WO2022217721A1 - 智慧电池 - Google Patents

智慧电池 Download PDF

Info

Publication number
WO2022217721A1
WO2022217721A1 PCT/CN2021/097867 CN2021097867W WO2022217721A1 WO 2022217721 A1 WO2022217721 A1 WO 2022217721A1 CN 2021097867 W CN2021097867 W CN 2021097867W WO 2022217721 A1 WO2022217721 A1 WO 2022217721A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit module
output
module
buck
energy storage
Prior art date
Application number
PCT/CN2021/097867
Other languages
English (en)
French (fr)
Inventor
王国平
Original Assignee
珠海朗尔电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海朗尔电气有限公司 filed Critical 珠海朗尔电气有限公司
Publication of WO2022217721A1 publication Critical patent/WO2022217721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of energy storage systems, in particular to a smart battery.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a smart battery that can use AC or DC as a charging power source, and can provide AC and DC outputs of various voltage levels to meet different voltage load requirements.
  • the smart battery according to the embodiment of the present invention includes an energy storage unit, a charging unit, an output unit and a management unit; the output end of the charging unit is connected to the input end of the energy storage unit, and the input end of the charging unit is connected to an AC or DC input, the charging unit is provided with a first control board module and a first buck-boost circuit module, the output end of the first control board module is connected to the control end of the first buck-boost circuit module, so
  • the first control board module provides trigger pulses for the first buck-boost circuit module; the input end of the output unit is connected to the output end of the energy storage unit, and the output end of the output unit is used to output AC or DC output, the output unit is provided with a second control board module and a second buck-boost circuit module, the output end of the second control board module is connected to the control end of the second buck-boost circuit module, the The second control board module provides trigger pulses for the second buck-boost circuit module; the
  • the smart battery according to the embodiment of the present invention has at least the following beneficial effects: the management unit can control the charging unit and the output unit, avoid overcharging and overdischarging of the energy storage unit, and prolong the life of the energy storage device in the energy storage unit. duration of use.
  • the charging unit can use AC or DC as the charging power source, and the output unit can provide AC and DC outputs of various voltage levels to meet the requirements of different voltage loads, expand the scope of application of the smart battery, and be flexible and convenient to use.
  • the first buck-boost circuit module and the second buck-boost circuit module each include a plurality of buck-boost conversion circuits, and the plurality of buck-boost conversion circuits are respectively arranged in parallel.
  • the buck-boost conversion circuit includes a first field effect transistor, a second field effect transistor, a filter capacitor and a transformer, and the first field effect transistor and the second field effect transistor are respectively connected The first end and the second end of the transformer, and the filter capacitor is connected to the third end of the transformer.
  • both the first control board module and the second control board module include a PWM control chip.
  • the charging unit further includes a rectifier circuit module, a first high-frequency rectifier circuit module, and a feedback circuit module, and the output end of the rectifier circuit module is connected to the input terminal of the first buck-boost circuit module.
  • the output end of the first buck-boost circuit module is connected to the input end of the first high-frequency rectifier circuit module, and the output end of the first high-frequency rectifier circuit module is connected to the input end of the energy storage unit.
  • the feedback circuit module is connected to the first high-frequency rectifier circuit module, and transmits the received information to the first control board module.
  • the first high-frequency rectifier circuit module is replaced by a pulsed charge and discharge circuit module, and the input end of the pulsed charge and discharge circuit module and the output end of the first buck-boost circuit module
  • the output end of the pulsed charge and discharge circuit module is connected to the input end of the energy storage unit, and the feedback end of the pulsed charge and discharge circuit module is connected to the input end of the feedback circuit module.
  • the output unit further includes a short circuit protection circuit module and an output and feedback module, the input end of the short circuit protection circuit module is connected to the energy storage unit, and the output end of the short circuit protection circuit module is connected to the input end of the second buck-boost circuit module, the output end of the second buck-boost circuit module is connected to the input end of the output and feedback module, and the first output end of the output and feedback module For outputting alternating current or direct current, the second output end of the output and feedback module is connected to the input end of the second control board module.
  • the output and feedback module includes a second high-frequency rectifier circuit module and a DC output feedback circuit module, and the input end of the second high-frequency rectifier circuit module is connected to the second buck-boost circuit.
  • the output end of the module is connected, the output end of the second high frequency rectifier circuit module is used for outputting direct current, the input end of the DC output feedback circuit module is connected with the feedback end of the second high frequency rectifier circuit module, the The output end of the DC output feedback circuit module is connected to the input end of the second control board module.
  • the output and feedback module includes an isolation circuit module and an AC output feedback circuit module, the input terminal of the isolation circuit module is connected to the output terminal of the second buck-boost circuit module, the The output terminal of the isolation circuit module is used to output alternating current, the input terminal of the AC output feedback circuit module is connected to the feedback terminal of the isolation circuit module, and the output terminal of the AC output feedback circuit module is connected to the second control board module input connection.
  • the isolation circuit module includes a single-phase or three-phase alternating current isolation circuit.
  • FIG. 1 is a schematic diagram of a smart battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a charging unit according to an embodiment of the present invention.
  • output DC output unit
  • output AC output unit
  • FIG. 5 is a schematic diagram of a charging unit (with a maintenance function) according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a buck-boost conversion circuit according to an embodiment of the present invention.
  • Management unit 110 communication interface 111; charging unit 120, rectifier circuit module 121, first buck-boost circuit module 122, first high-frequency rectifier circuit module 123, feedback circuit module 124, pulsed charge and discharge circuit module 125, first control board module 126; energy storage unit 130; output unit 140, short-circuit protection circuit module 141, second buck-boost circuit module 142, second high-frequency rectifier circuit module 143, DC output feedback circuit module 144, isolation circuit module 145, AC output feedback circuit module 146 , second control board module 147 ; buck-boost conversion circuit 151 .
  • the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number . If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
  • a smart battery in some embodiments of the present invention, includes a charging unit 120 , an energy storage unit 130 , an output unit 140 and a management unit 110 .
  • the input end of the charging unit 120 is connected to the charging power source, and the output end of the charging unit 120 is connected to the input end of the energy storage unit 130 .
  • the charging unit 120 receives alternating current or direct current transmitted by an external charging power source, and converts the received current into a current that the energy storage unit 130 can receive and store.
  • the charging unit 120 uses an AC/DC or DC/DC circuit to convert different voltages
  • the level of AC and DC input becomes the DC power of the voltage that the energy storage unit 130 can accept, so as to realize the charging of the energy storage unit 130 .
  • the input end of the output unit 140 is connected to the output end of the energy storage unit 130, and the output end of the output unit 140 outputs alternating current or direct current.
  • the output unit 140 can be It is direct current or alternating current.
  • the DC power of the energy storage unit 130 can be converted into AC and DC of different voltage levels through the output unit 140 to meet the output requirements of different voltage levels.
  • the charging unit 120 can charge the energy storage unit 130 in various working modes such as constant current, constant voltage, and pulse, and the output unit 140 can perform various operations such as constant current, constant voltage, and pulse on the energy storage unit 130. way to discharge.
  • the energy storage unit 130 is an electrochemical energy storage device, such as a lead-acid battery, a cadmium-nickel alkaline battery, a lithium battery, a super capacitor, and the like.
  • the management unit 110 is respectively connected with the control terminal of the charging unit 120, the feedback terminal of the energy storage unit 130 and the control terminal of the output unit 140, and the management unit 110 is used to collect the operating parameters of the energy storage unit 130, such as voltage, electromotive force, charging and discharging current , temperature, internal resistance, etc., and can calculate and obtain the health status and state of charge of the energy storage unit 130 according to the operating parameters of the energy storage unit 130 .
  • the management unit 110 can charge and discharge the energy storage unit 130 by controlling the charging unit 120 and the output unit 140, and can also collect input and output parameters of the charging unit 120 and the output unit 140, such as voltage and current.
  • the management unit 110 is provided with a display module for displaying parameters such as voltage, electromotive force, current, temperature, internal resistance, degree of health, remaining capacity and the like of the energy storage unit 130 .
  • the display module can be an LCD screen or a digital tube. The user can intuitively know the parameters of the energy storage unit 130 through the display module, and the management unit 110 can calculate the health status and the state of charge of the energy storage unit 130 through the above parameters, so that the user can intuitively know that without the need for The health status of the battery is judged by the traditional battery capacity check discharge method.
  • the charging unit 120 can use alternating current or direct current as the charging power source, and the output unit 140 can provide alternating current and direct current output of various voltage levels to meet different voltage load requirements, expand the applicable scope of the smart battery, and be flexible and convenient to use.
  • the charging unit 120 includes a rectifier circuit module 121 , a first buck-boost circuit module 122 , a first high-frequency rectifier circuit module 123 , a feedback circuit module 124 and a first control board module 126 .
  • the input end of the rectifier circuit module 121 is connected to the output end of the AC or DC power supply, the output end of the rectifier circuit module 121 is connected to the input end of the first buck-boost circuit module 122, and the first buck-boost circuit module 122
  • the output terminal is connected to the input terminal of the first high-frequency rectifier circuit module 123, the output terminal of the first high-frequency rectifier circuit module 123 is connected to the input terminal of the energy storage unit 130, and the input terminal of the feedback circuit module 124 is connected to the first high-frequency rectifier circuit module 123.
  • the feedback terminal of the circuit module 123 is connected, the output terminal of the feedback circuit module 124 is connected to the first control board module 126 , and the output terminal of the first control board module 126 is connected to the control terminal of the first step-up/down circuit module 122 .
  • the control terminal of the control board module 126 is connected to the management unit 110 as the control terminal of the charging unit 120, and the feedback circuit module 124 is used to feed back parameters such as current and voltage output by the charging unit 120 to the first control board module 126, and then the first control board module 126 is used for feedback.
  • the control board module 126 is transmitted to the management unit 110 .
  • the AC or DC power enters the charging unit 120 through the rectifier circuit module 121.
  • the rectifier circuit module 121 adopts a full-bridge rectifier circuit or a half-bridge rectifier circuit.
  • the AC or DC power is converted into the DC input that the energy storage unit 130 can accept through the rectifier circuit module 121, and then the first step-up and step-down circuit module 122 is used for step-up and step-down processing, so that the voltage of the DC input can also conform to the voltage of the energy storage unit 130.
  • the first buck-boost circuit module 122 includes a high-frequency switch tube and a high-frequency transformer.
  • the high-frequency switch tube adopts a MOS tube or an IGBT tube, and the high-frequency transformer is used to boost or step down the output of the rectifier circuit module 121 .
  • the trigger pulse can be controlled by the first control board module 126. It should be noted that the trigger pulse is used to control the on and off of the high-frequency switch tube to form a high-frequency alternating current. Finally, it is converted into direct current that meets the requirements of the energy storage unit 130 through the first high-frequency rectifier circuit. Parameters such as the voltage and current of the DC output of the charging unit 120 are fed back to the first control board module 126 through the feedback circuit module 124 .
  • the feedback circuit module 124 can be understood as a voltage and current collection module, for example, a voltage collection circuit and a current collection circuit are used to transmit the collected voltage and current information to the first control board module 126 .
  • the charging current limiting value and the charging voltage limiting value of the charging unit 120 can be set, wherein the setting of the charging current limiting value and the charging voltage limiting value is to enable the energy storage unit 130 to be in an optimal state run under.
  • the energy storage unit 130 includes a 12V/100AH lead-acid battery
  • the charging voltage limit value of the charging unit 120 is 14.2V
  • the charging current limiting value is 10A, that is, the charging voltage will be less than or equal to 14.2V, and the current will be less than or equal to 10A.
  • the energy storage unit 130 When the voltage value of the energy storage unit 130 is lower than the charging voltage limit value, the energy storage unit 130 is in a constant current or constant voltage charging state until the energy storage unit 130 is fully charged, which can effectively reduce the phenomenon of undercharging.
  • the management unit 110 controls the charging unit 120 to stop working to avoid overcharging and damage to the energy storage unit 130 .
  • the input end of the charging unit 120 can receive alternating current or direct current input with different voltage levels, and the alternating current or direct current input is converted into an energy storage unit through the rectifier circuit module 121 , the first step-up and step-down circuit module 122 and the first high frequency rectifier circuit module 123 .
  • the direct current that can be stored by 130 is stored in the energy storage unit 130 .
  • the energy storage unit 130 and the input voltage can be monitored, which can effectively avoid overcharging or undercharging.
  • the output unit 140 may be used to output direct current.
  • the output unit 140 includes a short circuit protection circuit module 141, a second buck-boost circuit module 142, an output and feedback module, and a second control board module 147, wherein the output and feedback module includes a second high-frequency rectifier circuit module 143 and a DC output Feedback circuit module 144 .
  • the input end of the short-circuit protection circuit module 141 is connected to the output end of the energy storage unit 130 , the output end of the short-circuit protection circuit module 141 is connected to the input end of the second buck-boost circuit module 142 , and the output of the second buck-boost circuit module 142
  • the terminal is connected to the input terminal of the second high frequency rectification circuit module 143, the output terminal of the second high frequency rectification circuit module 143 outputs DC power, and the DC output terminal of the feedback circuit module 144 is connected to the feedback of the second high frequency rectification circuit module 143.
  • the output terminal of the DC output feedback circuit module 144 is connected to the input terminal of the second control board module 147, and the output terminal of the second control board module 147 is connected to the control terminal of the second step-up/down circuit module 142.
  • the control terminal of the control board module 147 is connected to the management unit 110 as the control terminal of the output unit 140 .
  • the DC power flowing out from the energy storage unit 130 passes through the short circuit protection circuit module 141, and then passes through the second buck-boost circuit module 142 for buck-boost, the second control board module 147 controls the giving of the trigger pulse, and finally passes through the second high-frequency rectifier
  • the circuit module 143 outputs DC power that meets the load requirements, and the DC output feedback circuit module 144 collects voltage and current parameters of the output DC power, and feeds them back to the second control board module 147 .
  • the short circuit protection circuit module 141 can be protected by a fuse or a circuit breaker.
  • the fuse or circuit breaker can be triggered to stop the output unit 140 from working, thereby avoiding damage to the energy storage unit 130 Damaged;
  • the second buck-boost circuit module 142 includes a high-frequency switch tube and a high-frequency transformer, the high-frequency switch tube adopts a MOS tube or an IGBT tube, and the high-frequency transformer is used to boost or step down the output of the rectifier circuit module 121. .
  • the DC output feedback circuit module 144 includes a DC current sampling circuit and a DC voltage sampling circuit for detecting and transmitting the current and voltage of the DC power output by the second high frequency rectifier circuit module 143 to the second control board module 147 .
  • the management unit 110 can set parameters such as the output current limiting protection value and the low voltage protection value of the output unit 140 .
  • the low voltage protection value during discharge is 10.8V.
  • the management unit 110 controls the output unit 140 to work, the energy storage unit 130 is in a discharging state, and stops until the output voltage of the energy storage unit 130 drops to the low voltage protection value, that is, the voltage value of the energy storage unit 130 collected by the management unit 110 is less than or If it is equal to 10.8V, the output unit 140 is controlled to stop working to avoid damage to the energy storage unit 130 due to over-discharge.
  • the output unit 140 can convert the direct current output by the energy storage unit 130 into direct current or alternating current output with different voltage levels, so as to meet the needs of users, and make the application of the smart battery more extensive.
  • the output unit 140 for outputting DC power converts the DC power output by the energy storage unit 130 into DC power that meets user requirements through the short-circuit protection circuit, the second buck-boost circuit module 142 and the second high-frequency rectifier circuit module 143 .
  • the energy storage unit 130 and the output voltage can be monitored, which can effectively avoid damage to the energy storage unit 130 due to over-discharge.
  • the output and feedback circuit module 124 includes an isolation circuit module 145 and an AC output feedback circuit module 146 .
  • the input end of the short-circuit protection circuit module 141 is connected to the output end of the energy storage unit 130 , the output end of the short-circuit protection circuit module 141 is connected to the input end of the second buck-boost circuit module 142 , and the output of the second buck-boost circuit module 142
  • the terminal is connected to the input terminal of the isolation circuit module 145, the output terminal of the isolation circuit module 145 outputs AC power, the input terminal of the AC output feedback circuit module 146 is connected to the feedback terminal of the isolation circuit module 145, and the AC output terminal of the feedback circuit module 146 is connected to the feedback terminal of the isolation circuit module 145.
  • the output terminal is connected to the input terminal of the second control board module 147 , the output terminal of the second control board module 147 is connected to the control terminal of the second step-up/down circuit module 142 , and the control terminal of the second control board module 147 serves as the output unit 140
  • the control terminal is connected to the management unit 110.
  • the DC power flowing from the energy storage unit 130 passes through the short-circuit protection circuit module 141, and then passes through the second buck-boost circuit module 142 for buck-boost.
  • the output of the module 142 forms a sine wave
  • the second high-frequency rectifier circuit module 143 outputs the alternating current that meets the load requirements
  • the alternating current output feedback circuit module 146 collects the voltage and current parameters of the output alternating current and feeds them back to the second control board Module 147.
  • the short circuit protection circuit module 141 can be protected by a fuse or a circuit breaker.
  • the fuse or circuit breaker can be triggered to stop the output unit 140 from working, thereby avoiding damage to the energy storage unit 130 Damaged;
  • the high-frequency switch tube in the second buck-boost circuit module 142 uses a MOS tube or an IGBT tube, and a high-frequency transformer is used to boost or step down the output of the short-circuit protection circuit module 141 .
  • the AC output feedback circuit module 146 includes an AC current sampling circuit and an AC voltage sampling circuit for detecting and transmitting the current and voltage of the AC power output by the isolation circuit module 145 to the second control board module 147 .
  • the management unit 110 can set parameters such as the output current limiting protection value and the low voltage protection value of the output unit 140 .
  • the low voltage protection value during discharge is 10.8V.
  • the management unit 110 controls the output unit 140 to work, the energy storage unit 130 is in a discharging state, and stops until the output voltage of the energy storage unit 130 drops to the low voltage protection value, that is, the voltage value of the energy storage unit 130 collected by the management unit 110 is less than or If it is equal to 10.8V, the output unit 140 is controlled to stop working to avoid damage to the energy storage unit 130 due to over-discharge.
  • the isolation circuit module 145 includes a single-phase AC isolation circuit or a three-phase AC isolation circuit, and the isolation circuit module 145 is used to protect the smart battery from working, so that the smart battery can work safely and reliably.
  • the output unit 140 can convert the direct current output by the energy storage unit 130 into direct current or alternating current output with different voltage levels, so as to meet the needs of users, and make the application of the smart battery more extensive.
  • the output unit 140 for outputting AC power converts the DC power output by the energy storage unit 130 into AC power that meets user requirements through the short-circuit protection circuit, the second buck-boost circuit module 142 and the isolation circuit module 145 .
  • the energy storage unit 130 and the output voltage can be monitored, which can effectively prevent the energy storage unit 130 from being damaged due to over-discharge, and can also monitor the energy storage unit 130. energy is used efficiently.
  • the charging unit 120 also includes a pulsed charging and discharging circuit module 125 .
  • the output end of the rectifier circuit module 121 is connected to the input end of the first buck-boost circuit module 122 , and the output end of the first buck-boost circuit module 122 is connected to the input end of the pulsed charge and discharge circuit module 125 , and the pulsed charge and discharge
  • the output end of the circuit module 125 is connected to the input end of the energy storage unit 130
  • the feedback end of the pulsed charge and discharge circuit module 125 is connected to the input end of the feedback circuit module 124
  • the output end of the feedback circuit module 124 is connected to the first control board module 126
  • the input end of the first control board module 126 is connected to the control end of the first buck-boost circuit module 122 , and the control end of the first control board module 126 is connected to the management unit 110 .
  • the AC or DC power is converted into a DC input that can be accepted by the energy storage unit 130 through the rectifier circuit module 121 , and then goes through the first step-up and step-down circuit module 122 for step-up and step-down processing, and finally the energy storage unit 130 is processed by the pulsed charge-discharge circuit module.
  • Activation treatment is performed. It can be understood that when the health status of the energy storage unit 130 is in a sub-health state, the smart battery is actively maintained, and the battery in the energy storage unit 130 is activated through the pulsed charge and discharge circuit module 125 to restore the energy storage unit 130. healthy.
  • the pulsed charging and discharging activation parameters of the charging unit 120 may be configured by the management unit 110 .
  • the pulsed charge-discharge circuit module 125 provides a self-maintenance function for the smart battery, that is, when the health status of the energy storage unit 130 is in a sub-health state, the self-maintenance function is activated.
  • the AC input or DC input enters the energy storage unit 130 through the rectifier circuit module 121 , the first buck-boost circuit module 122 and the pulsed charge and discharge circuit module 125 .
  • the energy storage unit can be 130 is activated, even if the energy storage unit 130 returns to health.
  • the management unit 110 and the first control board module 126 monitor the health status of the energy storage unit 130, and stop the pulsed charging and discharging circuit module 125 when the energy storage unit 130 recovers health, which can effectively realize energy storage.
  • the multiple utilization of the battery in the unit 130 reduces the waste of the battery.
  • the pulsed charging and discharging circuit module 125 includes a pulsed charging circuit and a pulsed discharging circuit, and is used for activating the energy storage unit, and activation can be understood as a deep charging and discharging process for the energy storage unit.
  • the pulse charging circuit charges the energy storage unit 130 , and the pulse discharging circuit discharges the energy storage unit 130 .
  • the pulsed charging circuit uses the NE555 chip as the pulse generator, and the pulsed discharge circuit can use the RC discharge circuit to connect with the pulse-controlled switch to realize the discharge, so that the energy storage unit 130 is cyclically charged and discharged to achieve an activated Effect.
  • the first buck-boost circuit module 122 and the second buck-boost circuit module 142 each include a plurality of buck-boost conversion circuits 151 , wherein the plurality of buck-boost conversion circuits 151 It is set in parallel. It can be understood that the PWM control signal is given by the first control board module 126, and the PWM control signal is used as a trigger pulse to control the buck-boost conversion circuit 151 to perform buck-boost processing, and finally undergo filtering.
  • the buck-boost conversion circuit 151 includes a first FET, a second FET, a filter capacitor and a transformer, and the trigger pulse enters the buck-boost conversion circuit from the gates of the first FET and the second FET 151.
  • the trigger pulse output by the first control board module 126 enters the gates of the first field effect transistor and the second field effect transistor of the buck-boost conversion circuit 151 in the first buck-boost circuit module 122; the second control board
  • the trigger pulse output by the module 147 enters the gates of the first FET and the second FET of the buck-boost conversion circuit 151 in the second buck-boost circuit module 142 .
  • the sources of the first field effect transistor and the second field effect transistor are grounded, and the drain electrodes of the first field effect transistor and the second field effect transistor are connected to the transformer.
  • the transformer adopts three windings, the first end of the first winding is connected to the drain of the first field effect transistor, the second end of the first winding is connected to the anode end of the filter capacitor, and the first end of the second winding is connected. It is connected to the drain of the second field effect transistor, the second end of the second winding is connected to the anode end of the filter capacitor, and the third windings of the transformers of the plurality of buck-boost conversion circuits 151 are connected in series.
  • three buck-boost conversion circuits 151 are used, such as the first buck-boost conversion circuit, the second buck-boost conversion circuit and the third buck-boost conversion circuit, the third windings of the transformers are connected in series in sequence, and the first buck-boost conversion circuit is connected in series.
  • the third winding of the transformer of the conversion circuit is connected to a plurality of parallel capacitors and then connected to the first input end of the bridge rectifier circuit. Two input terminals are connected. The anode end of the filter capacitor is connected to the output end of other modules.
  • the anode end of the filter capacitor in the buck-boost conversion circuit 151 is connected to the output end of the rectifier circuit module 121;
  • the anode end of the filter capacitor in the buck-boost conversion circuit 151 is connected to the output end of the short-circuit protection circuit 141 module.
  • a plurality of buck-boost conversion circuits 151 are controlled by PWM signals to precisely control the output current and voltage.
  • the buck-boost conversion circuits 151 are connected in parallel, which reduces the loss of the circuit when working with large currents and improves the reliability of the circuit.
  • both the first control board module 126 and the second control board module 147 include a PWM control chip, and the output end of the PWM control chip on the first control board module 126 is connected to the first buck-boost circuit module 122
  • the PWM control chip on the second control board module 147 is connected to the second buck-boost circuit module 142. It can be understood that the PWM control chip provides trigger pulses and controls the first buck-boost circuit module 122 and the second buck-boost circuit module 122. voltage circuit module 142. PWM control chip can use UC2525 chip.
  • the first control board module 126 and the second control board module 147 are also provided with auxiliary control circuits.
  • the auxiliary control circuits can use single-chip microcomputers to form intelligent management control, so that the work control process of the circuits is more secure and reliable.
  • the first control board module 126 and the second control board module 147 can enable multiple buck-boost conversion circuits 151 to work at the same frequency, in the same phase, and with the same pulse width, so that the output current and voltage of the buck-boost conversion circuits 151 are the same, and the system is improved. Stability and reliability of work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种智慧电池,涉及储能技术领域,其中智慧电池包括储能单元(130)、充电单元(120)、输出单元(140)和管理单元(110);所述充电单元(120)的输出端与所述储能单元(130)的输入端连接,所述充电单元(120)的输入端连接交流或直流输入;所述输出单元(140)的输入端与所述储能单元(130)的输出端连接,所述输出单元(140)的输出端输出交流电或直流电;管理单元(110)分别与所述储能单元(130)、所述充电单元(120)和所述输出单元(140)连接。智慧电池能够采用交流或直流作为充电电源,且能够提供多种电压等级的交流电和直流电输出,满足不同电压用电负载要求。

Description

智慧电池 技术领域
本发明涉及储能***领域,特别涉及一种智慧电池。
背景技术
传统的储能装置,如铅酸蓄电池、碱性蓄电池、锂电池和超级电容等,其输出电压为定值,难以满足负载的用电要求,且储能装置的使用受外部充放电电压影响大,充放电电压过高或过低都会影响其使用寿命。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种智慧电池,能够采用交流或直流作为充电电源,且能够提供多种电压等级的交流电和直流电输出,满足不同电压用电负载要求。
根据本发明实施例的智慧电池,包括储能单元、充电单元、输出单元和管理单元;所述充电单元的输出端与所述储能单元的输入端连接,所述充电单元的输入端连接交流或直流输入,所述充电单元内设置有第一控制板模块和第一升降压电路模块,所述第一控制板模块输出端与所述第一升降压电路模块的控制端连接,所述第一控制板模块为所述第一升降压电路模块提供触发脉冲;所述输出单元的输入端与所述储能单元的输出端连接,所述输出单元的输出端用于输出交流或直流输出,所述输出单元内设置有第二控制板模块和第二升降压电路模块,所述第二控制板模块输出端与所述第二升降压电路模块的控制端连接,所述第二控制板模块为所述第二升降压电路模块提供触发脉冲;管理单元分别与所述储能单元的反馈端、所述第一控制板模块的控制端和所述第二控制板模块的控制端连接。
根据本发明实施例的智慧电池,至少具有如下有益效果:管理单元能够对充电单元和输出单元进行控制,避免储能单元出现过充和过放现象,能够延长储能单元内的储能装置的使用时长。充电单元能够采用交流或直流作为充电电源,且 输出单元能够提供多种电压等级的交流电和直流电输出,满足不同电压用电负载要求,扩大了智慧电池的适用范围,且使用灵活方便。
根据本发明的一些实施例,所述第一升降压电路模块和所述第二升降压电路模块均包括多个升降压变换电路,多个所述升降压变换电路分别并联设置。
根据本发明的一些实施例,所述升降压变换电路包括第一场效应管、第二场效应管、滤波电容和变压器,所述第一场效应管和所述第二场效应管分别连接所述变压器的第一端和第二端,所述滤波电容与所述变压器的第三端连接。
根据本发明的一些实施例,所述第一控制板模块和所述第二控制板模块均包括PWM控制芯片。
根据本发明的一些实施例,所述充电单元还包括整流电路模块、第一高频整流电路模块和反馈电路模块,所述整流电路模块的输出端与所述第一升降压电路模块的输入端连接,所述第一升降压电路模块的输出端与所述第一高频整流电路模块的输入端连接,所述第一高频整流电路模块的输出端与所述储能单元的输入端连接,所述反馈电路模块与所述第一高频整流电路模块连接,并将接收到的信息传输至所述第一控制板模块。
根据本发明的一些实施例,所述第一高频整流电路模块替换为脉冲式充放电电路模块,所述脉冲式充放电电路模块的输入端与所述第一升降压电路模块的输出端连接,所述脉冲式充放电电路模块的输出端与所述储能单元的输入端连接,所述脉冲式充放电电路模块的反馈端与所述反馈电路模块的输入端连接。
根据本发明的一些实施例,所述输出单元还包括短路保护电路模块和输出及反馈模块,所述短路保护电路模块的输入端与所述储能单元连接,所述短路保护电路模块的输出端与所述第二升降压电路模块的输入端连接,所述第二升降压电路模块的输出端与所述输出及反馈模块的输入端连接,所述输出及反馈模块的第一输出端用于输出交流电或直流电,所述输出及反馈模块的第二输出端与所述第二控制板模块的输入端连接。
根据本发明的一些实施例,所述输出及反馈模块包括第二高频整流电路模块 和直流输出反馈电路模块,所述第二高频整流电路模块的输入端与所述第二升降压电路模块的输出端连接,所述第二高频整流电路模块的输出端用于输出直流电,所述直流输出反馈电路模块的输入端与所述第二高频整流电路模块的反馈端连接,所述直流输出反馈电路模块的输出端与所述第二控制板模块的输入端连接。
根据本发明的一些实施例,所述输出及反馈模块包括隔离电路模块和交流输出反馈电路模块,所述隔离电路模块的输入端与所述第二升降压电路模块的输出端连接,所述隔离电路模块的输出端用于输出交流电,所述交流输出反馈电路模块的输入端与所述隔离电路模块的反馈端连接,所述交流输出反馈电路模块的输出端与所述第二控制板模块的输入端连接。
根据本发明的一些实施例,所述隔离电路模块包括单相或三相交流电隔离电路。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的智慧电池的示意图;
图2为本发明实施例的充电单元的示意图;
图3为本发明实施例的输出单元(输出直流)的示意图;
图4为本发明实施例的输出单元(输出交流)的示意图;
图5为本发明实施例的充电单元(具有维护功能)的示意图;
图6为本发明实施例的升降压变换电路的电路图。
附图标记:
管理单元110、通信接口111;充电单元120、整流电路模块121、第一升降压电路模块122、第一高频整流电路模块123、反馈电路模块124、脉冲式充放 电电路模块125、第一控制板模块126;储能单元130;输出单元140、短路保护电路模块141、第二升降压电路模块142、第二高频整流电路模块143、直流输出反馈电路模块144、隔离电路模块145、交流输出反馈电路模块146、第二控制板模块147;升降压变换电路151。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个及两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1,在本发明一些实施例中,智慧电池包括充电单元120、储能单元130、输出单元140和管理单元110。充电单元120的输入端连接充电电源,充电单元120的输出端与储能单元130的输入端连接。充电单元120接收外部的充电电源传输的交流电或直流电,并将接收的电流转换为储能单元130能够接收并储存的电流,例如,充电单元120采用AC/DC或DC/DC电路,将不同电压等级的交直流输入变成储能单元130可以接受电压的直流电,来实现对储能单元130的充电。
输出单元140的输入端与储能单元130的输出端连接,输出单元140的输出端则输出交流电或直流电,例如,输出单元140采用DC/DC或DC/AC电路, 则输出单元140的输出可以是直流电或交流电,对于不同的电压等级的交直流输出要求,可以经过输出单元140将储能单元130的直流电变成不同电压等级的交直流,以满足不同电压等级的输出要求。
需要说明的是,充电单元120可以对储能单元130进行恒流、恒压、脉冲等多种工作方式充电,输出单元140可以对储能单元130进行恒流、恒压、脉冲等多种工作方式放电。储能单元130,即电化学储能装置,如铅酸电池、镉镍碱性电池、锂电池、超级电容等。
管理单元110分别与充电单元120的控制端、储能单元130的反馈端和输出单元140的控制端连接,管理单元110用于采集储能单元130的运行参数,如电压、电动势、充放电电流、温度和内阻等,且能够根据储能单元130的运行参数计算并得出储能单元130的健康状况和荷电状态。同样的,管理单元110可以通过控制充电单元120和输出单元140对储能单元130进行充放电,还可以采集充电单元120和输出单元140的输入和输出参数,如电压、电流等。
管理单元110设置有显示模块,用于显示储能单元130的电压、电动势、电流、温度、内阻、健康度、剩余容量等参数。显示模块可以采用液晶屏,也可以采用数码管。用户可以通过显示模块直观地了解到储能单元130的各项参数,且管理单元110通过上述参数可计算得到储能单元130的健康状况和荷电状况,能够使用户能够直观地得知,无需通过传统的蓄电池容量核对性放电方式来判断蓄电池的健康状况。
通过管理单元110对充电单元120和输出单元140的控制,能够避免储能单元130出现过充和过放现象,能够延长储能单元130内的储能装置的使用时长。充电单元120能够采用交流或直流作为充电电源,且输出单元140能够提供多种电压等级的交流电和直流电输出,满足不同电压用电负载要求,扩大了智慧电池的适用范围,且使用灵活方便。
参照图2,在本发明一些实施例中,充电单元120包括整流电路模块121、第一升降压电路模块122、第一高频整流电路模块123、反馈电路模块124和第 一控制板模块126。其中,整流电路模块121的输入端与交流或直流电源的输出端连接,整流电路模块121的输出端与第一升降压电路模块122的输入端连接,而第一升降压电路模块122的输出端与第一高频整流电路模块123的输入端连接,第一高频整流电路模块123的输出端与储能单元130的输入端连接,反馈电路模块124的输入端与第一高频整流电路模块123的反馈端连接,反馈电路模块124的输出端与第一控制板模块126连接,而第一控制板模块126的输出端与第一升降压电路模块122的控制端连接,第一控制板模块126的控制端作为充电单元120的控制端与管理单元110连接,反馈电路模块124用于将充电单元120输出的电流、电压等参数反馈至第一控制板模块126,再由第一控制板模块126传输至管理单元110。
交流或直流电源经过整流电路模块121进入充电单元120,需要说明的是,整流电路模块121采用的是全桥整流电路或者半桥整流电路。交流或直流电源经过整流电路模块121变为储能单元130能够接受的直流输入,再经过第一升降压电路模块122进行升降压处理,使得直流输入的电压也能够符合储能单元130的要求。第一升降压电路模块122包括高频开关管和高频变压器,高频开关管采用MOS管或者IGBT管,高频变压器用于对整流电路模块121的输出进行升压或降压处理。可以通过第一控制板模块126控制触发脉冲的给出,需要说明的是,触发脉冲用于控制高频开关管的导通和关断,形成高频交流电。最后经过第一高频整流电路转换为满足储能单元130要求的直流电。充电单元120的直流输出的电压和电流等参数经过反馈电路模块124反馈给第一控制板模块126。
例如,反馈电路模块124可以理解为电压和电流的采集模块,例如采用电压采集电路和电流采集电路,将采集到的电压、电流信息传输至第一控制板模块126。
在管理单元110中可以设置充电单元120的充电电流限流值和充电电压限压值,其中,充电电流限流值和充电电压限压值的设置是为使储能单元130能够在最佳状态下运行。例如,储能单元130包括12V/100AH的铅酸电池,则充电单 元120的充电电压限压值为14.2V,充电电流限流值为10A,即充电电压会小于或等于14.2V,电流会小于或等于10A。当储能单元130的电压值低于充电电压限压值,储能单元130处于恒流或者恒压充电状态,直至储能单元130充满,能够有效减少欠充的现象出现。当储能单元130的电压值高于充电电压限压值,管理单元110控制充电单元120停止工作,避免出现过充而损坏储能单元130。
充电单元120的输入端能够接收不同电压等级的交流电或直流电输入,经过整流电路模块121、第一升降压电路模块122以及第一高频整流电路模块123将交流电或直流电输入转换为储能单元130能够储存的直流电并储存至储能单元130中。且在管理单元110和第一控制板模块126的控制下,能够对储能单元130以及输入电压进行监控,能够有效避免过充或欠充的情况出现。
参照图3,在本发明一些实施例中,输出单元140可以用于输出直流电。输出单元140包括短路保护电路电路模块141、第二升降压电路模块142、输出及反馈模块和第二控制板模块147,其中,输出及反馈模块包括第二高频整流电路模块143和直流输出反馈电路模块144。
短路保护电路模块141的输入端与储能单元130的输出端连接,短路保护电路模块141的输出端与第二升降压电路模块142的输入端连接,第二升降压电路模块142的输出端与第二高频整流电路模块143的输入端连接,第二高频整流电路模块143的输出端则输出直流电,直流输出反馈电路模块144的输入端与第二高频整流电路模块143的反馈端连接,直流输出反馈电路模块144的的输出端与第二控制板模块147的输入端连接,第二控制板模块147的输出端与第二升降压电路模块142的控制端连接,第二控制板模块147的控制端作为输出单元140的控制端与管理单元110连接。
从储能单元130流出的直流电经过短路保护电路模块141,再经过第二升降压电路模块142做升降压,第二控制板模块147控制触发脉冲的给出,最后经过第二高频整流电路模块143输出满足负载要求的直流电,而直流输出反馈电路模块144则采集输出的直流电的电压和电流参数,并反馈至第二控制板模块147。 需要说明的是,短路保护电路模块141可以采用熔断器或断路器进行保护,在发生短路的情况下,能够触发熔断器或者断路器,使输出单元140停止工作,从而避免对储能单元130造成损坏;第二升降压电路模块142包括高频开关管和高频变压器,高频开关管采用MOS管或者IGBT管,高频变压器用于对整流电路模块121的输出进行升压或降压处理。
直流输出反馈电路模块144包括直流电流采样电路和直流电压采样电路,用于将第二高频整流电路模块143输出直流电的电流和电压进行检测并传输至第二控制板模块147。
在管理单元110中可以设置输出单元140的输出限流保护值、低电压保护值等参数,输出限流保护值和低电压保护值为使储能单元130处于最佳运行状态的参数。例如,储能单元130包括12V/100AH的铅酸电池,则放电时的低电压保护值为10.8V。管理单元110控制输出单元140工作时,储能单元130处于放电状态,直至储能单元130的输出电压降到低电压保护值则停止,即管理单元110采集到的储能单元130电压值小于或等于10.8V,则控制输出单元140停止工作,避免出现过放而损坏储能单元130。
输出单元140能够将储能单元130输出的直流电转换为不同电压等级的直流电或交流电输出,以满足用户的需求,使得智慧电池的应用更加广泛。用于输出直流电的输出单元140通过短路保护电路、第二升降压电路模块142以及第二高频整流电路模块143将储能单元130输出的直流电转换为满足用户要求的直流电。且在管理单元110和第二控制板模块147的控制下,能够对储能单元130以及输出电压进行监控,能有效避免出现过放的情况而损坏储能单元130。
参照图4,在本发明一些实施例中,输出及反馈电路模块124包括隔离电路模块145和交流输出反馈电路模块146。短路保护电路模块141的输入端与储能单元130的输出端连接,短路保护电路模块141的输出端与第二升降压电路模块142的输入端连接,第二升降压电路模块142的输出端与隔离电路模块145的输入端连接,隔离电路模块145的输出端则输出交流电,交流输出反馈电路模块1 46的输入端与隔离电路模块145的反馈端连接,交流输出反馈电路模块146的的输出端与第二控制板模块147的输入端连接,第二控制板模块147的输出端与第二升降压电路模块142的控制端连接,第二控制板模块147的控制端作为输出单元140的控制端与管理单元110连接。
从储能单元130流出的直流电经过短路保护电路模块141,再经过第二升降压电路模块142做升降压,第二控制板模块147控制触发脉冲的给出,使第二升降压电路模块142的输出形成正弦波,最后经过第二高频整流电路模块143输出满足负载要求的交流电,而交流输出反馈电路模块146则采集输出的交流电的电压和电流参数,并反馈至第二控制板模块147。需要说明的是,短路保护电路模块141可以采用熔断器或断路器进行保护,在发生短路的情况下,能够触发熔断器或者断路器,使输出单元140停止工作,从而避免对储能单元130造成损坏;第二升降压电路模块142中的高频开关管采用MOS管或者IGBT管,且采用高频变压器来对短路保护电路模块141的输出进行升压或降压处理。
交流输出反馈电路模块146包括交流电流采样电路和交流电压采样电路,用于将隔离电路模块145输出交流电的电流和电压进行检测并传输至第二控制板模块147。
在管理单元110中可以设置输出单元140的输出限流保护值、低电压保护值等参数,输出限流保护值和低电压保护值为使储能单元130处于最佳运行状态的参数。例如,储能单元130包括12V/100AH的铅酸电池,则放电时的低电压保护值为10.8V。管理单元110控制输出单元140工作时,储能单元130处于放电状态,直至储能单元130的输出电压降到低电压保护值则停止,即管理单元110采集到的储能单元130电压值小于或等于10.8V,则控制输出单元140停止工作,避免出现过放而损坏储能单元130。
需要说明的是,隔离电路模块145包括单相交流电隔离电路或三相交流电隔离电路,隔离电路模块145用于保护智慧电池进行工作,使智慧电池能够安全可靠地工作。
输出单元140能够将储能单元130输出的直流电转换为不同电压等级的直流电或交流电输出,以满足用户的需求,使得智慧电池的应用更加广泛。用于输出交流电的输出单元140通过短路保护电路、第二升降压电路模块142以及隔离电路模块145将储能单元130输出的直流电转换为满足用户要求的交流电。且在管理单元110和第二控制板模块147的控制下,能够对储能单元130以及输出电压进行监控,能有效避免出现过放的情况而损坏储能单元130,还能够对储能单元130的电能进行有效地利用。
参照图5,在本发明一些实施例中,智慧电池可以进行主动维护。在充电单元120中还包括有脉冲式充放电电路模块125。整流电路模块121的输出端与第一升降压电路模块122的输入端连接,第一升降压电路模块122的输出端则与脉冲式充放电电路模块125的输入端连接,脉冲式充放电电路模块125的输出端与储能单元130的输入端连接,脉冲式充放电电路模块125的反馈端与反馈电路模块124的输入端连接,反馈电路模块124的输出端与第一控制板模块126的输入端连接,第一控制板模块126的输出端与第一升降压电路模块122的控制端连接,第一控制板模块126的控制端与管理单元110连接。
交流或直流电源经过整流电路模块121变为储能单元130能够接受的直流输入,再经过第一升降压电路模块122进行升降压处理,最后通过脉冲式充放电路模块对储能单元130进行活化处理。可以理解的是,当储能单元130的健康状况为亚健康状态,智慧电池则进行主动维护,通过脉冲式充放电电路模块125对储能单元130中的蓄电池进行活化,使储能单元130恢复健康。需要说明的是,充电单元120的脉冲式充放电活化参数可以通过管理单元110进行配置。
脉冲式充放电电路模块125为智慧电池提供了自我维护功能,即在储能单元130的健康状况处于亚健康状态,启动自我维护功能。交流电输入或直流电输入经过整流电路模块121、第一升降压电路模块122以及脉冲式充放电电路模块125进入储能单元130,在脉冲式充放电电路模块125的作用下,能够对储能单元130进行活化,即使储能单元130恢复健康。管理单元110和第一控制板模块1 26则对储能单元130的健康状况进行监测,且在监测到储能单元130恢复健康则停止脉冲式充放电电路模块125的工作,能够有效实现储能单元130内蓄电池的多次利用,减少蓄电池的浪费。
例如,脉冲式充放电电路模块125包括脉冲充电电路和脉冲放电电路,用于对储能单元进行活化,活化可以理解为对储能单元进行的深度充放电流程。脉冲式充电电路对储能单元130进行充电,脉冲式放电电路则对储能单元130进行放电。如脉冲式充电电路采用NE555芯片作为脉冲的发生器,脉冲放电电路可以采用RC放电电路与受脉冲控制的开关连接的方式实现放电,以使得对储能单元130进行循环地充放电,达到活化的效果。
参照图6,在本发明一些实施例中,第一升降压电路模块122和第二升降压电路模块142均包括多个升降压变换电路151,其中,多个升降压变换电路151是并联设置的,可以理解的是,由第一控制板模块126给出PWM控制信号,PWM控制信号作为触发脉冲控制升降压变换电路151进行升降压处理,最后经过滤波处理。
具体地,升降压变换电路151包括第一场效应管、第二场效应管、滤波电容和变压器,触发脉冲从第一场效应管和第二场效应管的栅极进入升降压变换电路151,如第一控制板模块126输出的触发脉冲进入第一升降压电路模块122内的升降压变换电路151的第一场效应管和第二场效应管的栅极;第二控制板模块147输出的触发脉冲进入第二升降压电路模块142内的升降压变换电路151的第一场效应管和第二场效应管的栅极。第一场效应管和第二场效应管的源极接地,第一场效应管和第二场效应管的漏极与变压器连接。可以理解的是,变压器采用三绕组,第一绕组的第一端与第一场效应管的漏极连接,第一绕组的第二端与滤波电容的阳极端连接,第二绕组的第一端与第二场效应管的漏极连接,第二绕组的第二端与滤波电容的阳极端连接,而多个升降压变换电路151的变压器的第三绕组串联。
采用三个升降压变换电路151,如第一升降压变换电路、第二升降压变换电路和第三升降压变换电路,则各变压器的第三绕组依次串联,第一升降压变换电路的变压器的第三绕组连接多个并联的电容后与桥式整流电路第一输入端连接,第三升降压变换电路的变压器的第三绕组的第二端与桥式整流电路的第二输入端连接。而在滤波电容的阳极端连接其他模块的输出端,如在第一升降压电路模块122中,升降压变换电路151中的滤波电容的阳极端与整流电路模块121的输出端连接;在第二升降压电路模块142中,升降压变换电路151中的滤波电容的阳极端与短路保护电路141模块的输出端连接。
通过PWM信号控制多个升降压变换电路151以精准地控制输出的电流电压,升降压变换电路151采用并联方式,减少了电路在大电流工作时的损耗,提高了电路的可靠性。
在本发明一些实施例中,第一控制板模块126和第二控制板模块147均包括PWM控制芯片,第一控制板模块126上的PWM控制芯片的输出端与第一升降压电路模块122连接,第二控制板模块147上的PWM控制芯片与第二升降压电路模块142连接,可以理解的是,PWM控制芯片提供触发脉冲并控制第一升降压电路模块122以及第二升降压电路模块142。PWM控制芯片可以采用UC2525芯片。第一控制板模块126和第二控制板模块147还设置有辅助控制电路,辅助控制电路可以采用单片机形成智能的管理控制,使电路的工作控制过程更加安全可靠。第一控制板模块126和第二控制板模块147能使多个升降压变换电路151同频、同相、同脉宽工作,使得升降压变换电路151输出的电流、电压相同,提高了***工作的稳定性和可靠性。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种智慧电池,其特征在于,包括:
    储能单元(130);
    充电单元(120),所述充电单元(120)的输出端与所述储能单元(130)的输入端连接,所述充电单元(120)的输入端连接交流或直流输入,所述充电单元内设置有第一控制板模块(126)和第一升降压电路模块(122),所述第一控制板模块(126)输出端与所述第一升降压电路模块(122)的控制端连接,所述第一控制板模块(126)为所述第一升降压电路模块(122)提供触发脉冲;
    输出单元(140),所述输出单元(140)的输入端与所述储能单元(130)的输出端连接,所述输出单元(140)的输出端用于输出交流或直流输出,所述输出单元内设置有第二控制板模块(147)和第二升降压电路模块(142),所述第二控制板模块(147)输出端与所述第二升降压电路模块(142)的控制端连接,所述第二控制板模块(147)为所述第二升降压电路模块(142)提供触发脉冲;
    管理单元(110),分别与所述储能单元(130)的反馈端、所述第一控制板模块(126)的控制端和所述第二控制板模块(147)的控制端连接。
  2. 根据权利要求1所述的智慧电池,其特征在于,所述第一升降压电路模块(122)和所述第二升降压电路模块(142)均包括多个升降压变换电路(151),多个所述升降压变换电路(151)分别并联设置。
  3. 根据权利要求2所述的智慧电池,其特征在于,所述升降压变换电路(151)包括第一场效应管、第二场效应管、滤波电容和变压器,所述第一场效应管和所述第二场效应管分别连接所述变压器的第一端和第二端,所述滤波电容与所述变压器的第三端连接。
  4. 根据权利要求1所述的智慧电池,其特征在于,所述第一控制板模块(126)和所述第二控制板模块(147)均包括PWM控制芯片。
  5. 根据权利要求1所述的智慧电池,其特征在于,所述充电单元(120)还包括整流电路模块(121)、第一高频整流电路模块(123)和反馈电路模块(124), 所述整流电路模块(121)的输出端与所述第一升降压电路模块(122)的输入端连接,所述第一升降压电路模块(122)的输出端与所述第一高频整流电路模块(123)的输入端连接,所述第一高频整流电路模块(123)的输出端与所述储能单元(130)的输入端连接,所述反馈电路模块(124)与所述第一高频整流电路模块连接,并将接收到的信息传输至所述第一控制板模块(126)。
  6. 根据权利要求5所述的智慧电池,其特征在于,所述第一高频整流电路模块替换为脉冲式充放电电路模块(125),所述脉冲式充放电电路模块(125)的输入端与所述第一升降压电路模块(122)的输出端连接,所述脉冲式充放电电路模块(125)的输出端与所述储能单元(130)的输入端连接,所述脉冲式充放电电路模块(125)的反馈端与所述反馈电路模块(124)的输入端连接。
  7. 根据权利要求1所述的智慧电池,其特征在于,所述输出单元(140)还包括短路保护电路模块(141)和输出及反馈模块,所述短路保护电路模块(141)的输入端与所述储能单元(130)连接,所述短路保护电路模块(141)的输出端与所述第二升降压电路模块(142)的输入端连接,所述第二升降压电路模块(142)的输出端与所述输出及反馈模块的输入端连接,所述输出及反馈模块的第一输出端用于输出交流电或直流电,所述输出及反馈模块的第二输出端与所述第二控制板模块(147)的输入端连接。
  8. 根据权利要求7所述的智慧电池,其特征在于,所述输出及反馈模块包括第二高频整流电路模块(143)和直流输出反馈电路模块(144),所述第二高频整流电路模块(143)的输入端与所述第二升降压电路模块(142)的输出端连接,所述第二高频整流电路模块(143)的输出端用于输出直流电,所述直流输出反馈电路模块(144)的输入端与所述第二高频整流电路模块(143)的反馈端连接,所述直流输出反馈电路模块(144)的输出端与所述第二控制板模块(147)的输入端连接。
  9. 根据权利要求7所述的智慧电池,其特征在于,所述输出及反馈模块包括隔离电路模块(145)和交流输出反馈电路模块(146),所述隔离电路模块(145) 的输入端与所述第二升降压电路模块(142)的输出端连接,所述隔离电路模块(145)的输出端用于输出交流电,所述交流输出反馈电路模块(146)的输入端与所述隔离电路模块(145)的反馈端连接,所述交流输出反馈电路模块(146)的输出端与所述第二控制板模块(147)的输入端连接。
  10. 根据权利要求9所述的智慧电池,其特征在于,所述隔离电路模块(145)包括单相或三相交流电隔离电路。
PCT/CN2021/097867 2021-04-13 2021-06-02 智慧电池 WO2022217721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110392705.2 2021-04-13
CN202110392705.2A CN112803085B (zh) 2021-04-13 2021-04-13 智慧电池

Publications (1)

Publication Number Publication Date
WO2022217721A1 true WO2022217721A1 (zh) 2022-10-20

Family

ID=75816900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097867 WO2022217721A1 (zh) 2021-04-13 2021-06-02 智慧电池

Country Status (2)

Country Link
CN (1) CN112803085B (zh)
WO (1) WO2022217721A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803085B (zh) * 2021-04-13 2021-08-10 珠海朗尔电气有限公司 智慧电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377670U (zh) * 2013-07-25 2014-01-01 湖北省电力勘测设计院 分散式智能直流电源
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力***和动力电池的充电方法
CN104319826A (zh) * 2014-09-28 2015-01-28 株洲南车时代电气股份有限公司 一种蓄电池的充电机
CN105262158A (zh) * 2015-09-25 2016-01-20 江苏峰谷源储能技术研究院有限公司 一种家用储能控制电路
CN205248854U (zh) * 2015-12-15 2016-05-18 深圳市迪比科电子科技有限公司 一种多功能充电座装置
CN106026327A (zh) * 2016-02-05 2016-10-12 广东欧珀移动通信有限公司 充电装置、充电方法、电源适配器和终端
CN207098712U (zh) * 2017-08-29 2018-03-13 广州智广电子科技有限公司 一种单mcu实现同步整流升压的移动电源
US20200395764A1 (en) * 2019-06-11 2020-12-17 Raytheon Company Power transfer system with multiple energy storage modules
CN112803085A (zh) * 2021-04-13 2021-05-14 珠海朗尔电气有限公司 智慧电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922178A (en) * 1987-08-31 1990-05-01 Motorola, Inc. Dual source rechargeable battery
JP4244531B2 (ja) * 2001-05-11 2009-03-25 株式会社デンソー 複数電圧出力型車両用電源装置の制御方法
CN1471192A (zh) * 2003-06-26 2004-01-28 丁卫东 内置充电器式锂离子电池包
CN2796214Y (zh) * 2005-02-02 2006-07-12 胡士谦 一种多用电源
CN101562266B (zh) * 2009-05-22 2011-11-30 李松 锂离子动力电池组的充电方法及使用该方法的锂离子动力电池组***
CN201717656U (zh) * 2010-07-09 2011-01-19 上海沃施园艺股份有限公司 智能电池包
JP5668424B2 (ja) * 2010-11-16 2015-02-12 ソニー株式会社 バッテリ装置、バッテリ管理システム、およびバッテリ管理方法
CN204118835U (zh) * 2014-08-01 2015-01-21 珠海朗尔电气有限公司 基于可调节输出电压的开关电源蓄电池模拟器
CN205104583U (zh) * 2015-10-12 2016-03-23 江苏华富储能新技术股份有限公司 一种非有线模式充放电的新型铅蓄电池
TWI707521B (zh) * 2019-07-01 2020-10-11 飛宏科技股份有限公司 智慧型交流/直流最大功率電池充電管理方法
KR20210000492U (ko) * 2019-08-21 2021-03-04 주식회사 테스이노베이션 큐브 멀티 펑션 보조배터리
CN212587564U (zh) * 2020-08-19 2021-02-23 深圳市誉娇诚科技有限公司 多功能储能电池装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力***和动力电池的充电方法
CN203377670U (zh) * 2013-07-25 2014-01-01 湖北省电力勘测设计院 分散式智能直流电源
CN104319826A (zh) * 2014-09-28 2015-01-28 株洲南车时代电气股份有限公司 一种蓄电池的充电机
CN105262158A (zh) * 2015-09-25 2016-01-20 江苏峰谷源储能技术研究院有限公司 一种家用储能控制电路
CN205248854U (zh) * 2015-12-15 2016-05-18 深圳市迪比科电子科技有限公司 一种多功能充电座装置
CN106026327A (zh) * 2016-02-05 2016-10-12 广东欧珀移动通信有限公司 充电装置、充电方法、电源适配器和终端
CN207098712U (zh) * 2017-08-29 2018-03-13 广州智广电子科技有限公司 一种单mcu实现同步整流升压的移动电源
US20200395764A1 (en) * 2019-06-11 2020-12-17 Raytheon Company Power transfer system with multiple energy storage modules
CN112803085A (zh) * 2021-04-13 2021-05-14 珠海朗尔电气有限公司 智慧电池

Also Published As

Publication number Publication date
CN112803085B (zh) 2021-08-10
CN112803085A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN205901410U (zh) 组合式应急保障电源
CN108075562B (zh) 大功率便携式用电设备及其电源控制装置及方法
US20140028103A1 (en) Control system, power supply system, and method for preventing a floating charge of a battery
CN108448713A (zh) 一种智能化储能式应急电源***
CN106961150B (zh) 复合储能电池的控制方法及***
CN211377693U (zh) 一种基于太阳能和感应取能的输电线路混合供电电源
CN108429453A (zh) 车载高压逆变转换装置及控制方法
CN103248100A (zh) 一种后备电源充放电控制电路
CN203278327U (zh) 一种后备电源充放电控制电路
WO2022217721A1 (zh) 智慧电池
CN210490543U (zh) 一种多级储能元件并联充放电***
CN104882936A (zh) 一种通信储能电源***
CN205622244U (zh) 一种供电接入装置
CN116979640A (zh) 电池管理***以及电池***
CN111106659A (zh) 充电装置、多电池充电***及充电柜
CN106026202A (zh) 一种供电接入装置及其充放电控制方法
CA3019619C (en) Power supply connection device, and charging-discharging control method for same
CN113629854A (zh) 带线性动态充电限流功能的通信设备用锂电池电源***
CN210608651U (zh) 充电装置、多电池充电***及充电柜
CN212518552U (zh) 一种改进型无线充电器
CN114726036A (zh) 一种多路双向变压控制装置及控制器
CN204761067U (zh) 一种通信储能电源***
CN211127295U (zh) Ups锂电池一体化电源***
CN113659673A (zh) 一种基于储能电源的快速充电和并网连接装置及其工作方法
CN219107111U (zh) 电池群并联装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936593

Country of ref document: EP

Kind code of ref document: A1