WO2022226830A1 - 光学***、摄像模组、电子设备及汽车 - Google Patents

光学***、摄像模组、电子设备及汽车 Download PDF

Info

Publication number
WO2022226830A1
WO2022226830A1 PCT/CN2021/090499 CN2021090499W WO2022226830A1 WO 2022226830 A1 WO2022226830 A1 WO 2022226830A1 CN 2021090499 W CN2021090499 W CN 2021090499W WO 2022226830 A1 WO2022226830 A1 WO 2022226830A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
optical axis
convex
Prior art date
Application number
PCT/CN2021/090499
Other languages
English (en)
French (fr)
Inventor
党绪文
李明
刘彬彬
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/090499 priority Critical patent/WO2022226830A1/zh
Publication of WO2022226830A1 publication Critical patent/WO2022226830A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of photography, in particular to an optical system, a camera module, an electronic device and an automobile.
  • an optical system a camera module, an electronic device, and an automobile are provided.
  • An optical system comprising in sequence from the object side to the image side along the optical axis:
  • a first lens with negative refractive power the object side of the first lens is convex, and the image side is concave;
  • the object side of the second lens is convex at the near optical axis
  • the object side of the fourth lens is convex at the near optical axis
  • the object side of the fifth lens is convex at the near optical axis
  • the image side surface of the sixth lens is convex near the maximum effective aperture
  • optical system satisfies the following relationship:
  • FOV is the maximum field angle of the optical system
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • a camera module includes an image sensor and the above-mentioned optical system, wherein the image sensor is arranged on the image side of the optical system.
  • An electronic device includes a fixing member and the above-mentioned camera module, wherein the camera module is arranged on the fixing member.
  • An automobile includes a mounting portion and the above-mentioned imaging device, wherein the imaging device is provided on the mounting portion.
  • FIG. 1 is a schematic structural diagram of an optical system provided by a first embodiment of the present application.
  • FIG. 2 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment
  • FIG. 3 is a schematic structural diagram of an optical system provided by a second embodiment of the present application.
  • FIG. 4 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the second embodiment
  • FIG. 5 is a schematic structural diagram of an optical system provided by a third embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical system provided by a fourth embodiment of the present application.
  • FIG. 8 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fourth embodiment
  • FIG. 9 is a schematic structural diagram of an optical system provided by a fifth embodiment of the present application.
  • FIG. 10 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment
  • FIG. 11 is a schematic structural diagram of an optical system provided by a sixth embodiment of the present application.
  • FIG. 13 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of an automobile according to an embodiment of the application.
  • the optical system 10 includes sequentially from the object side to the image side along the optical axis 101 : a first lens L1 with negative refractive power, and a second lens with positive or negative refractive power L2, the third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with positive or negative refractive power, and the sixth lens L6 with positive or negative refractive power.
  • the optical axes of the six lenses are in the same straight line, which is the optical axis 101 of the optical system 10 .
  • Each lens in the optical system 10 can be assembled in a lens barrel to form an imaging lens.
  • the first lens L1 has an object side S1 and an image side S2
  • the second lens L2 has an object side S3 and an image side S4
  • the third lens L3 has an object side S5 and an image side S6
  • the fourth lens L4 has an object side S7 and an image side S8
  • the fifth lens L5 has an object side S9 and an image side S10
  • the sixth lens L6 has an object side S11 and an image side S12.
  • the optical system 10 also has an imaging surface S13 located on the image side of the sixth lens L6.
  • the imaging surface S13 of the optical system 10 coincides with the photosensitive surface of the image sensor, and the incident light rays at infinity in the central field of view are sequentially adjusted by the lenses of the optical system 10 and then converge on the imaging surface S13 .
  • the object side S1 of the first lens L1 is convex, and the image side S2 is concave; the object side S3 of the second lens L2 is convex at the near optical axis; the object side S7 of the fourth lens L4 is at The near optical axis is convex; the object side S9 of the fifth lens L5 is convex near the near optical axis; the image side S12 of the sixth lens L6 is convex near the maximum effective aperture.
  • the lens surface has a certain surface shape near the optical axis, that is, the lens surface has this surface shape near the optical axis 101; when it is described that the lens surface has a certain surface shape near the maximum effective aperture, it is the The lens surface has this kind of surface shape near the maximum effective aperture in the direction from the center to the edge.
  • the first lens L1 has a negative refractive power
  • the object side S1 is convex
  • the image side S2 is concave
  • the object side S3 of the second lens L2 at the near optical axis is Convex, which is beneficial for the two lenses of the optical system 10 closest to the object side to deflect the incident light with a larger included angle to the optical axis.
  • the third lens L3 and the fourth lens L4 both have positive refractive power, which can adjust the incident light after being deflected by the object lens in time, so as to realize timely correction of aberrations, and at the same time, because of the positive refractive power It is shared between two lenses, thereby preventing a single lens from bearing a large positive refractive power burden and causing overcorrection problems.
  • the fourth lens L4 has a positive refractive power
  • the object side S7 of the fourth lens L4 and the object side S9 of the fifth lens L5 are convex at the near optical axis, so that the incident light corresponding to each field of view can be converged, so as to facilitate shortening The convergence distance of the incident rays.
  • the image side surface S12 of the sixth lens L6 is also beneficial to further shorten the convergence distance of the incident light corresponding to the edge field of view, and the surface of the fourth lens L4 and the fifth lens L5 can be matched with the above-mentioned surfaces of the fourth lens L4 and the fifth lens L5.
  • This type of design can help to deflect the incident light at a small angle, and further shorten the distance between the converging surface of the incident light corresponding to each field of view and the lens group, thereby achieving the effect of effectively compressing the total length of the optical system 10 .
  • the optical system 10 having the above-mentioned design can achieve both a large viewing angle and a compact design.
  • the optical system 10 provided in the embodiment of the present application also satisfies the relationship: 28.0deg/mm ⁇ FOV/TTL ⁇ 40.0deg/mm; FOV is the maximum angle of view of the optical system 10, and TTL is the object of the first lens L1 The distance from the side surface S1 to the imaging surface S13 of the optical system 10 on the optical axis 101 .
  • the optical system 10 further satisfies the conditions of the above relational expression, the maximum angle of view and the total optical length of the optical system 10 with the above-mentioned refractive power and surface design can be reasonably configured, so that the optical system 10 can be kept small in size.
  • the small-sized optical system 10 can also obtain an ultra-wide shooting angle of view; in addition, it can also prevent the ratio of the viewing angle and the total optical length from being too large to cause incidents.
  • the deflection of light in the optical system 10 is too strong, which is beneficial to suppress aberrations such as field curvature, astigmatism, and distortion in the edge field of view.
  • the relationship satisfied by the optical system 10 may specifically be 29, 29.3, 29.5, 32, 35, 37, 37.5, 38, or 38.5, and the numerical unit is deg/mm.
  • the optical system 10 also satisfies at least one of the following relationships, and when any relationship is satisfied, it can have corresponding technical effects:
  • the optical system 10 will have an ultra-wide-angle design, and the overall length of the optical system 10 is effectively controlled, avoiding the large-scale structure of a traditional system with an ultra-wide viewing angle.
  • the FOV can also be understood as the maximum angle of view of the optical system 10 corresponding to the diagonal direction of the rectangular effective pixel area of the image sensor.
  • f123 is the combined focal length of the first lens L1
  • f456 is the combined focal length of the fourth lens L4, the fifth lens L5 and the sixth lens L6.
  • the surface design of the first lens L1 and the second lens L2 reasonably guides the light incident from a large angle, avoiding the introduction of excessive distortion and astigmatism; at the same time, it cooperates with the third lens L3 to the sixth lens L6 to reasonably change the surface shape and refractive index
  • the force distribution is also beneficial to provide reasonable aberration compensation, which helps to reduce the tolerance sensitivity of the optical system 10 and improve the image quality.
  • the relationship satisfied by the optical system 10 may specifically be 0.65, 0.7, 0.8, 0.9, 1.1, 1.3, 1.35, 1.38 or 1.4.
  • the optical system 10 includes an aperture stop STO, and the aperture stop STO is provided between the second lens L2 and the fifth lens L5.
  • the relationship satisfied by the optical system 10 may specifically be 2.8, 3.1, 3.5, 4, 5.7, 6.5, 7.3, 14, 26, 31, 35 or 37.
  • the optical system 10 that satisfies this relationship has a larger aperture, so that the system has a good diffraction limit, and the optical system 10 with the above design can have a good refraction effect, so that the optical system 10 has a wide-angle characteristic. Illumination and resolution.
  • the optical system 10 Clear images of scenes at various object distances can also be obtained.
  • IMGH 1.5 ⁇ IMGH/BF ⁇ 4.0; BF>0.85mm; IMGH is the image height corresponding to the maximum angle of view of the optical system 10, and BF is the optical axis from the image side S12 of the sixth lens L6 to the imaging surface S13 of the optical system 10 Distance on 101.
  • IMGH can also be understood as the diagonal length of the rectangular effective imaging area on the imaging surface S13.
  • Imgh can also be understood as the distance from the center of the rectangular effective pixel area to the diagonal edge of the image sensor, and the diagonal direction of the above-mentioned effective imaging area is parallel to the diagonal direction of the rectangular effective pixel area. .
  • the rear end of the mirror group of the optical system 10 can be kept at a relatively large distance from the imaging surface S13, so as to provide a larger protection space for the rear end of the mirror group of the optical system 10, and it is also beneficial to Reduce the difficulty of the assembly process and increase the production yield; in addition, a larger back focus can reduce the difference between the maximum effective aperture of the sixth lens L6 and the maximum effective aperture of the fifth lens L5, which is beneficial to reduce the structural arrangement of the optical system 10 Difficulty and size reduction.
  • the optical system 10 with a wide-angle design can be matched with a high-pixel image sensor, so that the optical system 10 can meet the requirements of large viewing angle and high pixel at the same time. Therefore, it is also beneficial to increase the universality of the optical system 10 to the image sensor and reduce the assembly difficulty.
  • the IMGH/BF relationship satisfied by the optical system 10 may specifically be 1.98, 2.05, 2.2, 2.5, 2.8, 3, 3.4, 3.6, 3.75 or 3.8.
  • R62 is the curvature radius of the image side surface S12 of the sixth lens L6 at the optical axis 101
  • f6 is the effective focal length of the sixth lens L6.
  • the image side S12 of the sixth lens L6 is convex at the maximum effective aperture, which is beneficial to the design of the rear end of the lens barrel and the reservation of the glue dispensing groove. And when this relationship is satisfied, the surface shape of the image side surface S12 of the sixth lens L6 at the near optical axis can be reasonably constrained, which is beneficial to reduce the degree of sudden change of the edge surface shape, reduce the degree of surface inflection, and then better.
  • the optical system 10 avoids the risk of light leakage and stray light occurring when the incident light passes through the sixth lens L6.
  • the surface matching relationship between the fifth lens L5 and the sixth lens L6 changes correspondingly, but when the relationship is satisfied, the optical system 10 can still be obtained. excellent aberration compensation effect and good image quality.
  • the relationship satisfied by the optical system 10 may specifically be 1.15, 1.3, 1.6, 2, 2.7, 3.3, 4, 5.2, 5.7 or 6.0.
  • R51 is the curvature radius of the object side S9 of the fifth lens L5 at the optical axis 101
  • R61 is the curvature radius of the object side S11 of the sixth lens L6 at the optical axis 101 Radius of curvature.
  • the object side S9 of the fifth lens L5 is a convex surface near the optical axis, and when R51>1.1mm, it can prevent the surface shape near the optical axis from changing drastically, so that the surface shape near the optical axis transitions smoothly, which is conducive to reducing the The degree of deflection of the marginal field of view light when passing through the fifth lens L5, on the other hand, can effectively control the tolerance sensitivity of the object side S9 of the fifth lens L5, and avoid the illuminance inflection phenomenon in the final image.
  • the object side profiles of the fifth lens L5 and the sixth lens L6 can be reasonably configured, which can better correct chromatic aberration, astigmatism and distortion, and improve the system resolution.
  • the R51/R61 relationship satisfied by the optical system 10 may specifically be 1.2, 1.6, 2, 2.5, 3, 3.3, 3.5, 3.8, 12.5, 43 or 45.
  • CT34 is the distance from the image side S6 of the third lens L3 to the object side S7 of the fourth lens L4 on the optical axis 101
  • CT45 is the image side S8 to the fourth lens L4.
  • CT56 is the distance from the image side S10 of the fifth lens L5 to the object side S11 of the sixth lens L6 on the optical axis 101 .
  • the relationship satisfied by the optical system 10 may specifically be 48, 50, 54, 59, 64, 68, 73, 75 or 78.
  • the reference wavelength of the Abbe number, effective focal length, and combined focal length in the above conditions is 587.56 nm, and the effective focal length and combined focal length at least refer to the values of the corresponding lens or lens group at the near optical axis.
  • the above relational conditions and the technical effects brought about are aimed at the six-piece optical system 10 with the above-mentioned lens design.
  • the lens design (number of lenses, refractive power configuration, surface configuration, etc.) of the optical system 10 cannot be guaranteed, it will be difficult to ensure that the optical system 10 can still have corresponding technical effects when these relationships are satisfied, and may even lead to the occurrence of imaging performance. Decreased significantly.
  • the optical system 10 includes an aperture stop STO, which may be disposed between two adjacent lenses of the second lens L2 and the fifth lens L5.
  • At least one lens in the optical system 10 has an aspherical surface.
  • the lens is said to have an aspherical surface.
  • both the object side surface and the image side surface of each lens can be designed as aspherical surfaces.
  • the aspheric surface configuration can further help the optical system 10 to eliminate aberrations more effectively and improve the imaging quality, and is also conducive to the miniaturized design of the optical system 10, so that the optical system 10 can maintain the miniaturized design at the same time. Has excellent optical effects.
  • At least one lens in the optical system 10 may have a spherical surface type, and the design of the spherical surface type can reduce the manufacturing difficulty of the lens and reduce the manufacturing cost. It should be noted that there may be certain deviations in the ratios of dimensions such as the thickness and surface curvature of each lens in the drawings. It should also be noted that when the object side or image side of a lens is aspheric, the surface may have a recurve structure, and the surface shape of the surface will change from the center to the edge.
  • Z is the distance from the corresponding point on the aspheric surface to the tangent plane of the surface at the optical axis
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric surface at the optical axis
  • k is the cone coefficient
  • Ai is the coefficient of the high-order term corresponding to the i-th-order high-order term in the aspheric surface formula.
  • the material of at least one lens in the optical system 10 is plastic (PC, Plastic), and the plastic material may be polycarbonate, gum, or the like.
  • the material of at least one lens in the optical system 10 is glass (GL, Glass).
  • the lens with plastic material can reduce the production cost of the optical system 10 , while the lens with glass material can withstand higher or lower temperature and has excellent optical effect and better stability.
  • at least two lenses of different materials may be provided in the optical system 10 , for example, a combination of glass lenses and plastic lenses may be used, but the specific configuration relationship can be determined according to actual needs, which is not exhaustive here. .
  • optical system 10 of the present application will be described below through more specific embodiments:
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a positive refractive power along the optical axis 101 from the object side to the image side.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis; the object side S5 is convex near the maximum effective aperture, and the image side S6 is concave near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is convex near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is convex near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • each lens surface of the first lens L1 to the sixth lens L6 is aspherical, and the material of each lens is plastic.
  • the respective lens parameters of the optical system 10 in the first embodiment are shown in Table 1 below.
  • the elements from the object side to the image side of the optical system 10 are sequentially arranged in the order from top to bottom in Table 1, wherein the stop represents the aperture stop STO.
  • the optical filter 110 can be a part of the optical system 10 or can be removed from the optical system 10, but after the optical filter 110 is removed, the optical total length of the optical system 110 remains unchanged.
  • the filter 110 may be an infrared cut filter.
  • the Y radius is the curvature radius of the corresponding surface of the lens at the optical axis 101
  • the Y aperture is the maximum effective aperture (maximum effective clear aperture) of the corresponding lens surface in the Y direction.
  • the surface with the surface number 1 represents the object side of the first lens
  • the surface with the surface number 2 represents the image side of the first lens.
  • the absolute value of the first value of the lens in the "Thickness" parameter column is the thickness of the lens on the optical axis 101
  • the absolute value of the second value is the image side of the lens to the next optical element (lens or diaphragm). ) on the optical axis 101, wherein the thickness parameter of the diaphragm represents the distance on the optical axis 101 from the diaphragm surface to the object side of the adjacent lens on the image side.
  • the reference wavelength of the refractive index, Abbe number, and focal length (effective focal length) of each lens in the table is 587.56 nm, and the numerical units of Y radius, thickness, focal length (effective focal length), and Y aperture are all millimeters (mm).
  • the parameter data and the lens surface structure used for the calculation of the relational expressions in the following embodiments are subject to the data in the lens parameter table in the corresponding embodiments.
  • the effective focal length f of the optical system 10 in the first embodiment is 0.74mm
  • the aperture number FNO is 2.18
  • the total optical length TTL is 5mm
  • the maximum field of view angle FOV is 187°
  • the optical system 10 has ultra-wide-angle characteristics. .
  • Table 2 shows the aspheric coefficients of the corresponding lens surfaces in Table 1, where K is the conic coefficient and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface type formula.
  • the optical system 10 satisfies the following relationships:
  • the optical system 10 when the optical system 10 satisfies the condition of the relational expression, the maximum angle of view and the total optical length of the optical system 10 with the above-mentioned refractive power and surface design can be reasonably configured, so that the optical system 10 further has the wide-angle feature while keeping the small size, breaking through the large size limitation of the traditional ultra-wide viewing angle system, so that the small-sized optical system 10 can also obtain an ultra-wide shooting angle of view; in addition, it can prevent the field of view and the total optical length If the ratio of ⁇ is too large, the deflection of the incident light in the optical system 10 is too strong, which is beneficial to suppress aberrations such as field curvature, astigmatism, and distortion of the edge field of view.
  • the combined focal length of the front lens group (first lens L1 to third lens L3) and the rear lens group (fourth lens L4 to sixth lens L6) of the optical system 10 can be Reasonable constraints are obtained.
  • the surface design of the first lens L1 and the second lens L2 can guide the light incident at a large angle reasonably, avoiding the introduction of excessive distortion and astigmatism; at the same time, it can cooperate with the third lens L3 to the sixth lens.
  • the reasonable surface shape change and refractive force distribution of L6 are also beneficial to provide reasonable aberration compensation, which helps to reduce the tolerance sensitivity of the optical system 10 and improve the image quality.
  • the optical system 10 that satisfies this relationship has a larger aperture, so that the system has a good diffraction limit, and the optical system 10 with the above design can have a good refraction effect, so that the optical system 10 has a wide-angle characteristic. Illumination and resolution.
  • the optical system 10 can have a larger depth of field, which can reduce the sensitivity to the object distance, so that the shooting range is wider and the definition is higher. Even if the focusing operation is not performed, the optical system 10 can Clear images of scenes at various object distances can be obtained.
  • the rear end of the lens group of the optical system 10 can be kept at a large distance from the imaging surface S13, that is, it has a relatively large back focus, which can provide optical
  • the larger protection space at the rear end of the 10 lens groups of the system is also conducive to reducing the difficulty of the assembly process and increasing the production yield; in addition, the larger back focus can reduce the maximum effective aperture of the sixth lens L6 and the fifth lens L5.
  • the difference in the maximum effective aperture is beneficial to reduce the difficulty of structural arrangement and reduce the volume of the optical system 10 .
  • the optical system 10 with a wide-angle design can be matched with a high-pixel image sensor, so that the optical system 10 can meet the requirements of large viewing angle and high pixel at the same time.
  • the universality of image sensors reduces the difficulty of assembly.
  • V3+V5 47.03; when this relationship is satisfied, the chromatic aberration of the edge field of view of the wide-angle system can be properly corrected, to avoid color shift in the imaging of the large-angle field of view, and to improve the overall imaging stability of the system.
  • FIG. 2 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system 10 in the first embodiment, wherein the reference wavelength of the astigmatism diagram and distortion diagram is 587 nm.
  • Longitudinal Spherical Aberration shows the deviation of the convergence focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light and the optical axis (unit is mm).
  • FIG. 2 also includes a field curvature diagram (Astigmatic Field Curves) of the optical system 10, wherein the S curve represents the sagittal field curvature at 587 nm, and the T curve represents the meridional field curvature at 587 nm.
  • S curve represents the sagittal field curvature at 587 nm
  • T curve represents the meridional field curvature at 587 nm.
  • the field curvature of the optical system is small, the maximum field curvature is controlled within ⁇ 0.02mm, the curvature of the image plane is effectively suppressed, and the sagittal field curvature and meridional field curvature in each field of view tend to be consistent, The astigmatism of each field of view is better controlled, so it can be seen that the optical system 10 has a clear image from the center to the edge of the field of view.
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with positive refractive power, and an aperture stop STO along the optical axis 101 from the object side to the image side. , a third lens L3 with positive refractive power, a fourth lens L4 with positive refractive power, a fifth lens L5 with negative refractive power, and a sixth lens L6 with positive refractive power.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is convex at the near optical axis; the object side S3 is concave near the maximum effective aperture, and the image side S4 is convex near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is concave at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is concave near the maximum effective aperture, and the image side S8 is convex near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • the lens parameters of the optical system 10 in the second embodiment are given in Table 3 and Table 4, wherein the definitions of the names and parameters of each element can be obtained from the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a positive refractive power along the optical axis 101 from the object side to the image side.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is convex near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is concave at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is concave near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 of this embodiment can have a clear image.
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a positive refractive power along the optical axis 101 from the object side to the image side.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis; the object side S5 is convex near the maximum effective aperture, and the image side S6 is concave near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is convex near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is convex near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is concave at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 is concave near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a positive refractive power along the optical axis 101 from the object side to the image side.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is concave near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis; the object side S5 is convex near the maximum effective aperture, and the image side S6 is concave near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is convex near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • the lens parameters of the optical system 10 in the fifth embodiment are given in Table 9 and Table 10, and the definitions of the names and parameters of each element can be obtained from the first embodiment, which will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a positive refractive power along the optical axis 101 from the object side to the image side.
  • the surface shape of each lens in the optical system 10 is as follows:
  • the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is concave near the maximum effective aperture. .
  • the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture. .
  • the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is concave at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is concave near the maximum effective aperture. .
  • the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is convex near the maximum effective aperture. .
  • the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is convex near the maximum effective aperture. .
  • the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 is concave near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
  • the lens parameters of the optical system 10 in the sixth embodiment are given in Table 11 and Table 12, and the definitions of the names and parameters of each element can be obtained from the first embodiment, which will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the camera module 20 includes the optical system 10 and the image sensor 210 in any of the above-mentioned embodiments, and the image sensor 210 is disposed at the light output of the optical system 10 . side.
  • the image sensor 210 may be a CCD (Charge Coupled Device, charge coupled device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the electronic device 30 includes a fixing member 310 , and the camera module 20 is mounted on the fixing member 310 .
  • the fixing member 310 may be a display screen cover, a circuit board, a middle frame, a back cover, and other components.
  • Electronic devices 30 include, but are not limited to, smartphones, smart watches, smart glasses, e-book readers, in-vehicle camera equipment, surveillance equipment, drones, medical equipment (such as endoscopes), tablet computers, biometric devices (such as fingerprints) Recognition equipment or pupil recognition equipment, etc.), PDA (Personal Digital Assistant, personal digital assistant), drones, etc.
  • the above camera module 20 it is not only beneficial to reduce the space occupied by the module in the electronic device 30 to facilitate the ultra-thin design of the device, but also enables the device to obtain a wide-angle shooting capability, so that a wider range of objects can be obtained. space scene.
  • the electronic device 30 is a vehicle-mounted camera device, and the camera module 20 is disposed in the fixing member 310 of the vehicle-mounted camera device.
  • the electronic device 30 can cooperate with on-board auxiliary systems such as an assisted driving system and a driver monitoring system, so as to transmit the obtained image information to the on-board control system to judge the road conditions or the driver's state, thereby providing timely warning to the driver.
  • the camera device 30 can also cooperate with the display screen in the cab, for example, the obtained images are displayed on the display screen for the driver to observe.
  • the automobile 40 includes a mounting portion 410 and the electronic device 30 described above, and the electronic device 30 is installed in the mounting portion 410 .
  • the mounting portion 410 may be a vehicle body part suitable for mounting a camera device, such as a front air intake grille, an interior rear-view mirror, a left rear-view mirror, a right rear-view mirror, a roof, a trunk cover, and the like.
  • a plurality of electronic devices 30 may be installed on the vehicle 40 to obtain omnidirectional image information of the vehicle body.
  • the driver or the in-vehicle system can obtain a wider range of road condition information around the car through the electronic device 30, so that even if the number of devices installed is reduced, it can obtain an all-round image of the car body and reduce dead spots;
  • the road condition image can meet the lower installation cost and improve driving safety due to better image clarity.
  • the "electronic device” used in the embodiments of the present invention may include, but is not limited to, be configured to be connected via wired lines (eg, via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), such as digital video broadcast broadcasting handheld, DVB-H) network digital television network, satellite network, AM-FM (amplitude modulation-frequency modulation, AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals device of.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • DSL digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • AM-FM amplitude modulation-frequency modulation, AM-FM
  • wireless communication terminals Electronic devices arranged to communicate over a wireless interface may be referred to as “wireless communication terminals", “wireless terminals” and/or “mobile terminals”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/ Personal digital assistants (PDAs) with intranet access, web browsers, memo pads, calendars, and/or global positioning system (GPS) receivers; and conventional laptops and/or palmtops A receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDAs Internet/ Personal digital assistants
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***(10),包括:具有负屈折力的第一透镜(L1),其物侧面(S1)为凸面,像侧面(S2)为凹面;具有屈折力的第二透镜(L2),其物侧面(S3)于近光轴处为凸面;具有正屈折力的第三透镜(L3);具有正屈折力的第四透镜(L4),其物侧面(S7)于近光轴处为凸面;第五透镜(L5),其物侧面(S9)于近光轴处为凸面;第六透镜(L6),其像侧面(S11)于近最大有效孔径处为凸面;光学***(10)满足关系:28.0deg/mm<FOV/TTL<40.0deg/mm。

Description

光学***、摄像模组、电子设备及汽车 技术领域
本发明涉及摄影技术领域,特别是涉及一种光学***、摄像模组、电子设备及汽车。
背景技术
近些年来,随着消费需求的迅速增大,搭载摄像镜头的各类电子设备也在迅速发展及普及。其中,拥有较大拍摄范围的电子设备在运动拍摄、全局取像、安全预警等众多领域有大量的需求。但对于以上领域中的传统的电子设备而言,内部元件的尺寸往往因为过大而导致设备的厚度难以得到有效减小,导致设备在小型化设计上受到制约。特别地,拥有较大视场角的传统摄像镜头往往受限于常规结构设计而导致其轴向尺寸难以得到较好的压缩,从而难以应用在对元件尺寸有严苛限制的电子设备中。
发明内容
根据本申请的各种实施例,提供一种光学***、摄像模组、电子设备及汽车。
一种光学***,沿光轴由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
具有正屈折力的第三透镜;
具有正屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面;
具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面;
具有屈折力的第六透镜,所述第六透镜的像侧面于近最大有效孔径处为凸面;
且所述光学***满足如下关系:
28.0deg/mm<FOV/TTL<40.0deg/mm;
FOV为所述光学***的最大视场角,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离。
一种摄像模组,包括图像传感器及上述的光学***,所述图像传感器设于所述光学***的像侧。
一种电子设备,包括固定件及上述的摄像模组,所述摄像模组设于所述固定件。
一种汽车,包括安装部及上述的摄像设备,所述摄像设备设于所述安装部。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学***的结构示意图;
图2包括第一实施例中光学***的纵向球差图、像散图和畸变图;
图3为本申请第二实施例提供的光学***的结构示意图;
图4包括第二实施例中光学***的纵向球差图、像散图和畸变图;
图5为本申请第三实施例提供的光学***的结构示意图;
图6包括第三实施例中光学***的纵向球差图、像散图和畸变图;
图7为本申请第四实施例提供的光学***的结构示意图;
图8包括第四实施例中光学***的纵向球差图、像散图和畸变图;
图9为本申请第五实施例提供的光学***的结构示意图;
图10包括第五实施例中光学***的纵向球差图、像散图和畸变图;
图11为本申请第六实施例提供的光学***的结构示意图;
图12包括第六实施例中光学***的纵向球差图、像散图和畸变图;
图13为本申请一实施例提供的摄像模组的示意图;
图14为本申请一实施例提供的电子设备的结构示意图;
图15为本申请一实施例提供的汽车的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
参考图1,在本申请的实施例中,光学***10沿光轴101由物侧至像侧依次包括:具有负屈折力的第一透镜L1、具有正屈折力或负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力或负屈折力的第五透镜L5以及具有正屈折力或负屈折力的第六透镜L6。六片透镜的光轴处于同一直线,该直线即作为光学***10的光轴101。光学***10中的各透镜可装配于镜筒中以形成摄像镜头。
第一透镜L1具有物侧面S1和像侧面S2,第二透镜L2具有物侧面S3和像侧面S4,第三透镜L3具有物侧面S5和像侧面S6,第四透镜L4具有物侧面S7和像侧面S8,第五透镜L5具有物侧面S9及像侧面S10,第六透镜L6具有物侧面S11及像侧面S12。光学***10还具有成像面S13,成像面S13位于第六透镜L6的像侧。一般地,光学***10的成像面S13与图像传感器的感光面重合,中心视场的无限远处的入射光线经光学***10各透镜依次调节后会聚于成像面S13。
在本申请的实施例中,第一透镜L1的物侧面S1为凸面,像侧面S2为凹面;第二透镜L2的物侧面S3于近光轴处为凸面;第四透镜L4的物侧面S7于近光轴处为凸面;第五透镜L5的物侧面S9于近光轴处为凸面;第六透镜L6的像侧面S12于近最大有效孔径处为凸面。当描述透镜表面于近光轴处具有某种面型时,即该透镜表面于光轴101附近具有该种面型;当描述透镜表面于近最大有效孔径处具有某种面型时,即该透镜表面由中心至边缘的方向上,于靠近最大有效孔径处的附近具有该种面型。
本申请实施例所提供的光学***10中,第一透镜L1具有负屈折力,且其物侧面S1为凸面,像侧面S2为凹面,同时第二透镜L2的物侧面S3于近光轴处为凸面,从而有利于光学***10最靠近物方的两片透镜将与光轴呈更大夹角的入射光线偏折。而第三透镜L3和第四透镜L4均具有正屈折力,则能够对经物方透镜偏折后的入射光线实现及时的调节,以对像差实现及时校正,同时也能因为将正屈折力分担至两片透镜,从而防止单一透镜承担较大的正屈折力负担导致过度校正的问题。另外,第四透镜L4具有正屈折力,且其物侧面S7及第五透镜L5的物侧面S9于近光轴处均为凸面,从而可将各视场所对应的入射光线实现会聚,以利于缩短入射光线的会聚距离。另外通过将第六透镜L6的像侧面S12于近最大有效孔径处设计为凸面,也可利于进一步缩短边缘视场所对应的入射光线的会聚距离,配合上述第四透镜L4和第五透镜L5的面型设计,可利于使入射光线小角度偏转,并进一步缩短各视场所对应的入射光线的会聚面与透镜组的距离,进而实现有效压缩光学***10的总长的效果。拥有上述设计的光学***10能够兼顾大视角和小型化设计。
进一步地,本申请实施例所提供的光学***10还满足关系:28.0deg/mm<FOV/TTL<40.0deg/mm;FOV为光学***10的最大视场角,TTL为第一透镜L1的物侧面S1至光学***10的成像面S13于光轴101上的距离。当光学***10进一步满足上述关系式条件时,拥有上述屈折力及面型设计的光学***10的最大视场角与光学总长之间能够合理配置,从而使光学***10在保持小尺寸的情况下进一步拥有广角特性,突破传统的超宽视角***的大尺寸限制,让小尺寸光学***10也能获得超宽的拍摄视角;另外也能防止视场角与光学总长的配比过大而导致入射光线在光学***10中的偏折过强,从而有利于抑制边缘视场的场曲、像散、畸变等像差。在一些实施例中,光学***10所满足的该关系具体可以为29、29.3、29.5、32、35、37、37.5、38、或38.5,数值单位为deg/mm。
此外,在一些实施例中,光学***10还满足以下至少一条关系,且当满足任一关系时均可拥有相应的技术效果:
FOV>180deg;TTL<6.5mm;满足这两条关系时,光学***10将拥有超广角设计,且光学***10的总长得到有效控制,避免了拥有超宽视角的传统***的大尺寸结构。应注意的是,当装配图像传感器后,FOV也可理解为图像传感器的矩形有效像素区域对角线方向所对应的光学***10的最大视场角。
0.5<|f123/f456|<2;f123为第一透镜L1、第二透镜L2及第三透镜L3的组合焦距,f456为第四透镜L4、第五透镜L5及第六透镜L6的组合焦距。满足该关系时,光学***10的前镜组(第一透镜L1至第三透镜L3)和后镜组(第四透镜L4至第六透镜L6)的组合焦距能够得到合理约束,一方面可配合第一透镜L1和第二透镜L2的面型设计合理地引导大角度入射的光线,避免引入过大的畸变和像散;同时配合第三透镜L3至第六透镜L6合理的面型变化和屈折力分配,从而也利于提供合理的像差补偿,有助于降低光学***10的公差敏感度并提升像质。在一些实施例中,光学***10所满足的该关系具体可以为0.65、0.7、0.8、0.9、1.1、1.3、1.35、1.38或1.4。
2.5<f4*FNO/f<40.0;f4为第四透镜L4的有效焦距,FNO为光学***10的光圈值,f为光学***10的有效焦距。此时光学***10包括孔径光阑STO,孔径光阑STO设于第二透镜L2与第五透镜L5之间。当光学***10满足该设计时,可获得良好的像质性能与像差校正效果。在一些实施例中,光学***10所满足的该关系具体可以为2.8、3.1、3.5、4、5.7、6.5、7.3、14、26、31、35或37。
FNO<2.2。满足该关系的光学***10拥有较大的光圈,使得***拥有良好的衍射极限,且配合拥有以上设计的光学***10可拥有良好折光效果,使得光学***10在拥有广角特性下依然拥有优良的相对照度与解像力。
f<0.85mm;满足该关系时,可增大光学***10的景深,降低光学***10对物距的敏感度,使拍摄范围更广,清晰度更高,即使不进行对焦操作,光学***10也能获得各种物距下的景象的清晰成像。
1.5<IMGH/BF<4.0;BF>0.85mm;IMGH为光学***10的最大视场角所对应的像高,BF为第六透镜L6的像侧面S12至光学***10的成像面S13于光轴101上的距离。IMGH也可理解为成像面S13上矩形有效成像区域的对角线长度。当装配图像传感器后,Imgh也可理解为图像传感器的矩形有效像素区域的中心至对角线边缘的距离,且上述有效成像区域的对角线方向平行于该矩形有效像素区域的对角线方向。满足BF>0.85mm的关系时,可使光学***10的镜组后端距离成像面S13保持较大的距离,从而能够提供给光学***10镜组后端更大的保护空间,同时也有利于降低装配工艺难度,增加生产良品率;另外,较大的后焦可减小第六透镜L6的最大有效孔径与第五透镜L5的最大有效孔径的差异,这有利于降低光学***10的结构布置难度和缩小体积。进一步满足1.5<IMGH/BF<4.0的关系时,拥有广角设计的光学***10可以匹配高像素的图像传感器,以使光学***10同时满足大视角及高像素的要求,同时由于具备较大的后焦,因此也有益于增加光学***10对图像传感器的普适性,降低装配难度。在一些实施例中,光学***10所满足的IMGH/BF关系具体可以为1.98、2.05、2.2、2.5、2.8、3、3.4、3.6、3.75或3.8。
0<|R62/f6|<7;R62为第六透镜L6的像侧面S12于光轴101处的曲率半径,f6为第六透镜L6的有效焦距。第六透镜L6的像侧面S12于最大有效孔径处为凸面,有益于镜筒后端的设计和点胶胶槽的预留。且当满足该关系时,第六透镜L6的像侧面S12于近光轴处的面型能够受到合理约束,从而利于降低边缘面型的突变程度,降低面型反曲程度,进而可较好地规避入射光线在经过第六透镜L6时出现漏光和杂散光的风险。随着第五透镜L5和第六透镜L6折射率的不同分配,使得第五透镜L5和第六透镜L6的面型匹配关系相应改变,但当满足该关系时,依旧可以使光学***10获得良好的像差补偿效果和良好的像质。在一些实施例中,光学***10所满足的该关系具体可以为1.15、1.3、1.6、2、2.7、3.3、4、5.2、5.7或6.0。
0<|R51/R61|<48;R51>1.1mm;R51为第五透镜L5的物侧面S9于光轴101处的曲率半径,R61为第六透镜L6的物侧面S11于光轴101处的曲率半径。第五透镜L5的物侧面S9在光轴附近为凸面,且当R51>1.1mm时,可防止光轴附近的面型发生剧烈变化,使得光轴附近的面型平滑过渡,一方面有 利于降低边缘视场光线在经过第五透镜L5时的偏折程度,另一方面可效控制第五透镜L5物侧面S9的公差敏感性,避免最终成像出现照度反曲现象。当进一步满足0<|R51/R61|<48的关系时,第五透镜L5和第六透镜L6两者的物侧面面型能够得到合理配置,可较好的校正色差、像散与畸变,提升***解像力。在一些实施例中,光学***10所满足的R51/R61关系具体可以为1.2、1.6、2、2.5、3、3.3、3.5、3.8、12.5、43或45。
0.4<(CT45+CT56)/CT34<3.5;CT34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴101上的距离,CT45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴101上的距离,CT56为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11于光轴101上的距离。满足该关系时,第三透镜L3至第六透镜L6之间拥有较高的空间紧凑性,进而使得整个光学***10总长较小。在一些实施例中,光学***10所满足的该关系具体可以为0.5、0.56、0.64、0.75、0.9、1、1.2、2、2.4、2.7或3。
47.0<V3+V5<80.0;V3为第三透镜L3的阿贝数,V5为第五透镜L5的阿贝数。满足该关系时,可使广角***的边缘视场的色差校正得当,避免大角度视场成像出现色偏,提升***整体成像稳定性。在一些实施例中,光学***10所满足的该关系具体可以为48、50、54、59、64、68、73、75或78。
应注意的是,以上各关系式条件中的阿贝数、有效焦距、组合焦距的数值参考波长为587.56nm,有效焦距及组合焦距至少是指相应透镜或透镜组于近光轴处的数值。且以上各关系式条件及其所带来的技术效果针对的是具有上述透镜设计的六片式光学***10。在无法确保前述光学***10的透镜设计(透镜数量、屈折力配置、面型配置等)时,将难以确保光学***10在满足这些关系依然能够拥有相应的技术效果,甚至可能会导致摄像性能发生显著下降。
在一些实施例中,光学***10包括孔径光阑STO,孔径光阑STO可设于第二透镜L2与第五透镜L5中的两个相邻透镜之间。
在一些实施例中,光学***10中的至少一个透镜具有非球面面型,当透镜的至少一侧表面(物侧面或像侧面)为非球面时,即可称该透镜具有非球面面型。具体地,可以将各透镜的物侧面及像侧面均设计为非球面。非球面的面型设置能够进一步帮助光学***10更为有效地消除像差,改善成像质量,同时还有利于光学***10的小型化设计,使光学***10能够在保持小型化设计的前提下同时具备优良的光学效果。当然,在另一些实施例中,光学***10中至少一个透镜可具有球面面型,球面面型的设计可降低透镜的制备难度,降低制备成本。应注意的是,附图中的各透镜厚度、表面曲率等尺寸的比例可能存在一定的偏差。另外还应注意的是,当某个透镜的物侧面或像侧面为非球面时,该面可以存在反曲结构,此时该面由中心至边缘的面型将发生改变。
非球面的面型计算可参考非球面公式:
Figure PCTCN2021090499-appb-000001
其中,Z为非球面上相应点到该面于光轴处的切平面的距离,r为非球面上相应点到光轴的距离,c为非球面于光轴处的曲率,k为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的高次项系数。
另一方面,在一些实施例中,光学***10中至少一个透镜的材质为塑料(PC,Plastic),塑料材质可以为聚碳酸酯、树胶等。在一些实施例中,光学***10中至少一个透镜的材质为玻璃(GL,Glass)。具有塑料材质的透镜能够降低光学***10的生产成本,而具有玻璃材质的透镜能够耐受较高或较低的温度且具有优良的光学效果及较佳的稳定性。在一些实施例中,光学***10中可设置至少两种不同材质的透镜,例如可采用玻璃透镜及塑料透镜相结合的设计,但具体配置关系可根据实际需求而确定,此处不加以穷举。
以下通过更具体的实施例以对本申请的光学***10进行说明:
第一实施例
参考图1,在第一实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一 透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、孔径光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5及具有正屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效孔径处为凸面,像侧面S4于近最大有效孔径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凹面;物侧面S5于近最大有效孔径处为凸面,像侧面S6于近最大有效孔径处为凹面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效孔径处为凸面,像侧面S8于近最大有效孔径处为凸面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效孔径处为凹面,像侧面S10于近最大有效孔径处为凸面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;物侧面S11于近最大有效孔径处为凸面,像侧面S12于近最大有效孔径处为凸面。
在第一实施例中,第一透镜L1至第六透镜L6的各透镜表面均为非球面,且各透镜的材质均为塑料。
第一实施例中光学***10的各透镜参数由以下表1所展现。由光学***10的物侧至像侧的各元件依次按照表1从上至下的顺序排列,其中光阑表征孔径光阑STO。滤光片110可以为光学***10的一部分,也可从光学***10中去除,但当去除滤光片110后,光学***110的光学总长保持不变。滤光片110可以为红外截止滤光片。表1中Y半径为透镜相应表面于光轴101处的曲率半径,Y孔径为相应透镜表面于Y方向的最大有效孔径(最大有效通光孔径)。表1中面序号为1的表面代表第一透镜的物侧面,面序号为2的表面代表第一透镜的像侧面。透镜于“厚度”参数列中的第一个数值的绝对值为该透镜于光轴101上的厚度,第二个数值的绝对值为该透镜的像侧面至后一光学元件(透镜或光阑)于光轴101上的距离,其中光阑的厚度参数表示光阑面至像方相邻透镜的物侧面于光轴101上的距离。表格中各透镜的折射率、阿贝数、焦距(有效焦距)的参考波长均为587.56nm,且Y半径、厚度、焦距(有效焦距)、Y孔径的数值单位均为毫米(mm)。另外,以下各实施例中用于关系式计算的参数数据和透镜面型结构以相应实施例中的透镜参数表格中的数据为准。
表1
Figure PCTCN2021090499-appb-000002
Figure PCTCN2021090499-appb-000003
由表1可知,第一实施例中的光学***10的有效焦距f为0.74mm,光圈数FNO为2.18,光学总长TTL为5mm,最大视场角FOV为187°,光学***10拥有超广角特性。
以下表2展现了表1中相应透镜表面的非球面系数,其中K为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的系数。
表2
面序号 1 2 3 4 5 6
K -9.999E+01 -3.767E-01 2.262E-02 -1.703E+00 -3.882E+00 -3.908E+01
A4 4.382E-02 -4.022E-01 -1.670E+00 -1.133E+00 6.208E-02 4.592E-01
A6 -1.084E-02 1.078E+00 6.635E+00 2.594E+01 -3.013E+00 -5.784E+00
A8 4.386E-03 -4.732E+00 -3.303E+01 -3.167E+02 4.358E+01 1.106E+02
A10 -1.978E-03 1.651E+01 1.526E+02 2.662E+03 -4.046E+02 -1.954E+03
A12 3.039E-04 -3.769E+01 -4.778E+02 -1.361E+04 2.396E+03 2.410E+04
A14 5.047E-05 5.654E+01 9.236E+02 4.165E+04 -9.317E+03 -1.861E+05
A16 -2.276E-05 -5.313E+01 -1.068E+03 -7.440E+04 2.271E+04 8.656E+05
A18 2.773E-06 3.006E+01 6.794E+02 7.036E+04 -3.109E+04 -2.209E+06
A20 -1.175E-07 -8.906E+00 -1.828E+02 -2.645E+04 1.798E+04 2.380E+06
面序号 8 9 10 11 12 13
K 1.628E+00 -4.530E-01 -2.774E+01 -1.418E+00 -2.710E+00 1.942E+00
A4 -6.811E-02 -3.194E+00 -5.902E+00 -4.798E+00 -9.964E-01 6.240E-01
A6 3.326E+00 1.094E+02 1.110E+02 4.522E+01 1.230E+01 -3.730E+00
A8 -1.130E+02 -1.877E+03 -1.581E+03 -3.497E+02 -9.560E+01 3.792E+01
A10 2.038E+03 2.107E+04 1.540E+04 1.929E+03 4.535E+02 -2.534E+02
A12 -2.261E+04 -1.589E+05 -1.018E+05 -7.274E+03 -1.279E+03 1.040E+03
A14 1.599E+05 7.947E+05 4.455E+05 1.808E+04 1.911E+03 -2.613E+03
A16 -6.997E+05 -2.519E+06 -1.233E+06 -2.816E+04 -8.311E+02 3.922E+03
A18 1.725E+06 4.571E+06 1.951E+06 2.476E+04 -1.300E+03 -3.239E+03
A20 -1.828E+06 -3.609E+06 -1.342E+06 -9.319E+03 1.329E+03 1.135E+03
在第一实施例中,光学***10满足以下各关系:
FOV/TTL=37.4deg/mm;当光学***10满足该关系式条件时,拥有上述屈折力及面型设计的光学***10的最大视场角与光学总长之间能够合理配置,从而使光学***10在保持小尺寸的情况下进一步拥有广角特性,突破传统的超宽视角***的大尺寸限制,让小尺寸光学***10也能获得超宽的拍摄视角;另外也能防止视场角与光学总长的配比过大而导致入射光线在光学***10中的偏折过强,从而有利于抑制边缘视场的场曲、像散、畸变等像差。
|f123/f456|=0.84;满足该关系时,光学***10的前镜组(第一透镜L1至第三透镜L3)和后镜组(第四透镜L4至第六透镜L6)的组合焦距能够得到合理约束,一方面可配合第一透镜L1和第二透镜L2的面型设计合理地引导大角度入射的光线,避免引入过大的畸变和像散;同时配合第三透镜L3至第六透镜L6合理的面型变化和屈折力分配,从而也利于提供合理的像差补偿,有助于降低光学***10的公差敏感度并提升像质。
f4*FNO/f=2.78;当光学***10满足该设计时,可获得良好的像质性能与像差校正效果。
FNO=2.18。满足该关系的光学***10拥有较大的光圈,使得***拥有良好的衍射极限,且配合拥 有以上设计的光学***10可拥有良好折光效果,使得光学***10在拥有广角特性下依然拥有优良的相对照度与解像力。
f=0.74mm;满足该关系时,光学***10可拥有较大的景深,可降低对物距的敏感度,使拍摄范围更广,清晰度更高,即使不进行对焦操作,光学***10也能获得各种物距下的景象的清晰成像。
IMGH/BF=1.92;BF=1.343mm;满足该设置时,可使光学***10的镜组后端距离成像面S13保持较大的距离,即拥有相对较大的后焦,从而能够提供给光学***10镜组后端更大的保护空间,同时也有利于降低装配工艺难度,增加生产良品率;另外,较大的后焦可减小第六透镜L6的最大有效孔径与第五透镜L5的最大有效孔径的差异,这有利于降低光学***10的结构布置难度和缩小体积。进一步地,拥有广角设计的光学***10可以匹配高像素的图像传感器,以使光学***10同时满足大视角及高像素的要求,同时由于具备较大的后焦,因此也有益于增加光学***10对图像传感器的普适性,降低装配难度。
|R62/f6|=1.47;满足该关系时,第六透镜L6的像侧面S12于近光轴处的面型能够受到合理约束,从而利于降低边缘面型的突变程度,降低面型反曲程度,进而可较好地规避入射光线在经过第六透镜L6时出现漏光和杂散光的风险。
|R51/R61|=3.05;R51=3.077mm;满足该设计时,可防止光轴附近的面型发生剧烈变化,使得光轴附近的面型平滑过渡,一方面有利于降低边缘视场光线在经过第五透镜L5时的偏折程度,另一方面可效控制第五透镜L5物侧面S9的公差敏感性,避免最终成像出现照度反曲现象。另外,第五透镜L5和第六透镜L6两者的物侧面面型能够得到合理配置,可较好的校正色差、像散与畸变,提升***解像力。
(CT45+CT56)/CT34=0.46。满足该关系时,第三透镜L3至第六透镜L6之间拥有较高的空间紧凑性,进而使得整个光学***10总长较小。
V3+V5=47.03;满足该关系时,可使广角***的边缘视场的色差校正得当,避免大角度视场成像出现色偏,提升***整体成像稳定性。
另一方面,图2包括了第一实施例中光学***10的纵向球差图、像散图和畸变图,其中像散图和畸变图的参考波长为587nm。纵向球面像差图(Longitudinal Spherical Aberration)展现了不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学***10的场曲图(Astigmatic Field Curves),其中S曲线代表587nm下的弧矢场曲,T曲线代表587nm下的子午场曲。由图中可知,光学***的场曲较小,最大场曲被控制在±0.02mm以内,像面弯曲程度得到有效抑制,且各视场下的弧矢场曲及子午场曲趋于一致,各视场的像散得到较佳的控制,因此可知光学***10的视场中心至边缘均拥有清晰的成像。
第二实施例
参考图3,在第二实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、孔径光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5及具有正屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凸面;物侧面S3于近最大有效孔径处为凹面,像侧面S4于近最大有效孔径处为凸面。
第三透镜L3的物侧面S5于近光轴处为凹面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效孔径处为凹面,像侧面S6于近最大有效孔径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;物侧面S7于近最大 有效孔径处为凹面,像侧面S8于近最大有效孔径处为凸面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效孔径处为凹面,像侧面S10于近最大有效孔径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;物侧面S11于近最大有效孔径处为凸面,像侧面S12于近最大有效孔径处为凸面。
第二实施例中光学***10的各透镜参数由表3和表4给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2021090499-appb-000004
表4
面序号 1 2 3 4 6 7
K -1.197E+01 -8.795E-01 -9.900E+01 -1.576E+01 -7.111E+00 -1.750E+00
A4 -4.074E-03 5.997E-02 -2.017E-01 -2.746E-01 -9.982E-01 -6.909E-01
A6 2.086E-04 -1.326E-01 -1.501E-01 1.955E-01 -9.063E-02 -1.718E+00
A8 1.779E-04 4.120E-01 -1.124E-01 -2.392E-01 -1.458E+01 3.018E+00
A10 -1.292E-05 -3.511E-01 1.623E-01 1.124E-01 -6.379E+00 -1.720E+01
A12 1.384E-22 -7.764E-14 2.665E-17 2.674E-17 2.674E-17 2.674E-17
A14 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A16 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A18 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
面序号 8 9 10 11 12 13
K 9.979E-01 -9.900E+01 -9.900E+01 2.035E+00 -2.155E+01 -8.007E-01
A4 -3.761E-01 -1.948E+00 -2.868E+00 -5.122E-02 1.289E+00 4.615E-01
A6 -2.397E-01 -6.163E-01 3.468E+00 -8.480E+00 -8.850E+00 4.630E-01
A8 1.193E+00 1.672E+00 -7.523E+00 5.833E+01 2.986E+01 7.208E-01
A10 -5.151E+00 3.171E+00 2.529E+02 -2.338E+02 -5.331E+01 -4.400E+00
A12 2.674E-17 2.738E-17 -2.334E+03 6.498E+02 4.934E+01 6.010E+00
A14 0.000E+00 0.000E+00 1.055E+04 -1.279E+03 -1.885E+01 -2.841E+00
A16 0.000E+00 0.000E+00 -2.701E+04 1.655E+03 0.000E+00 0.000E+00
A18 0.000E+00 0.000E+00 3.809E+04 -1.233E+03 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 -2.300E+04 3.931E+02 0.000E+00 0.000E+00
该实施例中的光学***10满足以下关系:
FOV/TTL(deg/mm) 36.963 |R62/f6| 0.66
|f123/f456| 0.708 |R51/R61| 13.698
f4*FNO/f 37.494 R51(mm) 35.61
IMGH/BF 2.967 (CT45+CT56)/CT34 0.759
BF(mm) 0.886 V3+V5 79.829
由图4中的各像差图可知,光学***10的纵向球差、场曲、像散、畸变均得到良好的控制,其中所有视场下的子午场曲和弧矢场曲均被控制在±0.02mm以内,像面弯曲程度受到较好的抑制,且像散得到合理调节,因此该实施例的光学***10能够拥有清晰的成像。
第三实施例
参考图5,在第三实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、孔径光阑STO、具有正屈折力的第五透镜L5及具有负屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效孔径处为凸面,像侧面S4于近最大有效孔径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效孔径处为凹面,像侧面S6于近最大有效孔径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效孔径处为凸面,像侧面S8于近最大有效孔径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效孔径处为凸面,像侧面S10于近最大有效孔径处为凸面。
第六透镜L6的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效孔径处为凹面,像侧面S12于近最大有效孔径处为凸面。
第三实施例中光学***10的各透镜参数由表5和表6给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2021090499-appb-000005
Figure PCTCN2021090499-appb-000006
表6
面序号 1 2 3 4 5 6
K 0.000E+00 0.000E+00 -8.691E+00 -7.740E-01 9.900E+01 -1.256E+01
A4 1.797E-03 -4.367E-02 4.561E-02 4.761E-01 -1.190E-01 1.937E-01
A6 2.625E-05 1.871E-03 -3.151E-02 -1.694E-01 9.337E-02 1.923E-01
A8 2.122E-06 1.877E-03 -3.918E-04 1.736E+00 -3.173E-01 -3.157E-01
A10 -1.943E-07 -2.879E-04 2.970E-03 -3.081E+00 -1.290E+00 -6.364E-01
A12 0.000E+00 0.000E+00 -7.843E-26 -7.843E-26 -7.832E-26 -7.832E-26
A14 0.000E+00 0.000E+00 -2.769E-29 -2.769E-29 -1.823E-29 -1.823E-29
A16 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A18 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
面序号 7 8 10 11 12 13
K 4.860E+00 -2.537E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A4 2.623E-01 -3.402E-01 -4.459E-01 0.000E+00 -4.068E-01 -1.013E-01
A6 2.696E-01 9.932E-01 7.418E-01 0.000E+00 9.362E-02 -7.917E-02
A8 3.294E-03 3.044E-01 -1.454E+00 0.000E+00 -5.183E-01 2.345E-01
A10 1.349E-02 4.121E+00 5.252E-01 0.000E+00 1.165E+00 -1.560E-01
A12 -7.832E-26 -7.832E-26 -7.843E-26 0.000E+00 -7.832E-26 -7.857E-26
A14 -1.823E-29 -1.823E-29 -2.769E-29 0.000E+00 -1.823E-29 -2.876E-29
A16 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -1.799E-29
A18 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
该实施例中的光学***10满足以下关系:
FOV/TTL(deg/mm) 29.213 |R62/f6| 6.085
|f123/f456| 1.116 |R51/R61| 0.928
f4*FNO/f 7.194 R51(mm) 1.133
IMGH/BF 1.952 (CT45+CT56)/CT34 3.086
BF(mm) 1.336 V3+V5 76.301
由图6中的各像差图可知,光学***10的纵向球差、场曲、像散、畸变均得到良好的控制,其中所有视场下的子午场曲和弧矢场曲均被控制在±0.03mm以内,像面弯曲程度受到较好的抑制,且像散得到合理调节,因此该实施例的光学***10能够拥有清晰的成像。
第四实施例
参考图7,在第四实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、孔径光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5及具有负屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效孔径处为凸面,像侧面S4于近最大有效孔径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凹面;物侧面S5于近最大有效孔径处为凸面,像侧面S6于近最大有效孔径处为凹面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效孔径处为凸面,像侧面S8于近最大有效孔径处为凸面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效孔径处为凹面,像侧面S10于近最大有效孔径处为凸面。
第六透镜L6的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凸面;物侧面S11于近最大有效孔径处为凹面,像侧面S12于近最大有效孔径处为凸面。
第四实施例中光学***10的各透镜参数由表7和表8给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2021090499-appb-000007
Figure PCTCN2021090499-appb-000008
表8
面序号 1 2 3 4 5 6
K 9.900E+01 -3.892E-01 3.727E-02 -1.804E+00 -5.512E+00 -1.123E+01
A4 4.169E-02 -2.071E-01 -1.256E+00 -2.011E-01 1.738E-01 5.913E-01
A6 -1.061E-02 1.793E-01 8.856E-01 2.952E+00 -5.315E+00 -9.471E-01
A8 4.359E-03 -1.471E+00 4.475E+00 -8.384E+01 1.012E+02 1.682E+02
A10 -1.963E-03 1.115E+01 -2.885E+00 1.558E+03 -1.416E+03 -5.928E+03
A12 3.312E-04 -3.997E+01 -5.804E+01 -1.457E+04 1.262E+04 1.034E+05
A14 3.299E-05 7.979E+01 2.003E+02 8.230E+04 -6.957E+04 -1.026E+06
A16 -1.835E-05 -8.764E+01 -3.081E+02 -2.836E+05 2.283E+05 5.903E+06
A18 2.244E-06 5.011E+01 2.377E+02 5.483E+05 -4.057E+05 -1.831E+07
A20 -9.273E-08 -1.267E+01 -7.445E+01 -4.557E+05 2.969E+05 2.369E+07
面序号 8 9 10 11 12 13
K 4.310E+00 -2.632E-01 2.066E+01 4.040E+01 -6.742E+00 -1.189E+00
A4 8.487E-02 -2.489E+00 -4.181E+00 -7.898E+00 -5.393E+00 1.049E+00
A6 4.139E+00 7.947E+01 8.436E+01 1.077E+01 3.016E+01 1.787E+01
A8 -4.886E+01 -1.373E+03 -1.314E+03 1.213E+03 7.099E+02 -2.164E+02
A10 -9.036E+02 1.628E+04 1.419E+04 -1.831E+04 -1.360E+04 1.175E+03
A12 2.980E+04 -1.335E+05 -1.057E+05 1.335E+05 1.079E+05 -3.825E+03
A14 -3.555E+05 7.360E+05 5.280E+05 -5.660E+05 -4.818E+05 7.795E+03
A16 2.195E+06 -2.592E+06 -1.684E+06 1.418E+06 1.261E+06 -9.644E+03
A18 -6.980E+06 5.244E+06 3.091E+06 -1.946E+06 -1.807E+06 6.519E+03
A20 9.036E+06 -4.627E+06 -2.477E+06 1.126E+06 1.097E+06 -1.799E+03
该实施例中的光学***10满足以下关系:
FOV/TTL(deg/mm) 39.289 |R62/f6| 0.34
|f123/f456| 0.843 |R51/R61| 3.569
f4*FNO/f 2.903 R51(mm) 3.304
IMGH/BF 2.104 (CT45+CT56)/CT34 1.025
BF(mm) 1.301 V3+V5 79.268
由图8中的各像差图可知,光学***10的纵向球差、场曲、像散、畸变均得到良好的控制,其中大部分视场下的子午场曲和弧矢场曲均被控制在±0.05mm以内,像面弯曲程度受到较好的抑制,且像散得到合理调节,因此该实施例的光学***10能够拥有清晰的成像。
第五实施例
参考图9,在第五实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、孔径光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5及具有正屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效孔径处为凹面,像侧面S4于近最大有效孔径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凹面;物侧面S5于近最大有效孔径处为凸面,像侧面S6于近最大有效孔径处为凹面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效孔径处为凸面,像侧面S8于近最大有效孔径处为凸面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效孔径处为凹面,像侧面S10于近最大有效孔径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;物侧面S11于近最大有效孔径处为凸面,像侧面S12于近最大有效孔径处为凸面。
第五实施例中光学***10的各透镜参数由表9和表10给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2021090499-appb-000009
表10
面序号 1 2 3 4 5 6
K 1.488E+01 -9.135E-01 2.562E+00 -3.829E-01 -5.349E-01 6.777E+01
A4 6.102E-04 -4.039E-02 -5.137E-02 2.267E-01 2.028E-01 1.504E-01
A6 -2.288E-05 -1.588E-02 9.137E-03 -2.149E-01 -1.151E-01 2.438E-01
A8 -4.712E-06 1.489E-02 1.194E-03 -9.728E-02 9.341E-02 -5.689E-02
A10 1.890E-07 -4.493E-03 -2.697E-04 -2.100E-01 -1.676E-01 -3.365E-01
A12 7.183E-10 3.160E-04 -2.617E-04 6.457E-03 3.929E-09 4.263E-09
A14 -5.294E-11 -2.348E-05 8.096E-13 8.276E-13 1.184E-12 1.117E-12
A16 -1.047E-11 2.703E-16 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A18 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
面序号 8 9 10 11 12 13
K 1.204E+00 5.298E+00 -9.900E+01 -5.628E+01 -1.253E+01 4.384E+00
A4 -3.960E-02 -1.225E+00 -1.797E+00 -6.056E-01 8.931E-03 1.338E-01
A6 -4.393E-01 3.810E-01 8.712E+00 2.358E+00 -3.029E-02 2.258E-03
A8 -1.339E+00 2.204E+00 -1.045E+02 -1.066E+01 -1.896E-02 -3.154E-02
A10 -9.866E+00 -5.278E+00 8.588E+02 3.416E+01 1.244E-02 6.762E-03
A12 4.028E-09 4.028E-09 -4.720E+03 -7.148E+01 -1.141E-03 -2.373E-04
A14 1.117E-12 1.117E-12 1.696E+04 9.449E+01 1.117E-12 1.117E-12
A16 0.000E+00 0.000E+00 -3.811E+04 -7.064E+01 0.000E+00 0.000E+00
A18 0.000E+00 0.000E+00 4.862E+04 2.288E+01 0.000E+00 0.000E+00
A20 0.000E+00 0.000E+00 -2.672E+04 0.000E+00 0.000E+00 0.000E+00
该实施例中的光学***10满足以下关系:
FOV/TTL(deg/mm) 28.748 |R62/f6| 2.572
|f123/f456| 1.457 |R51/R61| 47.479
f4*FNO/f 6.468 R51(mm) 40
IMGH/BF 3.858 (CT45+CT56)/CT34 0.49
BF(mm) 0.933 V3+V5 47.419
由图10中的各像差图可知,光学***10的纵向球差、场曲、像散、畸变均得到良好的控制,其中所有视场下的子午场曲和弧矢场曲均被控制在±0.01mm以内,像面弯曲程度受到极好的抑制,且像散得到合理调节,因此该实施例的光学***10能够拥有清晰的成像。
第六实施例
参考图11,在第六实施例中,光学***10沿光轴101由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、孔径光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5及具有正屈折力的第六透镜L6。光学***10中各透镜的面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效孔径处为凸面,像侧面S2于近最大有效孔径处为凹面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效孔径处为凸面,像侧面S4于近最大有效孔径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凹面;物侧面S5于近最大有效孔径处为凹面,像侧面S6于近最大有效孔径处为凹面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效孔径处为凸面,像侧面S8于近最大有效孔径处为凸面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效孔径处为凹面,像侧面S10于近最大有效孔径处为凸面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;物侧面S11于近最大有效孔径处为凹面,像侧面S12于近最大有效孔径处为凸面。
第六实施例中光学***10的各透镜参数由表11和表12给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2021090499-appb-000010
Figure PCTCN2021090499-appb-000011
表12
面序号 1 2 3 4 5 6
K -9.999E+01 -4.675E-01 1.133E-02 -1.604E+00 -1.027E+01 -9.993E+01
A4 4.919E-02 -9.497E-01 -1.916E+00 -2.171E+00 -4.577E-01 1.236E-01
A6 -9.425E-03 5.505E+00 6.136E+00 4.852E+01 5.963E+00 -1.216E+01
A8 2.861E-03 -3.146E+01 -7.150E+00 -6.228E+02 -8.842E+01 3.206E+02
A10 -1.048E-03 1.177E+02 -1.084E+01 5.743E+03 1.015E+03 -4.728E+03
A12 7.104E-05 -2.792E+02 2.726E+01 -3.291E+04 -8.047E+03 4.303E+04
A14 7.160E-05 4.231E+02 1.355E+01 1.110E+05 4.044E+04 -2.446E+05
A16 -2.283E-05 -3.974E+02 -8.803E+01 -2.061E+05 -1.216E+05 8.476E+05
A18 2.736E-06 2.113E+02 9.221E+01 1.751E+05 1.978E+05 -1.642E+06
A20 -1.196E-07 -4.892E+01 -3.214E+01 -3.240E+04 -1.333E+05 1.368E+06
面序号 8 9 10 11 12 13
K 5.329E-01 -5.194E-01 5.149E+01 -1.536E+00 -2.219E+00 8.120E-01
A4 4.273E-02 -1.413E-01 -2.856E+00 -3.687E+00 -6.491E-01 7.850E-01
A6 -8.379E+00 4.795E+00 1.930E+01 2.512E+01 4.779E+00 -2.604E+00
A8 2.332E+02 1.731E+00 -1.469E+02 -1.501E+02 -1.779E+01 2.102E+01
A10 -3.632E+03 -8.868E+02 9.933E+02 6.646E+02 3.031E+01 -9.396E+01
A12 3.489E+04 1.301E+04 -5.605E+03 -2.105E+03 1.957E+01 2.712E+02
A14 -2.069E+05 -9.390E+04 2.364E+04 4.589E+03 -2.149E+02 -5.183E+02
A16 7.346E+05 3.808E+05 -6.528E+04 -6.460E+03 4.486E+02 6.176E+02
A18 -1.423E+06 -8.298E+05 1.015E+05 5.225E+03 -4.246E+02 -4.102E+02
A20 1.151E+06 7.606E+05 -6.600E+04 -1.824E+03 1.572E+02 1.156E+02
该实施例中的光学***10满足以下关系:
FOV/TTL(deg/mm) 38.083 |R62/f6| 1.023
|f123/f456| 0.692 |R51/R61| 7.051
f4*FNO/f 3.445 R51(mm) 8.413
IMGH/BF 2.19 (CT45+CT56)/CT34 1.173
BF(mm) 1.183 V3+V5 47.034
由图12中的各像差图可知,光学***10的纵向球差、场曲、像散、畸变均得到良好的控制,其中所有视场下的子午场曲和弧矢场曲均被控制在±0.05mm以内,像面弯曲程度受到较好的抑制,且像散得到合理调节,因此该实施例的光学***10能够拥有清晰的成像。
参考图13,本申请的一些实施例还提供了一种摄像模组20,摄像模组20包括上述任意一个实施例中的光学***10及图像传感器210,图像传感器210设置于光学***10的出光侧。图像传感器210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用上述光学***10,摄像模组20能够兼顾小尺寸结构及广角拍摄的性能。
参考图14,本申请的一些实施例还提供了一种电子设备30。电子设备30包括固定件310,摄像模组20安装于固定件310,固定件310可以为显示屏盖板、电路板、中框、后盖等部件。电子设备30包括但不限于智能手机、智能手表、智能眼镜、电子书阅读器、车载摄像设备、监控设备、无人机、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。通过采用上述摄像模组20,不仅有利于减少模组于电子设备30中的占据空间以利于设备的超薄化设计,同时也能够使设备获得广角拍摄的能力,从而可获得更大范围的物空间景象。
在一个实施例中,电子设备30为车载摄像设备,摄像模组20设置于车载摄像设备的固定件310内。电子设备30可配合辅助驾驶***、驾驶员监控***等车载辅助***,以将所获得的影像信息传送至车载控制***以对路况或驾驶员状态进行判断,进而为驾驶员提供及时的预警。摄像设备30也可与驾驶室内的显示屏配合,例如将所获得的影像显示于显示屏以供驾驶员观察。
参考图15,本申请的一些实施例还提供了一种汽车40。汽车40包括安装部410及上述电子设备30,电子设备30设置于安装部410。安装部410可以为前进气格栅、车内后视镜、左后视镜、右后视镜、车顶、后尾箱盖板等适合安装摄像设备的车体部位。汽车40上可设置多个电子设备30以获得车身全方位的影像信息。驾驶员或车载***能够通过电子设备30获取汽车周边更大范围的路况信息,从而即使减少设备的安装数量也能获取车身全方位的影像,减少死角;同时还能通过电子设备30获得更清晰的路况影像,从而即能够满足较低安装成本,还能因为拥有较佳的影像清晰度而提高驾驶安全性。
本发明实施例中所使用到的“电子设备”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的设备。被设置成通过无线接口通信的电子设备可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子设备。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学***,沿光轴由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
    具有正屈折力的第三透镜;
    具有正屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面;
    具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面;
    具有屈折力的第六透镜,所述第六透镜的像侧面于近最大有效孔径处为凸面;
    且所述光学***满足如下关系:
    28.0deg/mm<FOV/TTL<40.0deg/mm;
    FOV为所述光学***的最大视场角,TTL为所述第一透镜的物侧面至所述光学***的成像面于光轴上的距离。
  2. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.5<|f123/f456|<2;
    f123为所述第一透镜、所述第二透镜及所述第三透镜的组合焦距,f456为所述第四透镜、所述第五透镜及所述第六透镜的组合焦距。
  3. 根据权利要求1所述的光学***,其特征在于,所述光学***包括孔径光阑,所述孔径光阑设于所述第二透镜与所述第五透镜之间,且所述光学***满足关系:
    2.5<f4*FNO/f<40.0;
    f4为所述第四透镜的有效焦距,FNO为所述光学***的光圈值,f为所述光学***的有效焦距。
  4. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    1.5<IMGH/BF<4.0;
    BF>0.85mm;
    IMGH为所述光学***的最大视场角所对应的像高,BF为所述第六透镜的像侧面至所述光学***的成像面于光轴上的距离。
  5. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0<|R62/f6|<7;
    R62为所述第六透镜的像侧面于光轴处的曲率半径,f6为所述第六透镜的有效焦距。
  6. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0<|R51/R61|<48;
    R51>1.1mm;
    R51为所述第五透镜的物侧面于光轴处的曲率半径,R61为所述第六透镜的物侧面于光轴处的曲率半径。
  7. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.4<(CT45+CT56)/CT34<3.5;
    CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,CT45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离,CT56为所述第五透镜的像侧面至所述第六透镜的物侧面于光轴上的距离。
  8. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    47.0<V3+V5<80.0;
    V3为所述第三透镜的阿贝数,V5为所述第五透镜的阿贝数。
  9. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    FOV>180deg;
    TTL<6.5mm。
  10. 根据权利要求1或3所述的光学***,其特征在于,所述光学***满足关系:
    FNO<2.2;
    FNO为所述光学***的光圈值。
  11. 根据权利要求1或3所述的光学***,其特征在于,所述光学***满足关系:
    f<0.85mm;
    f为所述光学***的有效焦距。
  12. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述第五透镜具有负屈折力,所述第六透镜具有正屈折力。
  13. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述光学***包括孔径光阑,所述孔径光阑设于所述第二透镜与所述第五透镜之间。
  14. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述光学***中的至少一个透镜具有非球面面型。
  15. 根据权利要求14所述的光学***,其特征在于,所述光学***中各透镜的物侧面和像侧面均为非球面。
  16. 根据权利要求1所述的光学***,其特征在于,所述光学***中至少一个透镜的材质为塑料。
  17. 根据权利要求1所述的光学***,其特征在于,所述光学***包括红外截止滤光片,所述红外截止滤光片设于所述第六透镜的像侧。
  18. 一种摄像模组,包括图像传感器及权利要求1至17任意一项所述的光学***,所述图像传感器设于所述光学***的像侧。
  19. 一种电子设备,包括固定件及权利要求18所述的摄像模组,所述摄像模组设于所述固定件。
  20. 一种汽车,包括安装部及权利要求19所述的摄像设备,所述摄像设备设于所述安装部。
PCT/CN2021/090499 2021-04-28 2021-04-28 光学***、摄像模组、电子设备及汽车 WO2022226830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090499 WO2022226830A1 (zh) 2021-04-28 2021-04-28 光学***、摄像模组、电子设备及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090499 WO2022226830A1 (zh) 2021-04-28 2021-04-28 光学***、摄像模组、电子设备及汽车

Publications (1)

Publication Number Publication Date
WO2022226830A1 true WO2022226830A1 (zh) 2022-11-03

Family

ID=83847669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090499 WO2022226830A1 (zh) 2021-04-28 2021-04-28 光学***、摄像模组、电子设备及汽车

Country Status (1)

Country Link
WO (1) WO2022226830A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033141A (zh) * 2015-02-26 2016-10-19 大立光电股份有限公司 透镜***、取像装置及电子装置
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN212483966U (zh) * 2020-05-29 2021-02-05 纮立光电股份有限公司 光学摄像透镜组、成像装置及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033141A (zh) * 2015-02-26 2016-10-19 大立光电股份有限公司 透镜***、取像装置及电子装置
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN212483966U (zh) * 2020-05-29 2021-02-05 纮立光电股份有限公司 光学摄像透镜组、成像装置及电子装置

Similar Documents

Publication Publication Date Title
EP3904934A1 (en) Optical system, camera module, and electronic apparatus
CN113625423B (zh) 一种成像***、摄像头模组及电子设备
US20220236534A1 (en) Optical system, camera module, and electronic device
CN111999859A (zh) 光学成像***、取像模组和电子装置
CN114002818B (zh) 光学***、摄像模组及电子设备
CN113484983B (zh) 光学***、镜头模组和电子设备
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
CN112433345A (zh) 光学镜头、摄像头模组、电子装置和车辆
CN112526726A (zh) 光学成像***、取像模组和电子装置
CN113900235A (zh) 光学***、取像模组、电子设备及载具
CN113433656B (zh) 一种成像***、镜头模组及电子设备
WO2021164013A1 (zh) 光学***、摄像模组、电子装置及汽车
CN211741696U (zh) 光学成像***、成像模组及电子装置
CN113281876B (zh) 光学***、摄像模组、电子设备及汽车
CN218272885U (zh) 光学***、摄像模组及电子设备
WO2022226830A1 (zh) 光学***、摄像模组、电子设备及汽车
WO2022236663A1 (zh) 光学变焦***、变焦模组及电子设备
CN114442271B (zh) 光学***、摄像模组及电子设备
CN113866940B (zh) 光学***、摄像模组及电子设备
CN113741008B (zh) 光学***、取像模组及电子设备
WO2022160120A1 (zh) 光学***、摄像模组及电子设备
WO2022120678A1 (zh) 光学***、取像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备
CN114326019A (zh) 光学***、取像模组及电子设备
CN113568142A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938315

Country of ref document: EP

Kind code of ref document: A1