducing power consumption of LCD by comparing received data
US11348535B2 (en) Display control method, display control module and display device
EP4020129A1 (en) Technologies for self-refresh display power saving
US8390603B2 (en) Method for driving a flat panel display
US11341905B2 (en) Level converter, data processing method, and display device
CN114783348A (zh) 移位寄存电路及其驱动方法、显示装置
CN100562913C (zh) 液晶显示器的驱动***
CN102903320B (zh) 4k2k分辨率放大方法及应用该方法的4k2k分辨率放大***
US11592934B2 (en) Touch power management circuit and touch driving system including the same
US11934615B2 (en) Touch power management circuit and touch driving system including the same
US11922897B2 (en) Data driving circuit, display module, and display device
CN116580677B (zh) 显示面板及其驱动方法、电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17418889

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938638

Country of ref document: EP

Kind code of ref document: A1