WO2022222213A1 - 一种产β-榄香烯工程菌及其构建方法和用途 - Google Patents

一种产β-榄香烯工程菌及其构建方法和用途 Download PDF

Info

Publication number
WO2022222213A1
WO2022222213A1 PCT/CN2021/094795 CN2021094795W WO2022222213A1 WO 2022222213 A1 WO2022222213 A1 WO 2022222213A1 CN 2021094795 W CN2021094795 W CN 2021094795W WO 2022222213 A1 WO2022222213 A1 WO 2022222213A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthase
pyrophosphate
seq
elemene
gene
Prior art date
Application number
PCT/CN2021/094795
Other languages
English (en)
French (fr)
Inventor
于宗霞
冯宝民
霍晋彦
卢轩
王惠国
储晓慧
王晓雨
Original Assignee
大连大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连大学 filed Critical 大连大学
Publication of WO2022222213A1 publication Critical patent/WO2022222213A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/0301Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03023Germacrene-A synthase (4.2.3.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the recombinant bacteria express acetoacetyl-CoA thiolase atoB, 3-hydroxy-3-methylglutaryl-CoA synthase ERG13, truncated 3-hydroxy-3-methylglutaryl-CoA Reductase tHMG1, mevalonate kinase ERG12, phosphomevalonate kinase ERG8, pyrophosphate mevalonate decarboxylase MVD1, pyrophosphate prenyl isomerase idi and farnesenyl pyrophosphate synthase ispA
  • the expression vector is pACYCDuet-1 vector.
  • Acetoacetyl-CoA thiolase atoB gene 3-hydroxy-3-methylglutaryl-CoA synthase ERG13 gene, truncated 3-hydroxy-3-methylglutaryl-CoA reductase tHMG1 gene, mevalonate kinase ERG12 gene, phosphomevalonate kinase ERG8 gene, pyrophosphate mevalonate decarboxylase MVD1 gene, pyrophosphate prenyl isomerase idi gene and farnesenyl pyrophosphate synthase.
  • the enzyme ispA gene was linked to the pACYCDuet-1 vector, transformed into competent cells, positive clones were picked, and the recombinant plasmid pACYCDuet-FPP was extracted;
  • volume ratio of the organic solvent to the fermentation broth is 2:1 to 1:20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供了一种产β-榄香烯的重组菌,还提供了该重组菌的构建方法和利用该重组菌生产β-榄香烯的方法。该重组菌表达来自加拿大一枝黄花的吉玛烯A合酶(ScGAS),并引入包含大肠杆菌的atoB、idi、ispA和酿酒酵母的ERG13、tHMG1、ERG12、ERG8、MVD1重组质粒,经过发酵条件优化,β-榄香烯产量达到156.94mg/L。

Description

一种产β-榄香烯工程菌及其构建方法和用途 技术领域
本发明涉及代谢工程、合成生物学和生物制药等技术领域,特别涉及一种产β-榄香烯菌株的构建方法及用途。
背景技术
以β-榄香烯(β-elemene)为主要成分的榄香烯类化合物,为国家Ⅱ类非细胞毒性抗肿瘤新药。β-榄香烯具有诱导肿瘤细胞凋亡、抑制其增殖、转移和主动免疫保护等作用,临床上可以单独或与其他化疗药物联合用于治疗各种癌症,此外还具有抗氧化、抗菌、抗病毒、改善微循环等药效,因此具有良好医药价值和应用前景。
目前市场的β-榄香烯主要是从中药莪术中提取获得。该获取方法成本高、纯度低,而常规化学全合成方法的步骤繁琐、反应条件苛刻、得率低、环境不友好,限制了β-榄香烯的供给和应用。因此,寻找新的β-榄香烯经济可行的量产技术,对该类药物的推广应用具有重要意义。
合成生物学的发展,为规模化生产自然界中含量低、结构复杂、应用价值高的天然产物提供了新的方法。利用微生物生长速度快、周期短、成本低、遗传背景清楚有利于遗传改造等优点,通过构建重组细胞、异源重组天然产物的合成途径,已有快速、大量获取中间体和终产物的成功范例:在酿酒酵母中构建青蒿素的生物合成途径,其前体青蒿酸的产量达到25g/L(Paddon,C.J.,et al.Nature 496.7446(2013):528.)。
β-榄香烯是植物中比较常见的一类倍半萜类化合物,但目前尚无β-榄香烯合酶被克隆,β-榄香烯是由吉玛烯A经cope重排而来的,而吉玛烯A则是经吉玛烯A合酶催化底物法呢烯基焦磷酸FPP获得。研究开发一种快速、高产、环境友好的β-榄香烯的制备方法成为当前亟待研究的重要课题。
发明内容
鉴于此,本发明的目的是提供了一种产β-榄香烯菌株及其构建方法。本发明通过构建产生倍半萜类化合物的前体法呢烯基焦磷酸(FPP)的重组质粒和构建来源于加拿大一枝黄花(Solidago canadensis)的吉玛烯A合酶ScGAS重组质粒,获得含有上述重组质粒的大肠杆菌工程菌株,并通过优化温度、诱导剂浓度、诱导时间和诱导时菌液浓度,从而实现快速、高产地制备β-榄香烯。
为实现上述目的,本发明采取如下技术方案:
一种产β-榄香烯的重组菌,所述重组菌表达吉玛烯A合酶ScGAS、乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1、甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA。
进一步地,所述吉玛烯A合酶ScGAS的氨基酸序列如SEQ ID NO.2所示。
进一步地,所述吉玛烯A合酶ScGAS的核苷酸序列如SEQ ID NO.1所示或如SEQ ID NO.3所示,
进一步地,所述乙酰乙酰辅酶A硫解酶atoB的核苷酸序列如SEQ ID NO.4所示,3-羟基-3-甲基戊二酰辅酶A合酶ERG13的核苷酸序列如SEQ ID NO.5所示、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1的核苷酸序列如SEQ ID NO.6所示、甲羟戊酸激酶ERG12的核苷酸序列如SEQ ID NO.7所示、磷酸甲羟戊酸激酶ERG8的核苷酸序列如SEQ ID NO.8所示、焦磷酸甲羟戊酸脱羧酶MVD1的核苷酸序列如SEQ ID NO.9所示,焦磷酸异戊烯脂异构酶idi的核苷酸序列如SEQ ID NO.10所示、法呢烯基焦磷酸合酶ispA的核苷酸序列如SEQ ID NO.11所示。
进一步地,所述重组菌为重组大肠杆菌或重组酵母菌。
进一步地,所述吉玛烯A合酶ScGAS的表达载体为pGEX-4T1载体。
进一步地,所述重组菌表达乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1、甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA的表达载体为pACYCDuet-1载体。
进一步地,所述乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1的基因连接到pACYCDuet-1的多克隆位点MCS1位点,所述甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA的基因连接到pACYCDuet-1的MCS2位点。
本发明另一方面提供了上述产β-榄香烯的重组菌的构建方法,主要包括以下步骤:
(1)将吉玛烯A合酶ScGAS基因连接到pGEX-4T1载体中,转化感受态细胞,挑取阳性克隆,提取重组质粒pGEX-4T1-ScGAS;
(2)将乙酰乙酰辅酶A硫解酶atoB基因、3-羟基-3-甲基戊二酰辅酶A合酶ERG13 基因、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1基因、甲羟戊酸激酶ERG12基因、磷酸甲羟戊酸激酶ERG8基因、焦磷酸甲羟戊酸脱羧酶MVD1基因、焦磷酸异戊烯脂异构酶idi基因和法呢烯基焦磷酸合酶ispA基因连接到pACYCDuet-1载体中,转化感受态细胞,挑取阳性克隆,提取重组质粒pACYCDuet-FPP;
(3)将步骤(1)所得的pGEX-4T1-ScGAS重组质粒和步骤(2)所得的pACYCDuet-FPP共同转化感受态细胞,挑取阳性克隆即得产β-榄香烯的重组菌株。
进一步地,步骤(3)中的感受态细胞为E.coil BL21(DE3)。
本发明提供了一种利用上述产β-榄香烯的重组菌生产β-榄香烯的方法,所述方法主要包括以下步骤:
(1)在转速50~300rpm,温度20~32℃的培养条件下,培养上述产β-榄香烯的重组菌,待重组菌液浓度A 600为0.2~2时,加入IPTG诱导剂至终浓度为0.01~1.0mM,继续培养至12-120h;
(2)使用有机溶剂萃取发酵液中的β-榄香烯,离心收集有机相,即得。
进一步地,所述培养的培养基为液体LB培养基。
进一步地,所述有机溶剂为乙酸乙酯、己烷、石油醚或氯仿中的一种或2种以上的混合物。
进一步地,所述有机溶剂与发酵液的体积比2:1~1:20。
本发明相对于现有技术具有的有益效果如下:
1.本发明构建的产β-榄香烯工程菌具备产量高、纯度高、低成本、无污染等特点,适于工业化生产β-榄香烯。
2.本发明的产β-榄香烯工程菌经发酵条件优化后β-榄香烯产量高达156.94mg/L。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例涉及的附图进行简单地介绍。
图1重组质粒pACYCDuet-FPP示意图。
图2重组菌株和β-榄香烯的产量对应图。
图3共同表达pGEX-4T1-ScGAS和pACYCDuet-FPP工程菌发酵条件正交实验组合中的β-榄香烯产量。
具体实施方式
下面结合实施例对本发明进行详细的说明,但本发明的实施方式不限于此,显而易见 地,下面描述中的实施例仅是本发明的部分实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,获得其他的类似的实施例均落入本发明的保护范围。
下述实施例中,采用的pGEX-4T1载体、pACYCDuet-1购自于上海生工生物有限公司,E.coli Trans-1和E.coil BL21(DE3)感受态细胞购自于上海源叶生物科技有限公司。
实施例1 重组质粒pGEX-4T1-ScGAS构建
依据NCBI数据库中加拿大一枝黄花来源的吉玛烯A合酶ScGAS,其核苷酸序列如SEQ ID NO.1所示,其氨基酸序列如SEQ ID NO.2所示。由生工生物工程(上海)股份有限公司依据大肠杆菌密码子进行优化、合成基因和测序,获得密码子优化后的核苷酸序列如SEQ ID NO.3所示,并***到pBlueScript II SK(+)载体中,构成pBlueScript II SK(+)-ScGAS重组质粒。
将pBlueScript II SK(+)-ScGAS重组质粒和pGEX-4T1质粒分别用EcoR I与Sal I进行双酶切后(20μl酶切总体系中,10×Quic.Cut Green Buffer 2μl,EcoR I与Sal I各1μl,质粒pBlueScript II SK(+)-ScGAS或pGEX-4T1各8μl,ddH 2O 8μl),跑1%琼脂糖凝胶电泳后,切胶回收后,连接入pGEX-4T1载体(10μl连接总体系中,Solution I 5μl,pGEX-4T1线性化载体1μl,ScGAS片段4μl,16℃反应3小时),转化E.coli Trans-1感受态细胞,涂布含100mg/L的LB/Amp平板,37℃培养过夜,挑取转化子进行菌落PCR验证(20μlPCR体系中,10×ExTaq Buffer 2μl,dNTP 2μl,ScGAS-F和ScGAS-R各1μl,菌液1μl,ExTaq酶0.3μl,ddH 2O 12.7μl;PCR反应条件首先98℃变性5min;其次98℃变性30sec,58℃退火30sec,72℃延伸2min,32个循环;最后72℃再延伸15min;引物序列见表1),提取阳性菌落的质粒即pGEX-4T1-ScGAS重组质粒。
表1.引物序列表
Figure PCTCN2021094795-appb-000001
Figure PCTCN2021094795-appb-000002
实施例2 重组质粒pACYCDuet-FPP构建
2.1基因全长序列的获得
提取大肠杆菌Trans-1和酿酒酵母S288C全基因组序列。依据NCBI上公布的atoB、ERG13、tHMG1、ERG12、ERG8、MVD1、idi、ispA基因序列设计引物(7-22号引物,序列见表1),以上述大肠杆菌基因组DNA为模板扩增atoB、idi、ispA,以酵母基因组DNA为模板扩增ERG13、tHMG1、ERG12、ERG8、MVD1,使用高保真酶PrimeSTAR GXL(Takara)进行扩增(50μlPCR体系中,5×PrimeSTAR Buffer 10μl,dNTP 4μl,引物-F和引物-R各1μl,模板1μl,PrimeSTAR酶0.5μl,ddH 2O 32.5μl;PCR反应条件首先98℃变性5min;其次98℃变性10sec,55-60℃退火5sec,68℃延伸1-2min,32个循环;最后,68℃再延伸15min),跑1%琼脂糖凝胶电泳后,切胶回 收后,回收产物使用ExTaq酶进行加A尾反应,与pMD18-T载体连接后,转化E.coli Trans-1感受态细胞,涂布含100mg/L的LB/Amp平板,37℃培养过夜,挑取转化子进行菌落PCR验证,阳性克隆送上海生工生物有限公司进行测序,测序正确的菌落,提取质粒后可作为后续载体构建的模板。
2.2利用重叠PCR原理构建操纵子A和B
操纵子A中包含基因atoB、ERG13、tHMG1,操纵子B中包含基因ERG12、ERG8、MVD1、idi、ispA。分别以步骤2.1中含有atoB、ERG13、tHMG1质粒为模板,用高保真酶PrimeSTAR GXL进行PCR扩增,使用各自基因正反向引物(23-28号引物,序列见表1),进行第一轮PCR反应,分别扩增上述3个基因(PCR反应条件首先98℃变性5min;其次98℃变性10sec,55-60℃退火5sec,68℃延伸1-2min,15个循环;最后,68℃再延伸15min),然后以上述PCR产物各1μl为模板,使用23号和28号引物,进行第二轮PCR反应(PCR反应条件首先98℃变性5min;其次98℃变性10sec,55-60℃退火5sec,68℃延伸1-2min,32个循环;最后,68℃再延伸15min),跑1%琼脂糖凝胶电泳后,切胶回收后,即为操纵子A。操纵子B的构建过程类似操纵子A,仅使用不同引物扩增不同基因,第一轮PCR使用29-38号引物分别扩增ERG12、ERG8、MVD1、idi、ispA基因,第二轮使用29号和38号引物。
2.3使用OK Clon DNA连接试剂盒(湖南艾科瑞生物工程有限公司)具体操作方法见试剂盒说明书,将操纵子A同源重组到pACYCDuet-1载体的多克隆位点1(MCS2)的Sal I位点,将操纵子B同源重组到pACYCDuet-1载体的多克隆位点2的Xho I位点,即获得pACYCDuet-FPP重组质粒。
实施例3 高产β-榄香烯工程菌的构建
3.1用质粒pGEX-4T1或pGEX-4T1-ScGAS与pACYCDuet-1或pACYCDuet-FPP共同转化E.coil BL21(DE3)感受态,涂布LB/Amp&Cm抗性平板,过夜培养后,挑取单克隆使用pGEX-4T1载体上的通用引物M13-F&M13-R和pACYCDuet-1载体上的通用引物Cm-F&Cm-R(3-6号引物,序列见表1)进行菌落PCR鉴定,阳性克隆即分别为pGEX-4T1/pACYCDuet-FPP/BL21、pGEX-4T1-ScGAS/pACYCDuet-FPP/BL21、pGEX-4T1-ScGAS/pACYCDuet-1/BL21、pGEX-4T1/pACYCDuet-1/BL21重组菌株。
3.2上述步骤3.1获得的4种重组菌株分别接种到至含Amp&Cm抗生素的2mL液体LB培养基中,37℃恒温震荡培养箱中180rpm过夜培养。第二天以1:50的比例扩 接至50mL含Amp&Cm抗生素的液体LB培养基中,37℃恒温震荡培养箱中继续培养至菌液浓度A600约为2,加入10μL浓度为0.5M的IPTG及10ml的正十二烷溶液,28℃恒温震荡培养箱内,180rpm培养48h。将发酵液冷却至室温,等体积分装至3个50mL离心管内,再在每个离心管内加入20mL乙酸乙酯,用封口膜封口震荡混匀抽提,并超声5分钟;室温下12000rpm离心10min,收集上清液至圆底烧瓶;在28℃,50rpm的旋转蒸发仪上旋至无乙酸乙酯,收集正十二烷;加入适量无水Na 2SO 4去除有机相内水分,再次离心收集上清,即为发酵产物。
3.3将步骤3.2发酵产物用0.22μm有机滤膜过滤,并用乙酸乙酯稀释200倍,加入终浓度为20mg/L乙酸壬酯为内参,样品使用GC-MS检测,通过β-榄香烯与内参的峰面积比值,计算β-榄香烯的含量(如图2所示)。GC-MS检测条件:石英毛细管柱HP-5MS(30m×0.25mm×0.25μm);升温程序:80℃,停留3min;10℃/min升至210℃,停留1min。载气:高纯氦气,流量设置为1mL/min;进样口及接口温度分别设置为250℃与280℃;进样量1μL;离子源EI;电子能量70eV;离子源温度250℃;扫描质量范围35~550amu;溶剂延迟6.5min。
结果表明,只表达pGEX-4T1-ScGAS的重组菌中β-榄香烯的产量为49.21mg/L(图2,ScGAS B),而共同表达pGEX-4T1-ScGAS和pACYCDuet-FPP的重组菌中β-榄香烯的产量为146.88mg/L(图2,ScGAS D),产量提高了2.98倍。因此,共同表达pGEX-4T1-ScGAS和pACYCDuet-FPP的重组菌可作为β-榄香烯的量产的工程菌株。
实施例4 高产β-榄香烯工程菌的发酵条件优化
活化步骤3.1中获得的pGEX-4T1-ScGAS/pACYCDuet-FPP/BL21工程菌进行发酵条件优化。影响发酵产物产量的主因素包括IPTG添加时菌的浓度、培养温度、IPTG使用浓度及诱导时长,分别选择3个不同的实验条件(如表2所示)设计L 9(3 4)正交实验表(如表3所示),并使用正交实验的极差分析法分析4个因素对β-榄香烯产量的影响。按照方法3.2制备待检测样,使用3.3方法检测样品中β-榄香烯的含量变化,并计算和评估各因素对β-榄香烯产量的影响。
通过正交实验的极差分析法确定的各因素对β-榄香烯产量的主次关系结果如表4所示,不同发酵条件下,β-榄香烯产量如图3所示,最终确定发酵条件为重组菌的A600为0.5时添加IPTG,IPTG的终浓度为0.1mM,在28℃摇瓶发酵72h时,β-榄香烯的产量达到156.94mg/L。
表2.正交因素水平
Figure PCTCN2021094795-appb-000003
表3.正交实验条件
Figure PCTCN2021094795-appb-000004
表4.β-榄香烯的产量与各因素的关系表
Figure PCTCN2021094795-appb-000005
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Figure PCTCN2021094795-appb-000006
Figure PCTCN2021094795-appb-000007
Figure PCTCN2021094795-appb-000008
Figure PCTCN2021094795-appb-000009
Figure PCTCN2021094795-appb-000010
Figure PCTCN2021094795-appb-000011
Figure PCTCN2021094795-appb-000012
Figure PCTCN2021094795-appb-000013
Figure PCTCN2021094795-appb-000014
Figure PCTCN2021094795-appb-000015
Figure PCTCN2021094795-appb-000016
Figure PCTCN2021094795-appb-000017

Claims (10)

  1. 一种产β-榄香烯的重组菌,其特征在于,所述重组菌表达吉玛烯A合酶ScGAS、乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1、甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA。
  2. 根据权利要求1所述的重组菌,其特征在于,所述吉玛烯A合酶ScGAS的氨基酸序列如SEQ ID NO.2所示。
  3. 根据权利要求1所述的重组菌,其特征在于,所述吉玛烯A合酶ScGAS的核苷酸序列如SEQ ID NO.1所示或如SEQ ID NO.3所示,乙酰乙酰辅酶A硫解酶atoB的核苷酸序列如SEQ ID NO.4所示,3-羟基-3-甲基戊二酰辅酶A合酶ERG13的核苷酸序列如SEQ ID NO.5所示、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1的核苷酸序列如SEQ ID NO.6所示、甲羟戊酸激酶ERG12的核苷酸序列如SEQ ID NO.7所示、磷酸甲羟戊酸激酶ERG8的核苷酸序列如SEQ ID NO.8所示、焦磷酸甲羟戊酸脱羧酶MVD1的核苷酸序列如SEQ ID NO.9所示,焦磷酸异戊烯脂异构酶idi的核苷酸序列如SEQ ID NO.10所示、法呢烯基焦磷酸合酶ispA的核苷酸序列如SEQ ID NO.11所示。
  4. 根据权利要求1所述的重组菌,其特征在于,所述吉玛烯A合酶ScGAS的表达载体为pGEX-4T1载体;所述乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1、甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA的表达载体为pACYCDuet-1载体。
  5. 根据权利要求4所述的重组菌,其特征在于,所述乙酰乙酰辅酶A硫解酶atoB、3-羟基-3-甲基戊二酰辅酶A合酶ERG13、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1的基因连接到pACYCDuet-1的多克隆位点MCS1,所述甲羟戊酸激酶ERG12、磷酸甲羟戊酸激酶ERG8、焦磷酸甲羟戊酸脱羧酶MVD1、焦磷酸异戊烯脂异构酶idi和法呢烯基焦磷酸合酶ispA的基因连接到pACYCDuet-1的多克隆位点MCS2。
  6. 权利要求4或5所述的重组菌的构建方法,其特征在于,主要包括以下步骤:
    (1)将吉玛烯A合酶ScGAS基因连接到pGEX-4T1载体中,转化感受态细胞,挑取阳性克隆,提取重组质粒pGEX-4T1-ScGAS;
    (2)将乙酰乙酰辅酶A硫解酶atoB基因、3-羟基-3-甲基戊二酰辅酶A合酶ERG13 基因、截短的3-羟基-3-甲基戊二酰辅酶A还原酶tHMG1基因、甲羟戊酸激酶ERG12基因、磷酸甲羟戊酸激酶ERG8基因、焦磷酸甲羟戊酸脱羧酶MVD1基因、焦磷酸异戊烯脂异构酶idi基因和法呢烯基焦磷酸合酶ispA基因连接到pACYCDuet-1载体中,转化感受态细胞,挑取阳性克隆,提取重组质粒pACYCDuet-FPP;
    (3)将步骤(1)所得的pGEX-4T1-ScGAS重组质粒和步骤(2)所得的pACYCDuet-FPP共同转化感受态细胞,挑取阳性克隆即得产β-榄香烯的重组菌株。
  7. 根据权利要求6所述的构建方法,其特征在于,步骤(3)中的感受态细胞为E.coil BL21(DE3)。
  8. 利用权利要求1-5任一项所述的重组菌生产β-榄香烯的方法,其特征在于,主要包括以下步骤:
    (1)在转速50~300rpm,温度20~32℃的培养条件下,培养权利要求1-5任一项所述的重组菌,待重组菌液浓度A 600为0.2~2时,加入IPTG诱导剂至终浓度为0.01~1.0mM,继续培养至12-120h;
    (2)使用有机溶剂萃取发酵液中的β-榄香烯,离心收集有机相,即得。
  9. 根据权利要求8所述的方法,其特征在于,所述培养的培养基为液体LB培养基。
  10. 根据权利要求8或9所述的方法,其特征在于,所述有机溶剂为乙酸乙酯、己烷、石油醚或氯仿中的一种或2种以上的混合物,所述有机溶剂与发酵液的体积比2:1~1:20。
PCT/CN2021/094795 2021-04-23 2021-05-20 一种产β-榄香烯工程菌及其构建方法和用途 WO2022222213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110443722.4A CN113249282B (zh) 2021-04-23 2021-04-23 一种产β-榄香烯重组菌及其构建方法和用途
CN202110443722.4 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022222213A1 true WO2022222213A1 (zh) 2022-10-27

Family

ID=77221450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094795 WO2022222213A1 (zh) 2021-04-23 2021-05-20 一种产β-榄香烯工程菌及其构建方法和用途

Country Status (2)

Country Link
CN (1) CN113249282B (zh)
WO (1) WO2022222213A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174453A3 (zh) * 2023-06-28 2024-02-01 华北理工大学 产β-榄香烯的解脂耶氏酵母基因工程菌、构建方法及β-榄香烯的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846083B (zh) * 2021-09-23 2023-07-21 华中农业大学 一种除虫菊大根香叶烯D合成酶TcGDS1及其编码基因与应用
CN116121230A (zh) * 2023-03-01 2023-05-16 中国科学院青岛生物能源与过程研究所 一种编码大根香叶烯a合成酶的基因的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120141A (zh) * 2014-07-14 2014-10-29 青岛农业大学 一种微生物催化合成β-石竹烯的方法及能够合成β-石竹烯的重组细胞
EP3536792A1 (en) * 2016-11-04 2019-09-11 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Recombinant yeast and use thereof
CN110819650A (zh) * 2019-11-25 2020-02-21 浙江中医药大学 一种产β-榄香烯工程菌株及应用
CN112063540A (zh) * 2020-09-21 2020-12-11 山东大学 一种用于生产β-榄香烯或吉马烯A的重组菌株

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3155103A1 (en) * 2014-06-13 2017-04-19 Deinove Method of producing terpenes or terpenoids
WO2016064347A1 (en) * 2014-10-22 2016-04-28 Temasek Life Sciences Laboratory Limited Terpene synthases from ylang ylang (cananga odorata var. fruticosa)
CN111434773B (zh) * 2019-01-15 2021-06-18 天津大学 一种高产檀香油的重组酵母菌及其构建方法与应用
CN111004763B (zh) * 2019-12-26 2022-06-03 中国科学院青岛生物能源与过程研究所 一种生产β-石竹烯的工程菌及其构建方法与应用
CN112251427B (zh) * 2020-10-22 2022-05-10 中国农业科学院深圳农业基因组研究所 一种倍半萜合酶IlTPS1,编码核苷酸序列及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120141A (zh) * 2014-07-14 2014-10-29 青岛农业大学 一种微生物催化合成β-石竹烯的方法及能够合成β-石竹烯的重组细胞
EP3536792A1 (en) * 2016-11-04 2019-09-11 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Recombinant yeast and use thereof
CN110819650A (zh) * 2019-11-25 2020-02-21 浙江中医药大学 一种产β-榄香烯工程菌株及应用
CN112063540A (zh) * 2020-09-21 2020-12-11 山东大学 一种用于生产β-榄香烯或吉马烯A的重组菌株

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO YUNYUN: "The Study of Microbial Synthesis of Germacrene a the Precursor of β-elemene", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 December 2012 (2012-12-15), CN , XP055979607, ISSN: 1674-0246 *
HUO JINYAN, CAO HONGYU; CHU XIAOHUI; FENG BAOMIN; YU ZONGXIA: "Homology modeling and molecular docking of germacrene A synthase", JOURNAL OF TIANJIN NORMAL UNIVERSITY (NATURAL SCIENCE EDITION), vol. 40, no. 6, 30 November 2020 (2020-11-30), pages 24 - 29, XP055979613, ISSN: 1671-1114, DOI: 10.19638/j.issn1671-1114.20200605 *
JW. D. K. ET AL.: "(+)-Germacrene A biosynthesis - The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory", PLANT PHYSIOLOGY, vol. 17, no. 4, 8 August 1998 (1998-08-08), XP002112686, ISSN: 0032-0889, DOI: 10.1104/pp.117.4.1381 *
ZHU LINFANG: "In Vitro Recombinant Expression and Catalytic Study of the Enzyme Related to the Synthesis of β-elemene by Mevalonate Pathway", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 January 2019 (2019-01-15), CN , XP055979611, ISSN: 1674-0246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174453A3 (zh) * 2023-06-28 2024-02-01 华北理工大学 产β-榄香烯的解脂耶氏酵母基因工程菌、构建方法及β-榄香烯的制备方法

Also Published As

Publication number Publication date
CN113249282B (zh) 2023-06-20
CN113249282A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022222213A1 (zh) 一种产β-榄香烯工程菌及其构建方法和用途
Du et al. Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness
CN103243066B (zh) 一种生产番茄红素的菌株及其应用
WO2018082588A1 (zh) 一种重组菌及其用途
CN112592843B (zh) 一种生产α-蛇麻烯的重组解脂耶氏酵母菌及其构建方法和应用
CN105420135A (zh) 一株高产单萜香叶醇的重组酿酒酵母菌株及其应用
WO2023143136A1 (zh) 一种发酵生产α-檀香烯的酵母工程菌及其应用
CN112695003A (zh) 一种高产西柏三烯一醇的基因工程菌及其构建方法与应用
Shen et al. Engineering of Escherichia coli for lycopene production through promoter engineering
CN117604044A (zh) 生产香兰素的基因工程菌及其构建方法、应用
CN111484962A (zh) 一种高效产5α-雄烷二酮的基因工程菌及其应用
CN111484961A (zh) 一种产5α-雄烷二酮的基因工程菌及其应用
CN116590165B (zh) 一株利用木糖生产香叶醇的酿酒酵母菌株及其应用
WO2023208037A1 (zh) 一种橙花叔醇合成酶及应用
CN114736918B (zh) 一种整合表达生产红景天苷的重组大肠杆菌及其应用
CN105754920A (zh) 一种基因工程蓝藻及其应用
CN103820506B (zh) 一种基因重组菌发酵生产辅酶q10的方法
CN109868253B (zh) 抑制菌体自溶的地衣芽孢杆菌工程菌及其构建方法和应用
CN106755035A (zh) 一种基于高效低残糖发酵异丁醇的大肠杆菌合成菌株构建方法
CN109777745B (zh) 一种合成桧烯的基因工程菌及其构建方法与应用
CN117965473B (zh) 一种脱氢酶***及其在制备p34hb中的应用
CN103898149B (zh) 一种利用蛋白支架提高大肠杆菌中异戊二烯合成的方法
CN114806911B (zh) 一种利用解脂耶氏酵母线粒体途径定位合成α-红没药烯的方法
CN117402763B (zh) 一种产角鲨烯的酿酒酵母工程菌株及其构建方法和应用
CN117187206B (zh) 肠道微生物来源的岩藻糖基转移酶及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937439

Country of ref document: EP

Kind code of ref document: A1