WO2022222400A1 - 一种断轨检查方法及*** - Google Patents

一种断轨检查方法及*** Download PDF

Info

Publication number
WO2022222400A1
WO2022222400A1 PCT/CN2021/126018 CN2021126018W WO2022222400A1 WO 2022222400 A1 WO2022222400 A1 WO 2022222400A1 CN 2021126018 W CN2021126018 W CN 2021126018W WO 2022222400 A1 WO2022222400 A1 WO 2022222400A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
current
broken
rails
traction
Prior art date
Application number
PCT/CN2021/126018
Other languages
English (en)
French (fr)
Inventor
张磊
于树永
蒋思媛
王保松
***
Original Assignee
北京铁路信号有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铁路信号有限公司 filed Critical 北京铁路信号有限公司
Publication of WO2022222400A1 publication Critical patent/WO2022222400A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the invention relates to the field of railway safety, in particular to a method and system for checking rail broken.
  • Rail breakage poses a great threat to the safety of trains, and is the direct cause of many derailment accidents of passenger and freight trains. Therefore, the early warning and real-time inspection of track break has become a necessary monitoring content.
  • the axle counting system, the satellite-based positioning system or the communication-based positioning it is impossible to reflect the characteristics of whether the line is complete or not in real time.
  • the rail circuit uses the rail as its current path, and the circuit structure changes on the rail, such as shunt, break, etc., will affect the receiving voltage of the receiver in real time. Based on this feature, the rail circuit has become almost the only possibility. Tool for real-time track break inspection.
  • the track circuit is used to realize the rail break inspection, which needs to ensure the external circuit impedance of the rail in the interval, and needs to use a single choke in the station or disconnect the center connection line of the choke. When the mechanical insulation section is cut off, the circuit will cause electrical burns to the insulation section and the rail head.
  • the embodiments of the present invention provide a method and system for checking rail breakage, which achieves the purpose of judging whether the rail is broken through the current unbalance.
  • a first aspect of the present invention discloses a rail broken inspection method, comprising:
  • the acquiring the current signals of the upper and lower rails, and calculating the current unbalance of the two rails includes:
  • the acquiring the current signals of the upper and lower rails, and calculating the current unbalance of the two rails includes:
  • the current unbalance is calculated the value of , where,
  • the method before acquiring the current signals of the upper and lower rails, the method further includes:
  • the obtaining of the current signals of the upper and lower rails includes:
  • the frequency-shifted signal current of the rail is acquired.
  • the detecting whether there is a traction current on the rail includes:
  • the effective value of the rail surface current is not less than 20A, it is considered that the rail has traction current.
  • the preset value is 50%.
  • the method further includes:
  • a second aspect of the present invention discloses a rail-broken inspection system, comprising:
  • the calculation module is used to obtain the current signals of the upper and lower rails, and calculate the current unbalance of the upper and lower rails;
  • the judgment module is used for judging whether the current unbalance degree is greater than a preset value; if so, it is judged that the rail is broken.
  • the computing module includes:
  • an acquisition unit for acquiring the power frequency traction currents I 1 and I 2 of the upper and lower rails
  • it also includes:
  • the inspection module is used to detect whether there is traction current on the upper and lower rails.
  • the present invention discloses a method and system for detecting rail breakage, by acquiring the current signals of the upper and lower rails, and calculating the current unbalance of the two rails; and then judging whether the current unbalance is greater than a predetermined level. Set value; if it is, it will be judged as track break.
  • FIG. 1 is a flowchart of a method for checking rail broken according to an embodiment of the present invention
  • FIG. 2 is a flow chart for calculating the current unbalance degree provided by an embodiment of the present invention
  • FIG. 3 is a balance state diagram of a track circuit provided in an embodiment of the present invention in an adjusted state
  • FIG. 4 is a diagram showing that the track circuit is in an unbalanced state after the track is broken according to an embodiment of the present invention
  • FIG. 5 is a current diagram of a grounding signal generated by the center point of the grounding device after the rail is broken according to an embodiment of the present invention
  • Fig. 6 is another current unbalance calculation flow chart provided by an embodiment of the present invention.
  • FIG. 7 is a balance state diagram of a track circuit provided in an embodiment of the present invention in a shunt state
  • FIG. 8 is the lower diagram of the track circuit in an unbalanced state after the track is broken according to an embodiment of the present invention.
  • FIG. 9 is a diagram of the traction current generated by the center point of the grounding equipment after the rail is broken according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of adding detection of whether there is traction current on two rails provided by an embodiment of the present invention.
  • FIG. 11 is a flowchart of how to detect whether there is traction current on two rails according to an embodiment of the present invention.
  • FIG. 13 is a flow chart of another method for checking rail broken according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another rail-breaking inspection system provided by an embodiment of the present invention.
  • FIG. 15 is a comprehensive flowchart of the rail-broken inspection provided by the embodiment of the present invention.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also no Other elements expressly listed, or which are also inherent to such a process, method, article or apparatus.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
  • FIG. 1 is a schematic flowchart of the method for checking a rail breakage.
  • the method for checking a rail breakage includes at least the following steps:
  • step S101 acquiring the current signals of the upper and lower rails refers to acquiring the current signals at the same horizontal position of the rail bottoms of the two rails, because when the two rails are in a normal working state, the two rails are at the same horizontal position The magnitude of the current is the same. Therefore, it is necessary to obtain the current signals of the two rails at the same horizontal position at the bottom of the two rails, and then calculate the current imbalance of the upper and lower rails.
  • the current unbalance degree is the value of the current vector difference of the two rails compared to the current vector sum of the two rails.
  • step S102 since the current values of the two rails are the same, and the current unbalance is the value of the current vector difference of the two rails compared with the current vector sum of the two rails, when one of the two rails appears When the rail is broken, the value of the current unbalance will change. Therefore, whether the two rails are broken can be judged by whether the current unbalance is greater than the preset value. When the current unbalance is greater than the preset value, it means that the two rails are broken. There is a track break.
  • the broken rail refers to the steel rail of the necessary current path of the track circuit, which is broken and is in a state of complete electrical disconnection due to mechanical damage or stress accumulation.
  • the embodiment of the present invention obtains the current signals of the upper and lower rails, and calculates the current unbalance of the two rails; then judges whether the current unbalance is greater than a preset value; if so, it is judged that the rail is broken.
  • a preset value if so, it is judged that the rail is broken.
  • step S201 if there is no traction current on the rail, step S201 is performed, and if there is a traction current on the rail, step S401 is performed.
  • step S1 the current signals of the upper and lower rails are obtained, and the current unbalance of the two rails is calculated.
  • the specific execution process includes the following steps:
  • the value of the current unbalance degree ⁇ is the vector sum of the frequency-shifted signal current I2 and the frequency-shifted signal current I1 compared to the vector difference of the frequency-shifted signal current I1 and the frequency-shifted signal current I2 , Its expression is formula (1).
  • the two rails when the two rails are in the normal adjustment working state, the topology of the entire rail current system is symmetrical to the ground wire. As shown in Figure 3, in this state, the two rails serving as signal conduction paths are in In a symmetrical balance state, that is, at the same position, the frequency-shifted signal currents in the upper and lower rails are equal and opposite. In this state, no signal current enters the ground through the track bed resistance.
  • the grounding signal current I N generated by the grounding point of the track circuit is the vector difference between the frequency-shifted signal current I1 and the frequency-shifted signal current I2 of the two rails, where the expression is the formula (2).
  • step S1 the current signals of the upper and lower rails are obtained, and the current unbalance of the two rails is calculated.
  • the specific execution process includes the following steps:
  • S601 Obtain the power frequency traction currents I 1 and I 2 of the upper and lower rails.
  • S602 Calculate the current unbalance degree based on the I 1 and the I 2 value of .
  • the current unbalance degree is the vector difference ratio of the traction current I 1 and the traction current I 2 to the vector sum of the traction current I 2 and the traction current I 1 , and its expression is formula (3).
  • the grounding current I N generated by the grounding point of the rail circuit is the vector sum of the frequency-shifted signal current I 1 and the frequency-shifted signal current I 2 of the two rails, where the expression is the formula (4).
  • step S101 is performed, that is, before the acquisition of the current signals of the upper and lower rails, the following steps are further included:
  • step S101 in order to improve the accuracy of judging rail breakage, it is necessary to detect whether there is traction current on the rail.
  • step S1001 when it is detected that there is traction current on the rail, step S1001 needs to be performed; when it is detected that there is no traction on the rail In the case of current, when step S101 is performed, step S1002 needs to be performed.
  • Step S1001 Obtain the power frequency traction currents I 1 and I 2 of the upper and lower rails.
  • Step S1002 Acquire the frequency-shifted signal currents I 1 and I 2 of the upper and lower rails.
  • step S100 in FIG. 10 that is, detecting whether there is a traction current on the rail, the specific steps include:
  • step S1101 Detect whether the effective value of the rail surface current of the rail is less than 20A, if the effective value of the rail surface current is less than 20A, go to step S1102; if the effective value of the rail surface current is not less than 20A, go to step S1103.
  • the traction current is supplied by the traction substation to the catenary through the power supply device. After conversion, it is used as the driving force for the traction of the train. It can be judged whether the rail has traction current by detecting whether the effective value of the rail surface current is less than 20A. If the effective value of the rail surface current is less than 20A, it can be considered that there is no traction current in the rail; if the effective value of the rail surface current is not less than 20A, it can be considered that there is a traction current in the rail.
  • the 20A is a value set by technicians according to the working conditions, and those skilled in the art can make changes according to actual needs, and are not limited to 20A.
  • the preset value is 50%.
  • the preset value is a value set by technicians according to working conditions, and those skilled in the art can change it according to actual needs, and the preset value is not limited to 50%.
  • the method further includes: The following steps:
  • the adjustment working state refers to the state in which the track section is idle, the equipment is complete, and the track receiving relay is reliably picked up.
  • the present invention also provides another rail broken inspection method, with reference to FIG. 13 , the rail broken inspection method includes the following steps:
  • the grounding current in step S1301 is a current value obtained by detecting the grounding device by the detecting device.
  • S1302 Calculate the current unbalance of the two rails based on the current signals of the upper and lower rails and the grounding current.
  • step S1302 are the same as the method of calculating the current unbalance of the two rails in step S101 , which will not be repeated here.
  • S1303 Determine whether the current unbalance degree is greater than a preset value; if so, execute S1304; if not, execute S1305.
  • step S1303 are the same as the execution manner and specific process of step S102, which will not be repeated here.
  • the current signals of the upper and lower rails and the grounding current are obtained, and then based on the current signals of the upper and lower rails and the grounding current, the current unbalance of the two rails is calculated; Whether the balance is greater than the preset value, if so, it is determined as a rail break, if not, it is determined as a normal adjustment state, through the above-mentioned track break inspection method, since the currents of the upper and lower rails are the same, the rail break occurs.
  • the currents of the two rails are not the same, so by referring to the current unbalance degree, and quantifying the current unbalance degree to determine whether the rail is broken, so as to accurately judge whether the rail is broken in the station and within the interval. purpose of the track.
  • the embodiment of the application also provides a corresponding rail-breaking inspection system, with reference to Figure 14, a kind of rail-breaking inspection system provided for the application, the rail-breaking inspection system comprises:
  • the calculation module 1401 is used to obtain the current signals of the upper and lower rails, and calculate the current unbalance of the two rails;
  • a determination module 1402 configured to determine whether the current unbalance degree is greater than a preset value
  • the first determination module 1403 is used for determining that the current unbalance degree is greater than a preset value, the rail is broken.
  • the computing module 1401 includes:
  • an acquisition unit for acquiring the power frequency traction currents I 1 and I 2 of the upper and lower rails
  • the computing module 1401 includes:
  • a first acquisition unit configured to acquire the frequency-shifted signal currents I 1 and I 2 of the upper and lower rails
  • a first calculation unit for calculating the value of ⁇ based on the I 1 and the I 2 , wherein,
  • the computing module 1401 includes:
  • the second acquisition unit is used to acquire the power frequency traction currents I 1 and I 2 of the upper and lower rails;
  • the broken rail inspection system also includes:
  • the detection module 1404 is used to detect whether there is traction current on the rail;
  • the calculation module is configured to obtain the power frequency traction currents I 1 and I 2 of the upper and lower two rails if there is traction current on the rails; The frequency-shifted signal currents I 1 and I 2 of the rail are described.
  • the detection module 1404 includes:
  • a detection unit for detecting whether the effective value of the rail surface current of the rail is less than 20A
  • a first determining unit configured to consider that there is no traction current on the rail if the effective value of the rail surface current is less than 20A;
  • the second determining unit is configured to consider that the rail has traction current if the effective value of the rail surface current is not less than 20A.
  • the rail-broken inspection system also includes:
  • the second determination module 1405 is configured to determine that the rail is in a normal adjustment state if the current unbalance is not greater than a preset value.
  • the embodiment of the present invention obtains the current signals of the upper and lower rails, and calculates the current unbalance of the two rails; then judges whether the current unbalance is greater than a preset value; if so, it is judged that the rail is broken.
  • a preset value if so, it is judged that the rail is broken.
  • the invention provides a rail-break inspection method, which is mainly a comprehensive judgment method of frequency shift signal and traction current unbalance. Judgment method” comprehensively realized.
  • the topology of the entire track circuit system is symmetrical with respect to the ground wire, as shown in Figure 3.
  • the two rails serving as the signal conduction path are in a symmetrical balance state, that is, at the same position, the frequency-shifted signal currents in the upper and lower rails are equal and opposite, and no signal current passes through in this state.
  • the ballast resistance goes into the ground.
  • the ground current I N is the difference between the upper and lower unbalanced current vectors on both sides, as shown in Figure 5. .
  • the unbalance degree is introduced to measure the unbalance of the traction current in the two rails. degree, which is defined as follows:
  • the rail After the rail is broken, the rail is in an unbalanced state, and the currents of the upper and lower rails are no longer symmetrical, which will cause the lead wire current I 1 ⁇ I 2 , the ground current I N is the sum of the upper and lower unbalanced current vectors on both sides, at this time,
  • the unbalance degree expression of the ground point position of the receiving end rail surface is as follows:
  • the rail can be determined to be broken.
  • the scheme of the present invention realizes: a comprehensive judgment method for unbalanced signals and traction currents.
  • the new track circuit breakage inspection uses the "current detection method” to check the track breakage, and at the same time, there is no need to limit the "interval spacing" and "one end blockage in the station” in order to ensure the track circuit breakage inspection, which improves the track circuit's adaptability to the external environment .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种断轨检查方法及***。通过获取上下两根钢轨的电流信号,并计算两根钢轨的电流不平衡度;然后判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。通过该断轨检查方法和***,由于上下两条钢轨的电流大小一致,而在出现断轨后,两条钢轨的电流大小不相同,因此通过引用电流不平衡度,并将电流不平衡度以量化的方式判断钢轨是否发生断轨,从而达到在站内和区间内准确的判断钢轨是否存在断轨的目的。

Description

一种断轨检查方法及***
本申请要求于2021年04月21日提交中国专利局、申请号为202110430301.8、发明名称为“一种断轨检查方法及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及铁路安全领域,具体为一种断轨检查方法及***。
背景技术
断轨对列车的行车安全构成极大威胁,是造成多次客货列车脱轨事故的直接原因。因此,对断轨的预警与实时检查成为必要的监测内容。目前,无论计轴***、还是基于卫星定位的***还是基于通信的定位,均无法实时反映线路是否完整的特性,轨道检查车辆根据特定周期检查,不具备实时性。而轨道电路利用钢轨作为其电流通路,发生在钢轨上的电路结构变化,如分路、断裂等,将实时影响接收器的接收电压,正是基于这一特点,轨道电路成为目前几乎唯一有可能实时断轨检查的工具。
但是,目前采用轨道电路实现断轨检查,需要在区间保证钢轨外部迂回回路阻抗以及需要在站内采用单扼流或断开扼流中心连接线,此种方式同时会引起牵引回流不畅、车轮过机械绝缘节时电路切断引发电灼伤绝缘节和钢轨轨头等问题。
发明内容
有鉴于此,本发明实施例提供了一种断轨检查方法及***,通过电流不平衡度来达到判断钢轨是否断轨目的。
为实现上述目的,本发明实施例提供如下技术方案:
本发明第一方面公开了一种断轨检查方法,包括:
获取上下两根钢轨的电流信号,并计算上下两根所述钢轨的电流不平衡度;
判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。
优选的,所述获取上下两根钢轨的电流信号,并计算两根所述钢轨的电流不平衡度,包括:
获取上下两根钢轨的移频信号电流I 1、I 2
基于所述I 1和所述I 2,计算电流不平衡度β的值,其中,
Figure PCTCN2021126018-appb-000001
优选的,所述获取上下两根钢轨的电流信号,并计算两根所述钢轨的电流不平衡度,包括:
获取上下两根钢轨的工频牵引电流I 1、I 2
基于所述I 1和所述I 2,计算电流不平衡度
Figure PCTCN2021126018-appb-000002
的值,其中,
Figure PCTCN2021126018-appb-000003
优选的,所述获取上下两根钢轨的电流信号之前,还包括:
检测上下两根钢轨是否存在牵引电流;
所述获取上下两根钢轨的电流信号,包括:
若所述钢轨存在牵引电流,则获取所述钢轨的工频牵引电流;
若所述钢轨不存在牵引电流,则获取所述钢轨的移频信号电流。
优选的,所述检测钢轨是否存在牵引电流,包括:
检测所述钢轨的轨面电流有效值是否小于20A;
若所述轨面电流有效值小于20A,则认为所述钢轨不存在牵引电流;
若所述轨面电流有效值不小于20A,则认为所述钢轨存在牵引电流。
优选的,所述预设值为50%。
优选的,所述判断电流不平衡度是否大于预设值之后,还包括:
若否,则判定所述钢轨处于正常调整工作状态。
本发明第二方面公开了一种断轨检查***,包括:
计算模块,用于获取上下两根钢轨的电流信号,并计算上下两根所述钢轨的电流不平衡度;
判断模块,用于判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。
优选的,所述计算模块,包括:
获取单元,用于获取上下两根钢轨的工频牵引电流I 1、I 2
计算单元,用于基于所述I 1和所述I 2,计算电流不平衡度
Figure PCTCN2021126018-appb-000004
的值,其中,
Figure PCTCN2021126018-appb-000005
优选的,还包括:
检查模块,用于检测上下两根钢轨是否存在牵引电流。
由上述内容可知,本发明的公开一种断轨检查方法及***,通过获取上下两根钢轨的电流信号,并计算两根钢轨的电流不平衡度;然后判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。通过上述公开的断轨检查方法和***,由于上下两条钢轨的电流大小一致,而在出现断轨后,两条钢轨的电流大小不相同,因此通过引用电流不平衡度,并将电流不平衡度以量化的方式判断钢轨是否发生断轨,从而达到在站内和区间内准确的判断钢轨是否存在断轨的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种断轨检查方法流程图;
图2为本发明实施例提供的电流不平衡度计算流程图;
图3为本发明实施例提供的轨道电路处于调整状态下的平衡状态图;
图4为本发明实施例提供的断轨后轨道电路处于不平衡状态图;
图5为本发明实施例提供的断轨后接地设备中心点产生入地信号电流图;
图6为本发明实施例提供的另一种电流不平衡度计算流程图;
图7为本发明实施例提供的轨道电路处于分路状态下的平衡状态图;
图8为本发明实施例提供的断轨后轨道电路处于不平衡状态下图;
图9为本发明实施例提供的断轨后接地设备中心点产生入地牵引电流图;
图10为本发明实施例提供的增加检测两根钢轨是否存在牵引电流的流程图;
图11为本发明实施例提供的如何检测两根钢轨是否存在牵引电流的流程图;
图12为本发明实施例提供的电流不平衡度不大于预设值时的流程图;
图13为本发明实施例提供的另一种断轨检查方法的流程图;
图14为本发明实施例提供的另一种断轨检查***示意图;
图15为本发明实施例提供的断轨检查综合流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供一种断轨检查方法,参见图1,图1为断轨检查方法的流程示意图,所述断轨检查方法至少包括如下步骤:
S101:获取上下两根钢轨的电流信号,并计算上下两根钢轨的电流不平衡度。
在步骤S101中,所述获取上下两根钢轨的电流信号是指获取两根钢轨轨底同一水平位置处的电流信号,因为在两根钢轨在正常工作状态下,两根钢轨在同一水平位置处的电流的大小是相同的,因此,需要在两根钢轨轨底同一水平位置处获取两根钢轨的电流信号,然后去计算上下两根所述钢轨的电流不平衡度。
所述电流不平衡度为两根钢轨的电流矢量差比上两根钢轨的电流矢量和的值。
S102:判断所述电流不平衡度是否大于预设值;若是,则执行步骤S103。
S103:判定为断轨。
在步骤S102中,由于两根钢轨的电流值相同,而电流不平衡度为两根钢轨的电流矢量差比上两根钢轨的电流矢量和的值,而当两条钢轨中的某一条钢轨出现断轨,电流不平衡度的值会出现变化,因此可以通过电流不平衡度是否大于预设值来判断两根钢轨是否存在断轨,当电流不平衡度大于预设值,则说明两根钢轨存在断轨。
还需要说明的是,所述断轨是指轨道电路必要的电流通路的钢轨,由于机械损伤或者应力积累等原因,发生断裂且处于完全电气断离的状态。
本发明实施例通过获取上下两根钢轨的电流信号,并计算两根钢轨的电流不平衡度;然后判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。通过上述公开的断轨检查方法,由于上下两条钢轨的电流大小一致,而在出现断轨后,两条钢轨的电流大小不相同,因此通过引用电流不平衡度,并将电流不平衡度以量化的方式判断钢轨是否发生断轨,从而达到在站内和区间内准确的判断钢轨是否存在断轨的目的。
需要说明的是,为了保证判断断轨状态的准确性,需通过判断钢轨上是否存在牵引电流来确定采集两根钢轨的移频信号电流I 1、I 2还是采集两根钢轨的信号电流I 1、I 2,若钢轨上不存在牵引电流,则执行步骤S201,若钢轨上存在牵引电流,则执行步骤S401。
具体的,如图2所示,在执行步骤S1的过程中,所述获取上下两根钢轨的电流信号,并计算两钢轨的电流不平衡度,具体执行过程包括以下步骤:
S201:获取上下两根钢轨的移频信号电流I 1、I 2
S202:基于所述I 1和所述I 2,计算电流不平衡度β的值。
需要说明的是,所述电流不平衡度β的值为移频信号电流I 1与移频信号电流I 2的矢量差比上移频信号电流I 2与移频信号电流I 1的矢量和,其表达式为公式(1)。
Figure PCTCN2021126018-appb-000006
还需要说明的是,在两根钢轨处于正常调整工作状态时,整个钢轨电流***拓扑对于地线是对称的,如图3所示,在这种状态下作为信号传导通路的两条钢轨是处于对称平衡状态的,即在同一位置处,上下轨条中的移频信号电流是等大反向的,这种状态下无信号电流通过道床电阻进入大地。
参考图4,当某一根钢轨处于断轨状态时,由于在断轨点一条钢轨中电流通路被切断,而另一条钢轨仍然正常流通电流,导致两条钢轨的状态不再对称,即上下两根钢轨的电流不再等大反向,并在轨道电路的接地点,即接地设备的接地点,如图5所示,产生入地信号电流I N
在断轨点,因为发生断轨的那根钢轨中流过电流为零,而另一根钢轨中仍 有电流流过,因此上下两根钢轨的电流不再等大反向,即I 1=0,I 2≠0,不平衡度β=100%;在断轨的其他位置,β是一个介于0和100%的数。
值得注意的,在断轨的钢轨上,轨道电路的接地点产生的入地信号电流I N为两根钢轨的移频信号电流I 1与移频信号电流I 2的矢量之差,其中表达式为公式(2)。
I N=I 1-I 2               (2)
因此,电流不平衡度β可表达为:
Figure PCTCN2021126018-appb-000007
具体的,如图6所示,在执行步骤S1的过程中,所述获取上下两根钢轨的电流信号,并计算两钢轨的电流不平衡度,具体执行过程包括以下步骤:
S601:获取上下两根钢轨的工频牵引电流I 1、I 2
S602:基于所述I 1和所述I 2,计算电流不平衡度
Figure PCTCN2021126018-appb-000008
的值。
需要说明的是,所述电流不平衡度
Figure PCTCN2021126018-appb-000009
的值为牵引电流I 1与牵引电流I 2的矢量差比上牵引电流I 2与牵引电流I 1的矢量和,其表达式为公式(3)。
Figure PCTCN2021126018-appb-000010
还需要说明的是,轨道电路处于正常分路工作状态时,作为信号传导通路的两条钢轨中存在工频牵引电流,如图7所示,在这种状态两条钢轨对牵引电流是处于对称平衡状态的,即在同一位置处,上下轨条中的牵引电流是等大同向的。
参考图8,当某一钢轨处于断轨状态时,由于在断轨点一条钢轨中电流通路被切断,而另一条钢轨仍然正常流通电流,导致两条钢轨的状态不再对称,即上下两根钢轨的牵引电流不再等大同向,并在轨道电路的接地点,即接地设备的接地点,如图9所示,产生入地信号电流I N
在断轨点,断轨的那根钢轨中流过电流为零,而另一根钢轨中仍有电流流过,因此上下两根钢轨的电流不再等大同向,即I 1=0,I 2≠0,不平衡度
Figure PCTCN2021126018-appb-000011
在断轨的其他位置,
Figure PCTCN2021126018-appb-000012
介于0至100%。
值得注意的,在断轨的钢轨上,轨道电路的接地点产生的入地牵引电流I N为两根钢轨的移频信号电流I 1与移频信号电流I 2的矢量之和,其中表达式为公 式(4)。
I N=I 1+I 2            (4)
进一步,参考图10,在执行步骤S101之前,即在所述获取上下两根钢轨的电流信号之前,还包括以下步骤:
S100:检测上下两根钢轨是否存在牵引电流。
需要说明的是,为提高判断断轨的精度,因此需要检测钢轨是否存在牵引电流,当检测到钢轨存在牵引电流时,在执行步骤S101时,就需要执行步骤S1001;当检测到钢轨不存在牵引电流时,在执行步骤S101时,就需要执行步骤S1002。
步骤S1001:获取上下两根所述钢轨的工频牵引电流I 1、I 2
步骤S1002:获取上下两根所述钢轨的移频信号电流I 1、I 2
进一步,参考图11,在执行图10的步骤S100过程中,即检测钢轨是否存在牵引电流,具体包括以下步骤:
S1101:检测所述钢轨的轨面电流有效值是否小于20A,若所述轨面电流有效值小于20A,执行步骤S1102;若所述轨面电流有效值不小于20A,执行步骤S1103。
S1102:认为所述钢轨不存在牵引电流;
S1103:认为所述钢轨存在牵引电流。
需要说明的是,牵引电流由牵引变电所通过供电装置向接触网提供高压交流电,经变换后作为列车牵引的动力,可通过检测轨面电流有效值是否小于20A来判断钢轨是否存在牵引电流,若所述轨面电流有效值小于20A,可以认为钢轨不存在牵引电流;若所述轨面电流有效值不小于20A,可以认为钢轨存在牵引电流。
还需要说明的是,所述20A为技术人员根据工况进行设定的值,本领域技术人员可根据实际需求进行更改,并不仅限于20A。
具体的,所述预设值为50%。
需要说明的是,所述预设值为技术人员根据工况进行设定的值,本领域技术人员可根据实际需求进行更改,所述预设值并不仅限于50%。
进一步,参考图12,在执行完图1的步骤102之后,即所述判断所述电流不平衡度是否大于预设值之后,若所述电流不平衡度不大于所述预设值,还 包括以下步骤:
S104:判定所述钢轨处于正常调整工作状态。
需要说明的是,当确定电流不平衡度不大于所述预设值,可认为上下两根钢轨的水平同一位置的电流大小是相同,因此,可以判断钢轨处于正常调整状态。
所述调整工作状态是指轨道区段空闲,设备完整,轨道接收继电器可靠吸起的状态。
优选的,本发明还提供另一种断轨检查方法,参考图13,所述断轨检查方法包括以下步骤:
S1301:获取上下两根钢轨的电流信号,以及接地设备的接地电流。
需要说明的是,步骤S1301中的接地电流是通过检测设备检测接地设备所得到的电流值。
S1302:基于上下两根所述钢轨的电流信号,以及所述接地电流,计算两根钢轨的电流不平衡度。
需要说明的是,步骤S1302的执行方式及具体过程与步骤S101中计算两根钢轨的电流不平衡度方式相同,此处不再进行赘述。
S1303:判断所述电流不平衡度是否大于预设值;若是,执行S1304;若否,执行S1305。
需要说明的是,步骤S1303的执行方式及具体过程与步骤S102中的执行方式及具体过程相同,此处不再进行赘述。
S1304:判定为断轨。
S1305:判定为正常调整状态。
本申请实施例通过获取上下两根钢轨的电流信号,以及接地电流,然后基于上下两根钢轨的电流信号,以及所述接地电流,计算两根钢轨的电流不平衡度;最后判断所述电流不平衡度是否大于预设值,若是,则判定为断轨,若否,则判定为正常调整状态,通过上述公开的断轨检查方法,由于上下两条钢轨的电流大小一致,而在出现断轨后,两条钢轨的电流大小不相同,因此通过引用电流不平衡度,并将电流不平衡度以量化的方式判断钢轨是否发生断轨,从而达到在站内和区间内准确的判断钢轨是否存在断轨的目的。
与上述发明断轨检查方法相对应,本申请实施例还提供了相应的断轨检查 ***,参考图14,为本申请提供的一种断轨检查***,所述断轨检查***包括:
计算模块1401,用于获取上下两根钢轨的电流信号,并计算两钢轨的电流不平衡度;
判断模块1402,用于判断所述电流不平衡度是否大于预设值;
第一确定模块1403,用于所述电流不平衡度大于预设值,则判定为断轨。
具体的,所述计算模块1401,包括:
获取单元,用于获取上下两根钢轨的工频牵引电流I 1、I 2
计算单元,用于基于所述I 1和所述I 2,计算
Figure PCTCN2021126018-appb-000013
的值,其中,
Figure PCTCN2021126018-appb-000014
具体的,所述计算模块1401,包括:
第一获取单元,用于获取上下两根钢轨的移频信号电流I 1、I 2
第一计算单元,用于基于所述I 1和所述I 2,计算β的值,其中,
Figure PCTCN2021126018-appb-000015
具体的,所述计算模块1401,包括:
第二获取单元,用于获取上下两根钢轨的工频牵引电流I 1、I 2
第二计算单元,用于基于所述I 1和所述I 2,计算
Figure PCTCN2021126018-appb-000016
的值,其中,
Figure PCTCN2021126018-appb-000017
进一步,所述断轨检查***,还包括:
检测模块1404,用于检测钢轨是否存在牵引电流;
所述计算模块,用于若所述钢轨存在牵引电流,则获取上下两根所述钢轨的工频牵引电流I 1、I 2;以及若所述钢轨不存在牵引电流,则获取上下两根所述钢轨的移频信号电流I 1、I 2
具体的,所述检测模块1404,包括:
检测单元,用于检测所述钢轨的轨面电流有效值是否小于20A;
第一确定单元,用于若所述轨面电流有效值小于20A,则认为所述钢轨不存在牵引电流;
第二确定单元,用于若所述轨面电流有效值不小于20A,则认为所述钢轨存在牵引电流。
进一步,所述断轨检查***,还包括:
第二确定模块1405,用于若所述电流不平衡度不大于预设值,则判定所述钢轨处于正常调整状态。
需要说明的是,上述本发明实施例公开的一种断轨检查***的各个模块和单元的具体执行过程以及执行原理,可参见上述本发明实施例公开的断轨检查方法中有关断轨检查方法的相应部分,这里不再进行赘述。
本发明实施例通过获取上下两根钢轨的电流信号,并计算两根钢轨的电流不平衡度;然后判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。通过上述公开的断轨检查方法,由于上下两条钢轨的电流大小一致,而在出现断轨后,两条钢轨的电流大小不相同,因此通过引用电流不平衡度,并将电流不平衡度以量化的方式判断钢轨是否发生断轨,从而达到在站内和区间内准确的判断钢轨是否存在断轨的目的。
为了便于理解上述方案,参考图1至图15,下面对本申请作进一步介绍。
本发明提供了一种断轨检查方法,主要为移频信号和牵引电流不平衡综合判断法,这种判断方法基于“钢轨两侧信号电流不平衡判断法”和“钢轨两侧牵引电流不平衡判断法”综合实现的。
钢轨两侧信号电流不平衡判断法:
轨道电路处于正常调整工作状态时,整个轨道电路***拓扑对于地线是对称的,如图3所示。在这种状态下作为信号传导通路的两条钢轨是处于对称平衡状态的,即在同一位置处,上下轨条中的移频信号电流是等大反向的,这种状态下无信号电流通过道床电阻进入大地。
当轨道电路处于断轨状态时,由于在断轨点一条钢轨中电流通路被切断,而另一条钢轨仍然正常流通电流,导致两条钢轨的状态不再对称,如图4所示,产生不平衡的特征体现在:
(1)上下两根钢轨的电流不再等大反向。
在断轨点,这一特征体现得最为明显,因为发生断轨的那根轨条中流过电流为零,而另一根轨条中仍有电流流过,引入不平衡度来衡量两个电流的不平衡程度的话,其定义如下:
Figure PCTCN2021126018-appb-000018
断轨前,上下轨条电流等大反向,I 2=I 1,β=0;
在断轨点,I 1=0,I 2≠0,不平衡度β=100%;在其他位置,β是一个介于0和100%的数。
(2)在轨道电路的接地点,产生入地电流。
在接地点,钢轨的不平衡也会反映到接地点的入地电流上。在平衡状态下,钢轨、接地设备和引接线组成的割集,由于上下轨条电流对称,根据基尔霍夫电流定律,接地点入地电流为0。
断轨后,钢轨处于不平衡状态,上下轨条电流不再对称,因而会造成接地点有入地电流,入地电流I N正是两侧上下不平衡电流矢量之差,如图5所示。
此时,受端轨面接地点位置的不平衡度表达式如下:
Figure PCTCN2021126018-appb-000019
(3)断轨判则:
若以上受端轨面3个信号电流满足如下关系,则可判定断轨。
Figure PCTCN2021126018-appb-000020
牵引电流不平衡判断法:
轨道电路处于正常分路工作状态时,作为信号传导通路的两条钢轨中存在工频牵引电流,如图7所示,在这种状态两条钢轨对牵引电流是处于对称平衡状态的,即在同一位置处,上下轨条中的牵引电流是等大同向的。
当钢轨处于断轨状态时,由于在断轨点一条钢轨中电流通路被切断,而另一条钢轨仍然正常流通电流,导致两条钢轨的状态不再对称,如图8所示,产生不平衡的特征体现在:
(1)上下两根钢轨的牵引电流不再等大同向。
在断轨点,断轨的那根轨条中流过电流为零,而另一根轨条中仍有电流流过,与6.1中类似,引入不平衡度来衡量两钢轨中牵引电流的不平衡程度,其定义如下:
Figure PCTCN2021126018-appb-000021
断轨前,上下轨条电流等大同向,I 2=I 1
Figure PCTCN2021126018-appb-000022
在断轨点,I 1=0,I 2≠0,不平衡度
Figure PCTCN2021126018-appb-000023
在其他位置,是一个介于0 和100%的数。
(2)在轨道电路的接地点,产生入地电流。
在接地点,钢轨的不平衡也会反映到接地点的入地电流上,如图9所示。若外界钢轨发生断轨,且接地中心点电流:I N=I 2+I 1≠0
断轨后,钢轨处于不平衡状态,上下轨条电流不再对称,因而会造成引接线电流I 1≠I 2,入地电流I N正是两侧上下不平衡电流矢量之和,此时,受端轨面接地点位置的不平衡度表达式如下:
Figure PCTCN2021126018-appb-000024
(3)断轨判则:
若以上受端轨面接地点的3个牵引电流满足如下关系,则可判定断轨。
Figure PCTCN2021126018-appb-000025
本发明的方案实现:信号和牵引电流不平衡综合判断法。
通过方案一:引接线信号电流不平衡判断法,可以判断断轨,但是采集时的精度受牵引电流和谐波的影响,对判断的准确性影响较大;
通过方案二:引接线牵引电流不平衡判断法,可以判断断轨,但是当牵引电流较小或者无牵引电流时,该方法将失效;
为提高判断断轨的精度,因此综合方案一和方案二,提出“信号电流和牵引电流不平衡综合判断”的方法,实现的原理说明:
(1)当轨面电流有效值小于20A时,认为钢轨上无牵引电流,采用方案一判断断轨,从频域上解调移频信号电流,当信号电流不平衡度β大于50%,判断为断轨;
(2)当轨面电流有效值大于20A时,认为钢轨上存在牵引电流,采用方案二判断断轨,从频域上解调50Hz工频电流,当工频电流不平衡度
Figure PCTCN2021126018-appb-000026
大于50%,判断为断轨。
断轨逻辑处理的流程图如图15所示:
本发明的优点:
新型轨道电路断轨检查通过“电流检测法”检查断轨,同时无需为了保证轨道电路的断轨检查对“区间间距”和“站内一头堵”进行限制,提高了轨道 电路对外界环境的适应性。
本发明构思的关键点:
在不用外加激励源检测断轨的前提下,基于轨道电路***提出一种新型断轨检查技术—信号和牵引电流不平衡综合判断法:为保证判断断轨状态的准确性,当传感器检测到钢轨有牵引电流时,采用牵引电流的不平衡度进行断轨判断。若检测无牵引电流,则采用钢轨的移频信号电流进行不平衡度进行判断。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***或***实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的***及***实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种断轨检查方法,其特征在于,包括:
    获取上下两根钢轨的电流信号,并计算上下两根所述钢轨的电流不平衡度;
    判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。
  2. 根据权利要求1所述的断轨检查方法,其特征在于,所述获取上下两根钢轨的电流信号,并计算两根所述钢轨的电流不平衡度,包括:
    获取上下两根钢轨的移频信号电流I 1、I 2
    基于所述I 1和所述I 2,计算电流不平衡度β的值,其中,
    Figure PCTCN2021126018-appb-100001
  3. 根据权利要求1所述的断轨检查方法,其特征在于,所述获取上下两根钢轨的电流信号,并计算两根所述钢轨的电流不平衡度,包括:
    获取上下两根钢轨的工频牵引电流I 1、I 2
    基于所述I 1和所述I 2,计算电流不平衡度
    Figure PCTCN2021126018-appb-100002
    的值,其中,
    Figure PCTCN2021126018-appb-100003
  4. 根据权利要求1所述的断轨检查方法,其特征在于,所述获取上下两根钢轨的电流信号之前,还包括:
    检测上下两根钢轨是否存在牵引电流;
    所述获取上下两根钢轨的电流信号,包括:
    若所述钢轨存在牵引电流,则获取所述钢轨的工频牵引电流;
    若所述钢轨不存在牵引电流,则获取所述钢轨的移频信号电流。
  5. 根据权利要求4所述的断轨检查方法,其特征在于,所述检测钢轨是否存在牵引电流,包括:
    检测所述钢轨的轨面电流有效值是否小于20A;
    若所述轨面电流有效值小于20A,则认为所述钢轨不存在牵引电流;
    若所述轨面电流有效值不小于20A,则认为所述钢轨存在牵引电流。
  6. 根据权利要求1所述的断轨检查方法,其特征在于,所述预设值为50%。
  7. 根据权利要求1所述的断轨检查方法,其特征在于,所述判断电流不平衡度是否大于预设值之后,还包括:
    若否,则判定所述钢轨处于正常调整工作状态。
  8. 一种断轨检查***,其特征在于,包括:
    计算模块,用于获取上下两根钢轨的电流信号,并计算上下两根所述钢轨的电流不平衡度;
    判断模块,用于判断所述电流不平衡度是否大于预设值;若是,则判定为断轨。
  9. 根据权利要求8所述的断轨检查***,其特征在于,所述计算模块,包括:
    获取单元,用于获取上下两根钢轨的工频牵引电流I 1、I 2
    计算单元,用于基于所述I 1和所述I 2,计算电流不平衡度
    Figure PCTCN2021126018-appb-100004
    的值,其中,
    Figure PCTCN2021126018-appb-100005
  10. 根据权利要求8所述的断轨检查***,其特征在于,还包括:
    检查模块,用于检测上下两根钢轨是否存在牵引电流。
PCT/CN2021/126018 2021-04-21 2021-10-25 一种断轨检查方法及*** WO2022222400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110430301.8A CN113125510A (zh) 2021-04-21 2021-04-21 一种断轨检查方法及***
CN202110430301.8 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022222400A1 true WO2022222400A1 (zh) 2022-10-27

Family

ID=76778531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126018 WO2022222400A1 (zh) 2021-04-21 2021-10-25 一种断轨检查方法及***

Country Status (2)

Country Link
CN (1) CN113125510A (zh)
WO (1) WO2022222400A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125510A (zh) * 2021-04-21 2021-07-16 通号(北京)轨道工业集团有限公司轨道交通技术研究院 一种断轨检查方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123406A (ko) * 2008-05-28 2009-12-02 한국철도기술연구원 레일의 절손 검지 장치 및 그 방법
CN101954915A (zh) * 2009-11-25 2011-01-26 兰州交通大学 实时断轨检测装置及其检测方法
CN107914737A (zh) * 2017-10-19 2018-04-17 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
CN107985344A (zh) * 2017-10-19 2018-05-04 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
CN108008210A (zh) * 2017-10-19 2018-05-08 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
CN108020712A (zh) * 2016-11-03 2018-05-11 河南蓝信科技股份有限公司 一种电务试验车不平衡电流检测方法及其***
WO2019136620A1 (zh) * 2018-01-10 2019-07-18 北京东方瑞威科技发展股份有限公司 一种铁路超偏载***及检测方法
CN113125510A (zh) * 2021-04-21 2021-07-16 通号(北京)轨道工业集团有限公司轨道交通技术研究院 一种断轨检查方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321110A (ja) * 1993-05-18 1994-11-22 Railway Technical Res Inst レール破断検知方法およびレール破断検知装置とその装置を用いたレール破断箇所検出方法
CN201721463U (zh) * 2009-11-25 2011-01-26 兰州交通大学 实时断轨检测装置
CN107600112B (zh) * 2017-09-26 2023-10-13 中国铁路通信信号上海工程局集团有限公司 半自动闭塞铁路钢轨断轨监测***及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123406A (ko) * 2008-05-28 2009-12-02 한국철도기술연구원 레일의 절손 검지 장치 및 그 방법
CN101954915A (zh) * 2009-11-25 2011-01-26 兰州交通大学 实时断轨检测装置及其检测方法
CN108020712A (zh) * 2016-11-03 2018-05-11 河南蓝信科技股份有限公司 一种电务试验车不平衡电流检测方法及其***
CN107914737A (zh) * 2017-10-19 2018-04-17 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
CN107985344A (zh) * 2017-10-19 2018-05-04 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
CN108008210A (zh) * 2017-10-19 2018-05-08 北京全路通信信号研究设计院集团有限公司 断轨检测方法及装置
WO2019136620A1 (zh) * 2018-01-10 2019-07-18 北京东方瑞威科技发展股份有限公司 一种铁路超偏载***及检测方法
CN113125510A (zh) * 2021-04-21 2021-07-16 通号(北京)轨道工业集团有限公司轨道交通技术研究院 一种断轨检查方法及***

Also Published As

Publication number Publication date
CN113125510A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CA2613764C (en) Multi-ended fault location system
US20130088240A1 (en) Method and apparatus for determining an insulation resistance in grounded it systems
CN103323674B (zh) 光伏并网逆变器的对地绝缘阻抗的实时检测电路和检测方法
WO2006019738A3 (en) Traveling wave based relay protection
US20140254053A1 (en) Travelling-wave based fault protection of high-voltage transmission lines
SE536143C2 (sv) Metod för att detektera jordfel i trefas elkraftdistributionsnät
WO2022222400A1 (zh) 一种断轨检查方法及***
CN107202936A (zh) 一种t接线路故障测距方法
RU2407124C2 (ru) Учет нагрузки при дистанционной защите трехфазной линии электропередачи
CN106249076A (zh) 受谐波负载影响下的配电变压器状态检测方法及***
CN104375069A (zh) 240v高压直流绝缘监测***
CN102520318A (zh) 一种输电线路故障识别方法
CN110514945A (zh) 一种多功能直流接地试验装置及直流接地故障检测方法
CN109358271A (zh) 一种基于mems光纤微电流传感技术的绝缘子劣化及污秽检测方法
CN203249968U (zh) 光伏并网逆变器的对地绝缘阻抗的实时检测电路
CN107677919A (zh) 一种基于双端量的高压交流线路的断线故障识别方法
JP2003172758A (ja) 送電線故障区間検出システムによる雷撃検知区間標定方法
CN108369254B (zh) 定位电力传输介质中的故障的方法
KR100816101B1 (ko) 활선 상태에서의 누전 탐사 장치
CN109901019A (zh) 一种谐振接地***电容电流测量方法及装置
JP7279990B2 (ja) レール破断検知装置
JP4777230B2 (ja) パンタグラフ電圧降下式離線測定装置
CN104345215B (zh) 一种绝缘电阻检测的方法、装置及设备
CN107144772B (zh) 一种地铁人防门与走行轨绝缘安装性能检测方法
JPH05288790A (ja) 架空地線電流センサ断線検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937622

Country of ref document: EP

Kind code of ref document: A1