WO2022224407A1 - 数値制御装置、加工システムシミュレータ及び数値制御プログラム - Google Patents

数値制御装置、加工システムシミュレータ及び数値制御プログラム Download PDF

Info

Publication number
WO2022224407A1
WO2022224407A1 PCT/JP2021/016306 JP2021016306W WO2022224407A1 WO 2022224407 A1 WO2022224407 A1 WO 2022224407A1 JP 2021016306 W JP2021016306 W JP 2021016306W WO 2022224407 A1 WO2022224407 A1 WO 2022224407A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
machining
switching
tool
center position
Prior art date
Application number
PCT/JP2021/016306
Other languages
English (en)
French (fr)
Inventor
俊大 渡邉
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2021545869A priority Critical patent/JP6997360B1/ja
Priority to CN202180097037.9A priority patent/CN117120947A/zh
Priority to DE112021006718.4T priority patent/DE112021006718T5/de
Priority to PCT/JP2021/016306 priority patent/WO2022224407A1/ja
Publication of WO2022224407A1 publication Critical patent/WO2022224407A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4069Simulating machining process on screen
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35311Remote simulation of machining program

Definitions

  • the present invention relates to a numerical control device, a machining system simulator, and a numerical control program.
  • a multi-edge tool that has a plurality of machining edges, each machining edge is equipped with a cutting tool for a different purpose, and is capable of handling a variety of machining shapes (see, for example, Patent Document 1).
  • multi-edge tools there are machining edges that project in different directions around the tool rotation axis and that are used for machining by changing the angular position of the tool around the tool rotation axis. There is a choice.
  • a numerical controller that controls a machine tool can set the offset of the tool in advance so that the coordinate position of the drive axis can be determined from the position of the machining point specified in the machining program and the direction of the tool based on the machining point.
  • a process called tip point control is performed.
  • the tip point control is once terminated, the tool offset setting value and the tool direction based on the machining point are updated, and then the tip It will be necessary to resume point control.
  • conventional numerical controllers by describing commands in the machining program to end point control, update the tool orientation based on the set value of the tool offset and the machining point, and start point control, Machining is performed using the aforementioned multi-edge tool.
  • a numerical control device includes at least one tool rotation axis for changing an angle of a multi-edge tool having a plurality of machining edges capable of machining a workpiece, and relatively moving the workpiece and the multi-edge tool. and at least one drive shaft that allows the multi- an edge shape information storage unit that stores geometric information about each of the machining edges of the edge tool as edge shape information; a center position calculation unit that reads and calculates the rotation center position of the multi-edge tool of the machining edge based on the read tip position and the shaft angle and the edge shape information stored in the edge shape information storage unit; an edge switching determining unit for determining whether or not there is the edge switching based on the machining program; and when the edge switching determining unit determines that there is the edge switching, considering the edge shape information, a calculation method changing unit for changing the calculation method of the center position in the center position calculation unit in accordance with the switching of the edge; and based on the calculation method after the edge switching changed by the calculation method changing unit, the edge a tip
  • a machining system simulator includes at least one tool rotation axis that changes an angle of a multi-edge tool having a plurality of machining edges capable of machining a workpiece, and relatively moving the workpiece and the multi-edge tool.
  • a machine tool that switches the machining edge for machining the workpiece by rotating the tool rotation axis, and a numerical controller that controls the machine tool according to a machining program
  • an edge shape information storage unit that stores geometric information about each of the machining edges in the multi-edge tool as edge shape information
  • the machining The tip position of the machining edge to be used and the axis angle of the tool rotation axis are read from the program, and based on the read tip position and axis angle and the edge shape information stored in the edge shape information storage unit, a center position calculation unit that calculates the center position of rotation of the multi-edge tool; an edge switching determination unit that determines whether or not there is the edge switching based on the machining program; a calculation method changing unit for changing the calculation method of the center position in the center position calculation unit in accordance with the switching of the edge in consideration of the edge shape information when it is determined that there is a change by the calculation method changing unit; Based on the calculation method after the edge switching, a tip position back-calculating unit that back-calc
  • a numerical control program includes at least one tool rotation axis for changing an angle of a multi-edge tool having a plurality of machining edges capable of machining a workpiece, and relatively moving the workpiece and the multi-edge tool. and at least one drive shaft for controlling the processing of a numerical control device that controls a machine tool that switches the machining edge for machining the workpiece by the rotational movement of the tool rotation axis according to a machining program.
  • a control program for reading the tip position of the machining edge to be used and the axis angle of the tool rotation axis from the machining program, and reading the tip position and the axis angle and the machining in the multi-edge tool.
  • a center position calculation control unit for calculating the center position of the multi-edge tool rotation of the machining edge based on edge shape information including geometric information about the edge; and whether there is edge switching based on the machining program. and if the edge switching determination control unit determines that there is the edge switching, the center position calculation control is performed in accordance with the edge switching in consideration of the edge shape information.
  • a calculation method change control unit that changes the calculation method of the center position in the section, and based on the calculation method after the edge switching changed by the calculation method change control unit, from the center position immediately before the edge switching , a tip position back calculation control unit for calculating back the tip position after the edge switching, the tip position and the shaft angle after the edge switching calculated by the tip position back calculation control unit, and the tip before the edge switching a variation calculation control unit for calculating a required variation of the center position based on the position and the axis angle.
  • FIG. 1 is a block diagram showing the configuration of a machining system including a numerical controller according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating the relationship between the shaft of the machine tool of FIG. 1 and the multi-edge tool
  • FIG. 3 is a schematic diagram illustrating the relationship between the tip point and the center of rotation of the multi-edge tool of FIG. 2
  • 1 is a block diagram showing the configuration of a machining system simulator according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing the configuration of a machining system 100 including a numerical controller 1 according to one embodiment of the present disclosure.
  • the machining system 100 includes a machine tool M, a numerical controller 1 that controls the machine tool M according to a machining program, and a machining program recording medium R that provides the machining program to the numerical controller 1.
  • the machine tool M uses a multi-edge tool T having a plurality of machining edges (first machining edge E1, second machining edge E2 and third machining edge E3) capable of machining the workpiece W as illustrated in FIG. Workpiece W is machined. Therefore, the machine tool M has at least one tool rotation axis (the B axis in the example of FIG. 2) that changes the angle of the multi-edge tool T, and at least one drive that relatively moves the workpiece W and the multi-edge tool T. axes (X-axis and Z-axis in the example of FIG. 2). The machine tool M performs edge switching for switching the machining edges E1, E2, and E3 for machining the workpiece W by rotating the tool rotating shaft.
  • first machining edge E1, second machining edge E2 and third machining edge E3 capable of machining the workpiece W as illustrated in FIG.
  • Workpiece W is machined. Therefore, the machine tool M has at least one tool rotation axis (the B axis in the example of FIG. 2) that changes the angle of the
  • the machine tool M typically rotates a workpiece W by, for example, a spindle C, and brings one of the machining edges E1, E2, and E3 of the multi-edge tool T into contact with the workpiece W to rotate the workpiece.
  • a lathe for cutting W the machine tool M is not limited to a lathe, and may be, for example, a planing machine.
  • the machining program recording medium R can be composed of a disk storage device, a non-volatile memory, or the like. Moreover, the machining program recording medium R may be integrated with the numerical controller 1 . That is, the machining program recording medium R may be part of the storage area of the numerical controller 1 .
  • the machining program is written in a language such as G code, for example. Describe the movement speed, the curvature of the movement path between passing points, etc. by dividing it into a plurality of statements. Also, the machining program may include instructions specifying which end point of the machining edges E1, E2, and E3 should pass through the passing point.
  • the numerical controller 1 controls the operation of the machine tool M that processes the workpiece W according to the machining program provided by the machining program recording medium R.
  • the numerical control device 1 can be realized by causing a computer device having a CPU, a memory, an input/output interface, etc. to execute an appropriate numerical control program.
  • a numerical control program for realizing the numerical control device 1 is an embodiment of the numerical control program which itself is one subject of the present disclosure, and is stored in a storage medium that non-temporarily stores the program. can be provided in
  • the numerical controller 1 includes a program instruction analysis unit 11, an edge shape information storage unit 12, a center position calculation unit 13, an edge switching determination unit 14, a calculation method change unit 15, a tip position back calculation unit 16, a change A quantity calculation unit 17 and an interpolation processing unit 18 are provided. These components are categorized functions of the numerical controller 1 and may not be clearly distinguished in their physical configuration and program configuration.
  • the program instruction analysis unit 11 reads and analyzes the machining program provided from the machining program recording medium R for each command. In other words, the program command analysis unit 11 translates the machining program into data that can be processed by the numerical controller 1 .
  • the edge shape information storage unit 12 stores geometric information about the machining edges E1, E2, and E3 of the multi-edge tool T as edge shape information.
  • the edge shape information storage unit 12 may be configured to acquire the edge shape information of the multi-edge tool T from the machining program and temporarily store the edge shape information in the machining program during execution.
  • the edge shape information includes angles ⁇ 12, ⁇ 23, and ⁇ 31 between the processing edges E1, E2, and E3 with respect to the rotation center O, and the processing edges E1, E2, and E3, in order to specify the tip positions of the processing edges E1, E2, and E3. and distances L1, L2, L3 from the tip points of E2, E3 to the rotation center O.
  • the edge shape information includes the distance between the tip points of the adjacent machining edges E1, E2, and E3 and the tip positions of the machining edges E1, E2, and E3. and an angle from a predetermined direction viewed from the rotation center O.
  • the edge shape information can also include the radius of curvature of the tips of the processed edges E1, E2, and E3.
  • the center position calculation unit 13 reads the tip positions of the machining edges E1, E2, and E3 to be used and the axis angles of the tool rotation axes from the machining program, and stores the read tip positions and axis angles and the edge shape information storage unit 12.
  • the rotational center position (coordinate position of the rotational center O) of the multi-edge tool T is calculated based on the stored edge shape information.
  • the number of the processed edge to be processed before edge switching is n
  • the number of the processed edge to be processed after edge switching is m.
  • the center position of the multi-edge tool T that is, the coordinates (Zn, Xn) of the rotation center O are the coordinates (ZPn , XPn) and the distance Ln from the machining edge En to the center O of rotation can be expressed by the following equation (1).
  • the center position (Zn, Xn) are the coordinates (ZQn, XQn) of the tip position (contact point Qn) according to the machining program
  • the distance Ln from the machining edge En to the rotation center O, and the vector (ZQnPn, XQnPn) from the contact point Qn to the curvature center point Pn ) can be expressed by the following equation (2).
  • the center position calculation unit 13 performs matrix calculation using a rotation matrix defined by a vector for defining the reference position of the tool rotation axis, a vector from the tip position to the center position, and the axis angle. , the coordinates of the rotation center O can be calculated accurately.
  • the edge switching determination unit 14 determines whether there is edge switching based on the machining program. Specifically, the edge switching determination unit 14 determines whether or not each statement of the machining program includes an instruction specifying the next machining edge Em.
  • the workpiece W may be scratched or the multi-edge tool T may be damaged.
  • a machining program is created so that edge switching is performed when the multi-edge tool T is separated from the workpiece W.
  • the numerical control device 1 has a configuration for performing a process of separating the multi-edge tool T from the work W when edge switching is detected and causing the multi-edge tool T to approach the work W after edge switching. good too.
  • the calculation method changing unit 15 changes the method of calculating the center position in the center position calculating unit 13 in accordance with the edge switching in consideration of the edge shape information. . That is, the calculation method changing unit 15 converts the tip position (the coordinates of the curvature center point Pn or the contact point Qn) of the machining edge En being machined before edge switching to the center position (the rotation center O of the multi-edge tool T). is changed to a formula for calculating the center position from the tip position of the machining edge Em to be machined after edge switching.
  • the calculation method changing unit 15 adds or subtracts the angle difference ⁇ nm between the processing edges En and Em before and after the edge switching to or from the axis angle ⁇ before the edge switching according to the rotation direction. Calculate the angle. Further, the calculation method changing unit 15 calculates the angular difference ⁇ nm between the processed edges before and after the edge switching and the tip of the processed edge before and after the edge switching based on the shape information of the processed edges En and Em before and after the edge switching. A change rate (Lm/Ln) of the distance to the center position is calculated.
  • the calculation method changing unit 15 uses the angular difference ⁇ nm between the processed edges En and Em and the rate of change of the distance to the center position (Lm/Ln) as a reference for calculation of the center position in the center position calculation unit 13. is changed from the tip position (ZPn, XPn) of the machining edge En before edge switching to the tip position (ZPm, XPm) of the machining edge after edge switching.
  • the calculation method changing unit 15 performs matrix calculation using a rotation matrix defined from the angular difference ⁇ nm between the processed edges En and Em.
  • the calculation method change unit 15 changes the calculation formula for calculating the center position after switching the machining edge to be processed from the machining edge En to the machining edge Em, that is, the coordinates (Zm, Xm) of the rotation center O.
  • the following formula (3) is a modified calculation formula when the tip positions of the processed edges En and Em are the positions of the curvature center points Pn and Pm, that is, when the formula (1) is changed.
  • Formula (4) is a modified calculation formula when the tip positions of the machining edges En and Em are the positions of the contact points Qn and Qn with respect to the workpiece W, that is, when the formula (2) is changed.
  • the tip position inverse calculation unit 16 calculates the center position (Zn, Xn) immediately before edge switching based on the calculation method after edge switching changed by the calculation method changing unit 15, that is, equation (3) or equation (4). , the tip position (curvature center point Pm or contact point Qm) after edge switching is calculated backward. Therefore, the tip position inverse calculation unit 16 is defined from a vector for defining the reference position of the tool rotation axis, a vector from the tip position to the center position, a rotation matrix defined from the axis angle, and the angle between the machining edges.
  • the change amount calculation unit 17 calculates the tip position (ZPm, XPm), (ZQm, XQm) and the axis angle ( ⁇ + ⁇ nm) after edge switching calculated by the tip position back calculation unit 16, and the tip position (ZPn , XPn), (ZQn, XQn) and the required change in center position based on the axis angle ⁇ .
  • the change amount calculator 17 calculates the amount of change in the tip position and the shaft angle before and after edge switching, that is, the center position (Zn, Xn) before edge switching and the center position (Zm, Xm) after edge switching. , and by adding or subtracting the calculated amount of change to or from the tip position before edge switching, the tip position after edge switching is calculated. By such calculation, the tip position after edge switching can be calculated accurately.
  • the change amount calculation unit 17 calculates the offset amount of the coordinate system of the drive shaft with respect to the machining point (curvature center point Pm or contact point Qm of machining edge Em) specified in the machining program based on the tip position after edge switching. It is calculated and reflected in the setting value of tip point control. This makes it possible to accurately change the setting of the tip point control.
  • the interpolation processing unit 18 calculates the command value to be output to the machine tool M by calculating the coordinate position at each time between a plurality of coordinate positions of the drive axis corresponding to the passing points specified in the machining program. Generate.
  • the numerical control device 1 includes the edge shape information storage unit 12, the center position calculation unit 13, the edge switching determination unit 14, the calculation method change unit 15, the tip position back calculation unit 16, and the change amount calculation unit 17.
  • the offset between the coordinate position of the drive axis of the machine tool M and the coordinate position of the machining point can be machined.
  • the numerical control program implements the center position calculation control unit that implements the center position calculation unit 13 and the edge switching determination unit 14. a calculation method change control unit that implements the calculation method change unit 15; a tip position back calculation control unit that implements the tip position back calculation unit 16; and a change amount calculation control that implements the change amount calculation unit 17. and With such a numerical control program, setting of the tip point control is simple and reliable, as described above.
  • FIG. 4 shows the configuration of a machining system simulator 200 according to an embodiment of the present disclosure.
  • the machining system simulator 200 simulates the operation of the machining system 100 including the machine tool M and the numerical controller 1 of FIG.
  • the machining system simulator 200 can be realized by causing a computer device having a CPU, memory, input/output interface, etc. to execute an appropriate simulation program.
  • Some components of the machining system simulator 200 in FIG. 4 may have the same configuration as the numerical controller 1 in FIG. Therefore, in the machining system simulator 200, the same reference numerals as those in FIG. 1 may be assigned to the same configurations as those of the numerical control device 1, and overlapping descriptions may be omitted.
  • the machining system simulator 200 includes a program command analysis unit 11, an edge shape information storage unit 12, a center position calculation unit 13, an edge switching determination unit 14, a calculation method change unit 15, a tip position back calculation unit 16, a change It includes a quantity calculation unit 17 , an interpolation processing unit 18 and a machine tool model unit 20 . Further, the machining system simulator 200 may include a machining program recording medium R.
  • the machine tool model unit 20 is a computer model of the configurations of the machine tool M, the workpiece W, and the multi-edge tool T, and simulates the operation of the machine tool M according to the command value generated by the interpolation processing unit 18. realistically reproduced.
  • the machining system simulator 200 can confirm whether the machining program is properly created, that is, whether the workpiece W can be machined as intended when the machining program is executed in the machining system 100. Since the machining system simulator 200 does not operate the machine tool M, the workpiece W is not wasted and the machine tool M and the multi-edge tool T are not damaged even if the machining program is inappropriate.
  • the calculation formula in the above-described embodiment is merely an example, and for example, the position of the farthest point from the rotation center of the multi-edge tool on the processing edge may be used as the tip position.
  • the number of processing edges that the multi-edge tool has can be any number of 2 or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

先端点制御の設定を簡単にできる本開示の一態様に係る数値制御装置は、エッジ形状情報記憶部と、加工エッジのマルチエッジ工具の回転の中心位置を計算する中心位置計算部と、エッジ切替があるか否かを判定するエッジ切替判定部と、エッジ形状情報を考慮して、エッジ切替に伴って中心位置計算部における中心位置の計算方法を変更する計算方法変更部と、計算方法変更部によって変更された計算方法に基づいて、エッジ切替直前の中心位置からエッジ切替後の先端位置を逆算する先端位置逆算部と、先端位置逆算部が算出したエッジ切替後の先端位置及び軸角度並びにエッジ切替前の先端位置及び軸角度に基づいて中心位置の必要な変化量を計算し、計算した変化量だけ工具回転軸を移動させる駆動軸の駆動量を計算する変化量計算部と、を備える。

Description

数値制御装置、加工システムシミュレータ及び数値制御プログラム
 本発明は、数値制御装置、加工システムシミュレータ及び数値制御プログラムに関する。
 複数の加工エッジを有し、各加工エッジに異なる用途の刃具を実装し、多様な加工形状に対応可能なマルチエッジ工具が知られている(例えば、特許文献1参照)。このようなマルチエッジ工具の中には、工具回転軸周りに異なる方向に加工エッジが突出して配設され、工具の工具回転軸周りの角度位置を変更することによって加工に供される加工エッジが選択されるものが存在する。
特開平7-314290号公報
 一般的に、工作機械において工具を位置決めする駆動軸の座標位置と、実際に加工がおこなわれる加工点の座標位置との間には、工具の形状に応じたずれ、いわゆるオフセットが生じる。また、工具の方向によって、このずれ量は異なる。このため、工作機械を制御する数値制御装置は、予め工具のオフセットを設定することで、加工プログラムにおいて指定される加工点の位置と加工点を基準とした工具の方向から駆動軸の座標位置を求める先端点制御と呼ばれる処理を行う。
 前述のマルチエッジ工具を使用する場合、加工に供する加工エッジを変更する度に、一旦先端点制御を終了し、工具のオフセットの設定値と加工点を基準とした工具方向を更新してから先端点制御を再開することが必要となる。従来の数値制御装置では、加工プログラムに先端点制御の終了、工具のオフセットの設定値と加工点を基準とした工具方向の更新、及び先端点制御の開始を指定する命令を記述することで、前述のマルチエッジ工具を用いた加工を行っている。
 しかしながら、先端点制御についての命令文を記述すると、加工プログラムが複雑となり、加工プログラムの作成時にミスが生じやすくなると共に、加工のサイクルタイムが長くなるおそれがある。このため、先端点制御の設定を簡単にできる技術が望まれる。
 本開示の一態様に係る数値制御装置は、ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械を加工プログラムに従って制御する数値制御装置であって、前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報をエッジ形状情報として記憶するエッジ形状情報記憶部と、前記加工プログラムから、使用する前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記エッジ形状情報記憶部が記憶する前記エッジ形状情報に基づいて前記加工エッジの前記マルチエッジ工具の回転の中心位置を計算する中心位置計算部と、前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定部と、前記エッジ切替判定部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算部における前記中心位置の計算方法を変更する計算方法変更部と、前記計算方法変更部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算部と、先端位置逆算部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算部と、を備える。
 本開示の一態様に係る加工システムシミュレータは、ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械と、前記工作機械を加工プログラムに従って制御する数値制御装置と、を備える加工システムの動作をシミュレートする加工システムシミュレータであって、前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報をエッジ形状情報として記憶するエッジ形状情報記憶部と、前記加工プログラムから、使用する前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記エッジ形状情報記憶部が記憶する前記エッジ形状情報に基づいて前記マルチエッジ工具の回転の中心位置を計算する中心位置計算部と、前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定部と、前記エッジ切替判定部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算部における前記中心位置の計算方法を変更する計算方法変更部と、前記計算方法変更部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算部と、先端位置逆算部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算部と、を備える。
 本開示の一態様に係る数値制御プログラムは、ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械を加工プログラムに従って制御する数値制御装置の処理を制御する数値制御プログラムであって、前記加工プログラムから、使用する前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報を含むエッジ形状情報に基づいて前記加工エッジの前記マルチエッジ工具の回転の中心位置を計算する中心位置計算制御部と、前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定制御部と、前記エッジ切替判定制御部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算制御部における前記中心位置の計算方法を変更する計算方法変更制御部と、前記計算方法変更制御部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算制御部と、先端位置逆算制御部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算制御部と、を備える。
 本開示によれば、先端点制御の設定を簡単にできる数値制御装置、加工システムシミュレータ及び数値制御プログラムを提供できる。
本開示の一実施形態に係る数値制御装置を備える加工システムの構成を示すブロック図である。 図1の工作機械の軸とマルチエッジ工具との関係を説明する模式図である。 図2のマルチエッジ工具の先端点と回転中心との関係を説明する模式図である。 本開示の一実施形態に係る加工システムシミュレータの構成を示すブロック図である。
 以下、本開示の実施形態について、図面を参照しながら説明する。図1は、本開示の一実施形態に係る数値制御装置1を備える加工システム100の構成を示すブロック図である。
 加工システム100は、工作機械Mと、加工プログラムに従って工作機械Mを制御する数値制御装置1と、数値制御装置1に加工プログラムを提供する加工プログラム記録媒体Rと、を備える。
 工作機械Mは、図2に例示するようにワークWを加工し得る複数の加工エッジ(第1加工エッジE1、第2加工エッジE2及び第3加工エッジE3)を有するマルチエッジ工具Tを用いてワークWを加工する。このため、工作機械Mは、マルチエッジ工具Tの角度を変更する少なくとも1つの工具回転軸(図2の例ではB軸)と、ワークWとマルチエッジ工具Tとを相対移動させる少なくとも1つの駆動軸(図2の例ではX軸及びZ軸)と、を備える。工作機械Mは、工具回転軸の回転動作によりワークWを加工する加工エッジE1,E2,E3を切り替えるエッジ切替を行う。
 工作機械Mは、典型的には、図2に示すように、例えば主軸CによりワークWを回転させ、マルチエッジ工具Tのいずれかの加工エッジE1,E2,E3をワークWに接触させてワークWを切削する旋盤とされる。しかしながら、工作機械Mは、旋盤に限られず、例えば平削り盤等であってもよい。
 加工プログラム記録媒体Rは、ディスク記憶装置、不揮発性メモリ等により構成され得る。また、加工プログラム記録媒体Rは、数値制御装置1と一体であってもよい。つまり、加工プログラム記録媒体Rは、数値制御装置1の記憶領域の一部であってもよい。
 加工プログラムは、例えばGコード等の言語で記述され、マルチエッジ工具Tの加工点となる加工エッジE1,E2,E3の先端点が通過すべき複数の通過点の座標位置、通過点の間の移動速度、通過点の間の移動経路の曲率等を複数の命令文に分けて記述する。また、加工プログラムには、加工エッジE1,E2,E3のいずれの先端点が通過点を通過すべきかを指定する命令を含み得る。
 数値制御装置1は、加工プログラム記録媒体Rにより提供される加工プログラムに従って、ワークWを加工する工作機械Mの動作を制御する。数値制御装置1は、CPU、メモリ、入出力インターフェイス等を有するコンピュータ装置に適切な数値制御プログラムを実行させることによって実現できる。数値制御装置1を実現するための数値制御プログラムは、それ自体が本開示の1つの主題である数値制御プログラムの一実施形態であり、プログラムを非一時的に記憶する記憶媒体に記憶された状態で提供され得る。
 数値制御装置1は、プログラム指令解析部11と、エッジ形状情報記憶部12と、中心位置計算部13と、エッジ切替判定部14と、計算方法変更部15と、先端位置逆算部16と、変化量計算部17と、補間処理部18と、を備える。これらの構成要素は、数値制御装置1の機能を類別したものであって、その物理構成及びプログラム構成において明確に区分できるものでなくてもよい。
 プログラム指令解析部11は、加工プログラム記録媒体Rから提供される加工プログラムを命令文ごとに読み込んで解析する。つまり、プログラム指令解析部11は、加工プログラムを数値制御装置1において処理可能なデータに翻訳する。
 エッジ形状情報記憶部12は、マルチエッジ工具Tにおけるそれぞれの加工エッジE1,E2,E3についての幾何学的情報をエッジ形状情報として記憶する。エッジ形状情報記憶部12は、加工プログラムからマルチエッジ工具Tのエッジ形状情報を取得してその加工プログラムに実行時に一時的にエッジ形状情報を記憶するよう構成されてもよい。
 エッジ形状情報は、加工エッジE1,E2,E3の先端位置を特定するために、加工エッジE1,E2,E3の間の回転中心Oを基準とする角度θ12,θ23,θ31と、加工エッジE1,E2,E3の先端点から回転中心Oまでの距離L1,L2,L3と、を含むことが好ましい。エッジ形状情報は、加工エッジE1,E2,E3の先端位置を特定するために、隣接する加工エッジE1,E2,E3の先端点間の距離と、各加工エッジE1,E2,E3の先端位置の回転中心Oから見た所定方向からの角度と、を含んでもよい。また、エッジ形状情報は、加工エッジE1,E2,E3の先端部の曲率半径などを含み得る。
 中心位置計算部13は、加工プログラムから、使用する加工エッジE1,E2,E3の先端位置及び工具回転軸の軸角度を読解し、読解した先端位置及び軸角度、並びにエッジ形状情報記憶部12が記憶するエッジ形状情報に基づいてマルチエッジ工具Tの回転の中心位置(回転中心Oの座標位置)を計算する。以下の説明では、エッジ切替の前に加工に供される加工エッジの番号をn、エッジ切替の後に加工に供される加工エッジの番号をmとして説明する。
 図3に示すように、加工エッジEnの先端位置を加工エッジEnの先端部の曲率中心点Pnの位置とする場合、軸角度βを基準となる加工エッジEnのワークWの表面の法線方向(X方向)に対する傾斜角度とすると、マルチエッジ工具Tの中心位置、つまり回転中心Oの座標(Zn,Xn)は、加工プログラムに従う加工エッジEnの先端位置(曲率中心点Pn)の座標(ZPn,XPn)及び加工エッジEnから回転中心Oまでの距離Lnを用いて次の式(1)によって表すことができる。
Figure JPOXMLDOC01-appb-M000001
 また、加工エッジEnの先端位置を加工エッジEnのワークWに当接する点(当接点)Qnの位置とする場合、加工エッジEnにより加工しているときのマルチエッジ工具Tの中心位置(Zn,Xn)は、加工プログラムに従う先端位置(当接点Qn)の座標(ZQn,XQn)、加工エッジEnから回転中心Oまでの距離Ln、及び当接点Qnから曲率中心点Pnまでのベクトル(ZQnPn,XQnPn)を用いて次の式(2)によって表すことができる。
Figure JPOXMLDOC01-appb-M000002
 このように、中心位置計算部13は、工具回転軸の基準位置を定義するためのベクトル、先端位置から中心位置へのベクトル、及び軸角度から定義される回転行列を用いた行列演算を行うことにより、回転中心Oの座標を正確に算出し得る。
 エッジ切替判定部14は、加工プログラムに基づいてエッジ切替があるか否かを判定する。具体的には、エッジ切替判定部14は、加工プログラムの各命令文に次の加工エッジEmを指定する命令が含まれるか否かを判別する。
 なお、加工エッジE1,E2,E3のいずれかがワークWに当接している状態でエッジ切替を行うとワークWに傷を付けたり、マルチエッジ工具Tを損傷したりするおそれがあるため、通常は、マルチエッジ工具TがワークWから離間しているときにエッジ切替を行うよう加工プログラムが作成される。また、数値制御装置1は、エッジ切替を検出したときに、マルチエッジ工具TがワークWから離間させ、エッジ切替後にマルチエッジ工具TをワークWに対してアプローチさせる処理を行う構成を有してもよい。
 計算方法変更部15は、エッジ切替判定部14によりエッジ切替があると判定された場合、エッジ形状情報を考慮して、エッジ切替に伴って中心位置計算部13における中心位置の計算方法を変更する。つまり、計算方法変更部15は、エッジ切替前に加工に供されている加工エッジEnの先端位置(曲率中心点Pn又は当接点Qnの座標)から中心位置(マルチエッジ工具Tの回転中心O)を算出する計算式を、エッジ切替後に加工に供される加工エッジEmの先端位置から中心位置を算出する計算式に変更する。
 計算方法変更部15は、エッジ切替の前後における加工エッジEn,Emの間の角度差θnmを回転方向に応じてエッジ切替の前における軸角度βに加算又は減算することによってエッジ切替の後における軸角度を算出する。また、計算方法変更部15は、エッジ切替の前後における加工エッジEn,Emの形状情報に基づいて、エッジ切替の前後の加工エッジの間の角度差θnm及びエッジ切替の前後における加工エッジの先端の中心位置までの距離の変化率(Lm/Ln)を算出する。
 そして、計算方法変更部15は、加工エッジEn,Emの間の角度差θnm及び中心位置までの距離の変化率(Lm/Ln)に基づいて、中心位置計算部13における中心位置の計算の基準とする加工エッジの先端位置をエッジ切替の前における加工エッジEnの先端位置(ZPn,XPn)からエッジ切替の後における加工エッジの先端位置(ZPm,XPm)に変更する。このようにしてエッジ切替後の加工エッジの先端位置(ZPm,XPm)と中心位置(Zm,Xm)を得る計算式を導出することで、エッジ切替による工具オフセットの変化を算出可能とできる。
 具体的には、計算方法変更部15は、加工エッジEn,Emの間の角度差θnmから定義される回転行列を用いた行列演算を行う。つまり、計算方法変更部15は、加工に供される加工エッジを加工エッジEnから加工エッジEmに切り替えた後の中心位置つまり回転中心Oの座標(Zm,Xm)を算出する計算式を、回転中心Oから見た切替前の加工エッジEnの先端点と切替後の加工エッジEmの先端点との間の角度差θnmだけベクトルを回転させる回転行列と、切替前の加工エッジEnの先端点nから回転中心Oまでの距離Lnに対する切替後の加工エッジEmの先端点から回転中心Oまでの距離Lmの比とを、上述の式(1)又は式(2)に乗じることによって、生成する。このように、エッジ切替前の中心位置(Zn,Xn)を得る計算式を用いた行列演算を行うことによよって、エッジ切替後の中心位置(Zm,Xm)を得る計算式を比較的容易に導出することができる。
 次の式(3)は、加工エッジEn,Emの先端位置を曲率中心点Pn,Pmの位置とする場合、つまり式(1)を変更した場合の変更後の計算式である。また、式(4)は、加工エッジEn,Emの先端位置をワークWに対する当接点Qn,Qnの位置とする場合、つまり式(2)を変更した場合の変更後の計算式である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 先端位置逆算部16は、計算方法変更部15によって変更されたエッジ切替の後における計算方法、つまり式(3)又は式(4)に基づいて、エッジ切替の直前における中心位置(Zn,Xn)から、エッジ切替の後における先端位置(曲率中心点Pm又は当接点Qm)を逆算する。従って、先端位置逆算部16は、工具回転軸の基準位置を定義するためのベクトル、先端位置から中心位置へのベクトル、軸角度から定義される回転行列、及び加工エッジの間の角度から定義される回転行列、を用いた行列演算を行う。つまり、式(3)又は式(4)の中心位置(Zm,Xm)にエッジ切替直前の中心位置(Zn,Xn)の値を代入することで、曲率中心点Pmの座標(ZPm,XPm)又は当接点Qmの座標(ZQm,XQm)を算出する。これにより、エッジ切替後の先端位置(ZPm,XPm)、(ZQm,XQm)を確認できる。
 変化量計算部17は、先端位置逆算部16が算出したエッジ切替の後における先端位置(ZPm,XPm)、(ZQm,XQm)及び軸角度(β+θnm)と、エッジ切替の前における先端位置(ZPn,XPn)、(ZQn,XQn)及び軸角度βに基づいて中心位置の必要な変化量、を計算する。具体的には、変化量計算部17は、エッジ切替の前後における先端位置及び軸角度の変化量つまり、エッジ切替前の中心位置(Zn,Xn)とエッジ切替後の中心位置(Zm,Xm)との差分ベクトルを算出し、算出した変化量をエッジ切替の前における先端位置に加算又は減算することで、エッジ切替の後における先端位置を算出する。このような計算によって、エッジ切替後の先端位置を正確に算出できる。
 変化量計算部17は、エッジ切替の後における先端位置に基づいて、加工プログラムにおいて指定される加工点(加工エッジEmの曲率中心点Pm又は当接点Qm)に対する駆動軸の座標系のオフセット量を計算し、先端点制御の設定値に反映する。これにより、正確に先端点制御の設定を変更できる。
 補間処理部18は、加工プログラムにおいて指定される通過点に対応する駆動軸の複数の座標位置の間の各時刻における座標位置を算出することで、工作機械Mに対して出力される指令値を生成する。
 以上のように、数値制御装置1は、エッジ形状情報記憶部12、中心位置計算部13、エッジ切替判定部14、計算方法変更部15、先端位置逆算部16及び変化量計算部17を備えるため、加工プログラムにおいてマルチエッジ工具Tの加工に供される加工エッジE1,E2,E3を指定するだけで、工作機械Mの駆動軸の座標位置と加工点の座標位置とのオフセットを加工に供される加工エッジE1,E2,E3に合わせて最適化することができる。このため、数値制御装置1では、マルチエッジ工具Tの加工エッジE1,E2,E3を切り替える際に先端点制御の設定処理を行う必要がないため、適切な先端点制御を行うことができ、加工プログラムの作成が容易であり、且つ先端点制御の設定変更に伴う遅延も少ない。
 上述の数値制御装置1についての説明から明らかなように、本開示の一実施形態に係る数値制御プログラムは、中心位置計算部13を実現する中心位置計算制御部と、エッジ切替判定部14を実現するエッジ切替判定制御部と、計算方法変更部15を実現する計算方法変更制御部と、先端位置逆算部16を実現する先端位置逆算制御部と、変化量計算部17を実現する変化量計算制御部と、を備える。このような数値制御プログラムは、上述のように、先端点制御の設定が簡単かつ確実である。
 続いて、図4に、本開示の一実施形態に係る加工システムシミュレータ200の構成を示す。加工システムシミュレータ200は、図1の工作機械M及び数値制御装置1を備える加工システム100の動作をシミュレートする。
 加工システムシミュレータ200は、CPU、メモリ、入出力インターフェイス等を有するコンピュータ装置に適切なシミュレーションプログラムを実行させることによって実現できる。図4の加工システムシミュレータ200の一部の構成要素は、図1の数値制御装置1と同様の構成とされ得る。このため、加工システムシミュレータ200について、数値制御装置1と同様の構成には図1と同じ符号を付して重複する説明を省略することがある。
 加工システムシミュレータ200は、プログラム指令解析部11と、エッジ形状情報記憶部12と、中心位置計算部13と、エッジ切替判定部14と、計算方法変更部15と、先端位置逆算部16と、変化量計算部17と、補間処理部18と、工作機械モデル部20とを備える。また、加工システムシミュレータ200は、加工プログラム記録媒体Rを含んでもよい。
 工作機械モデル部20は、工作機械M並びにワークW及びマルチエッジ工具Tの構成をコンピュータ上にモデル化したものであり、補間処理部18が生成する指令値に応じた工作機械Mの動作を仮想的に再現する。
 加工システムシミュレータ200は、加工プログラムが適切に作成されているか否か、つまり加工プログラムを加工システム100において実行した場合に意図通りにワークWを加工できるか否かを確認することができる。加工システムシミュレータ200は、工作機械Mを動作させないため、加工プログラムが不適切であっても、ワークWを無駄にしたり、工作機械M及びマルチエッジ工具Tを損傷させたりすることがない。
 以上、本開示の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、前述した実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、前述した実施形態に記載されたものに限定されるものではない。
 例として、前述した実施形態における計算式は例示に過ぎず、例えば加工エッジのマルチエッジ工具の回転中心から最も遠い点の位置等を先端位置としてもよい。
 また、マルチエッジ工具が有する加工エッジの数は、2以上の任意の数とすることができる。
 1 数値制御装置
 11 プログラム指令解析部
 12 エッジ形状情報記憶部
 13 中心位置計算部
 14 エッジ切替判定部
 15 計算方法変更部
 16 先端位置逆算部
 17 変化量計算部
 18 補間処理部
 20 工作機械モデル部
 100 加工システム
 200 加工システムシミュレータ
 E1,E2,E3 加工エッジ
 M 工作機械
 R 加工プログラム記録媒体
 T マルチエッジ工具
 W ワーク

Claims (12)

  1.  ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械を加工プログラムに従って制御する数値制御装置であって、
     前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報をエッジ形状情報として記憶するエッジ形状情報記憶部と、
     前記加工プログラムから、使用する
    前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記エッジ形状情報記憶部が記憶する前記エッジ形状情報に基づいて前記加工エッジの前記マルチエッジ工具の回転の中心位置を計算する中心位置計算部と、
     前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定部と、
     前記エッジ切替判定部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算部における前記中心位置の計算方法を変更する計算方法変更部と、
     前記計算方法変更部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算部と、
     先端位置逆算部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算部と、
    を備える、数値制御装置。
  2.  前記エッジ形状情報は、前記マルチエッジ工具の回転中心を基準とする前記加工エッジの間の角度と、前記加工エッジの先端から前記回転中心までの距離と、を含む、請求項1に記載の数値制御装置。
  3.  前記加工エッジの前記先端位置は、前記加工エッジの先端部の曲率中心点の位置又は前記加工エッジの前記ワークに当接する点の位置である、請求項1又は2に記載の数値制御装置。
  4.  前記計算方法変更部は、
     前記エッジ切替の前後における前記加工エッジの形状情報に基づいて、前記エッジ切替の前後の前記加工エッジの間の角度及び前記エッジ切替の前後における前記加工エッジの先端の前記中心位置までの距離の変化率を算出し、
     前記加工エッジの間の角度及び前記中心位置での距離の変化率に基づいて、前記中心位置計算部における前記中心位置の計算の基準とする前記加工エッジの前記先端位置を前記エッジ切替の前における前記加工エッジの前記先端位置から前記エッジ切替の後における前記加工エッジの前記先端位置に変更する、請求項1から3のいずれかに記載の数値制御装置。
  5.  前記中心位置計算部は、前記工具回転軸の基準位置を定義するためのベクトル、前記先端位置から前記中心位置へのベクトル、及び前記軸角度から定義される回転行列を用いた行列演算を行う、請求項1から4のいずれかに記載の数値制御装置。
  6.  前記計算方法変更部は、前記加工エッジの間の角度から定義される回転行列を用いた行列演算を行う、請求項1から5のいずれかに記載の数値制御装置。
  7.  前記先端位置逆算部は、前記工具回転軸の基準位置を定義するためのベクトル、前記先端位置から前記中心位置へのベクトル、前記軸角度から定義される回転行列、及び前記加工エッジの間の角度から定義される回転行列、を用いた行列演算を行う、請求項1から6のいずれかに記載の数値制御装置。
  8.  前記計算方法変更部は、前記エッジ切替の前後における前記加工エッジの間の角度差を前記エッジ切替の前における前記軸角度に加算又は減算することによって前記エッジ切替の後における前記軸角度を算出する、請求項1から7のいずれかに記載の数値制御装置。
  9.  前記変化量計算部は、前記エッジ切替の前後における前記先端位置及び前記軸角度の変化量を算出し、算出した前記変化量を前記エッジ切替の前における前記先端位置に加算又は減算する、請求項1に記載の数値制御装置。
  10.  前記変化量計算部は、前記エッジ切替の前後における前記先端位置及び前記軸角度の変化量を算出し、算出した前記変化量だけ前記マルチエッジ工具を移動させる、請求項1に記載の数値制御装置。
  11.  ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械と、前記工作機械を加工プログラムに従って制御する数値制御装置と、を備える加工システムの動作をシミュレートする加工システムシミュレータであって、
     前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報をエッジ形状情報として記憶するエッジ形状情報記憶部と、
     前記加工プログラムから、使用する前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記エッジ形状情報記憶部が記憶する前記エッジ形状情報に基づいて前記マルチエッジ工具の回転の中心位置を計算する中心位置計算部と、
     前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定部と、
     前記エッジ切替判定部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算部における前記中心位置の計算方法を変更する計算方法変更部と、
     前記計算方法変更部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算部と、
     先端位置逆算部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算部と、
    を備える、加工システムシミュレータ。
  12.  ワークを加工し得る複数の加工エッジを有するマルチエッジ工具の角度を変更する少なくとも1つの工具回転軸と、前記ワークと前記マルチエッジ工具とを相対移動させる少なくとも1つの駆動軸と、を備え、前記工具回転軸の回転動作により前記ワークを加工する前記加工エッジを切り替えるエッジ切替を行う工作機械を加工プログラムに従って制御する数値制御装置の処理を制御する数値制御プログラムであって、
     前記加工プログラムから、使用する前記加工エッジの先端位置及び前記工具回転軸の軸角度を読解し、読解した前記先端位置及び前記軸角度並びに前記マルチエッジ工具におけるそれぞれの前記加工エッジについての幾何学的情報を含むエッジ形状情報に基づいて前記加工エッジの前記マルチエッジ工具の回転の中心位置を計算する中心位置計算制御部と、
     前記加工プログラムに基づいて前記エッジ切替があるか否かを判定するエッジ切替判定制御部と、
     前記エッジ切替判定制御部により前記エッジ切替があると判定された場合、前記エッジ形状情報を考慮して、前記エッジ切替に伴って前記中心位置計算制御部における前記中心位置の計算方法を変更する計算方法変更制御部と、
     前記計算方法変更制御部によって変更された前記エッジ切替の後における計算方法に基づいて、前記エッジ切替の直前における前記中心位置から、前記エッジ切替の後における前記先端位置を逆算する先端位置逆算制御部と、
     先端位置逆算制御部が算出した前記エッジ切替の後における前記先端位置及び前記軸角度並びに前記エッジ切替の前における前記先端位置及び前記軸角度に基づいて前記中心位置の必要な変化量を計算する変化量計算制御部と、
    を備える、数値制御プログラム。
PCT/JP2021/016306 2021-04-22 2021-04-22 数値制御装置、加工システムシミュレータ及び数値制御プログラム WO2022224407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021545869A JP6997360B1 (ja) 2021-04-22 2021-04-22 数値制御装置、加工システムシミュレータ及び数値制御プログラム
CN202180097037.9A CN117120947A (zh) 2021-04-22 2021-04-22 数值控制装置、加工***模拟器以及数值控制程序
DE112021006718.4T DE112021006718T5 (de) 2021-04-22 2021-04-22 Numerische Steuereinrichtung, Bearbeitungssystem-Simulator und numerisches Steuerprogramm
PCT/JP2021/016306 WO2022224407A1 (ja) 2021-04-22 2021-04-22 数値制御装置、加工システムシミュレータ及び数値制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016306 WO2022224407A1 (ja) 2021-04-22 2021-04-22 数値制御装置、加工システムシミュレータ及び数値制御プログラム

Publications (1)

Publication Number Publication Date
WO2022224407A1 true WO2022224407A1 (ja) 2022-10-27

Family

ID=80448098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016306 WO2022224407A1 (ja) 2021-04-22 2021-04-22 数値制御装置、加工システムシミュレータ及び数値制御プログラム

Country Status (4)

Country Link
JP (1) JP6997360B1 (ja)
CN (1) CN117120947A (ja)
DE (1) DE112021006718T5 (ja)
WO (1) WO2022224407A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165509A (ja) * 1991-12-12 1993-07-02 Hitachi Ltd バリ取りロボットの経路生成方法
JP2004261947A (ja) * 2003-03-04 2004-09-24 Makino Milling Mach Co Ltd 加工方法、及び工具摩耗補正機能を備えた工作機械
JP2005271148A (ja) * 2004-03-25 2005-10-06 Mori Seiki Co Ltd 工具経路データ生成装置及びこれを備えた制御装置
JP2011123777A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 数値制御データの作成方法
JP2011170584A (ja) * 2010-02-18 2011-09-01 Fanuc Ltd 工具軌跡表示機能を有する数値制御装置
WO2018122988A1 (ja) * 2016-12-27 2018-07-05 三菱電機株式会社 数値制御装置、プログラム変換装置、数値制御方法およびプログラム変換方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07314290A (ja) 1994-05-23 1995-12-05 Komatsu Ltd 多刃工具の寿命管理装置
JP5165509B2 (ja) 2008-09-08 2013-03-21 レンゴー株式会社 仕掛け付き包装ケース

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165509A (ja) * 1991-12-12 1993-07-02 Hitachi Ltd バリ取りロボットの経路生成方法
JP2004261947A (ja) * 2003-03-04 2004-09-24 Makino Milling Mach Co Ltd 加工方法、及び工具摩耗補正機能を備えた工作機械
JP2005271148A (ja) * 2004-03-25 2005-10-06 Mori Seiki Co Ltd 工具経路データ生成装置及びこれを備えた制御装置
JP2011123777A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 数値制御データの作成方法
JP2011170584A (ja) * 2010-02-18 2011-09-01 Fanuc Ltd 工具軌跡表示機能を有する数値制御装置
WO2018122988A1 (ja) * 2016-12-27 2018-07-05 三菱電機株式会社 数値制御装置、プログラム変換装置、数値制御方法およびプログラム変換方法

Also Published As

Publication number Publication date
CN117120947A (zh) 2023-11-24
JPWO2022224407A1 (ja) 2022-10-27
DE112021006718T5 (de) 2023-11-02
JP6997360B1 (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
EP2862030B1 (en) Computer aided manufacturing (cam) integrated computer numerically controlled (cnc) control of machines
JP4056542B2 (ja) ロボットのオフライン教示装置
US7761183B2 (en) Methods and systems for producing numerical control program files for controlling machine tools
JP6140130B2 (ja) 工具及び被加工物を保護する数値制御装置
US20110257778A1 (en) Method and device for simulating nc working machine
JP2019082852A (ja) ポストプロセッサ装置、加工プログラム生成方法、cnc加工システム及び加工プログラム生成用プログラム
JP2009098982A (ja) 加工シミュレーション装置およびそのプログラム
CN104714477A (zh) 一种加工文件规划***与加工文件的生成方法
US6856853B2 (en) Simulation device
WO2022034848A1 (ja) 数値制御システム及びロボット制御方法
WO2022224407A1 (ja) 数値制御装置、加工システムシミュレータ及び数値制御プログラム
JP2006227701A (ja) 円弧加工指令作成装置及びその方法並びにプログラム
JP6611319B2 (ja) 切削負荷予測方法、切削負荷予測システム、及び切削負荷予測プログラム及び記憶媒体
JP2006227894A (ja) 切削再開方法、切削加工システム及び切削加工用制御装置
JP4560191B2 (ja) 数値制御装置
JP7355952B1 (ja) 制御装置及びコンピュータ読み取り可能な記録媒体
JP6110250B2 (ja) Ncプログラムにおける回転送り軸指令の変化度合いの算出及び表示方法並びに装置
JP6959477B1 (ja) レーザ加工機の制御装置
JP3533229B2 (ja) 数値制御指令データ前処理方法および装置
JP7175340B2 (ja) 工作機械、情報処理装置および情報処理プログラム
WO2021230237A1 (ja) 加工経路作成装置
JP2005202792A (ja) 工具高さ計算装置とそのための計算方法とプログラム
JPS5917608A (ja) 産業用ロボツトの位置制御装置
WO2024127673A1 (ja) 数値制御装置、及びコンピュータが読み取り可能な記憶媒体
JPS6277610A (ja) ステツプバツク機能を備えたロボツト制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545869

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263355

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021006718

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937900

Country of ref document: EP

Kind code of ref document: A1