WO2022160120A1 - 光学***、摄像模组及电子设备 - Google Patents

光学***、摄像模组及电子设备 Download PDF

Info

Publication number
WO2022160120A1
WO2022160120A1 PCT/CN2021/073941 CN2021073941W WO2022160120A1 WO 2022160120 A1 WO2022160120 A1 WO 2022160120A1 CN 2021073941 W CN2021073941 W CN 2021073941W WO 2022160120 A1 WO2022160120 A1 WO 2022160120A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
optical
image side
Prior art date
Application number
PCT/CN2021/073941
Other languages
English (en)
French (fr)
Inventor
刘彬彬
李明
邹海荣
邹金华
党绪文
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/073941 priority Critical patent/WO2022160120A1/zh
Publication of WO2022160120A1 publication Critical patent/WO2022160120A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the invention relates to the technical field of photography and imaging, in particular to an optical system, a camera module and an electronic device.
  • the human eye has a very high response speed and resolution for imaging objects at limited distances, but it is very difficult to accurately distinguish distant objects.
  • the optical system with telephoto characteristics has gradually become an important structure to expand the visual distance of the human eye.
  • the optical system often obtains the telephoto effect by means of small aperture and small photosensitive surface, but the problem of poor image quality often occurs.
  • the general solution is to complicate the structure of the optical system, and then correct the system aberration to achieve the effect of improving the image quality, but this design often leads to high manufacturing costs and difficult manufacturing.
  • an optical system a camera module, and an electronic device are provided.
  • An optical system comprising in sequence from the object side to the image side along the optical axis:
  • the object side surface of the first lens is convex
  • the image side surface of the fourth lens is convex
  • optical system also satisfies the relation:
  • f is the effective focal length of the optical system
  • Imgh is the image height corresponding to the maximum angle of view of the optical system.
  • a camera module includes an image sensor and any one of the above-mentioned optical systems, wherein the image sensor is arranged on the light-emitting side of the optical system.
  • An electronic device includes a fixing member and the above-mentioned camera module, wherein the camera module is arranged on the fixing member.
  • FIG. 1 is a schematic structural diagram of an optical system provided by a first embodiment of the present application.
  • FIG. 2 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment
  • FIG. 3 is a schematic diagram of the slp42 on the image side surface of the fourth lens in the embodiment of the application;
  • FIG. 4 is a schematic structural diagram of the optical path deflection element of the optical system in another setting position in the first embodiment of the application;
  • FIG. 5 is a schematic structural diagram of an optical system provided by a second embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical system provided by a third embodiment of the present application.
  • FIG. 8 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the third embodiment
  • FIG. 9 is a schematic structural diagram of an optical system provided by a fourth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical system provided by a fifth embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical system provided by the sixth embodiment of the present application.
  • 15 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • an embodiment of the present application provides an optical system 10 having a four-piece structure.
  • the optical system 10 includes a first lens L1 , a second lens L2 , a third lens L1 , a second lens L2 , and a third lens in sequence along the optical axis 101 from the object side to the image side.
  • the lenses in the optical system 10 are arranged coaxially, that is, the optical axes of the lenses are all located on the same straight line, and the straight line may be called the optical axis 101 of the optical system 10 .
  • Each optical element in the optical system 10 can be assembled with a lens barrel to constitute an imaging lens.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7 and an image side S8.
  • the optical system 10 also has an imaging surface S9, and the imaging surface S9 is located on the outgoing light path of the fourth lens L4.
  • the imaging surface S9 of the optical system 10 coincides with the photosensitive surface of the image sensor.
  • the imaging surface S9 can be regarded as the photosensitive surface of the image sensor.
  • the first lens L1 has a positive refractive power.
  • the lens has the refractive power of this kind at least at the near optical axis.
  • the object side surface S1 of the first lens L1 is a convex surface
  • the image side surface S8 of the fourth lens L4 is a convex surface.
  • the optical system 10 also satisfies the relationship: 85.0 ⁇ 43*f/Imgh ⁇ 122.0; f is the effective focal length of the optical system 10 , and Imgh is the image height corresponding to the maximum angle of view of the optical system 10 .
  • the relationship may specifically be 90, 92, 95, 100, 105, 108, 110, 112, 115, 118 or 120.
  • the rectangular effective pixel area of the image sensor has a diagonal direction
  • the maximum field angle of the optical system 10 can be understood as the maximum field angle parallel to the diagonal direction.
  • Imgh can be understood as half of the diagonal length of the rectangular effective imaging area on the imaging surface S9. After the image sensor is assembled, Imgh can also be understood as the distance from the center of the rectangular effective pixel area to the diagonal edge of the image sensor, and the diagonal direction of the above-mentioned effective imaging area is parallel to the diagonal direction of the rectangular effective pixel area. .
  • the above-mentioned optical system 10 with telephoto characteristics has a four-piece structure, so on the one hand, the structure of the system can be simplified, the manufacturing cost and manufacturing difficulty can be reduced, and on the other hand, the lens group structure of the optical system 10 can be compressed to meet the needs of small design requirements.
  • the first lens L1 has a positive refractive power and its object side surface S1 is convex, it is beneficial to further compress the structure of the system, and the miniaturization feature of the optical system 10 with telephoto characteristics is more remarkable.
  • the image side S8 of the fourth lens L4 is a convex surface
  • this design can make the bottom of the lens barrel have enough space at the effective diameter to arrange the non-effective diameter of the fourth lens L4
  • the above-mentioned surface design of the fourth lens L4 is not easy to form dust accumulation and affect the image quality.
  • the optical system 10 further satisfies at least one of the following relationships, and when any relationship is satisfied, it can bring corresponding technical effects:
  • the telephoto characteristic of the optical system 10 can be further ensured; Gain higher magnification by sacrificing image height. And the large image plane characteristic enables the optical system 10 to match the image sensor with higher pixel, so as to obtain better imaging quality.
  • the optical system 10 can be adapted to most 32M and 48M image sensors on the market, so that the optical system 10 has good universality and practicability.
  • the relationship may specifically be 17.3mm, 17.5mm, 17.8mm, 18mm, 18.5mm, 19mm, 19.4mm, 19.6mm or 19.8mm.
  • OAL is the distance from the object side S1 of the first lens L1 to the image side S4 of the fourth lens L4 on the optical axis
  • BF is the distance along the optical axis from the image side S4 of the fourth lens L4 to the optical axis.
  • the shortest distance of the imaging plane S9 of the system 10 Satisfying the above relationship is beneficial to the long back focus design of the optical system 10 , thereby improving the matching between the optical system 10 with the telephoto characteristic and the image sensor, and improving the design flexibility when the two are assembled to form a module in the later stage.
  • the relationship may specifically be 0.4, 0.42, 0.44, 0.46, 0.48 or 0.5.
  • the lens group structure of the optical system 10 can be made more compact, and the optical system 10 can support the design of long back focus and small lens group size at the same time, which can be expanded
  • the flexibility of the system in design and manufacture reduces the difficulty of assembly.
  • the size of the lens group will be too short, the design of the lens and the assembly between the lenses will be difficult to coordinate, the design of the telephoto structure of the optical system 10 will become difficult, and it is easy to introduce a larger surface. Distortion, affecting molding manufacturing.
  • the relationship may specifically be 6.7mm, 6.8mm, 6.9mm, 7mm, 7.1mm, 7.2mm, 7.3mm or 7.4mm.
  • BF is the shortest distance from the image side S8 of the fourth lens L4 to the imaging surface S9 of the optical system 10 along the optical axis, and the optical system 10 includes an optical path refraction element, and the optical path refraction element is provided in the fourth lens On the light-emitting side of L4, the light-path refraction element is used to reflect the light from the fourth lens L4 to the image sensor.
  • the optical system 10 will have a long back focus, so that the matching between the optical system 10 with the telephoto characteristic and the image sensor can be improved, and the design flexibility of the two in the later assembly to form a module can be improved.
  • the optical axis between the fourth lens L4 and the imaging surface S9 can be refracted, so as to prevent the optical system 10 from being too long in the axial direction of the lens group , which is beneficial to make the overall structure of the system more reasonable, and is further beneficial to be applied to equipment that requires high miniaturization of components.
  • the relationship may specifically be 13.5mm, 13.8mm, 14mm, 14.5mm, 15mm, 16mm, 17mm, 18mm, 18.5mm, 18.8mm, 19.2mm or 19.4mm.
  • CT12 is the distance from the image side S2 of the first lens L1 to the object side S3 of the second lens L2 on the optical axis
  • CT23 is the image side S4 of the second lens L2
  • CT34 is the distance on the optical axis from the image side S6 of the third lens L3 to the object side S7 of the fourth lens L4
  • CT3 is the optical axis of the third lens L3. Thickness on the shaft.
  • the above-mentioned design can better guide the light to be deflected on the surface of each lens with a smaller deflection angle, thereby reducing the tolerance sensitivity; at the same time, it can reduce the reflection of stray light between the lenses and reduce the generation of stray light and ghosts. It also helps to reduce the difficulty of forming and assembling the mirror group.
  • the relationship may specifically be 0.7, 0.8, 1, 1.5, 1.8, 2, 2.2, 2.5, 3, 3.5, 3.8, or 4.
  • slp42 is the acute angle between the tangent plane of the image side S8 of the fourth lens L4 at the maximum effective aperture and the plane perpendicular to the optical axis of the fourth lens L4 (refer to Figure 3)
  • R41 is the radius of curvature of the object side surface S7 of the fourth lens L4 at the optical axis.
  • the fourth lens L4 is generally located at the bottom of the lens barrel, and its surface shape directly determines the structure of the lens barrel and the difficulty of fixing the lens and the lens barrel.
  • the image side S8 of the fourth lens L4 is convex, this design makes the bottom of the lens barrel have enough space at the effective diameter to arrange the non-effective diameter area of the fourth lens L4, and there is enough space for dispensing; in addition, when After each lens is assembled with the lens barrel, the above-mentioned surface design of the fourth lens L4 is not easy to form dust accumulation and affect the image quality. And when the above relationship is satisfied, the surface shapes of the object side surface S7 and the image side surface S8 of the fourth lens L4 can be mutually restrained, so that the molding process can be facilitated and the image quality can be improved. In some embodiments, the relationship may specifically be 0.1, 0.2, 0.4, 0.6, 1, 1.5, 1.8, 2, 2.5, 3, 3.4, 3.5 or 3.8, and the numerical unit is (°/mm).
  • the first lens L1 provides a large positive refractive power for the system, so that the light incident from the large aperture of the first lens L1 can be contracted inwardly, so as to facilitate the regulation of the light by the rear lens and avoid the optical system. 10.
  • the relationship may specifically be 0.45, 0.5, 0.6, 0.8, 1, 1.5, 1.8, 2, 2.1, or 2.2.
  • R32 is the curvature radius of the image side surface S6 of the third lens L3 at the optical axis
  • f3 is the effective focal length of the third lens L3.
  • the image side S6 can maintain a smooth surface to provide a certain amount of spherical aberration and compensate for the first The spherical aberration overflow phenomenon caused by the strong refractive power of the first lens L1 and the second lens.
  • the third lens L3 can increase the design flexibility of the lens group and improve the matching relationship with the first lens L1 and the second lens L2, thereby helping to reduce the size of the lens group and the surface shape. Complexity and tolerance sensitivity. In some embodiments, the relationship may specifically be 2, 2.2, 2.5, 3, 3.5, 4, 5, 8, 10, 11.5, 12, 12.3, 12.5, or 12.8.
  • ET1 is the thickness along the optical axis of the first lens L1 from the maximum effective aperture of the object side S1 to the maximum effective aperture of the image side S2 along the optical axis
  • ET2 is the thickness along the optical axis of the second lens L2 at the maximum effective aperture of the object side S3 to the maximum effective aperture of the image side S4
  • ET3 is the thickness of the third lens L3 at the maximum effective aperture of the object side S5 to the maximum effective aperture of the image side S6
  • CT1 is the thickness of the first lens L1 on the optical axis
  • CT2 is the thickness of the second lens L2 on the optical axis
  • CT3 is the thickness of the third lens L3 on the optical axis.
  • the lens group formed by the first lens L1 to the third lens L3 can also maintain a reasonable center thickness and edge thickness, thereby improving the lens group. compactness, and reduce the axial size of the mirror group formed by the first lens L1 to the fourth lens L4.
  • the relationship may specifically be 0.6, 0.62, 0.65, 0.68, 0.7, 0.73, 0.76 or 0.78.
  • the optical system 10 includes an aperture stop, which in some embodiments may be located on the object side of the first lens L1, between the third lens L3 and the fourth lens L4, or on the image side of the fourth lens L4, and the optical system 10
  • the relationship is satisfied: 7.0mm ⁇
  • the optical system 10 with telephoto characteristics can obtain a good amount of incoming light.
  • the optical system 10 High resolution and large aperture characteristics can be obtained, so that the entire field of view can have a high relative brightness, and at the same time, the resolution attenuation from the center to the edge of the field of view can be suppressed.
  • /FNO may specifically be 7.5, 8, 8.5, 9, 10, 11, 15, 20, 25, 30, 31, 33 or 35, and the numerical unit is mm.
  • the relationship of FNO may specifically be 2.1, 2.15, 2.2, 2.3, 2.4 or 2.45.
  • the object side and/or the image side of at least one of the first lens L1 to the fourth lens L4 is aspherical, that is, at least one of the first lens L1 to the fourth lens L4 has an aspherical surface type.
  • the object side surface and the image side surface of the first lens L1 to the fourth lens L4 can be designed as aspherical surfaces.
  • the aspheric surface configuration can further help the optical system 10 to eliminate aberrations, solve the problem of distortion of the field of view, and at the same time, it is also conducive to the miniaturized design of the optical system 10, so that the optical system 10 can maintain the miniaturized design. optical effect.
  • the object side and/or the image side of at least one of the first lens L1 to the fourth lens L4 may also be spherical.
  • the spherical surface type can reduce the difficulty and cost of lens fabrication.
  • the combination of spherical and aspherical surfaces allows the system to balance good imaging quality with low cost and ease of fabrication.
  • the actual surface shape of the lens is not limited to the spherical or aspherical shape shown in the drawings of the present application, and the drawings are mainly for example reference and are not drawn strictly to scale.
  • the surface when the object side or the image side of a certain lens is aspherical, the surface may be a structure that exhibits a convex surface or a concave surface as a whole.
  • the surface can also be designed to have an inflection point, and the shape of the surface will change from the center to the edge, for example, the surface is convex at the center and concave at the edge.
  • Z is the distance from the corresponding point on the aspheric surface to the tangent plane of the surface at the optical axis
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric surface at the optical axis
  • k is the cone coefficient
  • Ai is the coefficient of the high-order term corresponding to the i-th-order high-order term in the aspheric surface formula.
  • At least one of the object side S7 and the image side S8 of the fourth lens L4 is provided with an inflection point, and the setting of the inflection point can increase the flexibility of the lens in regulating and controlling incident light.
  • the fourth lens L4 located at the rear end of the lens group the light in the central field of view mainly passes through the area of the lens close to the center, while the light in the edge field of view mainly passes through the area of the two lenses close to the edge.
  • the setting of the inflection point enables the fourth lens L4 to control the light in the central field of view and the edge field of view in a targeted manner, thereby effectively correcting the on-axis and off-axis aberrations of the system.
  • both the object side S7 and the image side S8 of the fourth lens L4 are provided with inflection points.
  • the optical system 10 is provided with an optical path refraction element 110, the optical path refraction element 110 is disposed on the light exit side of the fourth lens L4, and the optical path refraction element 110 is used to reflect the light from the fourth lens L4 to image sensor to form an image.
  • the light path turning element 110 can be a right angle prism or other common reflective elements. Taking a right angle prism as an example, the optical path deflection element includes an incident surface 111 , a reflecting surface 112 and an exiting surface 113 , all of which are flat, and the reflecting surface 112 can be provided with a reflective coating with high reflectivity.
  • the incident surface 111 is perpendicular to the optical axis of the mirror group formed by the first lens L1 to the fourth lens L4, and the reflective surface 112 forms an included angle of 45° with the optical axis 101 of the mirror group.
  • the optical axis 101 of the optical system 10 is folded at the reflection surface 112 of the optical path folding element 110 .
  • the line segment distance is the distance from the surface position along the optical axis direction to the imaging plane S9.
  • the optical system 10 includes a diaphragm STO, and the diaphragm STO is an aperture diaphragm.
  • the diaphragm STO is used to control the amount of light entering the optical system 10 and can simultaneously block ineffective light.
  • the diaphragm STO is arranged on the object side of the first lens L1, and the first At least a partial region of the object side S1 of a lens L1 passes through the aperture STO toward the object.
  • the diaphragm STO can be disposed on the object side of the first lens L1, also can be disposed between two adjacent lenses among the first lens L1 to the fourth lens L4, or disposed on the image side of the fourth lens L4.
  • the stop STO may be formed by a lens barrel structure holding the lens, or may be a spacer ring separately assembled between the lens and the lens barrel.
  • the material of at least one of the first lens L1 to the fourth lens L4 is plastic.
  • the material of at least one of the first lens L1 to the fourth lens L4 is glass.
  • the material of each lens in the optical system 10 is either plastic or glass. The lens made of plastic can reduce the weight of the optical system 10 and the production cost, while the lens made of glass can withstand higher temperatures and have excellent optical effects.
  • the material of the first lens L1 is glass, and the material of each of the second lens L2 to the fourth lens L4 is plastic.
  • the material of the lens on the object side in the optical system 10 It is glass, so these glass lenses located on the object side have good resistance to extreme environments, and are not easily affected by the object side environment and cause aging, so when the optical system 10 is in extreme environments such as exposure to high temperatures, this The structure can better balance the optical performance and cost of the system.
  • the material configuration relationship of the lenses in the optical system 10 is not limited to the above distance.
  • the material of any lens can be plastic or glass, and the specific design can be determined according to actual needs.
  • the optical system 10 includes an infrared cut filter 120 , and the infrared cut filter 120 is disposed on the light exit path of the fourth lens L4 and is relatively fixed to each lens in the optical system 10 .
  • the infrared cut-off filter 120 is used to filter out infrared light to prevent the infrared light from reaching the imaging surface S9 of the system, thereby preventing the infrared light from interfering with normal imaging.
  • the infrared cut filter 120 may be assembled with each lens as part of the optical system 10 . In other embodiments, the infrared cut-off filter 120 is not a component of the optical system 10.
  • the infrared cut-off filter 120 can be installed on the optical system 10 and the photosensitive element together to form a camera module. Between the system 10 and the photosensitive element.
  • the infrared cut filter 120 may also be disposed on the object side of the first lens L1.
  • a filter coating layer can also be provided on at least one of the first lens L1 to the fourth lens L4 to filter out infrared light.
  • the optical system 10 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, and a second lens with a negative refractive power along the optical axis 101 from the object side to the image side.
  • FIG. 2 includes a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system 10 in the first embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is convex at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is concave at the circumference.
  • the object side S3 of the second lens L2 is convex at the paraxial position, and the image side S4 is concave at the paraxial position; the object side S3 is convex at the circumference, and the image side S4 is concave at the circumference.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is convex at the paraxial position; the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is concave at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is concave at the circumference, and the image side S8 is convex at the circumference.
  • the object side surface S5 of the third lens L3 is a spherical surface
  • the object side surface and the image side surface of each of the first lens L1 to the fourth lens L4 are aspherical.
  • each lens in the optical system 10 is plastic, which can effectively reduce the manufacturing cost and system weight of the optical system 10 .
  • the arrangement positions of the optical path deflection element 110 can be various, and are not limited to the specific positions mentioned in this embodiment or the following embodiments, as long as the image side surface of the fourth lens L4 is ensured
  • the distance from S8 to the reflection surface 112 on the optical axis 101 only needs to be constant.
  • the distance from the image side S8 of the fourth lens L4 to the imaging surface S9 on the optical axis 101 is the shortest distance BF between the two in the direction of any optical axis 101.
  • the distance from S8 to the reflective surface 112 on the optical axis 101 is defined as BF1
  • Table 2 shows the aspheric coefficients of the corresponding surfaces of the lenses in Table 1, where K is the conic coefficient, and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface formula.
  • the elements from the object plane to the image plane (the imaging plane S19, which can also be understood as the photosensitive surface of the image sensor during later assembly) are arranged in order from top to bottom in Table 1.
  • the diaphragm is an aperture diaphragm
  • the infrared filter is an infrared cut-off filter 120 .
  • the surfaces corresponding to surface numbers 2 and 3 respectively represent the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the surface number 10 corresponds to the incident surface 111 of the optical path deflecting element 110
  • the surface number 11 corresponds to the reflection surface 112
  • the surface number 12 corresponds to the exit surface 113 .
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • a sphere with infinite Y radius is a plane.
  • the absolute value of the first value of the lens in the "Thickness" parameter column is the thickness of the lens on the optical axis
  • the absolute value of the second value is the image side of the lens to the object side of the following optical element on the optical axis. on the distance.
  • the reference wavelength of the refractive index, Abbe number and focal length of each lens is 587 nm
  • the numerical units of , Y aperture are all millimeters (mm).
  • the relational calculation and lens structure of each embodiment should be based on the data provided in the parameter tables (such as Table 1, Table 2, Table 3, Table 4, etc.).
  • the optical system 10 satisfies the following relationships:
  • the optical system 10 can be further ensured; Gain higher magnification by sacrificing image height.
  • the large image plane feature enables the optical system 10 to match an image sensor with higher pixels, so as to obtain better imaging quality.
  • the optical system 10 can be adapted to most 32M and 48M image sensors on the market, so that the optical system 10 has good universality and practicability.
  • OAL/BF 0.43.
  • OAL 6.8mm.
  • the lens group structure of the optical system 10 can be made more compact, the optical system 10 can support the design of long back focus and small lens group size at the same time, and can be expanded
  • the flexibility of the system in design and manufacture reduces the difficulty of assembly.
  • the size of the lens group will be too short, the design of the lens and the assembly between the lenses will be difficult to coordinate, the design of the telephoto structure of the optical system 10 will become difficult, and it is easy to introduce a larger surface shape Distortion, affecting molding manufacturing.
  • the optical system 10 will have a long back focus, so that the matching between the optical system 10 with the telephoto characteristic and the image sensor can be improved, and the design flexibility of the two in the later assembly to form a module can be improved.
  • the optical path refraction element 110 on the light-emitting side of the fourth lens L4, the optical axis between the fourth lens L4 and the imaging surface S9 can be refracted, so as to avoid the oversize of the optical system 10 in the axial direction of the lens group. Therefore, it is beneficial to make the overall structure of the system more compact and reasonable, and is further beneficial to be applied to equipment that requires high miniaturization of components.
  • the first lens L1 provides a larger positive refractive power for the system, so that the light incident from the large aperture of the first lens L1 can be contracted inwardly, so as to facilitate the regulation of the light by the rear lens and avoid the optical system. 10.
  • the third lens L3 can increase the design flexibility of the lens group and improve the matching relationship with the first lens L1 and the second lens L2, thereby helping to reduce the size of the lens group and the surface shape Complexity and tolerance sensitivity.
  • the lens group formed by the first lens L1 to the third lens L3 can also maintain a reasonable center thickness and edge thickness, thereby improving the lens group. compactness, and reduce the axial size of the mirror group formed by the first lens L1 to the fourth lens L4.
  • the optical system 10 with telephoto characteristics can obtain a good amount of light entering.
  • Such a configuration not only increases the diffraction limit of the system, but also under the design and cooperation of the above-mentioned lens and aperture diaphragm, the optical system 10 High resolution and large aperture characteristics can be obtained, so that the entire field of view can have a high relative brightness, and at the same time, the resolution attenuation from the center to the edge of the field of view can be suppressed.
  • the above-mentioned optical system 10 can realize the performance of telephoto, large aperture and high pixel with a small number of lenses, so as to realize the design of low cost and high performance;
  • the difficulty of forming the lens and the difficulty of assembling and matching are reduced, and the compactness of the structure of the lens group can also be improved.
  • the optical system 10 can be effectively compressed in the size of the optical axis direction of the lens group, so that the optical system 10 can be better applied to equipment with higher requirements for miniaturization of components.
  • FIG. 2 includes a longitudinal spherical aberration diagram (Longitudinal Spherical Aberration) of the optical system 10 , which represents the deviation of the converging focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light and the optical axis (unit is mm).
  • FIG. 2 also includes a field curvature diagram (Astigmatic Field Curves) of the optical system 10, wherein the S curve represents the sagittal field curvature at 587 nm, and the T curve represents the meridional field curvature at 587 nm. It can be seen from the figure that the field curvature of the system is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear images. 2 also includes a distortion diagram (Distortion) of the optical system 10. It can be seen from the diagram that the image distortion caused by the main beam is small, the maximum distortion is controlled within 0.5%, and the imaging quality of the system is excellent.
  • a distortion diagram Transistortion
  • the optical system 10 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, and a second lens with a negative refractive power along the optical axis 101 from the object side to the image side.
  • FIG. 6 includes a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system 10 in the second embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position; the object side S3 is convex at the circumference, and the image side S4 is concave at the circumference.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is convex at the paraxial position; the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is concave at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is concave at the circumference, and the image side S8 is convex at the circumference.
  • lens parameters of the optical system 10 in the second embodiment are given in Table 3 and Table 4, wherein the definitions of the structures and parameters can be obtained from the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • /FNO is mm
  • is deg/mm.
  • the optical system 10 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, and a second lens with a negative refractive power along the optical axis 101 from the object side to the image side.
  • FIG. 8 includes a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system 10 in the third embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position; the object side S3 is convex at the circumference, and the image side S4 is concave at the circumference.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is convex at the paraxial position; the object side S5 is concave at the circumference, and the image side S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is concave at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is concave at the circumference, and the image side S8 is convex at the circumference.
  • lens parameters of the optical system 10 in the third embodiment are given in Table 5 and Table 6, wherein the definitions of the structures and parameters can be obtained from the first embodiment, which will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a second lens with negative refractive power from the object side to the image side along the optical axis 101
  • FIG. 10 includes a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system 10 in the fourth embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the paraxial position, and the image side S4 is concave at the paraxial position; the object side S3 is convex at the circumference, and the image side S4 is concave at the circumference.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is convex at the paraxial position; the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is concave at the circumference, and the image side S8 is convex at the circumference.
  • lens parameters of the optical system 10 in the fourth embodiment are given in Table 7 and Table 8, wherein the definitions of the structures and parameters can be obtained from the first embodiment, which will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a positive refractive power, and a The third lens L3 with negative refractive power, the diaphragm STO, the fourth lens L4 with positive refractive power, and the optical path refraction element 110 . 110 right-angle prisms for optical path reversing elements.
  • FIG. 12 includes a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system 10 in the fifth embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is convex at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is concave at the circumference.
  • the object side S3 of the second lens L2 is convex at the paraxial position, and the image side S4 is convex at the paraxial position; the object side S3 is concave at the circumference, and the image side S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the paraxial position, and the image side S6 is concave at the paraxial position; the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference.
  • the object side S7 of the fourth lens L4 is concave at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is convex at the circumference, and the image side S8 is convex at the circumference.
  • lens parameters of the optical system 10 in the fifth embodiment are given in Table 9 and Table 10, wherein the definitions of the structures and parameters can be obtained from the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, a The third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the diaphragm STO and the optical path refraction element 110 . 110 right-angle prisms for optical path reversing elements.
  • FIG. 14 includes a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system 10 in the sixth embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 587 nm.
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is convex at the paraxial position; the object side S1 is convex at the circumference, and the image side S2 is concave at the circumference.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position; the object side S3 is concave at the circumference, and the image side S4 is concave at the circumference.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is convex at the paraxial position; the object side S5 is convex at the circumference, and the image side S6 is convex at the circumference.
  • the object side S7 of the fourth lens L4 is concave at the paraxial position, and the image side S8 is convex at the paraxial position; the object side S7 is concave at the circumference, and the image side S8 is convex at the circumference.
  • lens parameters of the optical system 10 in the sixth embodiment are given in Table 11 and Table 12, wherein the definitions of the structures and parameters can be obtained from the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the camera module 20 may include the optical system 10 and the image sensor 210 of any one of the above-mentioned embodiments, and the image sensor 210 is disposed at the output of the optical system 10 . light-emitting side.
  • the image sensor 210 may be a CCD (Charge Coupled Device, charge coupled device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor). Generally, when assembled, the imaging surface S19 of the optical system 10 overlaps the photosensitive surface of the image sensor 210 .
  • the camera module 20 can not only have a telephoto characteristic to achieve a telephoto effect, but also simplify the assembly structure of the module and reduce the manufacturing cost and difficulty.
  • the camera module 20 can also have the corresponding characteristics of large aperture, high pixel and compact structure.
  • the electronic device 30 includes a fixing member 310 , and the camera module 20 is mounted on the fixing member 310 , and the fixing member 310 may be a display screen cover, a circuit board, a middle frame, a back cover and other components.
  • the electronic device 30 can be, but is not limited to, a smartphone, a smart watch, a smart glasses, an e-book reader, a vehicle camera device, a monitoring device, a drone, a medical device (such as an endoscope), a tablet computer, a biometric device (such as a Fingerprint recognition equipment or pupil recognition equipment, etc.), PDA (Personal Digital Assistant, personal digital assistant), drones, etc.
  • the electronic device 30 can not only have telephoto performance, but also can reduce the production cost of the device.
  • the "electronic equipment” used in the embodiments of the present invention may include, but is not limited to, be configured to be connected via wired lines (eg, via a public switched telephone network (PSTN), a digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), such as digital video broadcast broadcasting handheld, DVB-H) network digital television network, satellite network, AM-FM (amplitude modulation-frequency modulation, AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals device of.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • DSL digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • AM-FM amplitude modulation-frequency modulation, AM-FM
  • wireless communication terminals Electronic devices arranged to communicate over a wireless interface may be referred to as “wireless communication terminals", “wireless terminals” and/or “mobile terminals”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/ Personal digital assistants (PDAs) with intranet access, web browsers, memo pads, calendars, and/or global positioning system (GPS) receivers; and conventional laptops and/or palmtops A receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDAs Internet/ Personal digital assistants
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***(10),沿光轴(101)由物侧至像侧依次包括:具有正屈折力的第一透镜(L1),其物侧面(S1)为凸面;具有屈折力的第二透镜(L2);具有屈折力的第三透镜(L3);具有屈折力的第四透镜(L4),其像侧面(S8)为凸面;光学***(10)还满足关系:85.0<43*f/Imgh<122.0;f为光学***(10)的有效焦距,Imgh为光学***(10)的最大视场角所对应的像高。

Description

光学***、摄像模组及电子设备 技术领域
本发明涉及摄影成像技术领域,特别是涉及一种光学***、摄像模组及电子设备。
背景技术
人眼对有限距物体成像具有极高的响应速度和分辨力,但对远距离物体进行精确分辨却非常困难。而随着摄像设备的发展,具有长焦特性的光学***已逐渐成为拓展人眼可视距离的重要结构。目前,光学***常通过小光圈、小尺寸感光面等方式来获得长焦远摄效果,但往往还是会出现成像质量不良的问题。而一般的解决方法则是通过使光学***的结构复杂化,进而对***像差进行校正以实现提升像质的效果,但这种设计往往会导致制备成本高,且制备难度大。
发明内容
根据本申请的各种实施例,提供一种光学***、摄像模组及电子设备。
一种光学***,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面为凸面;
具有屈折力的第二透镜;
具有屈折力的第三透镜;
具有屈折力的第四透镜,所述第四透镜的像侧面为凸面;
所述光学***还满足关系:
85.0<43*f/Imgh<122.0;f为所述光学***的有效焦距,Imgh为所述光学***的最大视场角所对应的像高。
一种摄像模组,包括图像传感器及上述任意一项的光学***,所述图像传感器设于所述光学***的出光侧。
一种电子设备,包括固定件及上述的摄像模组,所述摄像模组设于所述固定件。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学***的结构示意图;
图2包括第一实施例中光学***的纵向球差图、像散图和畸变图;
图3为本申请实施例中关于第四透镜像侧面上的slp42的示意图;
图4为本申请第一实施例中光学***的光路折转元件于另一设置位置下的结构示意图;
图5为本申请第二实施例提供的光学***的结构示意图;
图6包括第二实施例中光学***的纵向球差图、像散图和畸变图;
图7为本申请第三实施例提供的光学***的结构示意图;
图8包括第三实施例中光学***的纵向球差图、像散图和畸变图;
图9为本申请第四实施例提供的光学***的结构示意图;
图10包括第四实施例中光学***的纵向球差图、像散图和畸变图;
图11为本申请第五实施例提供的光学***的结构示意图;
图12包括第五实施例中光学***的纵向球差图、像散图和畸变图;
图13为本申请第六实施例提供的光学***的结构示意图;
图14包括第六实施例中光学***的纵向球差图、像散图和畸变图;
图15为本申请一实施例提供的摄像模组的示意图;
图16为本申请一实施例提供的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参考图1,本申请的实施例提供了一种具有四片式结构的光学***10,光学***10沿光轴101由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4。光学***10中各透镜同轴设置,即各透镜的光轴均位于同一直线上,该直线可称为光学***10的光轴101。光学***10中的各光学元件可与镜筒装配以构成摄像镜头。
第一透镜L1包括物侧面S1和像侧面S2,第二透镜L2包括物侧面S3和像侧面S4,第三透镜L3包括物侧面S5和像侧面S6,第四透镜L4包括物侧面S7和像侧面S8。光学***10还有一成像面S9,成像面S9位于第四透镜L4的出射光路上。一般地,光学***10的成像面S9与图像传感器的感光面重合,为方便理解,可将成像面S9视为图像传感器的感光表面。
在本申请的实施例中,第一透镜L1具有正屈折力。但应注意的是,当描述透镜具有何种性质的屈折力时,可理解为该透镜至少于近光轴处具有该种性质的屈折力。另外,本申请实施例中的第一透镜L1的物侧面S1为凸面,第四透镜L4的像侧面S8为凸面。
进一步地,光学***10还满足关系:85.0<43*f/Imgh<122.0;f为光学***10的有效焦距,Imgh为光学***10的最大视场角所对应的像高。以35mm的标准镜头为参照,当光学***10满足上述关系时将拥有超过85mm的等效焦距,因而可使光学***10具有长焦特性,使光学***10具有较高的放大倍率,以此实现远摄效果。在一些实施例中,该关系具体可以为90、92、95、100、105、108、110、112、115、118或120。应注意的是,图像传感器的矩形有效像素区域具有一对角线方向,当装配图像传感器后,光学***10的最大视场角可理解为平行该对角线方向的最大视场角。Imgh可理解为成像面S9上矩形有效成像区域的对角线长度的一半。当装配图像传感器后,Imgh也可理解为图像传感器的矩形有效像素区域的中心至对角线边缘的距离,且上述有效成像区域的对角线方向平行于该矩形有效像素区域的对角线方向。
上述具有长焦特性的光学***10具有四片式结构,因此一方面可简化***的结构,降低制备成本及制备难度,另一方面也可使光学***10的镜组结构得到压缩,以满足小型化设计的需求。且由于第一透镜L1具有正屈折力且其物侧面S1为凸面,从而有利于进一步压缩***的结构,使具有长焦特性的光学***10的小型化特征更为显著。对于上述具有长焦特性的光学***10,由于第四透镜L4的像侧面S8为凸面,这种设计能够使得镜筒底部在有效径处有足够的空间以布放第四透镜L4的非有效径区域,以及有足够的点胶空间;此外,当各透镜与镜筒装配后,第四透镜L4的上述面型设计也不易形成灰尘堆积而影响像质。
此外,在一些实施例中,光学***10还进一步满足以下至少一个关系,且当满足任一关系式时均能带来相应的技术效果:
17.2mm<f<21.0mm。满足上述关系时,一方面可进一步确保光学***10长焦特性,另一方面可对光学***10的最大视场角所对应的像高进行约束,使光学***10拥有大像面特性,而无需通过牺牲像高大小来获得较高的放大倍率。且大像面特性使光学***10能够匹配更高像素的图像传感器,以 此可获得更优的成像品质。另外,通过上述设计,光学***10可适配市场上多数32M、48M的图像传感器,使得光学***10具备良好的普适性与实用性。在一些实施例中,该关系具体可以为17.3mm、17.5mm、17.8mm、18mm、18.5mm、19mm、19.4mm、19.6mm或19.8mm。
0.35<OAL/BF<0.52;OAL为第一透镜L1的物侧面S1至第四透镜L4的像侧面S4于光轴上的距离,BF为第四透镜L4的像侧面S4沿光轴方向至光学***10的成像面S9的最短距离。满足上述关系时,有利于光学***10的长后焦设计,从而可改良具有长焦特性的光学***10与图像传感器之间的匹配,提高两者在后期装配形成模组时的设计灵活度。在一些实施例中,该关系具体可以为0.4、0.42、0.44、0.46、0.48或0.5。
6.7mm<OAL≤7.5mm。在满足上述OAL/BF的基础上进一步满足OAL的关系时,能够使光学***10的镜组结构更为紧凑,可使光学***10能够同时支持长后焦和小镜组尺寸的设计,可拓展***在设计制造方面的灵活性,降低装配难度。当低于该关系的下限时,会导致镜组尺寸过短,透镜的设计及透镜间的装配难以得到协调,光学***10的长焦结构设计将变得困难,且易引入较大的面型扭曲,影响成型制造。当高于该关系的上限时,又会导致透镜间的间距过大,透镜过于分散,难以使光学***10中的镜组实现紧凑设计,另外也会压缩后焦的大小,不利于长焦***的设计。在一些实施例中,该关系具体可以为6.7mm、6.8mm、6.9mm、7mm、7.1mm、7.2mm、7.3mm或7.4mm。
BF>13.0mm;BF为第四透镜L4的像侧面S8沿光轴方向至光学***10的成像面S9的最短距离,且光学***10包括光路折转元件,光路折转元件设于第四透镜L4的出光侧,光路折转元件用于将来自第四透镜L4的光线反射至图像传感器。满足上述关系时,光学***10将具有长后焦特性,从而可改良具有长焦特性的光学***10与图像传感器之间的匹配,提高两者在后期装配形成模组时的设计灵活度。另外,通过在第四透镜L4的出光侧设置光路折转元件,可对第四透镜L4与成像面S9之间的光轴实现折转,避免光学***10于镜组轴向上的尺寸过长,从而有利于使***的整体结构更为合理,进而有利于应用至对元件小型化要求较高的设备中。在一些实施例中,该关系具体可以为13.5mm、13.8mm、14mm、14.5mm、15mm、16mm、17mm、18mm、18.5mm、18.8mm、19.2mm或19.4mm。
0.5<(CT12+CT23+CT34)/CT3<4.2;CT12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离,CT23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴上的距离,CT34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴上的距离,CT3为第三透镜L3于光轴上的厚度。满足上述关系时,各透镜之间的间隙缩小,镜组结构紧凑,配合关系良好。进一步地,通过上述设计可较好的引导光线以较小的偏转角在各透镜表面上偏折,从而降低公差敏感性;同时,可减少杂散光在透镜间的反射,降低产生杂散光和鬼像的风险;另外也有利于降低镜组成型制造和装配的难度。在一些实施例中,该关系具体可以为0.7、0.8、1、1.5、1.8、2、2.2、2.5、3、3.5、3.8或4。
|slp42|/|R41|<4.0°/mm;slp42为第四透镜L4的像侧面S8于最大有效孔径处的切面与垂直第四透镜L4光轴的平面的锐角夹角(可参考图3),R41为第四透镜L4的物侧面S7于光轴处的曲率半径。第四透镜L4作为光学***10的最后一个透镜,一般位于镜筒的底部,其面型直接决定了镜筒结构以及透镜与镜筒固定的难易程度。第四透镜L4的像侧面S8为凸面,这种设计使得镜筒底部在有效径处有足够的空间以布放第四透镜L4的非有效径区域,以及有足够的点胶空间;此外,当各透镜与镜筒装配后,第四透镜L4的上述面型设计不易形成灰尘堆积而影响像质。且当满足上述关系时,第四透镜L4的物侧面S7及像侧面S8的面型之间能够得到相互约束从而可易于成型加工以及对像质的提升。在一些实施例中,该关系具体可以为0.1、0.2、0.4、0.6、1、1.5、1.8、2、2.5、3、3.4、3.5或3.8,数值单位为(°/mm)。
0.4<f1/|R21|<2.3;f1为第一透镜L1的有效焦距,R21为第二透镜L2的物侧面S3于光轴处的曲率半径。满足上述关系时,第一透镜L1为***提供了较大的正屈折力,使得从第一透镜L1大口径处入射的光线可以向内收缩,以便于后方透镜对光线的调控,可避免光学***10在满足大光圈特性时所带来的光线难以调控和球差过大的问题;且通过上述第二透镜L2物侧面S3的曲率半径及第一透镜L1的屈折力强度之间的配合,可更好的引导光线,降低光线的偏转角,缩小色球差,缩小像差的引入,降低透镜的加工工艺难度,进而可实现***对低成本高像质的要求。在一些实施例中,该关系具体可 以为0.45、0.5、0.6、0.8、1、1.5、1.8、2、2.1或2.2。
1.5<|R32|/|f3|<13;R32为第三透镜L3的像侧面S6于光轴处的曲率半径,f3为第三透镜L3的有效焦距。满足上述关系时,第三透镜L3的有效焦距与像侧面S6于光轴处的曲率半径之间能够得到合理配置,此时即使第一透镜L1和第二透镜L2拥有较强的屈折力,第三透镜L3也无需拥有较高的屈折力即可完成对光线的收窄和角度的平滑过度,另外也能使该像侧面S6保持平滑的面型,以提供一定的球差贡献量,补偿第一透镜L1和二透镜因屈折力较强带来的球差溢出现象。另外,通过满足上述关系,第三透镜L3可为镜组增加设计的灵活性,提高与第一透镜L1和第二透镜L2之间的匹配关系,从而有助于缩小镜组尺寸,降低面型复杂度和公差敏感性。在一些实施例中,该关系具体可以为2、2.2、2.5、3、3.5、4、5、8、10、11.5、12、12.3、12.5或12.8。
0.5<(ET1+ET2+ET3)/(CT1+CT2+CT3)<1;ET1为第一透镜L1于物侧面S1最大有效孔径处至像侧面S2最大有效孔径处沿光轴方向的厚度,ET2为第二透镜L2于物侧面S3最大有效孔径处至像侧面S4最大有效孔径处沿光轴方向的厚度,ET3为第三透镜L3于物侧面S5最大有效孔径处至像侧面S6最大有效孔径处沿光轴方向的厚度,CT1为第一透镜L1于光轴上的厚度,CT2为第二透镜L2于光轴上的厚度,CT3为第三透镜L3于光轴上的厚度。满足上述关系时,当光学***10在满足大光圈和高像素的特性时,也可使第一透镜L1至第三透镜L3所构成的透镜组保持合理的中心厚度及边缘厚度,从而提升镜组的紧凑性,及缩小第一透镜L1至第四透镜L4所构成的镜组的轴向尺寸。在一些实施例中,该关系具体可以为0.6、0.62、0.65、0.68、0.7、0.73、0.76或0.78。
光学***10包括孔径光阑,孔径光阑在一些实施例中可设于第一透镜L1的物侧、第三透镜L3与第四透镜L4之间或第四透镜L4的像侧,且光学***10满足关系:7.0mm<|f4|/FNO<36.0mm及2.0<FNO<2.5;f4为第四透镜L4的有效焦距,FNO为光学***10的光圈数。满足上述关系时,具有长焦特性的光学***10能够获得良好的进光量,这样的配置,不仅增大了***的衍射极限,且在上述透镜及孔径光阑的设计及配合下,光学***10可获得较高的解像力及大光圈特性,从而可使全视场拥有较高的相对亮度,同时也能抑制从视场中心到边缘的解像力衰减。在一些实施例中,|f4|/FNO的关系具体可以为7.5、8、8.5、9、10、11、15、20、25、30、31、33或35,数值单位为mm。在一些实施例中,FNO的关系具体可以为2.1、2.15、2.2、2.3、2.4或2.45。
在一些实施例中,第一透镜L1至第四透镜L4中至少一者的物侧面及/或像侧面为非球面,即第一透镜L1至第四透镜L4中的至少一者具有非球面面型。例如可以将第一透镜L1至第四透镜L4的物侧面及像侧面均设计为非球面。非球面的面型设置能够进一步帮助光学***10消除像差,解决视界歪曲的问题,同时还有利于光学***10的小型化设计,使光学***10能够在保持小型化设计的前提下同时具备优良的光学效果。当然,在另一些实施例中,第一透镜L1至第四透镜L4中至少一者的物侧面及/或像侧面也可以为球面。球面面型可降低透镜的制备难度及成本。在一些实施例中,球面与非球面面型的搭配能够使***在拥有良好的成像质量与低成本及低制备难度之间取得平衡。
且应注意的是,透镜的实际面型并不限于本申请附图中示出的球面或非球面的形状,附图主要为示例参考而非严格按比例绘制。另外还应注意的是,在以下描述中,当某个透镜的物侧面或像侧面为非球面时,该面可以是整体呈现凸面或整体呈现凹面的结构。或者,该面也可设计成存在反曲点的结构,此时该面由中心至边缘的面型将发生改变,例如该面于中心处呈凸面而于边缘处呈凹面。此处仅为说明近轴处(近光轴101处)与圆周处(近最大有效孔径处)的关系而做出的示例,任一透镜的任一侧面的具体面型结构(凹凸关系)可以为多样,并不限于上述示例。
非球面的面型计算可参考非球面公式:
Figure PCTCN2021073941-appb-000001
其中,Z为非球面上相应点到该面于光轴处的切平面的距离,r为非球面上相应点到光轴的距离,c为非球面于光轴处的曲率,k为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的高次项系数。
进一步地,在一些实施例中,第四透镜L4的物侧面S7和像侧面S8中的至少一者设有反曲点,反曲点的设置能够增加透镜对入射光线的调控灵活性。特别对于位于镜组最后端的第四透镜L4而言,中心视场的光线主要透过该透镜靠近中心的区域,而边缘视场的光线则主要透过这两个透镜靠近边缘的区域,因此通过反曲点的设置能够使第四透镜L4针对性地调控中心视场和边缘视场的光线,以此可有效校正***的轴上及轴外像差。在一个实施例中,第四透镜L4的物侧面S7和像侧面S8均设有反曲点。
在一些实施例中,光学***10中设有光路折转元件110,光路折转元件110设于第四透镜L4的出光侧,光路折转元件110用于将来自第四透镜L4的光线反射至图像传感器以形成成像。光路折转元件110可以为直角棱镜或其他常见的反射元件。以直角棱镜为例,光路折转元件包括入射面111、反射面112及出射面113,三者均为平面,且反射面112可设置具有高反射率的反射镀层。入射面111与由第一透镜L1至第四透镜L4所构成的镜组的光轴垂直,而反射面112与镜组的光轴101之间形成45°夹角。光学***10的光轴101在光路折转元件110的反射面112处发生折转。当描述一透镜表面的某一位置沿光轴方向至成像面S9的距离时,可理解为由该位置起始的平行于镜组光轴方向的线段,随后经反射面112折转90°后到达成像面S9,此线段距离即为该表面位置沿光轴方向至成像面S9的距离。
光学***10包括光阑STO,光阑STO为孔径光阑,光阑STO用于控制光学***10的进光量,并同时能够起到阻挡非有效光线的作用。当光阑STO在光轴101上的投影与第一透镜L1的物侧面S1于光轴101上的投影重叠时,也可认为是光阑STO设于第一透镜L1的物侧,此时第一透镜L1的物侧面S1的至少部分区域朝物方穿过光阑STO。光阑STO可设于第一透镜L1的物侧,也可设于第一透镜L1至第四透镜L4中的其中两个相邻透镜之间,或者设于第四透镜L4的像侧。光阑STO可以由夹持透镜的镜筒结构形成,也可以是单独装配至透镜和镜筒之间的隔圈。
另一方面,在一些实施例中,第一透镜L1至第四透镜L4中至少一者的材质为塑料。在一些实施例中,第一透镜L1至第四透镜L4中至少一者的材质均为玻璃。例如,光学***10中各透镜的材质均为塑料或均为玻璃。塑料材质的透镜能够减少光学***10的重量并降低生产成本,而玻璃材质的透镜能够耐受较高的温度且具有优良的光学效果。在另一些实施例中,第一透镜L1的材质为玻璃,而第二透镜L2至第四透镜L4中各透镜的材质均为塑料,此时,由于光学***10中位于物方的透镜的材质为玻璃,因此这些位于物方的玻璃透镜对极端环境具有很好耐受效果,不易受物方环境的影响而出现老化等情况,从而当光学***10处于暴晒高温等极端环境下时,这种结构能够较好地平衡***的光学性能与成本。当然,光学***10中透镜材质配置关系并不限于上述距离,任一透镜的材质可以为塑料,也可以为玻璃,具体设计可根据实际需求而确定。
在一些实施例中,光学***10包括红外截止滤光片120,红外截止滤光片120设置于第四透镜L4的出光光路上,并与光学***10中的各透镜相对固定设置。红外截止滤光片120用于滤除红外光,防止红外光到达***的成像面S9,从而防止红外光干扰正常成像。红外截止滤光片120可与各透镜一同装配以作为光学***10中的一部分。在另一些实施例中,红外截止滤光片120并不属于光学***10的元件,此时红外截止滤光片120可以在光学***10与感光元件装配成摄像模组时,一并安装至光学***10与感光元件之间。在一些实施例中,红外截止滤光片120也可设置在第一透镜L1的物侧。另外,在一些实施例中也可通过在第一透镜L1至第四透镜L4中的至少一个透镜上设置滤光镀层以实现滤除红外光的作用。
接下来以更为具体详细的实施例来对本申请的光学***10进行说明:
第一实施例
参考图1和图2,在第一实施例中,光学***10沿光轴101由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4及光路折转元件110。光路折转元件110位直角棱镜。图2包括第一实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凸面;物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凹面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凹面,像侧面S8于圆周处为凸面。
除了第三透镜L3的物侧面S5为球面外,第一透镜L1至第四透镜L4中各透镜的物侧面和像侧面均为非球面。通过光学***10中各透镜的面型配置,从而能够有效解决光学***10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学***10具有更小的体积,有利于光学***10实现小型化设计。
另外,光学***10中各透镜的材质均为塑料,以此可有效降低光学***10的制造成本及***重量。
进一步地,参考图1和图4,光路折转元件110的设置位置可以为多样,并不限于该实施例或以下各实施例中所提及的具***置,只要确保第四透镜L4的像侧面S8至反射面112于光轴101上的距离不变即可。
以图1和图4为例,图中的第四透镜L4的像侧面S8至成像面S9于光轴101上的距离即为两者于任一光轴101方向上的最短距离BF,将该像侧面S8至反射面112于光轴101上的距离定义为BF1,将反射面112至成像面S9于光轴101上的距离定义为BF2,可知BF=BF1+BF2。光路折转元件110可以拥有不同的设置位置,只要确保BF1+BF2=BF即可。这种设计可以根据设备对摄像元件的不同尺寸要求而进行相应调节,从而可使光学***10拥有更佳的适配性。
该实施例中光学***10的各透镜参数由以下的表1和表2给出。表2给出了表1中各透镜相应表面的非球面系数,其中K为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的系数。由物面至像面(成像面S19,也可理解为后期装配时图像传感器的感光表面)的各元件依次按照表1从上至下的各元件的顺序排列。其中,光阑为孔径光阑,红外滤光片为红外截止滤光片120。面序号2和3所对应的表面分别表示第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。面序号10对应的是光路折转元件110的入射面111,面序号11对应的是反射面112,面序号12对应的是出射面113。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。Y半径为无限的球面即为平面。透镜于“厚度”参数列中的第一个数值的绝对值为该透镜于光轴上的厚度,第二个数值的绝对值为该透镜的像侧面至后一光学元件的物侧面于光轴上的距离。在以下各实施例(第一实施例至第六实施例)的参数表格中,各透镜的折射率、阿贝数和焦距的参考波长均为587nm,且Y半径、厚度、焦距(有效焦距)、Y孔径的数值单位均为毫米(mm)。另外,各实施例的关系式计算和透镜结构应以参数表格(如表1、表2、表3、表4等)所提供的数据为准。
在第一实施例中,光学***10的有效焦距f=18.82mm,光圈数FNO=2.08,最大视场角FOV=21.12°,光学总长TTL=22.6mm,光学总长TTL为第一透镜L1的物侧面S1至成像面S9于光轴101上的距离。
表1
Figure PCTCN2021073941-appb-000002
Figure PCTCN2021073941-appb-000003
表2
面序号 2 3 4 5 7 8 9
K 6.271E-01 -9.900E+01 -6.198E+01 0.000E+00 -2.998E+01 0.000E+00 8.691E+00
A4 -3.382E-04 3.248E-03 9.101E-03 3.629E-03 4.352E-03 1.219E-02 6.174E-03
A6 -1.541E-05 1.509E-04 -6.159E-04 -7.017E-04 -6.830E-05 -5.574E-04 -4.364E-04
A8 3.567E-05 -3.182E-06 -1.255E-05 -1.078E-05 1.081E-04 0.000E+00 -1.981E-05
A10 -7.692E-06 -4.589E-06 8.263E-06 4.861E-07 -4.916E-05 0.000E+00 1.580E-05
A12 9.612E-07 9.094E-07 -1.495E-06 0.000E+00 1.073E-05 0.000E+00 -3.148E-06
A14 -7.484E-08 -9.117E-08 1.588E-07 0.000E+00 -1.367E-06 0.000E+00 3.299E-07
A16 3.524E-09 4.981E-09 -1.027E-08 0.000E+00 1.048E-07 0.000E+00 -1.870E-08
A18 -9.232E-11 -1.419E-10 3.750E-10 0.000E+00 -4.437E-09 0.000E+00 4.911E-10
A20 1.033E-12 1.677E-12 -5.782E-12 0.000E+00 7.791E-11 0.000E+00 -3.206E-12
在第一实施例中,光学***10满足以下各关系:
43*f/Imgh=114.95。以35mm的标准镜头为参照,当光学***10满足该关系时将拥有超过85mm的等效焦距,因而可使光学***10具有长焦特性,使光学***10具有较高的放大倍率,以此实现远摄效果。
f=18.82mm。满足该关系时,一方面可进一步确保光学***10长焦特性,另一方面可对光学***10的最大视场角所对应的像高进行约束,使光学***10拥有大像面特性,而无需通过牺牲像高大小来获得较高的放大倍率。且大像面特性使光学***10能够匹配更高像素的图像传感器,以此可获得更优的成像品质。另外,通过上述设计,光学***10可适配市场上多数32M、48M的图像传感器,使得光学***10具备良好的普适性与实用性。
OAL/BF=0.43。满足该关系时,有利于光学***10的长后焦设计,从而可改良具有长焦特性的光学***10与图像传感器之间的匹配,提高两者在后期装配形成模组时的设计灵活度。
OAL=6.8mm。在满足上述OAL/BF的基础上进一步满足OAL的关系时,能够使光学***10的镜组结构更为紧凑,可使光学***10能够同时支持长后焦和小镜组尺寸的设计,可拓展***在设计制造方面的灵活性,降低装配难度。当低于该关系的下限时,会导致镜组尺寸过短,透镜的设计及透镜间的装配难以得到协调,光学***10的长焦结构设计将变得困难,且易引入较大的面型扭曲,影响成型制造。当高于该关系的上限时,又会导致透镜间的间距过大,透镜过于分散,难以使光学***10中的镜组实现紧凑设计,另外也会压缩后焦的大小,不利于长焦***的设计。
BF=15.8mm。满足该关系时,光学***10将具有长后焦特性,从而可改良具有长焦特性的光学***10与图像传感器之间的匹配,提高两者在后期装配形成模组时的设计灵活度。另外,通过在第四透镜L4的出光侧设置光路折转元件110,可对第四透镜L4与成像面S9之间的光轴实现折转,避免光学***10于镜组轴向上的尺寸过长,从而有利于使***的整体结构更为紧凑且合理,进而有利于应用至对元件小型化要求较高的设备中。
(CT12+CT23+CT34)/CT3=2.24。满足该关系时,各透镜之间的间隙缩小,镜组结构紧凑,配合关系良好。进一步地,通过上述设计可较好的引导光线以较小的偏转角在各透镜表面上偏折,从而降低公差敏感性;同时,可减少杂散光在透镜间的反射,降低产生杂散光和鬼像的风险;另外也有利于降低镜组成型制造和装配的难度。
|slp42|/|R41|=1.88°/mm。满足该关系时,第四透镜L4的物侧面S7及像侧面S8的面型之间能够得到相互约束从而可易于成型加工以及对像质的提升。
f1/|R21|=0.47。满足该关系时,第一透镜L1为***提供了较大的正屈折力,使得从第一透镜L1大口径处入射的光线可以向内收缩,以便于后方透镜对光线的调控,可避免光学***10在满足大光圈特性时所带来的光线难以调控和球差过大的问题;且通过上述第二透镜L2物侧面S3的曲率半径及第一透镜L1的屈折力强度之间的配合,可更好的引导光线,降低光线的偏转角,缩小色球差,缩小像差的引入,降低透镜的加工工艺难度,进而可实现***对低成本高像质的要求。
|R32|/|f3|=1.99。满足该关系时,第三透镜L3的有效焦距与像侧面S6于光轴处的曲率半径之间能够得到合理配置,此时即使第一透镜L1和第二透镜L2拥有较强的屈折力,第三透镜L3也无需拥有较高的屈折力即可完成对光线的收窄和角度的平滑过度,另外也能使该像侧面S6保持平滑的面型,以提供一定的球差贡献量,补偿第一透镜L1和二透镜因屈折力较强带来的球差溢出现象。另外,通过满足上述关系,第三透镜L3可为镜组增加设计的灵活性,提高与第一透镜L1和第二透镜L2之间的匹配关系,从而有助于缩小镜组尺寸,降低面型复杂度和公差敏感性。
(ET1+ET2+ET3)/(CT1+CT2+CT3)=0.74。满足该关系时,当光学***10在满足大光圈和高像素的特性时,也可使第一透镜L1至第三透镜L3所构成的透镜组保持合理的中心厚度及边缘厚度,从而提升镜组的紧凑性,及缩小第一透镜L1至第四透镜L4所构成的镜组的轴向尺寸。
|f4|/FNO=24.89mm及FNO=2.08。满足该关系时,具有长焦特性的光学***10能够获得良好的进光量,这样的配置,不仅增大了***的衍射极限,且在上述透镜及孔径光阑的设计及配合下,光学***10可获得较高的解像力及大光圈特性,从而可使全视场拥有较高的相对亮度,同时也能抑制从视场中心到边缘的解像力衰减。
上述光学***10能够以较少的透镜片数即实现长焦、大光圈和高像素的性能,从而可实现低成本高性能的设计;同时,由于保持合理的透镜厚度与厚薄比,从而也能降低透镜的成型难度及组装匹配难度,另外也能提高镜组结构的紧凑性。另外,通过设置光路折转元件110,光学***10能够有效压缩于镜组光轴方向上的尺寸,以此可更好应用于对部件小型化要求较高的设备。
另外,图2包括光学***10的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学***10的场曲图(Astigmatic Field Curves),其中S曲线代表587nm下的弧矢场曲,T曲线代表587nm下的子午场曲。由图中可知,***的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学***10的畸变图(Distortion),由图中可知,由主光束引起的图像变形较小,最大畸变被控制在0.5%以内,***的成像质量优良。
第二实施例
参考图5和图6,在第二实施例中,光学***10沿光轴101由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4及光路折转元件110。光路折转元件110位直角棱镜。图6包括第二实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凸面;物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凹面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凹面,像侧面S8于圆周处为凸面。
另外,第二实施例中光学***10的各透镜参数由表3和表4给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2021073941-appb-000004
表4
面序号 2 3 4 5 6 7 8 9
K 1.566E-01 -9.348E+01 4.837E+01 -7.299E-01 -1.134E+00 -9.900E+01 4.841E+00 3.346E+01
A4 6.475E-04 7.500E-03 1.178E-02 -4.026E-04 1.359E-02 3.191E-02 3.399E-02 1.484E-02
A6 6.738E-07 3.477E-04 -1.626E-03 -9.678E-03 -1.140E-02 -1.333E-02 -2.384E-02 -1.198E-02
A8 9.499E-06 -5.310E-04 -8.674E-04 4.411E-03 3.436E-03 1.849E-03 9.894E-03 5.444E-03
A10 -9.428E-06 1.217E-04 4.001E-04 -1.441E-03 -2.990E-04 1.256E-03 -2.475E-03 -1.607E-03
A12 2.282E-06 -1.454E-05 -7.532E-05 3.297E-04 -1.105E-04 -7.294E-04 3.404E-04 3.040E-04
A14 -2.877E-07 1.006E-06 7.992E-06 -4.928E-05 3.577E-05 1.718E-04 -1.606E-05 -3.600E-05
A16 2.069E-08 -4.068E-08 -5.001E-07 4.564E-06 -4.474E-06 -2.164E-05 -1.892E-06 2.494E-06
A18 -8.178E-10 8.982E-10 1.737E-08 -2.383E-07 2.725E-07 1.440E-06 2.957E-07 -8.601E-08
A20 1.364E-11 -8.470E-12 -2.594E-10 5.396E-09 -6.721E-09 -4.003E-08 -1.190E-08 8.799E-10
该实施例中的光学***10满足以下关系:
43*f/Imgh 111.39 (CT12+CT23+CT34)/CT3 2.22
OAL/BF 0.48 |slp42|/|R41| 1.48
OAL 6.80 f1/|R21| 0.41
BF 14.48 |R32|/|f3| 5.68
|f4|/FNO 10.82 (ET1+ET2+ET3)/(CT1+CT2+CT3) 0.70
FNO 2.45    
上表中OAL、BF、|f4|/FNO的单位为mm,|slp42|/|R41|的单位为deg/mm。
由图6中的像差图可知,光学***10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***10拥有良好的成像品质。
第三实施例
参考图7和图8,在第三实施例中,光学***10沿光轴101由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4及光路折转元件110。光路折转元件110位直角棱镜。图8包括第三实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凸面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凹面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凹面,像侧面S8于圆周处为凸面。
另外,第三实施例中光学***10的各透镜参数由表5和表6给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2021073941-appb-000005
表6
面序号 2 3 4 5 6 7 8 9
K -1.344E-01 -8.020E+01 -1.073E+01 0.000E+00 -4.845E+00 -7.314E+01 5.805E-01 7.686E+00
A4 3.834E-04 2.651E-03 3.167E-03 -1.980E-02 8.062E-04 2.207E-02 2.955E-02 1.792E-02
A6 -6.415E-05 1.521E-04 3.875E-03 5.251E-03 -2.799E-03 -6.933E-03 -1.463E-02 -8.826E-03
A8 6.038E-05 1.281E-04 -1.795E-03 4.477E-04 1.416E-03 3.661E-04 5.860E-03 3.691E-03
A10 -2.012E-05 -9.356E-05 3.687E-04 -8.488E-04 -2.590E-04 9.351E-04 -1.546E-03 -1.088E-03
A12 3.720E-06 2.188E-05 -4.150E-05 2.740E-04 -5.787E-06 -4.458E-04 2.448E-04 2.131E-04
A14 -4.317E-07 -2.719E-06 2.421E-06 -4.566E-05 6.603E-06 9.670E-05 -1.929E-05 -2.676E-05
A16 3.109E-08 1.917E-07 -3.822E-08 4.367E-06 -7.006E-07 -1.143E-05 -1.251E-08 2.026E-06
A18 -1.278E-09 -7.244E-09 -2.785E-09 -2.282E-07 2.400E-08 7.187E-07 1.144E-07 -8.131E-08
A20 2.234E-11 1.144E-10 1.096E-10 5.078E-09 0.000E+00 -1.897E-08 -5.894E-09 1.233E-09
该实施例中的光学***10满足以下关系:
43*f/Imgh 88.16 (CT12+CT23+CT34)/CT3 2.12
OAL/BF 0.51 |slp42|/|R41| 3.98
OAL 6.80 f1/|R21| 2.29
BF 13.32 |R32|/|f3| 7.08
|f4|/FNO 7.11 (ET1+ET2+ET3)/(CT1+CT2+CT3) 0.70
FNO 2.45    
由图8中的像差图可知,光学***10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***10拥有良好的成像品质。
第四实施例
参考图9和图10,在第四实施例中,光学***10沿光轴101由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4及光路折转元件110。光路折转元件110位直角棱镜。图10包括第四实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凸面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凸面;物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凹面,像侧面S8于圆周处为凸面。
另外,第四实施例中光学***10的各透镜参数由表7和表8给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2021073941-appb-000006
Figure PCTCN2021073941-appb-000007
表8
面序号 2 3 4 5 6 7 8 9
K 4.938E-01 4.055E+00 -5.248E+01 -2.539E-01 3.702E+00 -1.700E+01 3.078E+01 2.975E+01
A4 -2.407E-04 7.808E-03 3.291E-02 3.103E-02 1.852E-02 2.290E-02 1.472E-02 -1.504E-03
A6 2.025E-04 1.649E-03 -7.810E-03 -1.038E-02 -5.549E-03 -4.773E-03 -1.399E-03 1.052E-03
A8 -2.451E-05 -6.758E-04 9.047E-04 9.182E-05 9.905E-04 6.664E-04 2.012E-04 4.182E-05
A10 -6.973E-08 1.006E-04 -9.848E-05 4.655E-04 -1.638E-04 -2.492E-04 -2.747E-04 -1.269E-04
A12 2.014E-07 -8.339E-06 1.339E-05 -1.159E-04 3.345E-05 8.250E-05 9.165E-05 3.516E-05
A14 -1.599E-08 4.125E-07 -1.399E-06 1.443E-05 -5.562E-06 -1.399E-05 -1.392E-05 -4.745E-06
A16 4.541E-10 -1.202E-08 8.669E-08 -1.024E-06 5.368E-07 1.249E-06 1.113E-06 3.525E-07
A18 -8.522E-13 1.838E-10 -2.856E-09 3.951E-08 -2.660E-08 -5.676E-08 -4.554E-08 -1.384E-08
A20 -1.466E-13 -9.933E-13 3.892E-11 -6.475E-10 5.310E-10 1.044E-09 7.512E-10 2.243E-10
该实施例中的光学***10满足以下关系:
43*f/Imgh 112.46 (CT12+CT23+CT34)/CT3 1.88
OAL/BF 0.42 |slp42|/|R41| 0.31
OAL 6.70 f1/|R21| 1.49
BF 16.09 |R32|/|f3| 2.19
|f4|/FNO 31.90 (ET1+ET2+ET3)/(CT1+CT2+CT3) 0.79
FNO 2.08    
由图10中的像差图可知,光学***10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***10拥有良好的成像品质。
第五实施例
参考图11和图12,在第五实施例中,光学***10沿光轴101由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4及光路折转元件110。光路折转元件110位直角棱镜。图12包括第五实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,像侧面S4于近轴处为凸面;物侧面S3于圆周处为凹 面,像侧面S4于圆周处为凸面。
第三透镜L3的物侧面S5于近轴处为凹面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面。
第四透镜L4的物侧面S7于近轴处为凹面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面。
另外,第五实施例中光学***10的各透镜参数由表9和表10给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2021073941-appb-000008
表10
面序号 1 2 3 4 5 6 8 9
K -4.903E+01 -4.000E+01 3.572E+01 -7.956E+01 -7.585E+00 4.697E+01 -4.827E+01 -5.822E+00
A4 -3.123E-03 -9.170E-03 -3.845E-03 -4.169E-03 -8.702E-03 -4.316E-05 4.911E-03 1.023E-03
A6 2.422E-04 2.171E-03 2.482E-03 2.373E-03 2.572E-03 -1.153E-05 -1.088E-03 -2.454E-04
A8 -1.418E-05 -5.263E-04 -7.748E-04 -5.735E-04 -7.581E-05 3.014E-04 2.236E-04 4.373E-05
A10 6.309E-06 1.069E-04 1.305E-04 7.876E-05 -4.987E-05 -7.559E-05 -2.590E-05 -3.443E-06
A12 -1.250E-06 -1.410E-05 -1.285E-05 -6.193E-06 8.948E-06 8.085E-06 1.871E-06 2.380E-07
A14 1.214E-07 1.158E-06 7.520E-07 2.797E-07 -7.341E-07 -4.690E-07 -9.255E-08 -1.942E-08
A16 -6.507E-09 -5.780E-08 -2.458E-08 -7.394E-09 3.049E-08 1.484E-08 2.986E-09 1.044E-09
A18 1.879E-10 1.615E-09 3.467E-10 1.024E-10 -5.082E-10 -2.047E-10 -4.577E-11 -2.218E-11
A20 -2.300E-12 -1.943E-11 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
该实施例中的光学***10满足以下关系:
43*f/Imgh 120.37 (CT12+CT23+CT34)/CT3 4.14
OAL/BF 0.39 |slp42|/|R41| 0.09
OAL 7.50 f1/|R21| 0.63
BF 19.17 |R32|/|f3| 2.48
|f4|/FNO 8.02 (ET1+ET2+ET3)/(CT1+CT2+CT3) 0.59
FNO 2.42    
由图12中的像差图可知,光学***10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***10拥有良好的成像品质。
第六实施例
参考图13和图14,在第六实施例中,光学***10沿光轴101由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、光阑STO及光路折转元件110。光路折转元件110位直角棱镜。图14包括第六实施例中光学***10的纵向球差图、像散图和畸变图,其中的像散图和畸变图的参考波长为587nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凸面;物侧面S5于圆周处为凸面,像侧面S6于圆周处为凸面。
第四透镜L4的物侧面S7于近轴处为凹面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凹面,像侧面S8于圆周处为凸面。
另外,第六实施例中光学***10的各透镜参数由表11和表12给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2021073941-appb-000009
表12
面序号 1 2 3 4 5 6 7 8
K -2.590E+01 -2.107E+01 -4.484E+01 -4.340E+00 -4.703E+00 2.845E+01 1.159E+00 3.610E-01
A4 2.831E-04 3.323E-03 1.513E-03 -1.482E-03 3.734E-03 4.574E-04 8.600E-04 9.461E-04
A6 -1.135E-04 -1.986E-03 -6.707E-04 1.322E-03 -2.715E-03 -2.435E-03 -2.471E-03 -6.123E-04
A8 -1.873E-05 5.084E-04 1.938E-04 -1.320E-04 1.326E-03 1.012E-03 1.169E-03 2.993E-04
A10 7.362E-06 -7.242E-05 -1.924E-05 -4.489E-05 -3.473E-04 -1.962E-04 -2.390E-04 -6.026E-05
A12 -1.006E-06 6.566E-06 2.617E-07 1.553E-05 5.431E-05 2.190E-05 2.788E-05 7.140E-06
A14 7.603E-08 -3.944E-07 1.035E-07 -2.162E-06 -5.281E-06 -1.425E-06 -1.868E-06 -5.268E-07
A16 -3.262E-09 1.554E-08 -9.214E-09 1.616E-07 3.124E-07 4.472E-08 6.189E-08 2.429E-08
A18 7.413E-11 -3.657E-10 3.304E-10 -6.366E-09 -1.031E-08 -6.263E-11 -3.492E-10 -6.510E-10
A20 -6.950E-13 3.844E-12 -4.591E-12 1.038E-10 1.459E-10 -2.162E-11 -2.134E-11 7.727E-12
该实施例中的光学***10满足以下关系:
43*f/Imgh 103.60 (CT12+CT23+CT34)/CT3 0.58
OAL/BF 0.38 |slp42|/|R41| 3.38
OAL 7.46 f1/|R21| 0.56
BF 19.57 |R32|/|f3| 12.98
|f4|/FNO 35.43 (ET1+ET2+ET3)/(CT1+CT2+CT3) 0.65
FNO 2.48    
由图14中的像差图可知,光学***10的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学***10拥有良好的成像品质。
参考图15,本申请的一些实施例还提供了一种摄像模组20,摄像模组20可包括上述任意一个实施例的光学***10及图像传感器210,图像传感器210设置于光学***10的出射光侧。图像传感器210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。一般地,在装配时,光学***10的成像面S19与图像传感器210的感光表面重叠。通过采用上述具有四片式结构的光学***10,摄像模组20不仅可具有长焦特性以实现远摄效果,同时还可简化模组的装配结构,降低制备成本及制备难度。当光学***10进一步满足相应关系特征时,摄像模组20还能拥有相应的大光圈、高像素特性,以及拥有结构紧凑的特点。
参考图16,本申请的一些实施例还提供了一种电子设备30。电子设备30包括固定件310,摄像模组20安装于固定件310,固定件310可以为显示屏盖板、电路板、中框、后盖等部件。电子设备30可以为但不限于智能手机、智能手表、智能眼镜、电子书阅读器、车载摄像设备、监控设备、无人机、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。通过采用上述摄像模组20,电子设备30不仅能够拥有远摄性能,同时还能够降低设备的生产成本。
本发明实施例中所使用到的“电子设备”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的设备。被设置成通过无线接口通信的电子设备可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子设备。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“前”、“后”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种光学***,沿光轴由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面为凸面;
    具有屈折力的第二透镜;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜,所述第四透镜的像侧面为凸面;
    所述光学***还满足关系:
    85.0<43*f/Imgh<122.0;
    f为所述光学***的有效焦距,Imgh为所述光学***的最大视场角所对应的像高。
  2. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    17.2mm<f<21.0mm。
  3. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.35<OAL/BF<0.52;
    OAL为所述第一透镜的物侧面至所述第四透镜的像侧面于光轴上的距离,BF为所述第四透镜的像侧面沿光轴方向至所述光学***的成像面的最短距离。
  4. 根据权利要求3所述的光学***,其特征在于,所述光学***满足关系:
    6.7mm<OAL≤7.5mm。
  5. 根据权利要求1所述的光学***,其特征在于,所述光学***包括孔径光阑,所述孔径光阑设于所述第一透镜的物侧、所述第三透镜与所述第四透镜之间或所述第四透镜的像侧,且所述光学***满足关系:
    7.0mm<|f4|/FNO<36.0mm;
    2.0<FNO<2.5;
    f4为所述第四透镜的有效焦距,FNO为所述光学***的光圈数。
  6. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.5<(CT12+CT23+CT34)/CT3<4.2;
    CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,CT3为所述第三透镜于光轴上的厚度。
  7. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    |slp42|/|R41|<4.0°/mm;
    slp42为所述第四透镜的像侧面于最大有效孔径处的切面与垂直所述第四透镜光轴的平面的锐角夹角,R41为所述第四透镜的物侧面于光轴处的曲率半径。
  8. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.4<f1/|R21|<2.3;
    f1为所述第一透镜的有效焦距,R21为所述第二透镜的物侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    1.5<|R32|/|f3|<13;
    R32为所述第三透镜的像侧面于光轴处的曲率半径,f3为所述第三透镜的有效焦距。
  10. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    0.5<(ET1+ET2+ET3)/(CT1+CT2+CT3)<1;
    ET1为所述第一透镜于物侧面最大有效孔径处至像侧面最大有效孔径处沿光轴方向的厚度,ET2为所述第二透镜于物侧面最大有效孔径处至像侧面最大有效孔径处沿光轴方向的厚度,ET3为所述第三透镜于物侧面最大有效孔径处至像侧面最大有效孔径处沿光轴方向的厚度,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度。
  11. 根据权利要求1所述的光学***,其特征在于,所述光学***满足关系:
    BF>13.0mm;
    BF为所述第四透镜的像侧面沿光轴方向至所述光学***的成像面的最短距离,且所述光学***包括光路折转元件,所述光路折转元件设于所述第四透镜的出光侧,所述光路折转元件用于将来自所述第四透镜的光线反射至图像传感器。
  12. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述光学***包括孔径光阑,所述孔径光阑设于所述第一透镜的物侧、所述第三透镜与所述第四透镜之间、所述第四透镜的像侧中的其中一处。
  13. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述第一透镜至所述第四透镜中的至少一者具有非球面面型。
  14. 根据权利要求13任意一项所述的光学***,其特征在于,所述第一透镜至所述第四透镜中各透镜的物侧面及像侧面均为非球面。
  15. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述第四透镜的物侧面和像侧面中的至少一者存在反曲点。
  16. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述第三透镜的物侧面为球面。
  17. 根据权利要求1至11任意一项所述的光学***,其特征在于,所述第一透镜至所述第四透镜中各透镜的材质均为塑料。
  18. 一种摄像模组,包括图像传感器及权利要求1至17任意一项所述的光学***,所述图像传感器设于所述光学***的出光侧。
  19. 根据权利要求18所述的摄像模组,其特征在于,所述光学***包括光路折转元件,所述光路折转元件设于所述第四透镜的出光侧,所述光路折转元件用于将来自所述第四透镜的光线反射至所述图像传感器。
  20. 根据权利要求18所述的摄像模组,其特征在于,包括红外截止滤光片,所述红外截止滤光片设于所述第四透镜的出光光路。
  21. 一种电子设备,包括固定件及权利要求18至20任意一项所述的摄像模组,所述摄像模组设于所述固定件。
PCT/CN2021/073941 2021-01-27 2021-01-27 光学***、摄像模组及电子设备 WO2022160120A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073941 WO2022160120A1 (zh) 2021-01-27 2021-01-27 光学***、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073941 WO2022160120A1 (zh) 2021-01-27 2021-01-27 光学***、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022160120A1 true WO2022160120A1 (zh) 2022-08-04

Family

ID=82654033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073941 WO2022160120A1 (zh) 2021-01-27 2021-01-27 光学***、摄像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022160120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240176104A1 (en) * 2022-11-24 2024-05-30 Samsung Electro-Mechanics Co., Ltd. Imaging lens system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160291288A1 (en) * 2015-03-31 2016-10-06 Largan Precision Co., Ltd. Imaging lens assembly, image capturing device, and electronic device
TWI564612B (zh) * 2015-09-25 2017-01-01 大立光電股份有限公司 攝影用光學系統、取像裝置及電子裝置
CN107884906A (zh) * 2016-09-30 2018-04-06 大立光电股份有限公司 光学影像撷取***镜组、取像装置及电子装置
US20190011668A1 (en) * 2017-07-05 2019-01-10 Newmax Technology Co., Ltd. Four-piece optical lens system
CN110261997A (zh) * 2019-06-11 2019-09-20 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160291288A1 (en) * 2015-03-31 2016-10-06 Largan Precision Co., Ltd. Imaging lens assembly, image capturing device, and electronic device
TWI564612B (zh) * 2015-09-25 2017-01-01 大立光電股份有限公司 攝影用光學系統、取像裝置及電子裝置
CN107884906A (zh) * 2016-09-30 2018-04-06 大立光电股份有限公司 光学影像撷取***镜组、取像装置及电子装置
US20190011668A1 (en) * 2017-07-05 2019-01-10 Newmax Technology Co., Ltd. Four-piece optical lens system
CN110261997A (zh) * 2019-06-11 2019-09-20 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240176104A1 (en) * 2022-11-24 2024-05-30 Samsung Electro-Mechanics Co., Ltd. Imaging lens system

Similar Documents

Publication Publication Date Title
CN110471167B (zh) 摄像光学镜头
WO2021109127A1 (zh) 光学***、摄像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
CN112764200A (zh) 光学***、摄像模组及电子设备
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
WO2022160120A1 (zh) 光学***、摄像模组及电子设备
CN111025539B (zh) 摄像光学镜头
CN110262010B (zh) 摄像光学镜头
WO2021102943A1 (zh) 光学***、摄像模组及电子装置
WO2022160119A1 (zh) 光学***、摄像模组及电子设备
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
EP4386462A1 (en) Optical lens, optical module and electronic device
CN114578515B (zh) 光学镜头、摄像模组及电子设备
WO2022109820A1 (zh) 光学***、摄像模组及电子设备
WO2022165840A1 (zh) 光学***、摄像模组及电子设备
WO2022236663A1 (zh) 光学变焦***、变焦模组及电子设备
WO2022151353A1 (zh) 光学变焦***、摄像模组及电子设备
CN113552695B (zh) 一种光学变焦***、镜头模组及电子设备
WO2022120515A1 (zh) 光学***、摄像模组及电子设备
WO2022088651A1 (zh) 潜望式光学成像***、摄像模组和电子装置
WO2022120678A1 (zh) 光学***、取像模组及电子设备
CN111198434B (zh) 摄像光学镜头
CN114460723A (zh) 光学***、摄像模组及电子设备
WO2021138754A1 (zh) 光学***、摄像模组及电子装置
CN114637094A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/12/2023)