WO2022222389A1 - 复杂环境下结构疲劳/耐久性实验***及方法 - Google Patents

复杂环境下结构疲劳/耐久性实验***及方法 Download PDF

Info

Publication number
WO2022222389A1
WO2022222389A1 PCT/CN2021/123227 CN2021123227W WO2022222389A1 WO 2022222389 A1 WO2022222389 A1 WO 2022222389A1 CN 2021123227 W CN2021123227 W CN 2021123227W WO 2022222389 A1 WO2022222389 A1 WO 2022222389A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
pipeline
load
durability
actuator
Prior art date
Application number
PCT/CN2021/123227
Other languages
English (en)
French (fr)
Inventor
黄培彦
姚国文
陈展标
李世亚
郭馨艳
李稳
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022222389A1 publication Critical patent/WO2022222389A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0224Thermal cycling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors

Definitions

  • the invention relates to the technical field of fatigue and durability experiments, in particular to a structural fatigue/durability experiment system and method under complex environment.
  • the service environment is diverse and time-varying, and the external loads it bears are often variable amplitude loads or even random loads that change with time and space.
  • most of the experimental data currently based on are derived from constant amplitude fatigue experiments of materials (specimen) or small components, as well as a very small number of variable amplitude loads. Fatigue experiment. In addition to the fatigue verification experiments of the whole aircraft, it is difficult to realize the structural fatigue experiments of other major structures and equipment in the civil field.
  • the loading method is monotonous, and generally only constant amplitude bending fatigue experiments can be performed;
  • the purpose of the present invention is to provide a structural fatigue/durability test system under complex environment in order to overcome the above shortcomings of the prior art.
  • This structural fatigue/durability experiment system in complex environments can be suitable for environmental fatigue/durability experiments in multiple environments, facilitating long-term continuous testing of experimental data with high accuracy.
  • Another object of the present invention is to provide a structural fatigue/durability test method in a complex environment.
  • the structural fatigue/durability experimental system under complex environment includes an environmental simulation device, a loading device, a testing device, a ground anchor device and a control terminal, the environmental simulation device, loading device and The test devices are all connected to the control terminal, and the environment simulation device, the loading device and the test device are all set on the ground anchor device;
  • the environment simulation device includes at least one test cabin, each test cabin is connected in sequence, and two adjacent test cabins A movable partition door is arranged between the cabins; each test cabin is provided with an independent environment simulation mechanism and a control mechanism, the environment simulation mechanism is connected with the control mechanism, and the control mechanism is connected with the control terminal.
  • the environment simulation mechanism includes an integrated heating unit, a refrigeration unit and a humidification and dehumidification unit
  • the refrigeration unit includes a low-pressure compressor unit, a high-pressure compressor unit, a heat exchanger, a condenser and an evaporator;
  • the low-pressure compressor unit The first pipe is connected with the inlet of the tube-side channel of the heat exchanger, and the outlet of the tube-side channel of the heat exchanger is connected with the evaporator through the second pipe; the first pipe is connected with a third pipe, the third pipe
  • the pipeline is connected with the evaporator;
  • the high-pressure compressor group is connected with the inlet of the shell-side channel of the heat exchanger through the fourth pipeline, and the outlet of the shell-side channel of the heat exchanger is connected with the high-pressure compressor group through the fifth pipeline;
  • the The evaporator is installed in the test chamber, and the first pipeline, the second pipeline, the third pipeline, the fourth pipeline and the fifth pipeline are all provided with valves.
  • the first pipeline between the connection of the first pipeline and the third pipeline and the low-pressure compressor set is provided with a precooler
  • the fourth pipeline is provided with a condenser
  • the condenser is located between the high-pressure compressor set and the heat sink. between switches.
  • a sixth pipeline is connected between the third pipeline and the low-pressure compressor group, and an expansion tank is connected between the sixth pipeline and the first pipeline.
  • the humidification and dehumidification unit includes a dehumidifier, a humidification nozzle, and a steam boiler, the dehumidifier and the humidification nozzle are both installed in the test chamber, and the steam boiler is connected to the humidification nozzle.
  • the heating unit includes a heater installed in the test chamber.
  • the environment simulation mechanism further includes a rain shower unit
  • the rain shower unit includes a water storage tank, a water pump, a filter, a pressure tank and a rain shower nozzle
  • the rain shower nozzle is installed through a spray pipe and its movable bracket
  • the water storage tank, the filter, the water pump and the pressure tank are connected in sequence, and the outlet of the pressure tank is connected with the spray pipe.
  • the environmental simulation mechanism further includes a salt spray unit
  • the salt spray unit includes a salt water storage tank, a salt water supply tank, a spray tower, a saturation generator, a first oil-water separator, an air storage tank, and a second oil-water separator , air compressor and salt spray nozzle
  • the water outlet of the brine storage tank is connected with the water purifier
  • the water purifier is connected with the inlet of the spray tower through the saturation generator
  • the outlet of the spray tower is connected with the salt spray pipe.
  • the salt spray nozzle installed in the test chamber is connected, the return port of the spray tower is connected with the salt water supply tank, the salt water supply tank is connected with the salt spray storage tank through the make-up pump, the air compressor, the second oil-water separator, The gas storage tank, the first oil-water separator and the saturation generator are connected in sequence.
  • the environmental simulation mechanism further includes a carbonization unit, the carbonization unit includes a carbon dioxide liquid storage tank, a carbon dioxide purifier and a carbonization nozzle, the carbon dioxide liquid storage tank is connected to the carbon dioxide purifier, and the carbonization nozzle is installed through a carbonization pipeline In the test chamber, the carbon dioxide purifier is connected to the carbonization nozzle through the carbonization pipeline.
  • the carbonization unit includes a carbon dioxide liquid storage tank, a carbon dioxide purifier and a carbonization nozzle
  • the carbon dioxide liquid storage tank is connected to the carbon dioxide purifier
  • the carbonization nozzle is installed through a carbonization pipeline
  • the carbon dioxide purifier is connected to the carbonization nozzle through the carbonization pipeline.
  • control mechanism includes a control cabinet, a controller, a switch, a temperature sensor, a humidity sensor and a touch screen
  • the controller and the switch are installed in the control cabinet
  • the temperature sensor and the humidity sensor are installed in the test cabin
  • the touch screen is installed on the outer wall of the test cabin
  • the temperature sensor, humidity sensor, touch screen and switch are all connected to a controller
  • the controller is connected to a control terminal.
  • the inner cavity of the test chamber is divided into a first working chamber and a second working chamber, the tops of the first working chamber and the second working chamber are connected, and the top of the first working chamber is installed with a circulation fan.
  • the loading device includes a first load loading device and/or a second load loading device, and the first actuator in the first load loading device is installed above the corresponding test chamber through a mobile rigid reaction frame , and the vertical dowel rod connected with the first actuator penetrates into the working room of the test cabin from the top of the test cabin, and the vertical dowel rod is connected with the test piece in the test cabin;
  • the second actuator of the second load loading device is installed on one side outside the corresponding test chamber through the reaction wall, and the horizontal dowel rod connected to the second actuator penetrates into the test chamber from one side of the test chamber and the horizontal dowel bar is connected to the specimen in the test chamber.
  • the first load loading device includes a first industrial computer, a first multiplying D/A converter, a first A/D converter, a first DC amplifier, a first servo amplifier, a first servo valve, a vertical Dowel rod, first displacement/strain sensor, first actuator, first electro-hydraulic servo mechanism and first oil source;
  • the first actuator is installed on the mobile rigid reaction frame, the upper end of the vertical transmission rod is connected with the first actuator, and the lower end of the vertical transmission rod penetrates into the working chamber of the test chamber through the shaft sleeve. ; Both the first actuator and the first oil source are connected with the first electro-hydraulic servo mechanism, the first electro-hydraulic servo mechanism is connected with the first industrial computer, and the first electro-hydraulic servo mechanism is connected by the first servo mechanism
  • the valve is connected to the first servo amplifier, the first servo amplifier is connected to the first industrial computer through the first multiplying D/A converter, the first displacement/strain sensor is installed on the test piece of the test chamber, the first The actuator is provided with a first load sensor, and both the first displacement/strain sensor and the first load sensor are connected to a first A/D converter through a first DC amplifier, and the first A/D converter
  • the two output ports are respectively connected with the first servo amplifier and the first industrial computer, and the first industrial computer
  • the first industrial computer includes a first random load simulation module and a first control module
  • the first random load simulation module is used to generate an analog signal of the random load, and the analog signal is converted by the first multiplication D/A
  • the first servo amplifier is converted into a control signal, and then sent to the first electro-hydraulic servo mechanism through the first servo amplifier circuit and the first servo valve, so that the first actuator and the first oil source work according to the instructions of the control signal;
  • the control module is used to program the simulated signals of random loads and experimental operation instructions into machine language.
  • the second load loading device includes a second industrial computer, a second multiplying D/A converter, a second A/D converter, a second DC amplifier, a second servo amplifier, a second servo valve, a horizontal drive a rod, a second displacement/strain sensor, a second actuator, a second electro-hydraulic servomechanism, and a second oil source;
  • the second actuator is installed on the reaction wall, one end of the horizontal transmission rod is connected with the second actuator, and the other end of the horizontal transmission rod penetrates into the working room of the test cabin through the shaft sleeve;
  • Both the second actuator and the second oil source are connected to the second electro-hydraulic servo mechanism, the second electro-hydraulic servo mechanism is connected to the second industrial computer, and the second electro-hydraulic servo mechanism is connected to the second electro-hydraulic servo mechanism through the second servo valve
  • the servo amplifier is connected, the second servo amplifier is connected with the second industrial computer through the second multiplying D/A converter, the second displacement/strain sensor is installed on the test piece of the test chamber, and the second actuator is installed.
  • the second displacement/strain sensor and the second load sensor are connected with the second A/D converter through the second DC amplifier, and the two output ports of the second A/D converter It is respectively connected with the second servo amplifier and the second industrial computer, and the second industrial computer is connected with the control terminal.
  • the second industrial computer includes a second random load simulation module and a second control module
  • the first random load simulation module is used to generate an analog signal of the random load, and the analog signal is converted by the second multiplication D/A
  • the second servo amplifier is converted into a control signal, and then sent to the second electro-hydraulic servo mechanism through the second servo amplifier circuit and the second servo valve, so that the second actuator and the second oil source work according to the instructions of the control signal;
  • the second The control module is used to program the simulated signals of random loads and experimental operation instructions into machine language.
  • the testing device includes a non-contact optical measuring mechanism and a sensing testing mechanism;
  • the non-contact photometric mechanism includes a photometric instrument and a photometric bracket, the photometric instrument is installed outside the test chamber through the photometric bracket, and the measurement end of the photometric instrument is arranged opposite to the observation window of the test chamber;
  • the sensing and testing mechanism includes a fiber grating sensor, a strain gauge, a static and dynamic strain gauge, an optical switch, a fiber grating demodulator, an optical transceiver and a third industrial computer.
  • the strain gauge is connected to the static and dynamic strain gauge, and the fiber grating sensor, the optical switch, the fiber grating demodulator, the optical transceiver and the third industrial computer are connected in sequence.
  • the ground anchor device includes a rigid reinforced concrete floor and guide rails; the rigid reinforced concrete floor is provided with multiple rows of anchor holes, and the test cabin and the mobile rigid reaction frame are connected to the corresponding anchor holes through corresponding anchoring mechanisms
  • the guide rail is installed on the rigid reinforced concrete floor and the bottom plate of the test cabin, and the guide rail is provided with a bearing platform for installing the test piece or the fixture.
  • the present invention has the following advantages:
  • the structural fatigue/durability experimental system in the complex environment of the present invention is mainly composed of an environmental simulation device, a loading device, a testing device, a ground anchor device and a control terminal.
  • the movable partition door is set up, and each test chamber is equipped with an independent environmental simulation mechanism and control mechanism, so that any combination of multiple environmental factors can be realized, and at the same time, the coupling of a single environment and constant amplitude cyclic load can be realized to meet the needs of the experiment.
  • the environmental simulation device in the structural fatigue/durability experimental system under complex environment of the present invention adopts a plurality of relatively independent test chambers.
  • the test device and the control terminal are used together to realize the online measurement of the surface topography, fatigue crack initiation and expansion of the specimen in complex environments; at the same time, the same environment and different load spectrum coupling/co-action can be implemented for different specimens at the same time.
  • the environmental fatigue/durability test under the same and different load spectrums and the interaction of different service environments can be used to analyze the long-term mechanical properties of the specimens.
  • the environmental simulation device in the structural fatigue/durability experimental system under complex environment of the present invention is mainly composed of an environmental simulation mechanism and a control mechanism, and integrates the heating unit, the refrigeration unit and the humidification and dehumidification unit. , high pressure compressor unit and heat exchanger, etc. work together, so as to achieve low temperature and low humidity (such as 5 ⁇ 20 °C, less than or equal to 40% R H) environment simulation, but also to achieve a low temperature environment with a temperature less than or equal to -60 °C simulation.
  • low temperature and low humidity such as 5 ⁇ 20 °C, less than or equal to 40% R H
  • Each test chamber in the structural fatigue/durability test system under complex environment of the present invention can be used alone or together, and can realize a variety of time-varying, extreme environments and static loads, constant amplitude cyclic loads, variable amplitude ( Environmental fatigue/durability experiments of different full-scale structures and models under random) load coupling/combined action, good versatility and wide application range, can be used for transportation, civil construction, ship and marine engineering, energy, machinery, water conservancy, aviation, etc.
  • the major structures and equipment in the field can realize the structural environment fatigue/durability experiment, fatigue crack propagation experiment, environmental fracture experiment and other long-term mechanical performance experiments under the coupling/combined action of the service environment and load.
  • Environmental fatigue/durability experiments under random loads on structures such as ports, dams, ships, and aircraft.
  • the structural fatigue/durability experimental system in the complex environment of the present invention has a concise and reasonable configuration and layout, and the main components and elements have excellent stiffness, strength, stability, reliability and durability, and have installation and maintenance. Convenience and moderate cost.
  • the loading device in the structural fatigue/durability experimental system under complex environment of the present invention can adopt one or two sets of loading devices (ie, the first loading device and the second loading device) to realize one-way and two-way loading, It is not limited to constant-amplitude bending fatigue experiments, but can also accurately implement and control various loads (such as static load, constant-amplitude/constant-amplitude fatigue, variable-amplitude/random fatigue, and pulsation/vibration fatigue, etc.) and loading (tension-pull, tension-compression, bending, torsion and bending-torsion, etc.) forms, so as to meet various experimental needs.
  • loads such as static load, constant-amplitude/constant-amplitude fatigue, variable-amplitude/random fatigue, and pulsation/vibration fatigue, etc.
  • loading tension-pull, tension-compression, bending, torsion and bending-torsion, etc.
  • the structural fatigue/durability experimental system and experimental method of the present invention can accurately implement and control various unidirectional and bidirectional loads (static load, constant amplitude/constant amplitude fatigue, variable amplitude/random load) in long-term experiments.
  • Fatigue, pulsation/vibration fatigue) and loading forms (pull-pull, pull-compression, bending, torsion, bending-torsion), suitable for multiple environments (constant temperature and humidity, dry-wet cycle, alternating wet-heat cycle, salt spray, time-varying
  • Environmental fatigue/durability test under temperature-salt spray cycle, freeze-thaw, rain, carbonization which is convenient for long-term continuous testing of experimental data and data collection.
  • the structural fatigue/durability experimental system and experimental method of the present invention can be applied to structural environmental fatigue/durability experiments of different scales under the coupling action of various complex environments and loads, and can be accurately simulated in long-term experiments.
  • Apply and control various environments and loads can completely, real-time, and high-precision capture the data of the deformation and force of the specimen that changes with the environment and load, and can simultaneously measure multiple specimens of different levels and sizes.
  • the structural fatigue/durability test method of the present invention can realize the simulation and control of low temperature and low humidity (for example: ⁇ 40% R ⁇ H at 5 to 20°C) environment and low temperature environment of ⁇ -60°C; It has any combination of multiple environmental factors and its conversion technology; it can realize on-line measurement of the surface morphology, fatigue crack initiation and propagation of the specimen in complex environments.
  • low temperature and low humidity for example: ⁇ 40% R ⁇ H at 5 to 20°C
  • FIG. 1 is a first structural schematic diagram of the structural fatigue/durability experimental system under complex environment of the present invention.
  • FIG. 2 is a second structural schematic diagram of the structural fatigue/durability experimental system under complex environment of the present invention.
  • FIG. 3 is a schematic structural diagram of an environment simulation device of the present invention.
  • FIG. 4 is a schematic view of the structure of the test chamber of the present invention.
  • FIG. 5 is a schematic structural diagram of the refrigeration unit of the present invention.
  • FIG. 6 is a schematic structural diagram of a heating unit, a humidifying and dehumidifying unit, etc. of the present invention.
  • FIG. 7 is a schematic structural diagram of the control mechanism of the present invention.
  • FIG. 8 is a schematic structural diagram of the rain shower unit of the present invention.
  • FIG. 9 is a schematic structural diagram of the salt spray unit of the present invention.
  • Figure 10 is a schematic structural diagram of the carbonization unit of the present invention.
  • FIG. 11 is a schematic structural diagram of the loading device of the present invention.
  • FIG. 12 is a schematic structural diagram of the testing device of the present invention.
  • FIG. 13 is a schematic diagram of a test piece according to an embodiment of the present invention.
  • Figure 14 is a simulated graph of temperature and relative humidity of the present invention.
  • Figure 15 is a graph of a random load simulation of the present invention.
  • 1 is the environment simulation device
  • 2 is the loading device
  • 3 is the test device
  • 4 is the ground anchor device
  • 5 is the test cabin
  • 6 is the movable partition door
  • 7 is the heating unit
  • 8 is the refrigeration unit
  • 9 is the humidification and dehumidification unit.
  • 10 is the low pressure compressor unit
  • 11 is the high pressure compressor unit
  • 12 is the heat exchanger
  • 13 is the condenser
  • 14 is the evaporator
  • 15 is the first pipe
  • 16 is the second pipe
  • 17 is the third pipe
  • 18 is the fourth pipe Pipes
  • 19 is the fifth pipe
  • 20 is the valve
  • 21 is the precooler
  • 22 is the sixth pipe
  • 23 is the expansion tank
  • 24 is the dehumidifier
  • 25 is the humidifying nozzle
  • 26 is the steam boiler
  • 27 is the heater
  • 28 is the rain shower unit
  • 29 is the water storage tank
  • 30 is the water pump
  • 31 is the filter
  • 32 is the pressure tank
  • 33 is the rain spray nozzle
  • 34 is the spray pipe
  • 35 is the salt spray unit
  • 36 is the salt spray storage tank
  • 37 is the brine supply tank
  • 38 is the spray tower
  • 39 is the saturation generator
  • 40 is the first oil-water separator
  • 41 is the air storage tank
  • 42 is
  • 54 is the switch, 55 is the temperature sensor, 56 is the humidity sensor, 57 is the touch screen, 58 is the first working room, 59 is the second working room, 60 is the circulation fan, 61 is the first load loading device, 62 is the second load Loading device, 63 is a mobile rigid reaction frame, 64 is a reaction wall, 65 is a first industrial computer, 66 is a first multiplying D/A converter, 67 is a first DC amplifier, 68 is a first servo amplifier , 69 is the first servo valve, 70 is the first vertical dowel rod, 71 is the first displacement/response sensor, 72 is the first actuator, 73 is the first oil source, 74 is the non-contact photometric mechanism, 75 is a sensor testing mechanism, 76 is a light measuring instrument, 77 is a light measuring bracket, 78 is an observation window, 79 is a fiber grating sensor, 80 is a strain gauge, 81 is a static and dynamic strain gauge, 82 is a light switch,
  • the structural fatigue/durability experimental system under complex environment as shown in Fig. 1 to Fig. 3 includes an environmental simulation device, a loading device, a testing device, a ground anchor device and a control terminal.
  • the environmental simulation device, the loading device and the testing device are all Connected with the control terminal, the environmental simulation device, the loading device and the test device are all arranged on the ground anchor device;
  • the environmental simulation device includes at least one test cabin, each test cabin is connected in sequence, and there are two adjacent test cabins between A movable partition door is provided; each test cabin is provided with an independent environment simulation mechanism and a control mechanism, the environment simulation mechanism is connected with the control mechanism, and the control mechanism is connected with the control terminal.
  • test chambers The number of test chambers is determined according to the needs of the experiment.
  • the size of each test chamber can be the same or different.
  • the test cabins are connected in sequence, and each test cabin is connected or closed through the movable partition door, that is, when the movable partition door is lowered, the two adjacent test cabins are in a closed state, and each test cabin works independently at this time. ; And when the movable partition door is raised, the adjacent two test cabins are in a state of communication, and the connected test cabins can work together. This can meet the needs of various experiments. As shown in FIG. 3 , in this embodiment, five test chambers are used. Each test cabin is equipped with an independent environmental simulation mechanism and control mechanism.
  • each test cabin controls the corresponding environmental simulation mechanism, so that the test cabin can simulate the environment required by the test, such as low temperature and low humidity environment, constant temperature and humidity. And alternating humidity and heat cycle, salt spray, time-varying temperature-salt spray cycle, freeze-thaw, rain and carbonization and other environments, and each control organization summarizes the detected data to the control terminal.
  • the observation window of the working test cabin is equipped with a corresponding test device, and each test device will check the parameters of the test piece online in real time, such as the surface morphology of the test piece, the initiation and expansion of fatigue cracks, etc.
  • the dowel rod (vertical dowel rod or horizontal dowel rod) in the loading device penetrates into the corresponding test chamber to apply load to the specimen, which can realize fatigue/durability experiments under the coupling of environment and load.
  • the bulkhead of the test cabin adopts a foamed warehouse plate structure (color steel plate on the outside, stainless steel plate on the inside, and polyurethane foam in the middle) to achieve the effect of thermal insulation and anti-corrosion, and also avoid the environment in the test cabin from being affected by the outside world. Since there are movable partition doors between each test chamber, the environmental fatigue/durability test under the same environment and the coupling/combined action of different environments and loads can be performed on multiple specimens of different levels and sizes at the same time.
  • the functions of the pod and the loading device are able to work independently.
  • the environment simulation mechanism includes an integrated heating unit, a refrigeration unit, and a humidification and dehumidification unit.
  • the refrigeration unit includes a low-pressure compressor unit, a high-pressure compressor unit, a heat exchanger, a condenser, and an evaporator. ;
  • the low-pressure compressor unit is connected with the inlet of the tube-side channel of the heat exchanger through the first pipeline, and the outlet of the tube-side channel of the heat exchanger is connected with the evaporator through the second pipeline;
  • the first pipeline is connected with the first pipeline.
  • the third pipeline is connected to the evaporator;
  • the high-pressure compressor unit is connected to the inlet of the shell-side channel of the heat exchanger through the fourth pipeline, and the outlet of the shell-side channel of the heat exchanger is connected to the high-pressure through the fifth pipeline
  • the compressor unit is connected;
  • the evaporator is installed in the test chamber, and the first pipeline, the second pipeline, the third pipeline, the fourth pipeline and the fifth pipeline are all provided with valves.
  • a common pipeline can be used between the units to facilitate installation and maintenance, as shown in Figure 4.
  • the low-pressure compressor unit and the high-pressure compressor unit in the refrigeration unit use two sets of semi-hermetic compressors to form a mechanical cascade refrigeration unit. That is, both the low-pressure compressor unit and the high-pressure compressor unit are connected to the heat exchanger. Among them, the high-pressure compressor unit, the fourth pipeline, the shell-side channel of the heat exchanger and the fifth pipeline form a high-pressure refrigeration cycle.
  • the cold energy produced by the low-pressure compression mechanism will further absorb the cold energy in the shell-side channel when passing through the pipe channel of the heat exchanger to obtain a lower temperature, and then the cold energy in the tube-side channel will be further absorbed. After absorbing the cold energy of the shell-side channel, it enters the evaporator of the test chamber to cool the test chamber, so that the temperature of the test chamber is reduced to less than or equal to -60 °C to meet the low temperature environment requirements of the experiment.
  • the refrigeration unit and the humidification and dehumidification unit work together, that is, the cold energy produced by the low-pressure compression mechanism is directly sent to the evaporator of the test chamber through the first pipeline and the third pipeline or after passing through the heat exchanger. It is sent to the evaporator of the test chamber to meet the low temperature effect required by the experiment.
  • the steam boiler in the humidification and dehumidification unit works to send the moisture in the form of steam into the test chamber through the humidification nozzle to improve the humidity of the test chamber. .
  • the valve As to whether the cold energy produced by the low-pressure compressor unit is directly sent to the evaporator through the first pipeline and the third pipeline, or whether it is sent to the evaporator through the heat exchanger first, it can be controlled by the valve.
  • a condenser is arranged in the fourth pipeline, and the condenser is located between the high-pressure compressor group and the heat exchanger.
  • the first pipeline between the junction of the first pipeline and the third pipeline and the low-pressure compressor set is provided with a precooler
  • the fourth pipeline is provided with a condenser, which is located between the high-pressure compressor set and the heat exchanger. between.
  • a pre-cooler is used to further cool the cooling capacity produced by the low-pressure compressor unit to ensure that the experimental requirements are met.
  • a sixth pipeline is connected between the third pipeline and the low-pressure compressor group, and an expansion container is connected between the sixth pipeline and the first pipeline. Setting the expansion tank can protect the low-pressure compressor unit and prevent the excessive pressure in the low-pressure compressor unit from affecting refrigeration.
  • the humidification and dehumidification unit includes a dehumidifier, a humidification nozzle, and a steam boiler. Both the dehumidifier and the humidification nozzle are installed in the test chamber, and the steam boiler is connected to the humidification nozzle.
  • Dehumidifiers can be purchased directly from the market to reduce costs.
  • the dehumidifier is directly installed in the test chamber to adjust the humidity in the environment of the test chamber to ensure that the environment in the test chamber meets the experimental requirements.
  • the steam generated by the steam boiler is sent into the test chamber from the humidification nozzle to increase the temperature of the environment in the test chamber.
  • the structure is simple and the installation is convenient.
  • the heating unit includes a heater, which is installed in the test chamber, as shown in FIG. 4 .
  • the heating unit is installed in the test chamber, and the electric heater is controlled on or off by the control mechanism to adjust the temperature in the test chamber.
  • the environmental simulation mechanism further includes a rain shower unit.
  • the rain shower unit includes a water storage tank, a water pump, a filter, a pressure tank and a rain shower nozzle.
  • the movable bracket is installed in the test chamber, the water storage tank, the filter, the water pump and the pressure tank are connected in sequence, and the outlet of the pressure tank is connected with the spray pipe.
  • the spray pipe is installed on the top of the test chamber in a suspended manner, and the spray pipe is connected to the outlet of the pressure tank through a connecting pipe, and a quick interface can be used between the spray pipe and the connecting pipe.
  • This structure facilitates the disassembly and assembly of the spray pipe, that is, when the rain environment is required, the spray pipe can be quickly installed in the test chamber, and when the rain environment is not required, the spray pipe can be disassembled, so as to facilitate the creation of various environmental conditions.
  • the water pumped by the water pump from the water storage tank passes through the filter and the pressure tank, and then is sent to the test chamber through the rain spray pipe, which can facilitate the adjustment of the rainfall amount to ensure the effective conduct of the test.
  • the environmental simulation mechanism further includes a salt spray unit, which includes a brine storage tank, a brine supply tank, a spray tower, a saturation generator, a first oil-water separator, an air storage tank, a second Oil-water separator, air compressor and salt spray nozzle, the water outlet of the brine storage tank is connected with the water purifier, the water purifier is connected with the inlet of the spray tower through the saturation generator, and the outlet of the spray tower is connected by the salt
  • the mist pipeline is connected with the salt spray nozzle installed in the test chamber, the return port of the spray tower is connected with the brine supply tank, the brine supply tank is connected with the salt spray storage tank through the supply water pump, the air compressor, the second oil and water
  • the separator, the gas storage tank, the first oil-water separator and the saturation generator are connected in sequence.
  • the salt mist is transported into the test chamber through the spray tower, so that the environment in the test chamber can meet the test requirements.
  • the saturated generator, spray tower, salt water supply tank, and salt spray storage tank form a circulation loop, which improves the utilization rate of salt water and avoids waste.
  • the environmental simulation mechanism further includes a carbonization unit, the carbonization unit includes a carbon dioxide liquid storage tank, a carbon dioxide purifier and a carbonization nozzle, the carbon dioxide liquid storage tank is connected to the carbon dioxide purifier, and the carbonization nozzle passes through
  • the carbonization pipeline is installed in the test chamber, and the carbon dioxide purifier is connected to the carbonization nozzle through the carbonization pipeline.
  • the carbonized pipeline is equipped with valve components.
  • the carbon dioxide purifier can remove impurities, which can further improve the clarity of the input and avoid affecting the experimental results.
  • the control mechanism includes a control cabinet, a controller, a switch, a temperature sensor, a humidity sensor and a touch screen
  • the controller and the switch are installed in the control cabinet
  • the temperature sensor and the humidity sensor are installed in the test Inside the cabin
  • the touch screen is installed on the outer wall of the test cabin
  • the temperature sensor, humidity sensor, touch screen and switch are all connected to a controller
  • the controller is connected to a control terminal.
  • Temperature sensors and humidity sensors are used to detect the parameters in the test chamber in real time to transmit the detection data to the controller through the switch.
  • the touch screen is COM1/2
  • the controller WP1M_20R2PT Programmable Logic Controller, PLC
  • the switch is CISCO WS-C2960X-48TS-L.
  • the inner cavity of the test chamber is divided to form a first working chamber and a second working chamber, the tops of the first working chamber and the second working chamber are communicated, and the first working chamber A circulating fan is installed on the top of the chamber.
  • the first working chamber is used to place equipment such as heaters, dehumidifiers and evaporators
  • the second working chamber is used to place platforms, fixtures and specimens
  • an observation window is provided on the side wall of the second working chamber
  • the dowel rods (vertical dowel rod and horizontal power rod) in the loading device penetrate into the second working chamber to load the specimen.
  • the first working room is connected with the second working room, and an air duct is set in the first working room, so the heat and cold generated by the heater and the evaporator can be transported to the second working room through the circulating fan, so that the second working room can be transported to the second working room.
  • the indoor environment in the test piece meets the test requirements, so that the test piece can be subjected to environmental fatigue/durability tests in the environment that meets the requirements.
  • the loading device includes a first load loading device and/or a second load loading device, and the first actuator in the first load loading device adopts a movable rigid reaction
  • the force frame is installed above the corresponding test cabin, and the vertical dowel rod connected with the first actuator penetrates into the working room of the test cabin from the top of the test cabin, and the vertical dowel rod is connected with the fixture in the working room or with the working chamber.
  • the test piece is connected; the second actuator of the second load loading device is installed on one side of the corresponding test chamber through the reaction wall, and the horizontal dowel rod connected to the second actuator passes through one side of the test chamber into the working room of the test chamber, and the horizontal dowel bar is connected with the fixture in the working room or with the test piece.
  • the first load loading device and the second load loading device adopt the same structure, but the installation positions of the two are different.
  • the first random loading device is installed above the specimen through a movable rigid reaction frame to apply a vertical load to the specimen, while the second random loading device applies a horizontal load to the specimen through a reaction wall.
  • the first load loading device and the second load loading device can be used separately, or can be used together at the same time, so as to meet the needs of different experiments.
  • the first load loading device includes a first industrial computer, a first multiplying D/A converter, a first A/D converter, a first DC amplifier, a first servo amplifier, a first servo valve, and a vertical dowel rod , the first displacement/strain sensor, the first actuator, the first electro-hydraulic servo mechanism and the first oil source, the first actuator is installed on the mobile rigid reaction frame, the upper end of the vertical force transmission rod Connected with the first actuator, the lower end of the vertical dowel rod penetrates into the second working chamber of the test chamber through the shaft sleeve; the first actuator and the first oil source are connected with the first electro-hydraulic servo mechanism , the first electro-hydraulic servo mechanism is connected with the first industrial computer, and the first electro-hydraulic servo mechanism is connected with the first servo amplifier through the first servo valve, and the first servo amplifier is converted by the first multiplication D/A
  • the actuator is connected to the first industrial computer, the first displacement/s
  • the industrial computer is connected with the control terminal. Specifically, the first actuator is used to apply a load to the specimen, and the first oil source is used as the power source of the first actuator.
  • the simulation program for compiling the random load is input to the first industrial computer, and the first industrial computer generates the analog information of the random load, and converts it into a control signal through the first multiplying D/A (digital/analog signal) converter, and then passes through the first multiplication D/A (digital/analog signal) converter.
  • the servo amplifier and the first servo valve are transmitted to the electro-hydraulic servo mechanism, so that the first actuator and the first oil source work according to the signal instruction.
  • the magnitude of the load applied by the first actuator to the specimen is measured by the first load sensor, and fed back to the first servo amplifier through the first DC amplifier.
  • the first servo amplifier compares and corrects the control signal and the feedback signal to obtain Guarantees the accuracy of the applied load.
  • the first industrial computer includes a first random load simulation module and a first control module.
  • the first random load simulation module is used to generate an analog signal of the random load, and the analog signal is converted into a random load by the first multiplying D/A converter.
  • the control signal is then transmitted to the first electro-hydraulic servo mechanism through the first servo amplifier circuit and the first servo valve, so that the first actuator and the first oil source work according to the instructions of the control signal; the first control module uses It is used to program the simulated signals of random loads and experimental operation instructions into machine language.
  • the working process of the first random load simulation module is as follows: 1) According to the probability characteristics of statistical data (probability distribution function, autocorrelation function or power spectral density function), determine whether the random process belongs to narrowband, mediumband, or wideband random process 2) For a narrow-band random process, because it is a Gaussian random process, its probability distribution function, power spectral density function or autocorrelation function can be used, and the numerical simulation method of the triangular series harmonic synthesis method can be used to obtain The simulation spectrum of the random process is the random load simulation spectrum; 3) For the middle-band and wide-band random processes, since they are all non-Gaussian random processes, it is difficult to perform numerical simulation directly, so the "probability distribution transformation" method is adopted, that is, First, the non-Gaussian random process can be converted into a Gaussian random process through the principle of "equal probability distribution” and after several corrections to the power spectral density function, and then simulated by using the triangular series harmonic synthesis method, we can obtain Random loading
  • the first industrial computer also has a chart display module, an input and output module and a buzzer alarm module.
  • the chart display module is used to display the detection data of each sensor (the first displacement/strain sensor and the first load sensor), as well as the simulated spectrum and feedback data of the load, so as to facilitate the experimental operator to observe, correct and compile instructions; while the input and output
  • the module is used to compile control instructions, input initial data of load and environmental simulation, output various experimental conditions and detection data, etc.
  • the buzzer alarm module is used to alarm to ensure the safety of the experiment and the device.
  • the second load loading device includes a second industrial computer, a second multiplying D/A converter, a second A/D converter, a second DC amplifier, a second servo amplifier, a second servo valve, a horizontal transmission rod, a second Two displacement/strain sensors, a second actuator, a second electro-hydraulic servo mechanism and a second oil source, the second actuator is installed on the reaction wall, and one end of the horizontal transmission rod is connected to the second actuator connected, the other end of the horizontal transmission rod penetrates the working chamber of the test chamber through the shaft sleeve; the second actuator and the second oil source are both connected with the second electro-hydraulic servo mechanism, and the second electro-hydraulic servo
  • the mechanism is connected with the second industrial computer, and the second electro-hydraulic servo mechanism is connected with the second servo amplifier through the second servo valve, and the second servo amplifier is connected with the second industrial computer through the second multiplying D/A converter,
  • the second displacement/strain sensor is
  • the second industrial computer includes a second random load simulation module and a second control module, and the first random load simulation module is used to generate an analog signal of the random load, and the analog signal is converted into a random load by a second multiplying D/A converter.
  • the control signal is then transmitted to the second electro-hydraulic servo mechanism through the second servo amplifier circuit and the second servo valve, so that the second actuator and the second oil source work according to the instructions of the control signal; the second control module uses It is used to program the simulated signals of random loads and experimental operation instructions into machine language.
  • the structure of the second loading device is basically the same as that of the first loading device, except that the two load the test piece from different directions and test the test piece.
  • the first industrial computer and the second industrial computer both use the Servotest controller, the first oil source and the second oil source are both Servotest (1000LPM@28MPa, and the first actuator and the second actuator are both Servotest electro-hydraulic Servo single/double rod actuators (400t, 200t, 100t, 50t, a total of 9 actuators, total tonnage 1200t), the first electro-hydraulic servo mechanism and the second electro-hydraulic servo mechanism are Servotest electro-hydraulic servo mechanisms .
  • the test device includes a non-contact photometric mechanism and a sensing test mechanism;
  • the non-contact photometric mechanism includes a photometric instrument and a photometric bracket, and the photometric instrument is mounted on the photometric bracket through the photometric bracket.
  • the measuring end of the optical measuring instrument is arranged opposite to the observation window of the second working room;
  • the sensing and testing mechanism includes a fiber grating sensor, a strain gauge, a static and dynamic strain gauge, an optical switch, and a fiber grating demodulator , optical terminal and the third industrial computer, the strain gauge and the fiber grating sensor are installed on the test piece fixed on the fixture, the strain gauge is connected with the static and dynamic strain gauge, the fiber grating sensor, the optical switch, the fiber grating solution
  • the adjustment instrument, the optical transceiver and the third industrial computer are connected in sequence.
  • the observation window of the test cabin is designed as a hollow structure, which has functions such as heating, dehumidification and drying, so as to ensure that the optical measuring instrument of the non-contact optical measuring mechanism (ie the DIC of this embodiment) can also be used in harsh environments such as dense fog.
  • the surface deformation, crack morphology and its initiation and expansion of the specimen in the second studio are tracked and measured in real time with high precision; while the strain gauge in the sensing testing mechanism transmits the detected strain signal of the specimen to the static and dynamic strain gauge; and the specimen strain signal detected by the fiber grating sensor is sequentially input to the third industrial computer through the optical switch, the fiber grating demodulator, and the optical transceiver, and the fiber grating demodulator is used for the mutual conversion of wavelength and voltage, Demodulate light wavelength information, demodulate temperature and strain parameter information; the third industrial computer is used to perform noise processing, wavelet transformation, hierarchical decomposition, strain and stress calculation on the received sensing signal of the fiber grating sensor, and output the processing result;
  • the fiber grating sensor can not only test the deformation of the specimen surface, but also realize the distributed continuous measurement of the internal strain of the specimen through the embedded and distributed arrangement.
  • the photometric instrument in this example is DIC PMLAB TM .
  • the strain gauge is resistance strain gauge
  • the fiber grating sensor is PI-FBG-E3000A
  • the strain gauge is Wavebook516E
  • the optical switch is NS series 1 ⁇ 2
  • the fiber grating demodulator is PI01-16
  • the optical terminal is UT-27
  • the industrial computer adopts EPC -7100-JH110MC type product.
  • the ground anchor device includes a rigid reinforced concrete floor and guide rails; the rigid reinforced concrete floor is provided with multiple rows of anchor holes, and the test cabin and the mobile rigid reaction frame are connected to the corresponding anchor holes through corresponding anchoring mechanisms; the The guide rail is installed on the rigid reinforced concrete floor and the bottom plate of the test chamber through the corresponding anchor holes, and the guide rail is provided with a bearing platform for placing the test piece.
  • the guide rail is used to move and carry the fixture and the test piece platform, that is, the support platform can move along the guide rail in the test chamber, so as to push the test piece to the corresponding test chamber to ensure the effective conduct of the test.
  • Rigid reinforced concrete floors have good bearing properties.
  • Anchor holes are arranged on the rigid reinforced concrete floor, which can adjust the installation position of the test chamber and the mobile rigid reaction frame, which is convenient to adjust the loading point of the load loading device, easy to operate, and ensures the accuracy of the test results.
  • the anchoring mechanism is mainly composed of bolts and nuts, which is convenient for installation under the condition of ensuring the stability of the test chamber and the mobile rigid reaction frame.
  • the bearing platform is moved to the position corresponding to the loading point in the test chamber through the guide rail, and the corresponding fixture is installed on the bearing platform, and then the test piece is transported to the appropriate position and installed on the fixture;
  • Some fixtures or special fixtures are used to ensure the stability of the specimen placed on the platform and the accuracy of the loading point, so as to ensure that the experiment can be carried out effectively.
  • environmental indicators include temperature, relative humidity, salinity and CO 2 concentration.
  • the environmental simulation device and the loading device are restarted to perform fatigue/durability experiments under the coupling action of the environment and the load.
  • each test device also records experimental conditions, implementation data and images such as environment, load and specimen deformation.
  • the test piece is a component, a structural model, and a full-scale structure.
  • the length of the test piece is 1 to 32 meters, the width is 0.1 to 4 meters, and the height is 0.2 to 9 meters.
  • the experimental environment is constant temperature and humidity, dry-wet cycle, alternating wet-heat cycle, salt spray, time-varying temperature-salt spray cycle, freeze-thaw, rain, and carbonization.
  • the temperature range is -70 to 100 °C, and the relative humidity range is 20 ⁇ 98%H ⁇ R, the range of alternating damp heat cycle is (5°C: 40 ⁇ 98%H ⁇ R; 20°C: 31.4 ⁇ 98%H ⁇ R; 40 ⁇ 85°C: 20 ⁇ 98%H ⁇ R)
  • the salt spray deposition volume is 0.3 ⁇ 5ml/80cm 2 ⁇ h
  • the droplet diameter is 1-5 ⁇ m
  • the nozzle pressure is 0.02 ⁇ 0.30MPa
  • the rainfall is 0 ⁇ 20mm/h
  • the cycle is 1 ⁇ 2000 times
  • the pressure is 0.02 ⁇ 0.30MPa.
  • the load types are static load, constant amplitude (constant amplitude) fatigue, variable amplitude/random fatigue, pulsation/vibration fatigue, and the fatigue load forms are tension-tension fatigue, tension-compression fatigue, bending fatigue, torsional fatigue, bending-torsion fatigue,
  • the loads are one-way and two-way loads, the single-point load is 10-4000kN, the maximum combined load is 12000kN, and the loading frequency is 0-20Hz.
  • the types of experiments that can be performed on the above-mentioned specimens are environmental static load experiments, environmental fatigue experiments, durability experiments, environmental fatigue crack initiation and propagation experiments, and environmental fracture/destruction experiments of materials, components and structures.
  • RC composite box beams with corrugated steel webs under the coupling of alternating humid and heat environments and random loads.
  • the RC composite box girder with corrugated steel webs is clamped as a specimen.
  • the external dimensions of this RC composite box girder with corrugated steel webs are 3530 ⁇ 360 ⁇ 460mm, the thickness of the steel web is 4mm, and the thickness of the RC plate is 3530 ⁇ 360 ⁇ 460mm. is 65mm.
  • the corrugated steel web RC composite box girder is fixed on the bearing platform by the tooling fixture, which constitutes the constraint condition of the fixed support at both ends. Eccentric loads are applied to the ends of the loading rods in the mid-span of the RC composite box girder with corrugated steel webs to generate bending moments and torques.
  • the environmental spectrum corresponding to the curve shown in Figure 14 and the load spectrum corresponding to the curve shown in Figure 15 are prepared;
  • the first two test cabins that is, open the movable partition door between the two test cabins, so that the two test cabins can be merged into one, according to the loading point of the corrugated steel web RC composite box girder to determine the use of the first test cabin.
  • a strain gauge is arranged on the key section of the RC composite box girder with corrugated steel webs. This strain gauge is connected to the static and dynamic strain gauge placed outside the test chamber, and the acquisition frequency is set to 100Hz; The midspan and end surfaces of the web are speckled for use as DIC (non-contact) measurements.
  • a DIC is erected outside the observation windows of the two test cabins, and is aimed at the areas coated with speckle at the mid-span and end of the RC composite box girder with corrugated steel webs, and the acquisition frequency is set to 50 frames per second;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种复杂环境下结构疲劳/耐久性实验***及实验方法,其中实验***包括环境模拟装置(1)、加载装置(2)、测试装置(3)、地锚装置(4)和控制终端,环境模拟装置(1)、加载装置(2)和测试装置(3)均与控制终端连接,环境模拟装置(1)、加载装置(2)和测试装置(3)均设置于地锚装置(4)上;环境模拟装置(1)包括至少一个试验舱(5),各个试验舱(5)依次连接,且相邻2个试验舱(5)之间设有活动隔门(6);每个试验舱(5)设有独立的环境模拟机构和控制机构,环境模拟机构与控制机构连接,控制机构与控制终端连接。该实验***能够实现多种复杂环境与荷载耦合作用下不同足尺结构和模型的环境疲劳/耐久性实验,通用性好,适用范围广。

Description

复杂环境下结构疲劳/耐久性实验***及方法 技术领域
本发明涉及疲劳及耐久性实验技术领域,具体涉及一种复杂环境下结构疲劳/耐久性实验***及方法。
背景技术
陆上交通、船舶与海洋工程、水利水电、港口、风力发电、航空、土木建筑、工程机械等领域的重大装备或重大工程结构,往往是在各种服役环境与荷载耦合作用下工作的,其服役环境具有多样性和时变性,其承受的外载往往是随时间和空间变化的变幅荷载甚至是随机荷载。对于这些重大装备及重大工程结构的抗疲劳/耐久性设计及安全评价,目前所依据的实验数据大都是来自材料(试件)或小构件的恒幅疲劳实验、以及数量极少的变幅荷载疲劳实验。除了飞机等有整机的疲劳验证实验外,其他民用领域的重大结构和装备的结构疲劳实验很难实现。
关于服役环境对结构疲劳寿命/耐久性的影响,目前为数极少的结构环境疲劳/耐久性实验,也都是采用传统的实验方法,即先进行环境预处理,然后在室温大气环境下实施疲劳实验的方法,而无法实现在各种环境与动载耦合作用下的结构疲劳/耐久性实验。也就是说,目前的结构疲劳实验条件(环境与荷载)显然与上述重大装备及重大工程结构的实际服役条件有着较大的差别,而采用材料或小构件实验所获得的疲劳实验数据为依据进行重大装备及重大工程结构的抗疲劳设计和安全评价,由于无法考虑材料性能的尺度效应,亦无法再现结构的复杂几何形状对材料性能的影响,其结果将会留下安全隐患或者采取极其保守的设计方法而增加成本和浪费资源。
为了比较经济、准确地获得上述重大装备及重大工程结构在实际服役环境与荷载耦合作用下的抗疲劳/耐久性能,首先需要开展模拟其服役环境与荷载耦合/共同作用下的足尺结构疲劳/耐久性加速实验。然而,开展模拟其服役环境与荷载耦合/共同作用下的结构疲劳/耐久性加速实验,面临着以下主要困难:
1)无法实现低温低湿(例如:5~20℃时≤40%R·H,)环境的模拟和控制;
2)只能在某一试验舱内实现单一环境与恒幅循环载荷的耦合/共同加载,无法实现多环境因素的任意组合及其转换;
3)无法实现≤-60℃低温环境的模拟和控制;
4)加载方式单调,一般只能进行恒幅的弯曲疲劳实验;
5)无法实现如桥梁、深海平台、港口、水坝、舰船、航空器等结构物所承受的随机载荷作用下的环境疲劳/耐久性实验;
6)无法实现在复杂环境下对试件表面形貌、疲劳裂纹萌生和扩展量的在线测量。
发明内容
本发明的目的是为了克服以上现有技术存在的不足,提供了一种复杂环境下结构疲劳/耐久性实验***。此复杂环境下结构疲劳/耐久性实验***可适合多环境下的环境疲劳/耐久性实验,便于实验数据的长期连续测试,且精确度高。
同时,本发明的另一发明目的为提供复杂环境下结构疲劳/耐久性实验方法。
本发明的目的通过以下的技术方案实现:本复杂环境下结构疲劳/耐久性实验***,包括环境模拟装置、加载装置、测试装置、地锚装置和控制终端,所述环境模拟装置、加载装置和测试装置均与控制终端连接,所述环境模拟装置、加载装置和测试装置均设置于地锚装置上;所述环境模拟装置包括至少一个试验舱,各个试验舱依次连接,且相邻2个试验舱之间设有活动隔门;每个试验舱设有独立的环境模拟机构和控制机构,所述环境模拟机构与控制机构连接,所述控制机构与控制终端连接。
优选的,所述环境模拟机构包括集成一体的加热单元、制冷单元和加湿除湿单元,所述制冷单元包括低压压缩机组、高压压缩机组、热交换器、冷凝器和蒸发器;所述低压压缩机组通过第一管道与热交换器的管程通道的入口连接,所述热交换器的管程通道的出口通过第二管道与蒸发器连接;所述第一管道连接有第三管道,此第三管道与蒸发器连接;所述高压压缩机组通过第四管道与热交换器的壳程通道的入口连接,所述热交换器的壳程通道的出口通过第五管道与高压压缩机组连接;所述蒸发器安装于试验舱,所述第一管道、第二管道、第三管道、第四管道和第五管道均设有阀门。
优选的,所述第一管道与第三管道的连接处与低压压缩机组之间的第一管道设有预冷器,所述第四管道设有冷凝器,此冷凝器位于高压压缩机组和热交换器之间。
优选的,所述第三管道与低压压缩机组之间连接有第六管道,此第六管道与第一管道之间连接有膨胀容箱。
优选的,所述加湿除湿单元包括除湿器、加湿喷嘴、蒸汽锅炉,所述除湿器和加湿喷嘴均安装于试验舱,所述蒸汽锅炉与加湿喷嘴连接。
优选的,所述加热单元包括加热器,此加热器安装于试验舱。
优选的,所述环境模拟机构还包括淋雨单元,所述淋雨单元包括储水箱、水泵、过滤器、压力罐和淋雨喷嘴,所述淋雨喷嘴通过喷淋管道及其移动式支架安装于试验舱,所述储水箱、 过滤器、水泵和压力罐依次连接,所述压力罐的出口与喷淋管道连接。
优选的,所述环境模拟机构还包括盐雾单元,所述盐雾单元包括盐水储备箱、盐水补给箱、喷雾塔、饱和发生器、第一油水分离器、储气罐、第二油水分离器、空压机和盐雾喷嘴,所述盐水储备箱的出水口与***连接,所述***通过饱和发生器与喷雾塔的入口连接,所述喷雾塔的出口通过盐雾管道与安装于试验舱的盐雾喷嘴连接,所述喷雾塔的回流口与盐水补给箱连接,所述盐水补给箱通过补水泵与盐雾储备箱连接,所述空压机、第二油水分离器、储气罐、第一油水分离器和饱和发生器依次连接。
优选的,所述环境模拟机构还包括碳化单元,所述碳化单元包括二氧化碳液态储罐、二氧化碳净化器和碳化喷嘴,所述二氧化碳液态储罐与二氧化碳净化器连接,所述碳化喷嘴通过碳化管道安装于试验舱,所述二氧化碳净化器通过碳化管道与碳化喷嘴连接。
优选的,所述控制机构包括控制柜、控制器、交换机、温度传感器、湿度传感器和触摸屏,所述控制器和交换机均安装于控制柜内,所述温度传感器和湿度传感器安装于试验舱内,所述触摸屏安装于试验舱的外壁,且所述温度传感器、湿度传感器、触摸屏和交换机均与控制器连接,所述控制器与控制终端连接。
优选的,所述试验舱的内腔被分隔形成第一工作室和第二工作室,所述第一工作室和第二工作室的顶端相通,且所述第一工作室的顶部安装有循环风机。
优选的,所述加载装置包括第一载荷加载装置和/或第二载荷加载装置,所述第一载荷加载装置中的第一作动器通过移动式刚性反力架安装于相应的试验舱上方,且与第一作动器连接的垂直传力杆自试验舱的上方穿入试验舱的工作室,且垂直传力杆与试验舱中的试件连接;
所述第二载荷加载装置的第二作动器通过反力墙安装于相应的试验舱外的一侧,且第二作动器连接的水平传力杆自试验舱的一侧穿入试验舱的工作室,且水平传力杆与试验舱中的试件连接。
优选的,所述第一载荷加载装置包括第一工控机、第一乘法D/A转换器、第一A/D转换器、第一直流放大器、第一伺服放大器、第一伺服阀、垂直传力杆、第一位移/应变传感器、第一作动器、第一电液伺服机构和第一油源;
所述第一作动器安装于移动式刚性反力架,所述垂直传力杆的上端与第一作动器连接,所述垂直传力杆的下端通过轴套穿入试验舱的工作室;所述第一作动器和第一油源均与第一电液伺服机构连接,所述第一电液伺服机构与第一工控机连接,且此第一电液伺服机构通过第一伺服阀与第一伺服放大器连接,所述第一伺服放大器通过第一乘法D/A转换器与第一工控机连接,所述第一位移/应变传感器安装于试验舱的试件,所述第一作动器设有第一载荷传感器,所述第一位移/应变传感器和第一载荷传感器均通过第一直流放大器与第一A/D转换器 连接的,所述第一A/D转换器的2个输出端口分别与第一伺服放大器与第一工控机连接,所述第一工控机与控制终端连接。
优选的,所述第一工控机包括第一随机载荷模拟模块和第一控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第一乘法D/A转换器转换成控制信号,再经第一伺服放大电路和第一伺服阀传送至第一电液伺服机构,以使第一作动器和第一油源按照控制信号的指令工作;所述第一控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
优选的,所述第二载荷加载装置包括第二工控机、第二乘法D/A转换器、第二A/D转换器、第二直流放大器、第二伺服放大器、第二伺服阀、水平传动杆、第二位移/应变传感器、第二作动器、第二电液伺服机构和第二油源;
所述第二作动器安装于反力墙,所述水平传动杆的一端与第二作动器连接,所述水平传动杆的另一端通过轴套穿入试验舱的工作室;所述第二作动器和第二油源均与第二电液伺服机构连接,所述第二电液伺服机构与第二工控机连接,且此第二电液伺服机构通过第二伺服阀与第二伺服放大器连接,所述第二伺服放大器通过第二乘法D/A转换器与第二工控机连接,所述第二位移/应变传感器安装于试验舱的试件,所述第二作动器设有第二载荷传感器,所述第二位移/应变传感器和第二载荷传感器均通过第二直流放大器与第二A/D转换器连接的,所述第二A/D转换器的2个输出端口分别与第二伺服放大器与第二工控机连接,所述第二工控机与控制终端连接。
优选的,所述第二工控机包括第二随机载荷模拟模块和第二控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第二乘法D/A转换器转换成控制信号,再经第二伺服放大电路和第二伺服阀传送至第二电液伺服机构,以使第二作动器和第二油源按照控制信号的指令工作;所述第二控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
优选的,所述测试装置包括非接触式光测机构和传感测试机构;
所述非接触式光测机构包括光测仪器和光测支架,所述光测仪器通过光测支架安装于试验舱外,且光测仪器的测量端与试验舱的观察窗相对设置;
所述传感测试机构包括光纤光栅传感器、应变计、静动态应变仪、光开关、光纤光栅解调仪、***和第三工控机,所述应变计和光纤光栅传感器均安装在固定于工装夹具的试件,所述应变计与静动态应变仪连接,所述光纤光栅传感器、光开关、光纤光栅解调仪、***和第三工控机依次连接。
优选的,所述地锚装置包括刚性钢筋混凝土地板和导轨;所述刚性钢筋混凝土地板设有 多排锚孔,所述试验舱和移动式刚性反力架通过相应的锚固机构与相应锚孔连接;所述导轨安装于刚性钢筋混凝土地板和试验舱的底板上,所述导轨设有用于安装试件或工装夹具的承台。
一种基于上述的复杂环境下结构疲劳/耐久性实验***的实验方法,包括以下步骤:
首先按照实验方案和试件尺寸,模拟和编制荷载谱和环境谱,确定使用试验舱的数量及相应的加载点及作动器;
再移动加载装置的移动式刚性反力架至加载点所在处并予以固定,安装作动器及传力杆,然后在试验舱内的承台上及传力杆的端部安装相应的工装夹具,并将试件运送至适当的位置且固定在承台上的工装夹具;
关闭试验舱,启动环境模拟装置,对试件进行环境预处理直至整个试验舱及试件内部的环境指标基本一致后,再同时启动荷载模拟及加载装置和测试装置,对试件实施环境与荷载耦合作用下的疲劳/耐久性实验,并对试件的受力和变形、裂纹萌生和扩展量进行实时的同步跟踪测量,由各个测控装置分别记录实验条件、实验数据及图像。
本发明相对于现有技术具有如下的优点:
1、本发明的复杂环境下结构疲劳/耐久性实验***主要由环境模拟装置、加载装置、测试装置、地锚装置和控制终端构成,其中环境模拟装置采用多个试验舱,各个试验舱之间设置活动隔门,各个试验舱都设置独立的环境模拟机构和控制机构,从而可实现多环境因素的任意组合,同时也可实现单一环境与恒幅循环载荷的耦合,以满足实验的需求。
2、本发明的复杂环境下结构疲劳/耐久性实验***中的环境模拟装置采用多个相对独立的试验舱,各个试验舱之间既可独立使用,也可共同工作,同时再与加载装置、测试装置和控制终端共同使用,以实现在复杂环境下对试件表面形貌、疲劳裂纹萌生和扩展量的在线测量;同时也能够同时对不同试件实施相同环境与不同荷载谱耦合/共同作用下的环境疲劳/耐久性实验,以便于对在相同及不同荷载谱与不同服役环境的交互作用下试件的长期力学性能进行分析。
3、本发明的复杂环境下结构疲劳/耐久性实验***中的环境模拟装置主要由环境模拟机构和控制机构构成,且将加热单元、制冷单元和加湿除湿单元集成一体,制冷单元中低压压缩机组、高压压缩机组和热交换器等一起共同作用,从而可实现低温低湿(如5~20℃时,小于或等于40%R·H)环境模拟,还可实现温度小于或等于-60℃低温环境的模拟。
4、本发明的复杂环境下结构疲劳/耐久性实验***中各个试验舱既可单独使用,也可共同使用,能够实现多种时变、极端环境与静载、恒幅循环载荷、变幅(随机)载荷耦合/共同作用下不同足尺结构和模型的环境疲劳/耐久性实验,通用性好,适用范围广,可为交通、土 木建筑、船舶与海洋工程、能源、机械、水利、航空等领域的重大结构和装备实现仿真服役环境与载荷耦合/共同作用下的结构环境疲劳/耐久性实验、疲劳裂纹扩展实验、环境断裂实验以及其他长期力学性能实验,也能实现如桥梁、深海平台、港口、水坝、舰船、航空器等结构物所承受的随机载荷作用下的环境疲劳/耐久性实验。
5、本发明的复杂环境下结构疲劳/耐久性实验***,具有简明、合理的配置和布局,主要部件和元件具有优异的刚度、强度、稳定性、可靠性和耐久性,并具有安装及维护方便、成本适中等特点。
6、本发明的复杂环境下结构疲劳/耐久性实验***中加载装置可采用一组或两组载荷加载装置(即第一载荷加载装置和第二载荷加载装置)以实现单向和双向加载,可不局限于恒幅的弯曲疲劳实验,还可精确实施和控制各种载荷(如静载、常幅/恒幅疲劳、变幅/随机疲劳和脉动/振动疲劳等)及加载(拉-拉、拉-压、弯曲、扭转和弯-扭等)形式,从而可以满足各种实验需求。
7、本发明的复杂环境下结构疲劳/耐久性实验***及实验方法能够在长期实验中精确实施和控制各种单向和双向的载荷(静载、常幅/恒幅疲劳、变幅/随机疲劳、脉动/振动疲劳)及加载形式(拉-拉、拉-压、弯曲、扭转、弯-扭),适合多环境(恒温恒湿、干湿循环、交变湿热循环、盐雾、时变温度-盐雾循环、冻融、淋雨、碳化环境)下的环境疲劳/耐久性实验,便于实验数据的长期连续测试,便于数据采集。
8、本发明的复杂环境下结构疲劳/耐久性实验***及实验方法,能够适用于多种复杂环境与荷载耦合作用下不同尺度的结构环境疲劳/耐久性实验,能够在长期实验中精确地模拟、施加和控制各种环境及荷载,能够完整、实时、高精度地捕捉到试件的变形和受力随环境和荷载的变化而变化的数据,且能同时对多个不同层级尺寸的试件实施相同环境和不同环境与荷载耦合/共同作用下的环境疲劳/耐久性实验。
9、本发明的复杂环境下结构疲劳/耐久性实验方法,能够实现低温低湿(例如:5~20℃时≤40%R·H,)环境、以及≤-60℃低温环境的模拟和控制;具有多环境因素的任意组合及其转换技术;能够实现在复杂环境下对试件表面形貌、疲劳裂纹萌生和扩展量的在线测量。
附图说明
图1是本发明的复杂环境下结构疲劳/耐久性实验***的第一结构示意图。
图2是本发明的复杂环境下结构疲劳/耐久性实验***的第二结构示意图。
图3是本发明的环境模拟装置的结构示意图。
图4是本发明的试验舱的结构示意图。
图5是本发明的制冷单元的结构示意图。
图6是本发明的加热单元、加湿除湿单元等的结构示意图。
图7是本发明的控制机构的结构示意图。
图8是本发明的淋雨单元的结构示意图。
图9是本发明的盐雾单元的结构示意图。
图10是本发明的碳化单元的结构示意图。
图11是本发明的加载装置的结构示意图。
图12是本发明的测试装置的结构示意图。
图13是本发明的实施例的试件示意图。
图14是本发明的温度和相对湿度模拟曲线图。
图15是本发明的随机载荷模拟曲线图。
其中,1为环境模拟装置,2为加载装置,3测试装置,4为地锚装置,5为试验舱,6为活动隔门,7为加热单元,8为制冷单元,9为加湿除湿单元,10为低压压缩机组,11为高压压缩机组,12为热交换器,13为冷凝器,14为蒸发器,15为第一管道,16为第二管道,17为第三管道,18为第四管道,19为第五管道,20为阀门,21为预冷器,22为第六管道,23为膨胀容箱,24为除湿器,25为加湿喷嘴,26为蒸汽锅炉,27为加热器,28为淋雨单元,29为储水箱,30为水泵,31为过滤器,32为压力罐,33为淋雨喷嘴,34为喷淋管道,35为盐雾单元,36为盐雾储备箱,37为盐水补给箱,38为喷雾塔,39为饱和发生器,40为第一油水分离器,41为储气罐,42为第二油水分离器,43为空压机,44为盐雾喷嘴,45为盐雾管道,46为补水泵,47为碳化单元,48为二氧化碳液态储罐,49为二氧化碳净化器,50为碳化喷嘴,51为碳化管道,52为控制柜,53为控制器,54为交换机,55为温度传感器,56为湿度传感器,57为触摸屏,58为第一工作室,59为第二工作室,60为循环风机,61为第一载荷加载装置,62为第二载荷加载装置,63为移动式刚性反力架,64为反力墙,65为第一工控机,66为第一乘法D/A转换器,67为第一直流放大器,68为第一伺服放大器,69为第一伺服阀,70为第一垂直传力杆,71为第一位移/应该传感器,72为第一作动器,73为第一油源,74为非接触式光测机构,75为传感测试机构,76为光测仪器,77为光测支架,78为观察窗,79为光纤光栅传感器,80为应变计,81为静动态应变仪,82为光开光,83为光纤光栅解调仪,84为***,85为第三工控机,86为刚性钢筋混凝土地板,87为导轨,88为锚孔,89为试件,90为***,91为阀门组件。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1至图3所示的复杂环境下结构疲劳/耐久性实验***,包括环境模拟装置、加载装 置、测试装置、地锚装置和控制终端,所述环境模拟装置、加载装置和测试装置均与控制终端连接,所述环境模拟装置、加载装置和测试装置均设置于地锚装置上;所述环境模拟装置包括至少一个试验舱,各个试验舱依次连接,且相邻2个试验舱之间设有活动隔门;每个试验舱设有独立的环境模拟机构和控制机构,所述环境模拟机构与控制机构连接,所述控制机构与控制终端连接。
试验舱的数量据根据实验的需求而决定。各个试验舱的大小尺寸可采用相同也可以不同。各个试验舱之间依次连接一起,且各个试验舱之间通过活动隔门进行相通或关闭,即当活动隔门下降时相邻两个试验舱之间处于关闭状态,此时各个试验舱独自工作;而当活动隔门升起时,相邻两个试验舱处于相通状态,则相通的试验舱可共同进行工作。这可满足各种实验的需求。如图3所示,本实施例中,试验舱采用5个。各个试验舱均设置独立的环境模拟机构和控制机构,各个试验舱的控制机构对相对应的环境模拟机构进行控制,以使试验舱内模拟出试验需求的环境,如低温低湿环境、恒温恒湿及交变湿热循环、盐雾、时变温度-盐雾循环、冻融、淋雨和碳化等环境,而各个控制机构将检测到的数据汇总到控制终端。同时,处于工作状态的试验舱的观察窗相对应安放有测试装置,各个测试装置将在线实时检测试件的参数,如试件的表面形貌、疲劳裂纹萌生和扩展量等。而加载装置中的传力杆(垂直传力杆或水平传力杆)穿入相应的试验舱,以对试件进行施加载荷,则可实现环境与载荷耦合下的疲劳/耐久性实验。试验舱的舱壁采用发泡库板式结构(外侧为彩钢板,内侧为不锈钢板,中间为聚氨酯发泡),以达到保温防腐的效果,同时也避免试验舱内的环境受外界的影响。由于各个试验舱之间设有活动隔门,则这可同时对多个不同层级尺寸的试件实施相同环境和不同环境与荷载耦合/共同作用下的环境疲劳/耐久性实验,是利用各个试验舱和加载装置能够独立工作的功能来实现。
所述环境模拟机构包括集成一体的加热单元、制冷单元和加湿除湿单元,如图5和图6所示,所述制冷单元包括低压压缩机组、高压压缩机组、热交换器、冷凝器和蒸发器;所述低压压缩机组通过第一管道与热交换器的管程通道的入口连接,所述热交换器的管程通道的出口通过第二管道与蒸发器连接;所述第一管道连接有第三管道,此第三管道与蒸发器连接;所述高压压缩机组通过第四管道与热交换器的壳程通道的入口连接,所述热交换器的壳程通道的出口通过第五管道与高压压缩机组连接;所述蒸发器安装于试验舱,所述第一管道、第二管道、第三管道、第四管道和第五管道均设有阀门。
加热单元、制冷单元和加湿除湿单元集成一体,则各个单元之间可采用共用的管道,方便安装维护,如图4所示。而制冷单元中的低压压缩机组和高压压缩机组采用双组半封闭压缩机组成机械复叠式制冷机组。即低压压缩机组和高压压缩机组均与热交换器连接。其中高 压压缩机组、第四管道、热交换器的壳程通道和第五管道形成高压制冷循环,而低压压缩机组制得冷量在通过热交换器的管道通道时,高压压缩机组制得的冷量进入热交换器的壳程通道,则低压压缩机构制得的冷量通过热交换器的管道通道时会进一步吸收壳程通道中的冷量,以获得更低的温度,接着管程通道中的冷量吸收完壳程通道的冷量后进入试验舱的蒸发器中,以对试验舱进行降温,从而使试验舱的温度降到小于或等于-60℃,以满足实验的低温环境要求。而当需要低温低湿环境时,制冷单元和加湿除湿单元共同工作,即低压压缩机构制得的冷量通过第一管道和第三管道直接送入到试验舱的蒸发器中或通过热交换器后送入试验舱的蒸发器中,以满足实验要求的低温效果,以此同时,加湿除湿单元中的蒸汽锅炉工作,以将蒸汽形态的水分通过加湿喷嘴送入试验舱,以提高试验舱的湿度。而对于低压压缩机组制得的冷量是直接通过第一管道和第三管道送入蒸发器,还是先通过热交换器后再送往蒸发器,可通过阀门进行控制。为进一步提高制冷单元中高压压缩机构和低压压缩机组之间的冷量传输效率,在第四管道设置冷凝器,此冷凝器位于高压压缩机组与热交换器之间。
所述第一管道与第三管道的连接处与低压压缩机组之间的第一管道设有预冷器,所述第四管道设有冷凝器,此冷凝器位于高压压缩机组和热交换器之间。采用预冷器对低压压缩机组制得的冷量进一步降温,以确保满足实验需求。
所述第三管道与低压压缩机组之间连接有第六管道,此第六管道与第一管道之间连接有膨胀容箱。设置膨胀容箱可对低压压缩机组起到保护作用,避免低压压缩机组中的压力过大影响制冷。
如图6所示,所述加湿除湿单元包括除湿器、加湿喷嘴、蒸汽锅炉,所述除湿器和加湿喷嘴均安装于试验舱,所述蒸汽锅炉与加湿喷嘴连接。除湿器可直接自市场购买,以减少成本。除湿器直接安装于试验舱,以调整试验舱内环境的中的湿度,确保试验舱内的环境符合实验要求。而需要提高试验舱内的湿度时,蒸汽锅炉产生的蒸汽自加湿喷嘴送入试验舱,提高试验舱内环境的温度。此结构简单,安装方便。
所述加热单元包括加热器,此加热器安装于试验舱,如图4所示。加热单元安装于试验舱内,利用控制机构控制电加热器的启动或关闭,从而调整试验舱内的温度。
如图8所示,所述环境模拟机构还包括淋雨单元,所述淋雨单元包括储水箱、水泵、过滤器、压力罐和淋雨喷嘴,所述淋雨喷嘴通过喷淋管道通过另设的移动式支架安装于试验舱,所述储水箱、过滤器、水泵和压力罐依次连接,所述压力罐的出口与喷淋管道连接。具体的,喷淋管道采用悬挂方式安装于试验舱内的顶部,而喷淋管道通过连接管与压力罐的出口连接,喷淋管道与连接管之间可采用快速接口连接。此结构方便喷淋管道的拆装,即需要使用淋雨环境时,可将喷淋管道快速安装于试验舱,而不需要使用淋雨环境时,可拆卸喷淋管道,以 方便试验舱创造各种环境条件。在工作过程中,水泵自储水箱抽取的水通过过滤器和压力罐后,再通过淋雨喷管送至试验舱内,这可方便调整雨水的降雨量,以确保试验的有效进行。
如图9所示,所述环境模拟机构还包括盐雾单元,所述盐雾单元包括盐水储备箱、盐水补给箱、喷雾塔、饱和发生器、第一油水分离器、储气罐、第二油水分离器、空压机和盐雾喷嘴,所述盐水储备箱的出水口与***连接,所述***通过饱和发生器与喷雾塔的入口连接,所述喷雾塔的出口通过盐雾管道与安装于试验舱的盐雾喷嘴连接,所述喷雾塔的回流口与盐水补给箱连接,所述盐水补给箱通过补水泵与盐雾储备箱连接,所述空压机、第二油水分离器、储气罐、第一油水分离器和饱和发生器依次连接。工作中,盐水储备箱中的盐水进入饱和发生器调整浓度后,再通过喷雾塔将盐雾输送到试验舱内,以使试验舱内的环境达到试验要求。而饱和发生器、喷雾塔、盐水被给箱、盐雾储备箱形成循环环路,这提高盐水的利用率,避免浪费。
如图10所示,所述环境模拟机构还包括碳化单元,所述碳化单元包括二氧化碳液态储罐、二氧化碳净化器和碳化喷嘴,所述二氧化碳液态储罐与二氧化碳净化器连接,所述碳化喷嘴通过碳化管道安装于试验舱,所述二氧化碳净化器通过碳化管道与碳化喷嘴连接。为更精确控制输入试验舱的碳含量,以碳化管道设有阀门组件。而二氧化碳净化器可排除杂质,可进一步提高输入的清度,避免影响实验结果。
如图7所示,所述控制机构包括控制柜、控制器、交换机、温度传感器、湿度传感器和触摸屏,所述控制器和交换机均安装于控制柜内,所述温度传感器和湿度传感器安装于试验舱内,所述触摸屏安装于试验舱的外壁,且所述温度传感器、湿度传感器、触摸屏和交换机均与控制器连接,所述控制器与控制终端连接。采用温度传感器和湿度传感器等实时检测试验舱内的参数,以将检测数据通过交换机输送给控制器,则控制器可发出更精确的控制指令控制环境模拟机构工作,以确保实验有效进行。其中,触摸屏为COM1/2,控制器WP1M_20R2PT(可编程逻辑控制器,PLC),交换机为CISCO WS-C2960X-48TS-L。
如图4和图6所示,所述试验舱的内腔被分隔形成第一工作室和第二工作室,所述第一工作室和第二工作室的顶端相通,且所述第一工作室的顶部安装有循环风机。具体的,第一工作室用于安放加热器、除湿器和蒸发器等设备,而第二工作室用于放置承台、工装夹具和试件,在第二工作室的侧壁设有观察窗,加载装置中的传力杆(垂直传力杆和水平动力杆)穿入第二工作室内,以对试件进行加载。同时第一工作室和第二工作室相通,且在第一工作室设置风道,则加热器和蒸发器产生的热量及冷量可通过循环风机输送到第二工作室,使第二工作室中的室内环境达到试验要求,从而使试件在符合要求的环境中进行环境疲劳/耐久性实验。
如图1、图2及图11所示,所述加载装置包括第一载荷加载装置和/或第二载荷加载装置,所述第一载荷加载装置中的第一作动器通过移动式刚性反力架安装于相应的试验舱上方,且与第一作动器连接的垂直传力杆自试验舱的上方穿入试验舱的工作室,且垂直传力杆与工作室中的夹具连接或与试件连接;所述第二载荷加载装置的第二作动器通过反力墙安装于相应的试验舱的一侧,且第二作动器连接的水平传力杆自试验舱的一侧穿入试验舱的工作室,且水平传力杆与工作室中的夹具连接或与试件连接。第一载荷加载装置和第二载荷加载装置采用相同的结构,只是两者的安装位置不同。其中,第一随机加载装置通过移动式刚性反力架安装于试件的上方,以对试件施加垂直方向的载荷,而第二随机加载装置通过反力墙对试件施加水平方向的荷载。在工作中,第一载荷加载装置和第二载荷加载装置均可分别单独使用,也可以同时一起使用,从而满足不同实验的需求。
所述第一载荷加载装置包括第一工控机、第一乘法D/A转换器、第一A/D转换器、第一直流放大器、第一伺服放大器、第一伺服阀、垂直传力杆、第一位移/应变传感器、第一作动器、第一电液伺服机构和第一油源,所述第一作动器安装于移动式刚性反力架,所述垂直传力杆的上端与第一作动器连接,所述垂直传力杆的下端通过轴套穿入试验舱的第二工作室;所述第一作动器和第一油源均与第一电液伺服机构连接,所述第一电液伺服机构与第一工控机连接,且此第一电液伺服机构通过第一伺服阀与第一伺服放大器连接,所述第一伺服放大器通过第一乘法D/A转换器与第一工控机连接,所述第一位移/应变传感器安装于试验舱的试件,所述第一作动器设有第一载荷传感器,所述第一位移/应变传感器和第一载荷传感器均通过第一直流放大器与第一A/D转换器连接的,所述第一A/D转换器的2个输出端口分别与第一伺服放大器与第一工控机连接,所述第一工控机与控制终端连接。具体的,第一作动器用于对试件施加载荷,而第一油源作为第一作动器的动力源。编制随机载荷的模拟程序输入到第一工控机,由第一工控机生成随机载荷的模拟信息,并通过第一乘法D/A(数字/模拟信号)转换器转换成控制信号,再经第一伺服放大器和第一伺服阀传送至电液伺服机构,以使第一作动器和第一油源按照信号指令工作。第一作动器对试件施加载荷大小通过第一载荷传感器测定,并经直流第一直流放大器反馈给第一伺服放大器,此第一伺服放大器将控制信号与反馈信号进行比较和修正,以保证施加载荷的精度。
所述第一工控机包括第一随机载荷模拟模块和第一控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第一乘法D/A转换器转换成控制信号,再经第一伺服放大电路和第一伺服阀传送至第一电液伺服机构,以使第一作动器和第一油源按照控制信号的指令工作;所述第一控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
其中第一随机载荷模拟模块的工作过程如下所述:1)根据统计数据的概率特性(概率分布函数、自相关函数或功率谱密度函数)判断该随机过程是属于窄带、中带、还是宽带随机过程;2)对于窄带随机过程,因为其属于高斯型随机过程,则可利用其概率分布函数以及功率谱密度函数或自相关函数,采用三角级数谐波合成法的数值模拟方法,即可获得该随机过程的模拟谱——随机载荷模拟谱;3)对中带、宽带随机过程,由于它们都属于非高斯型随机过程,很难直接进行数值模拟,故采用“概率分布转换”法,即先将非高斯型随机过程通过“概率分布相等”的原则、经过几次对功率谱密度函数的修正,可转换为高斯型随机过程,再采用三角级数谐波合成法进行模拟,即可获得属于中带或宽带随机过程的随机载荷谱。其中“概率分布转换”法的具体操作可详见本申请的在先申请(申请号:202010227394.X,发明申请名称:二维车辆超限荷载谱的模拟、分级和编制方法)。
同时,第一工控机内还具有图表显示模块、输入输出模块和蜂鸣报警模块。其中图表显示模块用于显示各传感器(第一位移/应变传感器及第一载荷传感器)的检测数据、以及载荷的模拟谱和反馈数据,以方便实验操作员观察、修正和编制指令;而输入输出模块用于编制控制指令、输入荷载和环境模拟的初始数据、输出各种实验条件和检测数据等;蜂鸣报警模块用于报警,以确保实验及装置的安全性。
所述第二载荷加载装置包括第二工控机、第二乘法D/A转换器、第二A/D转换器、第二直流放大器、第二伺服放大器、第二伺服阀、水平传动杆、第二位移/应变传感器、第二作动器、第二电液伺服机构和第二油源,所述第二作动器安装于反力墙,所述水平传动杆的一端与第二作动器连接,所述水平传动杆的另一端通过轴套穿入试验舱的工作室;所述第二作动器和第二油源均与第二电液伺服机构连接,所述第二电液伺服机构与第二工控机连接,且此第二电液伺服机构通过第二伺服阀与第二伺服放大器连接,所述第二伺服放大器通过第二乘法D/A转换器与第二工控机连接,所述第二位移/应变传感器安装于试验舱的试件,所述第二作动器设有第二载荷传感器,所述第二位移/应变传感器和第二载荷传感器均通过第二直流放大器与第二A/D转换器连接的,所述第二A/D转换器的2个输出端口分别与第二伺服放大器与第二工控机连接,所述第二工控机与控制终端连接。所述第二工控机包括第二随机载荷模拟模块和第二控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第二乘法D/A转换器转换成控制信号,再经第二伺服放大电路和第二伺服阀传送至第二电液伺服机构,以使第二作动器和第二油源按照控制信号的指令工作;所述第二控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
第二载荷加载装置的结构基本和第一载荷加载装置相同,只是两者从不同方向对试件施加载荷,并对试件进行测试。其中第一工控机和第二工控机均采用Servotest控制器,第一油 源和第二油源均为Servotest(1000LPM@28MPa,而第一作动器和第二作动器均为Servotest电液伺服单/双出杆作动器(400t、200t、100t、50t,共有9个作动器,总吨位1200t),第一电液伺服机构和第二电液伺服机构均为Servotest电液伺服机构。
如图12所示,所述测试装置包括非接触式光测机构和传感测试机构;所述非接触式光测机构包括光测仪器和光测支架,所述光测仪器通过光测支架安装于第二工作室外,且光测仪器的测量端与第二工作室的观察窗相对设置;所述传感测试机构包括光纤光栅传感器、应变计、静动态应变仪、光开关、光纤光栅解调仪、***和第三工控机,所述应变计和光纤光栅传感器均安装在固定于工装夹具的试件,所述应变计与静动态应变仪连接,所述光纤光栅传感器、光开关、光纤光栅解调仪、***和第三工控机依次连接。
试验舱的观察窗设计成中空结构,此中空结构具有加热除湿干燥等功能,从而确保非接触式光测机构的光测仪器(即本实施例的DIC)在浓雾等恶劣环境中也能够对第二工作室内的试件的表面变形、裂纹形貌及其萌生和扩展量等进行实时高精度的跟踪测量;而传感测试机构中的应变计将检测出的试件应变信号传递至静动态应变仪;而由光纤光栅传感器检测出的试件应变信号依次通过光开关、光纤光栅解调仪、***输入至第三工控机,所述光纤光栅解调仪用于进行波长与电压相互转换,解调光波长信息,解调温度、应变参量信息;所述第三工控机用于将接收到光纤光栅传感器传感信号进行噪声处理、小波变换、层次分解、应变及应力计算,输出处理结果;采用光纤光栅传感器既可对试件表面的变形进行测试,也可通过埋入式、分布式的布设而实现试件内部应变的分布式连续测量。本实施例中的光测仪器为DIC PMLAB TM。应变计为电阻应变片,光纤光栅传感器为PI-FBG-E3000A,应变仪为Wavebook516E,光开关为NS系列1×2、光纤光栅解调仪PI01-16、***为UT-27、工控机采用EPC-7100-JH110MC型产品。
所述地锚装置包括刚性钢筋混凝土地板和导轨;所述刚性钢筋混凝土地板设有多排锚孔,所述试验舱和移动式刚性反力架通过相应的锚固机构与相应锚孔连接;所述导轨通过相应的锚孔安装于刚性钢筋混凝土地板和试验舱的底板上,所述导轨设有用于放置试件的承台。导轨用于移动和承载工装夹具和试件的承台,即承台可沿导轨在试验舱内移动,从而将试件推送到相应的试验舱,以确保试验的有效进行。刚性钢筋混凝土地板具有良好的支承性能。在刚性钢筋混凝土地板设置锚孔,这可调整试验舱和移动式刚性反力架的安装位置,这方便调整载荷加载装置的加载点,操作方便,并确保试验结果的精确性。锚固机构主要采用螺栓和螺母构成,在保证试验舱和移动式刚性反力架的稳定性情况下,方便安装。
一种基于上述的复杂环境下结构疲劳/耐久性实验***的实验方法,包括以下步骤:
首先按照实验方案和试件尺寸,模拟和编制荷载谱和环境谱,确定使用试验舱的数量及 相应的加载点及作动器;即根据实验方案和试件尺寸确定采用试验舱的数量,是采用2个,还是3个、5个。再移动加载装置的刚性反力架至加载点所在处并予以固定,然后将作动器(第一作动器或第二作动器)和传力杆安装到刚性反力架或反力墙相对应的位置,以保证对试件施加载荷的加载点的精确性。
再通过导轨将承台移送到试验舱内与加载点相对应的位置,并在承台上安装相应的工装夹具,然后将试件运送至适当的位置并安装于工装夹具;工装夹具可采用现有的夹具或专制夹具,以确保试件放置在承台上的稳定性和加载点的准确性,从而保证实验可有效进行。
再将预先编制好的载荷谱和环境谱程序输入到相应的工控机,生成数字信号后输送到控制终端并由控制终端发出指令至电液伺服***,以确保试验舱形成精确的实验环境,也确保加载装置产生精准的载荷,以保证实验结果的有效性和准确性。
关闭试验舱,启动环境模拟装置,对试件进行环境预处理直至整个试验舱及试件内部的环境指标基本一致后,同时启动荷载模拟及加载装置和测试装置,对试件实施环境与荷载耦合作用下的疲劳/耐久性实验,并对试件的受力和变形、裂纹萌生和扩展量进行实时的同步跟踪测量,由各个测控装置分别记录实验条件、实验数据及图像。
进行环境疲劳/耐久性实验时,由于各个试验舱之间设有活动隔门,则这可同时对多个不同层级尺寸的试件实施相同环境和不同环境与荷载耦合/共同作用下的环境疲劳/耐久性实验,是利用各个试验舱和加载装置能够独立工作的功能来实现。
其中环境指标包括的温度、相对湿度、盐度和CO 2浓度等。同时再启动环境模拟装置和加载装置,以对试件实施环境和荷载耦合作用下的疲劳/耐久性实验;而加载装置和测试装置对试件的受力和变形等进行实时的同步跟踪测量。同时各个测试装置还分别记录环境、荷载和试件变形等实验件条、实施数据及图像。
具体的,试件为构件、结构模型、足尺结构,试件的长度为1~32米,宽度为0.1~4米,高度为0.2~9米。
实验环境为恒温恒湿、干湿循环、交变湿热循环、盐雾、时变温度-盐雾循环、冻融、淋雨、碳化环境,其温度范围为-70~100℃,相对湿度范围为20~98%H·R,交变湿热循环范围为(5℃:40~98%H·R;20℃:31.4~98%H·R;40~85℃:20~98%H·R),盐雾沉降量为0.3~5ml/80cm 2·h、雾滴直径为1-5μm、喷嘴压力0.02~0.30MPa,淋雨降雨量:0~20mm/h、周期为1~2000次、压力为50~300kPa,CO 2浓度:0~25%,所有环境都连续可调;温度均匀度≤2℃,温度波动度≤1℃,相对湿度均匀度≤2%R·H,相对湿度波动度≤2%R·H,CO 2浓度波动度≤±1%;CO 2均匀度≤±1%;CO 2浓度偏差:±1%。
载荷类型为静载、常幅(恒幅)疲劳、变幅/随机疲劳、脉动/振动疲劳,疲劳载荷形式为 拉-拉疲劳、拉-压疲劳、弯曲疲劳、扭转疲劳、弯-扭疲劳,载荷为单向和双向载荷,单点载荷大小为10~4000kN,最大组合荷载为12000kN,加载频率为0~20Hz。
则上述试件可进行的实验类型为材料、构件和结构的环境静载实验、环境疲劳实验、耐久性实验、环境疲劳裂纹萌生及扩展实验、环境断裂/破坏实验。
如在交变湿热环境与随机载荷耦合下针对波形钢腹板RC组合箱梁进行弯-扭疲劳/耐久性实验。如图13所示,波形钢腹板RC组合箱梁作为试件被夹持,此波形钢腹板RC组合箱梁的外形尺寸为3530×360×460mm,钢腹板厚度为4mm,RC板厚度为65mm。波形钢腹板RC组合箱梁通过工装夹具固定于承台上,构成两端固支的约束条件。在波形钢腹板RC组合箱梁跨中的加载杆端部施加偏心载荷,以产生弯矩和扭矩。
由上述的实验方案及波形钢腹板RC组合箱梁的尺寸,同时根据实验方案编制好如图14所示曲线所对应的环境谱及如图15所示曲线所对应的荷载谱;并确定选用本发明中前两个试验舱,即打开此两个试验舱之间的活动隔门,以使两个试验舱合并成一个,根据在波形钢腹板RC组合箱梁的加载点确定好使用第一作动器;
在波形钢腹板RC组合箱梁的关键截面布设应变计,此应变计与置于试验舱外的静动态应变仪连接,设定其采集频率为100Hz;再在波形钢腹板RC组合箱梁的腹板跨中及端部表面制作散斑,以作为DIC(非接触式)测量使用。
通过移动式刚性反力架至加载点所在处并予以固定,选择500KN的作动器,并安装在移动式刚性反力架,并安装好垂直传力杆和相应的加载头;
将图14所示时变湿热环境曲线相对应的环境谱输入到控制机构的控制器及将图15所示对应的随机载荷谱图输入到加载装置的第一工控机,并设定随机载荷的平均频率为1Hz;
在两个试验舱的观察窗外各架设一台DIC,并分别对准波形钢腹板RC组合箱梁的跨中和端部涂有散斑的区域,设定其采集频率为每秒50帧;
启动环境模拟装置,先对波形钢腹板RC组合箱梁进行环境预处理,使两个试验舱内的湿热环境稳定后,再按照环境谱重新启动环境模拟装置,同时加载装置和测试装置同步启动国,对波形钢腹板RC组合箱梁实施时变湿热环境与随机载荷耦合作用下的弯-扭疲劳/耐久性实验,并采集和记录最大荷载、最小荷载、位移、应变、DIC图像等数据。
上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。

Claims (21)

  1. 复杂环境下结构疲劳/耐久性实验***,其特征在于:包括环境模拟装置、加载装置、测试装置、地锚装置和控制终端,所述环境模拟装置、加载装置和测试装置均与控制终端连接,所述环境模拟装置、加载装置和测试装置均设置于地锚装置上;所述环境模拟装置包括至少一个试验舱,各个试验舱依次连接,且相邻2个试验舱之间设有活动隔门;每个试验舱设有独立的环境模拟机构和控制机构,所述环境模拟机构与控制机构连接,所述控制机构与控制终端连接。
  2. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述环境模拟机构包括集成一体的加热单元、制冷单元和加湿除湿单元,所述制冷单元包括低压压缩机组、高压压缩机组、热交换器和蒸发器;所述低压压缩机组通过第一管道与热交换器的管程通道的入口连接,所述热交换器的管程通道的出口通过第二管道与蒸发器连接;所述第一管道连接有第三管道,此第三管道与蒸发器连接;所述高压压缩机组通过第四管道与热交换器的壳程通道的入口连接,所述热交换器的壳程通道的出口通过第五管道与高压压缩机组连接;所述蒸发器安装于试验舱,所述第一管道、第二管道、第三管道、第四管道和第五管道均设有阀门。
  3. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第一管道与第三管道的连接处与低压压缩机组之间的第一管道设有预冷器,所述第四管道设有冷凝器,此冷凝器位于高压压缩机组和热交换器之间。
  4. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第三管道与低压压缩机组之间连接有第六管道,此第六管道与第一管道之间连接有膨胀容箱。
  5. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述加湿除湿单元包括除湿器、加湿喷嘴、蒸汽锅炉,所述除湿器和加湿喷嘴均安装于试验舱,所述蒸汽锅炉与加湿喷嘴连接。
  6. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述加热单元包括加热器,此加热器安装于试验舱。
  7. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述环境模拟机构还包括淋雨单元,所述淋雨单元包括储水箱、水泵、过滤器、压力罐和淋雨喷嘴,所述淋雨喷嘴通过喷淋管道安装于试验舱,所述储水箱、过滤器、水泵和压力罐依次连接,所述压力罐的出口与喷淋管道连接。
  8. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述环境模拟机构还包括盐雾单元,所述盐雾单元包括盐水储备箱、盐水补给箱、喷雾塔、饱和发 生器、第一油水分离器、储气罐、第二油水分离器、空压机和盐雾喷嘴,所述盐水储备箱的出水口与***连接,所述***通过饱和发生器与喷雾塔的入口连接,所述喷雾塔的出口通过盐雾管道与安装于试验舱的盐雾喷嘴连接,所述喷雾塔的回流口与盐水补给箱连接,所述盐水补给箱通过补水泵与盐雾储备箱连接,所述空压机、第二油水分离器、储气罐、第一油水分离器与饱和发生器依次连接。
  9. 根据权利要求2所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述环境模拟机构还包括碳化单元,所述碳化单元包括二氧化碳液态储罐、二氧化碳净化器和碳化喷嘴,所述二氧化碳液态储罐与二氧化碳净化器连接,所述碳化喷嘴通过碳化管道安装于试验舱,所述二氧化碳净化器通过碳化管道与碳化喷嘴连接。
  10. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述控制机构包括控制柜、控制器、交换机、温度传感器、湿度传感器和触摸屏,所述控制器和交换机均安装于控制柜内,所述温度传感器和湿度传感器安装于试验舱内,所述触摸屏安装于试验舱的外壁,且所述温度传感器、湿度传感器、触摸屏和交换机均与控制器连接,所述控制器与控制终端连接。
  11. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述试验舱的内腔被分隔形成第一工作室和第二工作室,所述第一工作室和第二工作室的顶端相通,且所述第一工作室的顶部安装有循环风机。
  12. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述加载装置包括第一载荷加载装置和/或第二载荷加载装置,所述第一载荷加载装置中的第一作动器通过移动式刚性反力架安装于相应的试验舱上方,且与第一作动器连接的垂直传力杆自试验舱的上方穿入试验舱的工作室,且垂直传力杆与试验舱中的试件连接;
    所述第二载荷加载装置的第二作动器通过反力墙安装于相应的试验舱外的一侧,且第二作动器连接的水平传力杆自试验舱的一侧穿入试验舱的工作室,且水平传力杆与试验舱中的试件连接。
  13. 根据权利要求12所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第一载荷加载装置包括第一工控机、第一乘法D/A转换器、第一A/D转换器、第一直流放大器、第一伺服放大器、第一伺服阀、垂直传力杆、第一位移/应变传感器、第一作动器、第一电液伺服机构和第一油源;
    所述第一作动器安装于移动式刚性反力架,所述垂直传力杆的上端与第一作动器连接,所述垂直传力杆的下端通过轴套穿入试验舱的工作室;所述第一作动器和第一油源均与第一电液伺服机构连接,所述第一电液伺服机构与第一工控机连接,且此第一电液伺服机构通过 第一伺服阀与第一伺服放大器连接,所述第一伺服放大器通过第一乘法D/A转换器与第一工控机连接,所述第一位移/应变传感器安装于试验舱的试件,所述第一作动器设有第一载荷传感器,所述第一位移/应变传感器和第一载荷传感器均通过第一直流放大器与第一A/D转换器连接的,所述第一A/D转换器的2个输出端口分别与第一伺服放大器与第一工控机连接,所述第一工控机与控制终端连接。
  14. 根据权利要求13所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第一工控机包括第一随机载荷模拟模块和第一控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第一乘法D/A转换器转换成控制信号,再经第一伺服放大电路和第一伺服阀传送至第一电液伺服机构,以使第一作动器和第一油源按照控制信号的指令工作;所述第一控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
  15. 根据权利要求12所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第二载荷加载装置包括第二工控机、第二乘法D/A转换器、第二A/D转换器、第二直流放大器、第二伺服放大器、第二伺服阀、水平传动杆、第二位移/应变传感器、第二作动器、第二电液伺服机构和第二油源;
    所述第二作动器安装于反力墙,所述水平传动杆的一端与第二作动器连接,所述水平传动杆的另一端通过轴套穿入试验舱的工作室;所述第二作动器和第二油源均与第二电液伺服机构连接,所述第二电液伺服机构与第二工控机连接,且此第二电液伺服机构通过第二伺服阀与第二伺服放大器连接,所述第二伺服放大器通过第二乘法D/A转换器与第二工控机连接,所述第二位移/应变传感器安装于试验舱的试件,所述第二作动器设有第二载荷传感器,所述第二位移/应变传感器和第二载荷传感器均通过第二直流放大器与第二A/D转换器连接的,所述第二A/D转换器的2个输出端口分别与第二伺服放大器与第二工控机连接,所述第二工控机与控制终端连接。
  16. 根据权利要求15所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述第二工控机包括第二随机载荷模拟模块和第二控制模块,所述第一随机载荷模拟模块用于生成随机载荷的模拟信号,此模拟信号通过第二乘法D/A转换器转换成控制信号,再经第二伺服放大电路和第二伺服阀传送至第二电液伺服机构,以使第二作动器和第二油源按照控制信号的指令工作;所述第二控制模块用于将随机载荷的模拟信号及实验操作指令编成机器语言。
  17. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述测试装置包括非接触式光测机构和传感测试机构;
    所述非接触式光测机构包括光测仪器和光测支架,所述光测仪器通过光测支架安装于试 验舱外,且光测仪器的测量端与试验舱的观察窗相对设置;
    所述传感测试机构包括光纤光栅传感器、应变计、静动态应变仪、光开关、光纤光栅解调仪、***和第三工控机,所述应变计和光纤光栅传感器均安装在固定于工装夹具的试件,所述应变计与静动态应变仪连接,所述光纤光栅传感器、光开关、光纤光栅解调仪、***和第三工控机依次连接。
  18. 根据权利要求1所述的复杂环境下结构疲劳/耐久性实验***,其特征在于:所述地锚装置包括刚性钢筋混凝土地板和导轨;所述刚性钢筋混凝土地板设有多排锚孔,所述试验舱和移动式刚性反力架通过相应的锚固机构与相应锚孔连接;所述导轨安装于刚性钢筋混凝土地板和试验舱的底板上,所述导轨设有用于安装试件或工装夹具的承台。
  19. 一种基于权利要求1~18中任意一项所述的复杂环境下结构疲劳/耐久性实验***的实验方法,其特征在于,包括以下步骤:
    首先按照实验方案和试件尺寸,模拟和编制荷载谱和环境谱,确定使用试验舱的数量及相应的加载点及作动器;
    再移动加载装置的移动式刚性反力架至加载点所在处并予以固定,安装作动器及传力杆,然后在试验舱内的承台上及传力杆的端部安装相应的工装夹具,并将试件运送至适当的位置且固定在承台上的工装夹具;
    关闭试验舱,启动环境模拟装置,对试件进行环境预处理直至整个试验舱及试件内部的环境指标基本一致后,再同时启动载荷模拟及加载装置和测试装置,对试件实施环境与荷载耦合作用下的疲劳/耐久性实验,并对试件的受力和变形、裂纹萌生和扩展量进行实时的同步跟踪测量,由各个测控装置分别记录实验条件、实验数据及图像。
  20. 根据权利要求19所述的复杂环境下结构疲劳/耐久性实验方法,其特征在于:所述环境指标为低温低湿环境时,温度为5~20℃,湿度小于或等于40%R·H。
  21. 根据权利要求19所述的复杂环境下结构疲劳/耐久性实验方法,其特征在于:所述环境指标为低温环境时,温度小于或等于-60℃。
PCT/CN2021/123227 2021-04-20 2021-10-12 复杂环境下结构疲劳/耐久性实验***及方法 WO2022222389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110422122.XA CN113203648B (zh) 2021-04-20 2021-04-20 复杂环境下结构疲劳/耐久性实验***及方法
CN202110422122.X 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022222389A1 true WO2022222389A1 (zh) 2022-10-27

Family

ID=77027295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123227 WO2022222389A1 (zh) 2021-04-20 2021-10-12 复杂环境下结构疲劳/耐久性实验***及方法

Country Status (2)

Country Link
CN (1) CN113203648B (zh)
WO (1) WO2022222389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250095A (zh) * 2023-11-10 2023-12-19 鸿安(福建)机械有限公司 一种碳纤维制品疲劳强度检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203648B (zh) * 2021-04-20 2022-10-25 华南理工大学 复杂环境下结构疲劳/耐久性实验***及方法
CN113484158B (zh) * 2021-09-08 2021-11-05 南通诚利钢结构工程有限公司 一种用于钢结构的多环境抗变形检测装置
CN114295537A (zh) * 2021-12-20 2022-04-08 中国建筑股份有限公司 一种防水材料耐久性测试设备
CN114894645A (zh) * 2022-05-05 2022-08-12 江苏科技大学 一种海水疲劳循环模拟试验装置及试验方法
CN115343159A (zh) * 2022-08-29 2022-11-15 中国路桥工程有限责任公司 一种海洋多因素耦合侵蚀下钢筋砼结构耐久性试验***
CN115575252A (zh) * 2022-09-30 2023-01-06 汇通路桥集团试验检测有限公司 抗弯折检测设备
CN116296933A (zh) * 2023-05-26 2023-06-23 中国建筑第四工程局有限公司 一种水利施工混凝土性能检测设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067599A (zh) * 2007-06-07 2007-11-07 浙江大学 多功能步入式人工环境复合模拟耐久性试验装置
CN101980002A (zh) * 2010-09-09 2011-02-23 中国神华能源股份有限公司 环境模拟试验装置和模拟环境的方法
CN109211769A (zh) * 2018-11-08 2019-01-15 上海怡骋工贸有限公司 一种可程式高低温复合盐雾试验箱
CN110487707A (zh) * 2019-07-21 2019-11-22 南京金龙客车制造有限公司 一种纯电动汽车动力电池总成使用温湿度交变盐雾箱
EP3620770A1 (de) * 2018-09-10 2020-03-11 EDAG Engineering GmbH Umfeldsimulationssystem für einen prüfstand und prüfstand
CN111982656A (zh) * 2020-07-21 2020-11-24 深圳大学 环境荷载耦合作用下工程结构模型试验***
CN112303767A (zh) * 2020-11-09 2021-02-02 广东立佳实业有限公司 一种大功率负载下的动态恒温恒湿控制组件
CN113203648A (zh) * 2021-04-20 2021-08-03 华南理工大学 复杂环境下结构疲劳/耐久性实验***及方法
CN113218641A (zh) * 2021-04-20 2021-08-06 华南理工大学 复杂环境下结构疲劳/耐久性实验***的环境模拟设备及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928213B (zh) * 2012-10-26 2015-02-18 重庆交通大学 码头结构抗疲劳试验***及试验方法
CN103743587A (zh) * 2014-01-03 2014-04-23 中交四航工程研究院有限公司 海洋环境与动载耦合试验设备***
CN109030049A (zh) * 2018-07-16 2018-12-18 北京交通大学 一种高速铁路无砟轨道复杂环境模拟试验***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067599A (zh) * 2007-06-07 2007-11-07 浙江大学 多功能步入式人工环境复合模拟耐久性试验装置
CN101980002A (zh) * 2010-09-09 2011-02-23 中国神华能源股份有限公司 环境模拟试验装置和模拟环境的方法
EP3620770A1 (de) * 2018-09-10 2020-03-11 EDAG Engineering GmbH Umfeldsimulationssystem für einen prüfstand und prüfstand
CN109211769A (zh) * 2018-11-08 2019-01-15 上海怡骋工贸有限公司 一种可程式高低温复合盐雾试验箱
CN110487707A (zh) * 2019-07-21 2019-11-22 南京金龙客车制造有限公司 一种纯电动汽车动力电池总成使用温湿度交变盐雾箱
CN111982656A (zh) * 2020-07-21 2020-11-24 深圳大学 环境荷载耦合作用下工程结构模型试验***
CN112303767A (zh) * 2020-11-09 2021-02-02 广东立佳实业有限公司 一种大功率负载下的动态恒温恒湿控制组件
CN113203648A (zh) * 2021-04-20 2021-08-03 华南理工大学 复杂环境下结构疲劳/耐久性实验***及方法
CN113218641A (zh) * 2021-04-20 2021-08-06 华南理工大学 复杂环境下结构疲劳/耐久性实验***的环境模拟设备及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG WEN-CHAO;LI GUO;ZHANG SHUANG-JUN;XIE SHAO-JUN: "Design and Application of Climatic Environmental Testing System for Large Vehicles", ENVIRONMENTAL TECHNOLOGY, 25 October 2018 (2018-10-25), pages 14 - 20, XP055978191, ISSN: 1004-7204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250095A (zh) * 2023-11-10 2023-12-19 鸿安(福建)机械有限公司 一种碳纤维制品疲劳强度检测装置
CN117250095B (zh) * 2023-11-10 2024-02-02 鸿安(福建)机械有限公司 一种碳纤维制品疲劳强度检测装置

Also Published As

Publication number Publication date
CN113203648B (zh) 2022-10-25
CN113203648A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2022222389A1 (zh) 复杂环境下结构疲劳/耐久性实验***及方法
CN201247239Y (zh) 一种环境模拟实验装置
CN108760609B (zh) 一种实现多物理场耦合的环境模拟试验***
CN205404299U (zh) 一种可模拟冻融温度载荷下试件力学性能的试验箱及装置
CN110398415B (zh) 一种桥梁钢结构防腐涂层寿命预测方法
Sun et al. Experimental and comparison study on heat and moisture transfer characteristics of desiccant coated heat exchanger with variable structure sizes
CN110095337A (zh) 一种可模拟冻融温度载荷下试件力学性能的试验箱
CN206132756U (zh) 一种土壤脱湿及冻结特征综合测试装置
Hao et al. Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system
Tojiboyev Heat resistant fluid insulating coat
CN113218641A (zh) 复杂环境下结构疲劳/耐久性实验***的环境模拟设备及方法
Belloli et al. Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower
Jia et al. Energy conversion characteristics of reciprocating piston quasi-isothermal compression systems using water sprays
CN105628512A (zh) 一种可模拟冻融温度载荷下试件力学性能的试验箱及***
CN108756996B (zh) 一种矿井热湿环境模拟实验平台
Corliss et al. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel
CN216978609U (zh) 一种荷载与多环境因素耦合作用下混凝土耐久性试验装置
CN210347362U (zh) 补偿器恒压疲劳试验机
CN114486512A (zh) 一种荷载与多环境因素耦合作用下混凝土耐久性试验装置
CN105319145A (zh) 一种高速中温负压空气湿度的连续测量方法
CN206223102U (zh) 非接触式外墙外保温***防护层热变形测定仪
Voznyak et al. Air distribution efficiency improving in the premises by rectangular air streams
Feustel Measurements of air permability in multizone buildings
CN106894853B (zh) 凝汽式汽轮机冷端节能诊断方法
Carrasco et al. Evaluation of a direct evaporative roof-spray cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937611

Country of ref document: EP

Kind code of ref document: A1