WO2022213559A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2022213559A1
WO2022213559A1 PCT/CN2021/121615 CN2021121615W WO2022213559A1 WO 2022213559 A1 WO2022213559 A1 WO 2022213559A1 CN 2021121615 W CN2021121615 W CN 2021121615W WO 2022213559 A1 WO2022213559 A1 WO 2022213559A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
inclined portion
sky
positioning
sheet
Prior art date
Application number
PCT/CN2021/121615
Other languages
English (en)
French (fr)
Inventor
丛晓东
韩宇
邹仪
冯希敏
袁光军
张志睿
杨广卿
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110387573.4A external-priority patent/CN115202098A/zh
Priority claimed from CN202120739189.1U external-priority patent/CN215117080U/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2022213559A1 publication Critical patent/WO2022213559A1/zh
Priority to US18/457,820 priority Critical patent/US20230400731A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present application relates to the field of display technology, and in particular, to a display device.
  • Mini LED backlights are becoming more and more attractive, because the number of Mini LEDs used in Mini LED backlight design is dozens or hundreds of times that of traditional backlights, and the number of Mini LEDs in a single light board used in Mini LED backlight solutions is larger. , the corresponding reflective sheet also needs to open a lot of holes, the traditional reflective sheet can no longer meet the demand.
  • LED Light Emitting Diode
  • the display device includes: a back panel, a light panel, and a split reflective sheet.
  • the back plate includes a flat part, an inclined part and a bent part
  • the inclined part includes a sky side inclined part, a ground side inclined part, a left inclined part and a right inclined part
  • the sky side inclined part is respectively connected with one end and the right side of the left inclined part.
  • One end of the side inclined portion is connected, and the ground side inclined portion is respectively connected with the other end of the left inclined portion and the other end of the right inclined portion, and the connected position is the corner position of the inclined portion.
  • the split reflection sheet includes a main reflection sheet and a plurality of side reflection sheets, the main reflection sheet is located on the side of the lamp panel away from the back panel, and the multiple side reflection sheets are located at the side of the inclined portion of the back panel facing the lamp panel.
  • the splicing positions between the multiple side reflectors and the corner positions of the inclined parts do not overlap with each other, and the splicing positions of the multiple side reflectors avoid the corner positions, which can avoid the occurrence of the splicing deviation of the side reflectors at the corner positions. shadow problem.
  • the side reflection sheet includes a sky side reflection sheet, a ground side reflection sheet, a left reflection sheet and a right reflection sheet.
  • the sky-side reflector covers the sky-side inclined part, and the two ends extend to the left-side inclined part and the right-side inclined part, so that the splicing position of the sky-side reflector and the left-side reflector is located at the left-side inclined part, and the sky-side reflector The splicing position with the right reflective sheet is located on the right inclined part.
  • the ground-side reflective sheet covers the ground-side inclined part, and the two ends extend to the left-side inclined part and the right-side inclined part, so that the position where the ground-side reflective sheet and the left-side reflective sheet are spliced is located at the left-side inclined part, and the ground-side reflective sheet The splicing position with the right reflective sheet is located on the right inclined part.
  • a precise positioning point convex hull and a coarse positioning point convex hull are provided on the bent portion connected to the ground-side inclined portion; the side of the ground-side reflective sheet away from the face has a precise positioning card matching the positioning point convex hull Slot, rough positioning card slot matching with the convex hull of the positioning point.
  • the ground side reflector is designed for alignment according to the method of middle fine positioning and left and right rough positioning.
  • the left and right coarse positioning mainly ensures that the ground side reflector is not deviated in the up and down direction
  • the middle fine positioning mainly ensures that the ground side reflector is not deviated in the left and right directions. , which improves the stability of the assembly offset of the ground side reflector.
  • a dent alignment mark line is provided on the side of the sky-side inclined portion adjacent to the plane portion, and an alignment tangent line matching the dent alignment mark line is provided on the side of the sky-side reflective sheet adjacent to the plane portion.
  • the alignment tangent is used for matching and positioning according to the corresponding dent alignment mark line, which ensures the centering design of the sky-side reflector, ensures that the left-right direction of the sky-side reflector is not deviated, and improves the sky-side reflector. Stability of reflector assembly offset.
  • the sky-side inclined part also has a positioning groove on the edge adjacent to the plane part, and the edge of the sky-side reflective sheet adjacent to the plane part has a positioning protrusion that matches the positioning groove, and the positioning protrusion is aligned with the positioning groove to ensure the sky-side
  • the reflector is not deviated in the up and down direction, which improves the stability of the assembly offset of the sky-side reflector.
  • a positioning groove is provided on the edge of the left inclined part adjacent to the flat part, and the edge of the left reflection sheet adjacent to the flat part has a positioning protrusion matching the positioning groove; the right inclined part is adjacent to the flat part
  • the edge of the reflective sheet is provided with a positioning groove, and the edge of the right reflective sheet adjacent to the plane portion has a positioning protrusion matching the positioning groove.
  • the alignment of the locating protrusions and the locating grooves ensures that the left and right reflective sheets are not deviated in the up and down direction, and improves the stability of the assembly offset of the left and right reflective sheets.
  • Edge alignment marks are respectively provided on the two ends of the sky-side reflective sheet for locating the edge positions of the left reflective sheet and the right reflective sheet.
  • the edge positions of the left reflector and the right reflector are aligned with the edge alignment marks, which ensures that the left reflector and the right reflector are not misaligned in the left and right directions, and improves the assembly offset of the left reflector and the right reflector. stability.
  • one edge of the left reflection sheet and the sky side reflection sheet overlap.
  • the edges of the left reflection sheet and the sky side reflection sheet are set to be perpendicular to the edge of the plane portion.
  • the right side reflection sheet and the other edge of the sky side reflection sheet overlap, in order to ensure accurate alignment, set the other edge of the right side reflection sheet and the sky side reflection sheet to be perpendicular to the edge of the plane part.
  • the main reflection sheets and the light panels are attached in a one-to-one correspondence.
  • the size of the main reflector is larger than the size of the corresponding lamp panel; there is a set value gap between adjacent lamp panels, and the gap is completely covered by the main reflector to avoid subjective problems caused by gaps between adjacent lamp panels and improve subjective stability.
  • the overlapping area between adjacent main reflection sheets is located at the gap between the lamp panels, and there may be unevenness in the overlap area between the adjacent main reflectors. Therefore, the overlap area is set to The light panels do not overlap each other to avoid the overlapping area affecting the light emission of the light panels.
  • the display device includes a display panel for image display, a light board for providing backlight to the display panel, and a fully glued reflective sheet fully attached to one side of the light board. Fix the positioning bracket on the light board, and the fully glued reflective sheet is provided with positioning openings for exposing the positioning bracket.
  • the top of the lamp board is accurately positioned from top to bottom, and then pressed by a pressing jig. This design can ensure the flatness of the lamp board and the fully-coated reflector after full lamination, and improve the assembly stability.
  • the fully-coated reflective sheets and the light boards are in a one-to-one correspondence, and two positioning brackets are correspondingly arranged on one light board to realize the fully-coated reflective sheet Double precise positioning with light board.
  • the fully-coated reflective sheet includes: a substrate with support and reflection functions, and a colloid layer on the side of the substrate facing the lamp board.
  • the colloid layer is used to achieve full fit with the light board.
  • the material of the colloid layer is generally bilobal acrylic.
  • the material of the substrate is generally PET.
  • the fully-coated reflective sheet further includes: a scattering particle layer on the side of the substrate away from the colloid layer, for increasing the exit direction of reflected light.
  • the light board includes: a circuit board for providing driving signals, a light-emitting diode chip arranged on the circuit board, and the fully-coated reflective sheet includes an opening for exposing the light-emitting diode chip.
  • Some embodiments of the present application further include: a diffuser plate located on the light-emitting side of the lamp board, and the positioning bracket also has the function of supporting the diffuser plate.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 3 is a schematic top-view structure diagram of a backplane provided in real time by the present application.
  • FIG. 4 is a schematic top-view structural diagram of a split reflective sheet provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a partial structure of a main reflector and a lamp panel provided by an embodiment of the present application
  • FIG. 6 is a schematic top-view structure diagram of a ground-side reflection sheet provided by an embodiment of the present application.
  • FIG. 7 is a schematic top-view structure diagram of a sky-side reflector provided by an embodiment of the present application.
  • FIG. 8 is a partial top-view structural schematic diagram of the precise positioning of the bending portion connected to the ground-side reflective sheet and the ground-side inclined portion according to an embodiment of the present application;
  • FIG. 9 is a schematic partial top-view structural schematic diagram of the rough positioning of the bent portion connected to the ground-side reflective sheet and the ground-side inclined portion according to an embodiment of the present application.
  • Fig. 10 is the partial top-view structure schematic diagram of the sky-side reflective sheet and the sky-side inclined portion provided by the embodiment of the application;
  • FIG. 11 is a schematic partial structure diagram of a positioning groove and a positioning protrusion provided by an embodiment of the application.
  • 12a is a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the application.
  • 12b is another schematic cross-sectional structure diagram of the backlight module provided by the embodiment of the application.
  • FIG. 13 is a schematic top-view structure diagram of a lamp panel provided by an embodiment of the application.
  • FIG. 14 is a schematic top-view structural diagram of a fully-coated reflective sheet provided by an embodiment of the application.
  • 15 is a schematic cross-sectional structure diagram of a fully coated reflective sheet provided by an embodiment of the application.
  • 16 is a schematic diagram of the coating equipment during the production of the fully-coated reflective sheet provided by the embodiment of the application;
  • 17 is a schematic diagram of the reflected light of the fully coated reflective sheet provided by the embodiment of the application.
  • FIG. 19 is one of the schematic diagrams of the connection relationship between the positioning bracket and the light panel provided by the embodiment of the application.
  • 20 is the second schematic diagram of the connection relationship between the positioning bracket and the light panel provided by the embodiment of the application.
  • FIG. 21 is the third schematic diagram of the connection relationship between the positioning bracket and the light board provided by the embodiment of the application.
  • Mini LED backlights are becoming more and more attractive, because the number of Mini LEDs used in Mini LED backlight design is dozens or hundreds of times that of traditional backlights, and the number of Mini LEDs in a single lamp board used in the Mini LED backlight scheme is large, corresponding to The reflector also needs to open a lot of holes, which cannot meet the mass production based on the traditional single reflector design. At the same time, it is difficult to ensure the stability of the backlight visual effect by the assembly of thousands of Mini LED holes, and the traditional single reflector is prone to shadow problems. Therefore, the traditional design scheme cannot meet the current requirements of Mini LED backlight. Design for Manufacturing.
  • the liquid crystal display device is mainly composed of a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and needs to rely on the light source provided by the backlight module to achieve brightness display.
  • the imaging principle of the liquid crystal display device is to place the liquid crystal between two pieces of conductive glass, driven by the electric field between the two electrodes, to cause the electric field effect of the liquid crystal molecules to twist, so as to control the transmission or shielding function of the backlight source, so as to display the image. come out. If a color filter is added, color images can be displayed.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application.
  • the display device includes: a backlight module 100 and a display panel 200 .
  • the backlight module 100 is used for providing a backlight source to the display panel 200
  • the display panel 200 is used for image display.
  • the display panel 200 is located on the light-emitting side of the backlight module 100 , and the shape and size of the display panel usually match the backlight module.
  • the display panel 200 can be set in a rectangular shape, including the sky side, the ground side, the left side and the right side, wherein the sky side and the ground side are opposite, the left side and the right side are opposite, and the sky side is respectively with one end of the left side and the right side
  • the ground side is connected to the other end of the left side and the other end of the right side, respectively.
  • the display panel 200 is a transmissive display panel, which can modulate the transmittance of light, but does not emit light itself.
  • the display panel 200 has a plurality of pixel units arranged in an array, and each pixel unit can independently control the light transmittance and color of the backlight module 100 incident on the pixel unit, so that the light transmitted by all the pixel units is composed of displayed image.
  • the backlight module 100 is usually located at the bottom of the display device, and its shape and size are adapted to the shape and size of the display device. When applied to fields such as televisions or mobile terminals, the backlight module usually adopts a rectangular shape.
  • the backlight module in the embodiment of the present application adopts a direct-type backlight module, which is used for uniformly emitting light in the entire light-emitting surface to provide the display panel with light with sufficient brightness and uniform distribution, so that the display panel can display images normally.
  • FIG. 2 is a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 3 is a schematic top-view structural diagram of a backplane provided by an embodiment of the present application.
  • the backlight module includes: a backplane 11 , a light source, a separate reflection sheet 13 , a diffuser plate 14 and an optical film 15 .
  • the light source is provided in the form of a light panel 12 .
  • the back plate 11 is located at the bottom of the backlight module and has the function of supporting and bearing.
  • the back plate 11 includes a flat portion 111 , an inclined portion 112 and a bent portion 113 .
  • the plane portion 111 of the back plate 11 is located at the bottom, and is usually a square or rectangular structure. When applied to a special-shaped display device, the shape of the plane portion 111 is adapted to the shape of the display device.
  • the flat portion 111 has the function of carrying the light board 12 , the inclined portion 112 is located around the flat portion 111 , and the inclined portion 112 is bent along the edge of the flat portion 111 to one side of the back plate.
  • the inclined portion 112 is connected to the flat portion 111 .
  • the included angle is between 30°-90°, for example, it can be 45°.
  • the bent portion 113 is bent to the side of the back plate along the edge of the inclined portion 112 away from the plane portion 111 .
  • the bent portion 113 is parallel to the plane portion 11 , and the bent portion 113 has an edge position for carrying and supporting components such as optical films. effect.
  • the flat portion 111 , the inclined portion 112 and the bent portion 113 are integrally formed.
  • the inclined portion 112 of the back plate 11 includes a sky-side inclined portion 112a, a ground-side inclined portion 112b, a left inclined portion 112c, and a right inclined portion 112d.
  • the sky-side inclined portion 112a is opposite to the ground-side inclined portion 112b
  • the left-side inclined portion 112c is opposite to the right-side inclined portion 112d
  • the sky-side inclined portion 112a is respectively connected to one end of the left inclined portion 112c and one end of the right inclined portion 112d
  • the ground-side inclined portion 112b is connected to the other end of the left inclined portion 112c and the other end of the right inclined portion 112d, respectively.
  • the included angles of the sky-side inclined portion 112 a , the ground-side inclined portion 112 b , the left inclined portion 112 c , and the right inclined portion 112 d and the plane portion 111 may be the same.
  • the dashed line in FIG. 3 represents the bending line between the flat portion 111 , the inclined portion 112 , and the bent portion 113 , and the boundary line between the inclined portions 112 .
  • the material of the back plate 11 can usually be made of materials such as electro-galvanized steel sheet (SECC) or hot-dip galvanized steel sheet (SGCC), with a thickness of 0.8-1.0 cm.
  • SECC electro-galvanized steel sheet
  • SGCC hot-dip galvanized steel sheet
  • the material of the back plate 11 can be made of materials such as aluminum, iron, aluminum alloy or iron alloy.
  • the back panel 11 also plays a role in dissipating heat to the light panel 12 .
  • the backlight module is a direct type backlight module
  • the lamp panel 12 is used as the backlight source
  • the lamp panel 12 is located on the plane portion 111 of the back panel 11 .
  • the light panel 12 can be square or rectangular as a whole, and when applied to a special-shaped display device, its shape and size are adapted to the shape and size of the display device.
  • a plurality of light panels 12 can be provided, and the light panels 12 are jointly provided with backlight by splicing.
  • the seams between the adjacent lamp panels 12 are as small as possible, and even seamless splicing is achieved.
  • seamless splicing cannot be achieved. Therefore, there will be gaps 12 a with a set value between adjacent lamp panels 12 .
  • a plurality of light panels 12 may be provided according to the size of the display device. For example, a 75-inch TV may use 2*8 light panels 12 to provide backlight together by splicing.
  • the light board 12 specifically includes: a circuit board 121 , a light emitting diode chip (ie, an LED chip) 122 and a package bracket 124 .
  • a light emitting diode chip ie, an LED chip
  • a package bracket 124 Each light-emitting diode chip 122 exists as a light-emitting unit.
  • no lens is disposed on the lamp board 12, and the spacing between the light-emitting diode chips 122 on the lamp board 12 is relatively small.
  • the circuit board 121 is located on the plane portion 111 , and the shape of the circuit board 121 is the same as the overall shape of the lamp board 12 . Under normal circumstances, the circuit board 121 is in the shape of a plate, and the whole is rectangular or square.
  • the circuit board 121 may be a printed circuit board (Printed Circuit Board, PCB for short), the PCB includes a substrate and a conductive layer, the conductive layer is electroplated on the substrate with a conductive material, and then lines are etched to form circuits as required , the material of the conductive layer can be copper.
  • PCB printed Circuit Board
  • the substrate of the circuit board 121 may be made of materials such as FR4, aluminum-based or glass.
  • the substrate or base substrate of the circuit board 121 may be made of a flexible material to form a flexible display device.
  • FIG. 2 shows that the light-emitting diode chip is packaged in a POB (Package on Board, POB for short) packaging method, and a packaging bracket 124 is provided outside the light-emitting diode chip 122, and the packaging bracket 124 is used for packaging and protecting the light-emitting diode chip 122. The foreign matter is blocked from entering the inside of the light emitting diode chip 122 .
  • a packaging bracket 124 is provided outside the light-emitting diode chip 122, and the packaging bracket 124 is used for packaging and protecting the light-emitting diode chip 122.
  • the foreign matter is blocked from entering the inside of the light emitting diode chip 122 .
  • a patch electrode will be formed on its lower surface at the same time, and the patch electrode is electrically connected to the electrode of the light-emitting diode chip.
  • the LED chips 122 are mounted on the corresponding positions of the circuit board 121 .
  • the POB packaging method has mature technology and good adaptability.
  • a single package holder 124 and a single light emitting diode chip 122 constitute a light emitting device.
  • the light-emitting diode chip is firstly packaged into a single LED lamp bead with a packaging bracket, and then the lamp bead is placed on the circuit board.
  • COB Chip On Board, COB for short packaging is used to package the LED chips, then the LED chips 122 are first welded to the pads corresponding to the circuit board 121, and then the LED chips
  • the LED chip 122 is encapsulated on the surface of the chip 122 by dispensing glue, and the encapsulation glue is a protective glue covering the surface of the LED chip 122 on the side facing away from the circuit board 121 .
  • the encapsulant is used to encapsulate and protect the light-emitting diode chip 122 , and block foreign matter from entering the interior of the light-emitting diode chip 122 . That is, the encapsulation bracket is no longer used.
  • the encapsulant can be made of transparent colloidal materials, such as silica gel, modified silica gel or epoxy resin with better permeability. COB packaging has higher efficiency and lower cost.
  • the circuit board 121 is used to provide driving electrical signals for the light emitting diode chips 122 .
  • the LED chip 122 and the circuit board 121 are separately fabricated.
  • the surface of the circuit board 121 includes a plurality of pads for soldering the LED chips 122. After the LED chips 122 are fabricated, they are transferred to the top of the pads, and are subjected to processes such as reflow soldering.
  • the light emitting diode chip 122 is soldered on the circuit board 121 , so that the light emitting diode chip 122 can be driven to emit light through the input signal of the control circuit board 121 .
  • the LED chip 122 is located on the circuit board.
  • the electrodes of the light emitting diode chip 122 are soldered on the exposed pads of the circuit board 121 to realize electrical connection therebetween.
  • the light board 12 may only include light-emitting diode chips 122 of one color, or may include light-emitting diode chips 122 of multiple colors, which is not limited herein.
  • the size of the chip used in the light-emitting diode chip 122 is in the micrometer level. Since the size of the light-emitting diode chip 122 is small, it is beneficial to control the dynamic light emission of the backlight module to a smaller partition, and can realize more refined dynamic control. Improves the dynamic contrast ratio of the display device.
  • the size of the light emitting diode chip 122 is below 500 ⁇ m.
  • the light-emitting diode chip is a miniLED (Mini Light Emitting Diode) chip
  • the light board 12 is specifically a miniLED light board, but is not limited thereto.
  • the light emitting diode chips 122 are micro light emitting diodes 122 , and the size of the chips used in the micro light emitting diodes 122 is in the micrometer level.
  • the light board 12 is a miniature light emitting diode light board 12 .
  • the micro light emitting diode 122 is different from the common light emitting diode, and specifically refers to a micro light emitting diode chip.
  • the miniature light-emitting diode light board 12 has a smaller size than traditional light-emitting diodes, can achieve more refined dynamic control, and improve the dynamic contrast ratio of the display device.
  • FIG. 4 is a schematic plan view of the structure of the split reflection sheet provided by the embodiment of the present application, and the dotted line in the figure represents the bending line of the side reflection sheet.
  • the split reflection sheet 13 specifically includes: a main reflection sheet 131 and a side reflection sheet 132 .
  • the main reflection sheet 131 is located on the surface of the lamp board 12 away from the back plate 11 , and is specifically arranged at a position corresponding to the plane portion 111 .
  • the shape and size of the main reflection sheet 131 are consistent with the shape and size of the plane portion 111 .
  • An opening for exposing a light emitting device composed of a single package holder 124 and a single light emitting diode chip 122 .
  • the main reflective sheet 131 needs to be punched in a large number of holes, and the process is more complicated than that of the ordinary LED backlight reflective sheet. Therefore, when it is applied to a large-size display device, the method of attaching a whole main reflective sheet cannot be adopted.
  • the size of the reflector 131 is processed according to the size of the lamp board 12.
  • One main reflector 131 corresponds to one lamp board 12, and the main reflector 131 is attached to the lamp board 12 in one-to-one correspondence. combine.
  • the main reflective sheet 131 may be precisely aligned and fully attached to the light panel 12 by a fully glued lamination method, or may be partially aligned and attached to the lamp panel 12 by a tape lamination method.
  • FIG. 5 is a schematic partial structure diagram of a main reflector and a lamp panel provided by an embodiment of the present application.
  • the size of the main reflector 131 is larger than the size of the corresponding lamp panel 12 , so that the part of the main reflector 131 beyond the lamp panel 12 blocks the gap 12 a between the adjacent lamp panels 12 and avoids the gap between the adjacent lamp panels 12
  • the gap 12a vulnerability creates subjective problems and improves subjective stability.
  • the overlapping area 131a between the adjacent main reflection sheets 131 is generally located at the gap 12a of the lamp panel 12, and the overlapping area 131a between the adjacent main reflection sheets 131 may be uneven. Therefore, The overlapping area 131a is set so as not to overlap with the lamp panel 12, so as to prevent the overlapping area 131a from affecting the light emission of the lamp panel 12.
  • the side reflection sheet 132 is located on the side of the inclined portion 112 of the back panel 11 facing the light panel 12 , and its shape and size are adapted to the shape and size of the inclined portion 112 , and the side reflection sheet 132 is covered on the side away from the plane portion 111 . to the bent portion 113 .
  • the large-angle light emitted by the LED chip 122 located at the edge can be reflected back to the backlight module by the side reflector 132 for use, or the light reflected by the diffuser 14 and the optical film 15 back to the inclined portion 112 can be reflected by the side.
  • the sheet 132 is re-reflected toward the light-emitting side, and the reflection path of the reflected light is random. Therefore, the multiple reflections of the light by the side reflection sheet 132 play a role in homogenizing the light, thereby improving the utilization efficiency of the light source.
  • the splicing positions between the multiple side reflection sheets 132 avoid the corner positions of the inclined portion 112 .
  • the sky-side inclined portion 112a is connected to one end of the left inclined portion 112c and one side of the right inclined portion 112d, respectively, and the ground-side inclined portion 112b is respectively connected to the other end and the right side of the left inclined portion 112c
  • the position where the other ends of the inclined portion 112 d are connected is the corner position of the inclined portion 112 .
  • the splicing positions of the plurality of side reflection sheets 132 avoid these corner positions, which can avoid the shadow problem at the corner positions due to the splicing deviation of the side reflection sheets 132 .
  • the plurality of side reflection sheets 132 specifically include: a sky side reflection sheet 132a, a ground side reflection sheet 132b, a left side reflection sheet 132c and a right side reflection sheet 132d.
  • the sky side reflection sheet 132a is opposite to the ground side reflection sheet 132b
  • the left side reflection sheet 132c is opposite to the right side reflection sheet 132d
  • the sky side reflection sheet 132a is respectively opposite to one end of the left reflection sheet 132c and one end of the right reflection sheet 132d
  • the ground side reflection sheet 132b is respectively spliced with the other end of the left reflection sheet 132c and the other end of the right reflection sheet 132d.
  • FIG. 6 is a schematic top-view structural diagram of a ground-side reflection sheet provided by an embodiment of the present application.
  • FIG. 7 is a schematic top-view structural diagram of a sky-side reflector provided in an embodiment of the present application. The dotted line in the figure represents the bending line of the side reflector.
  • the sky-side reflection sheet 132a covers the sky-side inclined portion 112a, and the two ends extend to the left inclined portion 112c and the right inclined portion 112d, so that the position where the sky-side reflection sheet 132a and the left reflection sheet 132c are spliced is located at the left inclined portion part 112c, the position where the sky side reflection sheet 132a and the right side reflection sheet 132d are spliced is located at the right inclined part 112d.
  • the ground side reflection sheet 132b covers the ground side inclined portion 112b, and the two ends extend to the left inclined portion 112c and the right inclined portion 112d, so that the position where the ground side reflection sheet 132b and the left reflection sheet 132c are joined is located at the left inclined portion
  • the splicing position of the ground side reflection sheet 132b and the right side reflection sheet 132d is located in the right inclined portion 112d.
  • the end portions on both sides of the sky-side reflection sheet 132 a and the ground-side reflection sheet 132 b are designed with bending angles according to the inclination angle of the inclined portion 112 in the back plate 11 , so that the splicing positions between the side reflection sheets 132 are designed.
  • the shadow problem at the corner positions due to the splicing deviation of the side reflection sheets 132 can be avoided.
  • FIG. 8 is a partial top-view structural schematic diagram of the precise positioning of the bent portion connected to the ground-side reflective sheet and the ground-side inclined portion according to an embodiment of the present application.
  • FIG. 9 is a partial top-view structural schematic diagram of the rough positioning of the bent portion connected to the ground-side reflective sheet and the ground-side inclined portion according to an embodiment of the present application.
  • the dotted line in the figure represents the bending line of the side reflector.
  • a precise positioning point convex hull 1131 and a coarse positioning point convex hull 1132 may be provided on the bent portion 113 connected to the ground side inclined portion 112 b .
  • a precise positioning point convex hull 1132 may be provided.
  • the positioning point convex hull 1131 and the two coarse positioning point convex hulls 1132 are respectively located on both sides of the fine positioning point convex hull 1131 .
  • the side of the ground side reflection sheet 132b away from the plane portion 111 has a fine positioning slot 132b1 matching with the fine positioning point convex hull 1131 and a coarse positioning slot 132b2 matching with the coarse positioning point bump 1132 .
  • the ground-side reflective sheet 132b is designed for alignment according to the middle fine positioning and the left and right coarse positioning.
  • the left and right coarse positioning mainly serves to prevent the ground side reflective sheet 132b from being offset in the up and down direction
  • the middle fine positioning mainly serves the left and right sides of the ground side reflective sheet 132b.
  • the direction is not deviated, which improves the stability of the assembly deviation of the ground-side reflection sheet 132b.
  • FIG. 10 is a partial top-view structural schematic diagram of the sky-side reflective sheet and the sky-side inclined portion according to an embodiment of the present application.
  • FIG. 11 is a schematic partial structural diagram of a positioning groove and a positioning protrusion provided by an embodiment of the present application.
  • a dent alignment mark 1121 may be provided on the side of the sky-side inclined portion 112a adjacent to the planar portion 111, and correspondingly, the sky-side reflective sheet 132a is provided on the side adjacent to the planar portion 111
  • the alignment tangent line 132a1 matched with the dent alignment mark line 1121.
  • the sky-side inclined portion 112a also has a positioning groove 31 at the edge adjacent to the plane portion 111, and the sky-side reflective sheet 132a adjacent to the edge of the plane portion 111 has a positioning protrusion 32 matching the positioning groove 31, the positioning protrusion 32 is aligned with the positioning groove 31, which ensures that the sky-side reflector 132a is not deviated in the vertical direction, and improves the stability of the assembly and offset of the sky-side reflector 132a.
  • a positioning groove 31 is provided on the edge of the left inclined portion 112c adjacent to the plane portion 111, and the left side reflection sheet 132c adjacent to the plane portion 111 has an edge matching the positioning groove 31.
  • Positioning protrusions 32 ; positioning grooves 31 are provided on the edge of the right inclined portion 112d adjacent to the plane portion 111 , and the right reflective sheet 132d adjacent to the edge of the plane portion 111 has positioning protrusions 32 matching the positioning grooves 31 .
  • the alignment of the positioning protrusions 32 and the positioning grooves 31 ensures that the left reflection sheet 132c and the right reflection sheet 132d are not offset in the up and down directions, and improves the stability of assembly offset of the left reflection sheet 132c and the right reflection sheet 132d.
  • edge alignment marks 132a2 are respectively provided at two ends of the sky-side reflection sheet 132a for locating the edge positions of the left reflection sheet 132c and the right reflection sheet 132d.
  • the edge positions of the left reflection sheet 132c and the right reflection sheet 132d are aligned with the edge alignment marks 132a2, which ensures that the left reflection sheet 132c and the right reflection sheet 132d are not offset in the left and right directions, and improves the left reflection sheet 132c and the right reflection sheet 132c. Stability of the side reflection sheet 132d in the assembly offset.
  • the left side may be set
  • the edges of the reflection sheet 132 c and the sky-side reflection sheet 132 a are perpendicular to the edge of the plane portion 111 .
  • the right side reflection sheet 132d since the edge position of the right side reflection sheet 132d is aligned with the edge alignment mark 132a2, so that the right side reflection sheet 132d and the other edge of the sky side reflection sheet 132a overlap, in order to ensure accurate alignment, the right side reflection sheet can be set
  • the other edges of the sheet 132 d and the sky-side reflection sheet 132 a are perpendicular to the edge of the plane portion 111 .
  • the diffuser plate 14 is located on the light-emitting side of the light plate 12. There is a certain light mixing distance between the diffuser plate 14 and the light plate 12.
  • the orthographic projection of the diffuser plate 14 on the back plate 11 covers the main reflector 131 and the side reflector 132 on the back plate.
  • the orthographic projection on 11 that is, the diffuser plate 14 is located directly above the entire back plate 11 .
  • the diffuser plate 14 can be arranged in a rectangular or square shape.
  • the function of the diffuser plate 14 is to scatter the incident light, so that the light passing through the diffuser plate 14 is more uniform.
  • the diffuser plate 14 is provided with a scattering particle material, and the light incident on the scattering particle material will be continuously refracted and reflected, so as to achieve the effect of scattering the light and realize the effect of uniform light.
  • the diffuser plate 14 has higher haze and better uniformity effect, and can usually be processed by extrusion process. At least one of polypropylene PP.
  • a quantum dot material can also be arranged in the diffusion plate 14 to form a quantum dot diffusion plate.
  • the quantum dot material includes red quantum dot material and green quantum dot material, and the red quantum dot material is in blue light.
  • the green quantum dot material emits green light under the excitation of blue light, and the excited red light, green light and transmitted blue light are mixed into white light and emitted.
  • the quantum dot film is no longer provided, which not only reduces the cost, but also makes the display device lighter and thinner.
  • the optical film 15 is located on the side of the diffuser plate 14 away from the main reflection sheet 131 and the side reflection sheet 132.
  • the optical film 15 is arranged in a whole layer, and its shape is the same as that of the diffuser plate 14. Usually, it can be set as a rectangle or a square.
  • the arrangement of the optical film 15 can make the backlight module adapt to various practical applications.
  • the light-emitting diode chip 122 can be a blue light-emitting diode chip, and the optical film 15 includes a quantum dot layer or a fluorescent layer.
  • the quantum dot layer includes a red quantum dot material and a green quantum dot material, the red quantum dot material emits red light under the excitation of blue light, the green quantum dot material emits green light under the excitation of blue light, and the stimulated emission of red light, The green light and the transmitted blue light are mixed into white light and emitted.
  • the fluorescent layer includes fluorescent materials that stimulate emission of red light and stimulated emission of green light, and the stimulated emission of red light, green light and transmitted blue light is mixed into white light for output.
  • the optical film 15 may also include a prism sheet, and the prism sheet can change the exit angle of light, thereby changing the viewing angle of the display device.
  • the optical film 15 may also include a reflective polarizer.
  • the reflective polarizer can improve the brightness of the backlight module, improve the utilization efficiency of light, and at the same time make the outgoing light have the property of polarization. Use of polarizers.
  • the optical film 15 can not only achieve corresponding functions, but also have fogging and covering effects.
  • the number of Mini LEDs used in Mini LED backlight design is more than ten times that of traditional backlights.
  • the number of Mini LEDs on a single lamp board is large, and the corresponding reflector needs to have many holes.
  • the traditional reflector assembly process it is difficult to align accurately at one time, and the light mixing distance (OD) value of the Mini LED backlight design is very small.
  • 12a and 12b are schematic diagrams of two cross-sectional structures of backlight modules provided by some embodiments of the present application, respectively.
  • the backlight module includes: a back plate 11-1, a light plate 12-1, a fully coated reflective sheet 13-1, a diffuser plate 14-1, an optical film 15-1 and a positioning bracket 16- 1.
  • the back plate 11-1 is used for fixing the light plate 12-1 and supporting and fixing the edge positions of the fully glued reflective sheet 13-1, the diffuser plate 14-1 and the optical film 15-1, etc.
  • the back plate 11-1 also faces the
  • the lamp board 12-1 plays the role of heat dissipation.
  • the backlight module is a direct type backlight module, and the lamp panel 12-1 is used as the backlight source.
  • the light panel 12-1 is located on the back panel 11-1.
  • the light panel 12-1 can be square or rectangular as a whole.
  • the light board 12-1 includes many light-emitting diode light sources. Due to the limitation of the range of the die bonding machine, and the size of the circuit board is too large, there will be many problems such as serious board expansion and shrinkage, and low pad accuracy. The size of the light board 12-1 should not be too large. big.
  • the backlight is usually provided by splicing a plurality of light panels 12-1 with each other.
  • the light board 12-1 specifically includes: a circuit board 121-1, a light emitting diode chip (ie, an LED chip) 122-1 and a package bracket 124-1.
  • the light board 12-1 specifically includes: a circuit board 121-1, a light-emitting diode chip 122-1, a reflective layer 123-1 and an encapsulant 125-1.
  • each light-emitting diode chip 122-1 exists as a light-emitting unit.
  • no lens is disposed on the lamp board 12-1, and the spacing between the light-emitting diode chips 122-1 on the lamp board 12-1 is relatively small.
  • the circuit board 121-1 is located on the backplane 11-1, and the shape of the circuit board 121-1 is the same as the overall shape of the light board 12-1. Under normal circumstances, the circuit board 121-1 is plate-shaped, and the whole is rectangular or square.
  • the circuit board 121-1 is used to provide driving electrical signals for the light emitting diode chip 122-1.
  • the LED chip 122-1 and the circuit board 121-1 are separately fabricated.
  • the surface of the circuit board 121-1 includes a plurality of pads for soldering the LED chip 122-1.
  • the LED chip 122-1 is transferred after the fabrication is completed. Above the pads, the LED chip 122-1 is soldered on the circuit board 121-1 through a process such as reflow soldering, so that the LED chip 122-1 can be driven to emit light by an input signal from the control circuit board 121-1.
  • the circuit board 121-1 can be a printed circuit board (Printed Circuit Board, PCB for short), the PCB includes a substrate and a conductive layer, the conductive layer is electroplated on the substrate with a conductive material, and then lines are etched as required To form a circuit, the material of the conductive layer can be copper.
  • PCB printed Circuit Board
  • the substrate of the circuit board 121-1 can be made of materials such as FR4, aluminum-based or glass.
  • the substrate or base substrate of the circuit board 121-1 may be made of a flexible material to form a flexible display device.
  • the light emitting diode chip 122-1 is located on the circuit board.
  • the electrodes of the light-emitting diode chip 122-1 are soldered on the exposed pads of the circuit board 121-1 to realize electrical connection therebetween.
  • the light board 12-1 may include only one color LED chip 122-1, or may include multiple color LED chips 122-1, which is not limited herein.
  • the reflective layer 123-1 is located on the surface of the circuit board 121-1 on the side close to the light-emitting diode chip 122-1, and is an insulating protective layer, which has the function of protecting the circuit board.
  • the reflective layer 123-1 is coated on the surface of the circuit board 121-1 by using a material with reflective properties, and then, through etching and other processes, the pads used for soldering the LED chip 122-1 are placed on the surface of the circuit board 121-1. The positions are exposed to form openings for exposing the light emitting diode chips 122-1.
  • the material used for the reflective layer 123-1 is white ink with the property of reflecting light.
  • the light emitting diode chip 122-1 can be packaged in POB or COB.
  • a packaging bracket 124-1 will be set on the outside of the light-emitting diode chip. Inside the light-emitting diode chip 122-1.
  • a patch electrode when the light-emitting diode chip is packaged by the POB packaging method, a patch electrode will be formed on its lower surface at the same time, and the patch electrode is electrically connected to the electrode of the light-emitting diode chip.
  • the packaged LED chip 122-1 is mounted on the corresponding position of the circuit board 121-1.
  • the POB packaging method has mature technology and good adaptability.
  • a single package holder 124-1 and a single light emitting diode chip 122-1 constitute a light emitting device.
  • the light-emitting diode chip is firstly packaged into a single LED lamp bead with a packaging bracket, and then the lamp bead is placed on the circuit board.
  • the LED chip is packaged by COB packaging, and the LED chip 122-1 is first welded to the pad corresponding to the circuit board 121-1, and then the LED chip 122-1 is soldered to the corresponding pad of the circuit board 121-1.
  • the LED chip 122-1 is encapsulated on the surface of the chip 122-1 by means of dispensing, and the encapsulant 125-1 on the surface of the LED chip 122-1 can be made of a transparent colloidal material, such as silica gel with better light transmittance, modified Silicone or epoxy etc.
  • COB packaging has higher efficiency and lower cost.
  • the size of the chip used by the light-emitting diode chip 122-1 is in the micrometer level. Since the size of the light-emitting diode chip 122 is small, it is beneficial to control the dynamic light emission of the backlight module to a smaller partition, which can realize more refined dynamic lighting. Control to enhance the dynamic contrast of the display device.
  • the size of the light emitting diode chip 122 is below 500 ⁇ m.
  • the light emitting diode chip is a miniLED (Mini Light Emitting Diode) chip
  • the light board 12-1 is specifically a miniLED light board, but is not limited thereto.
  • the light emitting diode chips 122 are micro light emitting diodes 122 , and the size of the chips used in the micro light emitting diodes 122 is in the micrometer level.
  • the light board 12 is a miniature light emitting diode light board 12 .
  • the micro light-emitting diode 122-1 is different from the common light-emitting diode, and specifically refers to a micro-light-emitting diode chip.
  • the miniature light-emitting diode light board 12 has a smaller size than traditional light-emitting diodes, can achieve more refined dynamic control, and improve the dynamic contrast ratio of the display device.
  • FIG. 13 is a schematic top-view structure diagram of a lamp panel provided by an embodiment of the present application.
  • FIG. 14 is a schematic top-view structural diagram of a fully-coated reflective sheet provided by an embodiment of the present application.
  • positioning brackets 16-1 are distributed at intervals of the LED chips 122-1 to avoid affecting the light output of the LED chips 122-1.
  • the fully glued reflective sheet 13-1 includes a positioning opening 21-1 for exposing the positioning bracket 16-1, and an opening 22-1 for exposing the light-emitting diode chip 122-1, and the positioning opening 21- 1. Match the design of the positioning bracket 16-1, and the opening 22-1 matches the design of the LED chip 122-1.
  • the positioning bracket 16-1 generally adopts a pyramid design, and the bottom pad can be designed with a square SMT package with a size of 4*4mm or a dispensing package design, which can locate the fully glued reflector 13-1 and support the diffuser plate 14- 1 is used as a precise reference for the precise positioning of the fully coated reflective sheet 13-1.
  • the size of the positioning opening 21-1 in the fully glued reflective sheet 13-1 is larger than the size of the positioning bracket 16-1, for example, about 0.2 mm larger than the size of the bottom pad.
  • the material used for the positioning bracket 16-1 is generally polycarbonate PC.
  • a fully glued reflective sheet 13-1 and a light panel 12-1 can be precisely positioned by two positioning brackets 16-1, and the arrangement of the two positioning brackets 16-1 can be maintained Consistent.
  • the positioning opening 21-1 of the fully-coated reflective sheet 13-1 is accurately positioned from the top of the positioning bracket 16-1 from top to bottom. , and then perform pressing by a pressing jig. This design can ensure the flatness of the lamp board 12-1 and the fully glued reflective sheet 13-1, and improve the assembly stability.
  • the reflective sheet needs to be punched in a large number of holes, and the process is more complicated than that of the ordinary LED backlight reflective sheet. Therefore, when it is applied to a large-size display device, it is impossible to attach a whole reflective sheet.
  • the size of the sheet 13-1 is processed according to the size of the lamp board 12-1.
  • the lamp board 12-1 and the fully glued reflective sheet 13-1 are both multiple, and one fully glued reflective sheet 13-1 corresponds to one lamp board 12. -1, the fully glued reflective sheet 13-1 can be accurately fitted to the lamp board 12-1 in one-to-one correspondence through the positioning bracket 16-1.
  • the fully glued reflective sheet 13-1 can be precisely aligned and fully attached to the lamp panel 12-1 by the fully glued lamination method.
  • the adhesive tape is used to attach the lamp panel 12-1 to the lamp panel 12-1. Partial bonding can ensure that the reflector does not float high, improve the subjective visual effect stability of the Mini LED display, and at the same time improve the stability of the assembly offset of the reflector.
  • the fully glued reflective sheet 13-1 may specifically include: a base material 131-1 and a colloid layer 132-1.
  • the base material 131-1 has the functions of support and reflection, and the material of the base material 131-1 is generally PET.
  • the colloid layer 132-1 is located on the side of the base material 131-1 facing the light board 12-1, and is used for fully bonding with the light board 12-1.
  • the material of the colloid layer 132-1 is generally bilobal acrylic.
  • the fully-covered reflective sheet 13-1 adopts the DXC full-covering coating process during production, which is different from the tape lamination method used by ordinary Mini LED reflective sheets. Thickness control is more precise and stable, which ensures the reliability of the fit.
  • FIG. 16 is a schematic diagram of the coating equipment during the production of the fully-coated reflective sheet provided by the embodiment of the application.
  • the manufacturing process of the colloid layer 132-1 in the fully coated reflective sheet 13-1 includes: glue formulation ⁇ film application ⁇ film balance ⁇ gluing ⁇ drying ⁇ corona ⁇ coating ⁇ curing ⁇ detection ⁇ collection roll.
  • Glue formula The glue is prepared according to the formula parameters.
  • Laminating film Put the substrate frame on the roller.
  • Film balance It stretches up and down through multiple rollers to correct the inclination offset of the substrate during transportation.
  • Gluing Inject the prepared glue into the gluing equipment.
  • Drying Dry the glue to make it in a semi-liquid state to prepare for the subsequent coating process.
  • Corona The corona process is applied to the surface of the substrate, so that the surface of the substrate has higher adhesion and is stronger after gluing.
  • the substrate is colloidally coated by coating equipment.
  • Curing Curing the coated substrate to make the colloid fully adhere to the substrate.
  • Rewinding Add a layer of release film to the colloid layer through the rewinding equipment, and roll it up for roll packaging at the same time.
  • the fully coated reflective sheet 13-1 may further include: a scattering particle layer 133-1.
  • the scattering particle layer 133-1 is located on the side of the substrate 131-1 away from the colloid layer 132-1, and is used to increase the exit direction of the reflected light.
  • FIG. 17 is a schematic diagram of the reflected light of the fully-coated reflective sheet provided by the embodiment of the present application.
  • FIG. 18 is a schematic diagram of the reflected light of the reflective sheet in the related art.
  • the scattering particle layer 133-1 can increase the exit direction of the reflected light to make the overall exit light more uniform.
  • the parameter design specifications of the fully coated reflective sheet 13-1 are as follows:
  • the above design ensures that the thickness and dimension of the fully-coated reflective sheet 13-1 are uniform and stable, and the optical reflectivity is high and thermal stability is good.
  • the diffuser plate 14-1 is located on the light-emitting side of the lamp plate 12-1, and has a certain distance from the fully glued reflective sheet 13-1.
  • the shape of the diffuser plate 14-1 is the same as that of the lamp plate 12-1. In general, the diffuser plate 14-1 can be set in a rectangular or square shape.
  • the function of the diffusing plate 14-1 is to scatter the incident light, so that the light passing through the diffusing plate 14-1 is more uniform.
  • the diffuser plate 14-1 is provided with a scattering particle material, and the light incident on the scattering particle material will be continuously refracted and reflected, so as to achieve the effect of scattering the light and realize the effect of uniform light.
  • the diffuser plate 14-1 has higher haze and better uniformity. It can usually be processed by extrusion process.
  • the material used for the diffuser plate 14-1 is generally selected from polymethyl methacrylate PMMA, polycarbonate PC, polystyrene At least one of the materials PS and polypropylene PP.
  • the optical film 15-1 is located on the side of the diffuser plate 14-1 away from the reflection sheet 13-1.
  • the optical film 15-1 is arranged in a whole layer, and its shape is the same as that of the light plate 12-1. square.
  • the arrangement of the optical film 15-1 can make the backlight module adapt to various practical applications.
  • the light emitting diode chip in the light board 12-1 can be a blue light emitting diode chip, and the optical film 15-1 includes a quantum dot layer or a fluorescent layer.
  • the quantum dot layer includes a red quantum dot material and a green quantum dot material, the red quantum dot material emits red light under the excitation of blue light, the green quantum dot material emits green light under the excitation of blue light, and the stimulated emission of red light, The green light and the transmitted blue light are mixed into white light and emitted.
  • the fluorescent layer includes fluorescent materials that stimulate emission of red light and stimulated emission of green light, and the stimulated emission of red light, green light and transmitted blue light is mixed into white light for output.
  • the optical film 15-1 may also include a prism sheet, and the prism sheet can change the exit angle of light, thereby changing the viewing angle of the display device.
  • the optical film 15-1 may also include a reflective polarizer.
  • the reflective polarizer as a kind of brightening film, can improve the brightness of the backlight module, improve the utilization efficiency of light, and at the same time make the outgoing light have the property of polarization, omitting the liquid crystal display The use of polarizers under the panel.
  • the diffuser plate 14-1 needs to cover the area where all the light panels 12-1 are located, and its size is relatively large, and it is prone to collapse and warp deformation, which deteriorates the optical characteristics of the backlight module and even damages the light-emitting diode chip 122-1. Therefore, The positioning bracket 16-1 can also play a role of supporting the diffuser plate 14-1.
  • the positioning bracket 16-1 can be fixed on the light board 12-1 by means of snaps, screws or pasting.
  • 19-21 are schematic diagrams of the connection relationship between the positioning bracket and the light board provided by the embodiment of the application.
  • the positioning bracket 16-1 is fixed on the lamp board 12-1 through the limiting piece 31-1, the auxiliary cylinder 32-1 and the buckle 33-1, the limiting piece 31-1 and the buckle 33-1 They are located at both ends of the auxiliary cylinder 32-1 respectively. After the buckle 33-1 is closed, the limiting piece 31-1 and the buckle 33-1 clamp the lamp board 12-1 to fix the positioning bracket 16-1 on the lamp. on board 12-1.
  • the positioning bracket 16-1 is connected to the base 34-1, the base 34-1 is fixed on the lamp board 12-1 by the screw 35-1, and the bracket 16-1 can be disassembled by rotating the screw 35-1.
  • the positioning bracket 16-1 is directly pasted on the surface of the lamp panel 12-1 through a glue 36-1 (eg, double-sided tape, solid glue or liquid).
  • a glue 36-1 eg, double-sided tape, solid glue or liquid.
  • the light source is used as a lamp board as an example, but it is not limited to this, and other light sources such as light bars can also be used.
  • other LED light-emitting device components may also be used, specifically, microLED or common LED light-emitting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种显示装置包括:背板(11)、灯板(12)和分体反射片(13)。背板(11)包括平面部(111)、倾斜部(112)和弯折部(113),倾斜部(112)包括天侧倾斜部(112a)、地侧倾斜部(112b)、左侧倾斜部(112c)和右侧倾斜部(112d),天侧倾斜部(112a)分别与左侧倾斜部(112c)的一端和右侧倾斜部(112d)的一端相连,地侧倾斜部(112b)分别与左侧倾斜部(112c)的另一端和右侧倾斜部(112d)的另一端相连,相连的位置为倾斜部(112)的边角位置。分体反射片(13)包括主反射片(131)和多个侧反射片(132),主反射片(131)位于灯板(12)背离背板(11)的一侧,多个侧反射片(132)位于背板(11)的倾斜部(112)面向灯板(12)的一侧。多个侧反射片(132)之间的拼接位置与倾斜部(112)的边角位置互不重叠,多个侧反射片(132)的拼接位置避开边角位置,可以避免在边角位置出现由于侧反射片(132)的拼接偏差出现的暗影问题。

Description

一种显示装置
相关申请交叉引用
本申请要求于2021年04月12日提交中国专利局、申请号为202120739189.1、申请名称为“一种显示装置”以及2021年04月09日提交中国专利局、申请号为202110387573.4、申请名称为“一种显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置。
背景技术
随着发光二极管(Light Emitting Diode,简称LED)背光技术的不断发展成熟以及市场的迅速扩大,越来越多的产品形态层出不穷。其中,Mini LED背光越来越引人注目,因Mini LED背光设计所用Mini LED颗数是传统背光的几十上百倍,且Mini LED背光方案所使用的单块灯板内的Mini LED数量较多,对应反射片也要开很多孔位,传统的反射片已不能满足需求。
发明内容
本申请一些实施例中,显示装置包括:背板、灯板和分体反射片。背板包括平面部、倾斜部和弯折部,倾斜部包括天侧倾斜部、地侧倾斜部、左侧倾斜部和右侧倾斜部,天侧倾斜部分别与左侧倾斜部的一端和右侧倾斜部的一端相连,地侧倾斜部分别与左侧倾斜部的另一端和右侧倾斜部的另一端相连,相连的位置为倾斜部的边角位置。分体反射片包括主反射片和多个侧反射片,主反射片位于灯板背离背板的一侧,多个侧反射片位于背板的倾斜部面向灯板的一侧。多个侧反射片之间的拼接位置与倾斜部的边角位置互不重叠,多个侧反射片的拼接位置避开边角位置,可以避免在边角位置出现由于 侧反射片的拼接偏差出现的暗影问题。
本申请一些实施例中,侧反射片包括天侧反射片、地侧反射片、左侧反射片和右侧反射片。天侧反射片覆盖天侧倾斜部,且两个端部延伸至左侧倾斜部和右侧倾斜部,使天侧反射片与左侧反射片拼接的位置位于左侧倾斜部,天侧反射片与右侧反射片拼接的位置位于右侧倾斜部。地侧反射片覆盖地侧倾斜部,且两个端部延伸至左侧倾斜部和右侧倾斜部,使地侧反射片与左侧反射片拼接的位置位于左侧倾斜部,地侧反射片与右侧反射片拼接的位置位于右侧倾斜部。
本申请一些实施例中,在地侧倾斜部连接的弯折部设置精定位点凸包和粗定位点凸包;地侧反射片远离面部的一侧具有与定位点凸包匹配的精定位卡槽、与定位点凸包匹配的粗定位卡槽。地侧反射片按照中间精定位和左右两侧粗定位的方式进行对位设计,左右粗定位主要起到地侧反射片上下方向不偏位,中间精定位主要起到地侧反射片左右方向不偏位,提高了地侧反射片装配偏移的稳定性。
本申请一些实施例中,在天侧倾斜部邻***面部的一侧设置凹痕对位标记线,天侧反射片邻***面部的一侧设置与凹痕对位标记线匹配的对位切线。天侧反射片在对位贴合时利用对位切线按照对应凹痕对位标记线匹配定位,保证了天侧反射片对中设计,保证了天侧反射片左右方向不偏位,提高了天侧反射片装配偏移的稳定性。天侧倾斜部在邻***面部的边缘还具有定位凹槽,天侧反射片邻***面部的边缘具有与定位凹槽匹配的定位凸起,定位凸起与定位凹槽对位,保证了天侧反射片上下方向不偏位,提高了天侧反射片装配偏移的稳定性。
本申请一些实施例中,在左侧倾斜部邻***面部的边缘设置定位凹槽,左侧反射片邻***面部的边缘具有与定位凹槽匹配的定位凸起;在右侧倾斜部邻***面部的边缘设置定位凹槽,右侧反射片邻***面部的边缘具有与定位凹槽匹配的定位凸起。定位凸起与定位凹槽对位,保证了左侧反射片和右侧反射片上下方向不偏位,提高了左侧反射片和右侧反射片装配偏移的稳定 性。天侧反射片的两个端部分别设置边缘对位标记,用于定位左侧反射片和右侧反射片的边缘位置。左侧反射片和右侧反射片的边缘位置与边缘对位标记对位,保证了左侧反射片和右侧反射片左右方向不偏位,提高了左侧反射片和右侧反射片装配偏移的稳定性。
本申请一些实施例中,左侧反射片和天侧反射片的一个边缘交叠,为了保证对位准确,设置左侧反射片和天侧反射片的边缘垂直于平面部的边缘。右侧反射片和天侧反射片的另一边缘交叠,为了保证对位准确,设置右侧反射片和天侧反射片的另一边缘垂直于平面部的边缘。
本申请一些实施例中,灯板和主反射片均为多个,主反射片与灯板一一对应贴合。主反射片的尺寸大于对应的灯板的尺寸;相邻的灯板之间具有设定数值的间隙,间隙被主反射片完全覆盖,避免相邻灯板之间的间隙漏洞产生主观问题,提高主观稳定性。
本申请一些实施例中,相邻的主反射片之间具有交叠区域,保证相邻的主反射片之间处于叠拼重合状态,有效遮挡相邻灯板之间的间隙。相邻的主反射片之间具有的交叠区域位于灯板的间隙处,在相邻的主反射片之间的交叠区域可能会出现不平整的问题,因此,将交叠区域设置为与灯板互不交叠,避免交叠区域影响灯板发光。
本申请一些实施例中,显示装置包括用于图像显示的显示面板,用于向显示面板提供背光的灯板,全贴合于灯板一侧的全敷胶反射片。在灯板上固定定位支架,全敷胶反射片设置用于暴露定位支架的定位开孔,在进行全敷胶反射片的全贴合时,将全敷胶反射片的定位开孔从定位支架的顶部从上向下进行一过性精准定位,然后通过压合治具进行压合,如此设计,可以保证灯板与全敷胶反射片全贴合后的平整度,提高装配稳定性。
本申请一些实施例中,灯板和全敷胶反射片均为多个,全敷胶反射片与灯板一一对应贴合,一个灯板对应设置两个定位支架,实现全敷胶反射片与灯板的双精准定位。
本申请一些实施例中,全敷胶反射片包括:具有支撑和反射作用的基材, 以及位于基材面向灯板一侧的胶体层。胶体层用于实现与灯板全贴合。胶体层的材质一般为双叶型丙烯酸。基材的材质一般为PET。
本申请一些实施例中,全敷胶反射片还包括:位于基材背离胶体层一侧的散射粒子层,用于增加反射光线出射方向。
本申请一些实施例中,灯板包括:用于提供驱动信号的电路板,排布于电路板之上的发光二极管芯片,全敷胶反射片包括用于暴露发光二极管芯片的开口。
本申请一些实施例中,还包括:位于灯板出光侧的扩散板,定位支架还具有支撑扩散板的作用。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示装置的截面结构示意图;
图2为本申请实施例提供的背光模组的截面结构示意图;
图3为本申请实时提供的背板的俯视结构示意图;
图4为本申请实施例提供的分体反射片的俯视结构示意图;
图5为本申请实施例提供的主反射片与灯板的局部结构示意图;
图6为本申请实施例提供的地侧反射片的俯视结构示意图;
图7为本申请实施例提供的天侧反射片的俯视结构示意图;
图8为本申请实施例提供的地侧反射片与地侧倾斜部连接的弯折部在精定位的局部俯视结构示意图;
图9为本申请实施例提供的地侧反射片与地侧倾斜部连接的弯折部在粗定位的局部俯视结构示意图;
图10为本申请实施例提供的天侧反射片与天侧倾斜部的局部俯视结构示 意图;
图11为本申请实施例提供的定位凹槽与定位凸起的局部结构示意图;
图12a为本申请实施例提供的背光模组的一种截面结构示意图;
图12b为本申请实施例提供的背光模组的另一种截面结构示意图;
图13为本申请实施例提供的灯板的俯视结构示意图;
图14为本申请实施例提供的全敷胶反射片的俯视结构示意图;
图15为本申请实施例提供的全敷胶反射片的截面结构示意图;
图16为本申请实施例提供的全敷胶反射片制作时的涂布设备示意图;
图17为本申请实施例提供的全敷胶反射片的反射光线示意图;
图18为相关技术中的反射片的反射光线示意图;
图19为本申请实施例提供的定位支架与灯板的连接关系示意图之一;
图20为本申请实施例提供的定位支架与灯板的连接关系示意图之二;
图21为本申请实施例提供的定位支架与灯板的连接关系示意图之三。
其中,100-背光模组,200-显示面板,11-背板,12-灯板,13-分体反射片,14-扩散板,15-光学膜片,111-平面部,112-倾斜部,113-弯折部,112a-天侧倾斜部,112b-地侧倾斜部,112c-左侧倾斜部,112d-右侧倾斜部,1121-凹痕对位标记线,1131-精定位点凸包,1132-粗定位点凸包,121-电路板,122-发光二极管芯片,124-封装支架,12a-间隙,131-主反射片,132-侧反射片,131a-交叠区域,132a-天侧反射片,132b-地侧反射片,132c-左侧反射片,132d-右侧反射片,132a1-对位切线,132a2-边缘对位标记,132b1-精定位卡槽,132b2-粗定位卡槽,31-定位凹槽,32-定位凸起。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技 术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
Mini LED背光越来越引人注目,因Mini LED背光设计所用Mini LED颗数是传统背光的几十上百倍,且Mini LED背光方案所使用的单块灯板内的Mini LED数量较多,对应反射片也要开很多孔位,基于传统的单体反射片设计无法满足量产化。同时上千颗Mini LED孔位的反射片装配对背光视效稳定性很难保证,且传统的单体反射片拼角位置容易产生暗影问题,因此基于传统设计方案无法满足目前Mini LED背光的可制造性设计。
液晶显示装置主要由背光模组和液晶显示面板构成。液晶显示面板本身不发光,需要依靠背光模组提供的光源实现亮度显示。
液晶显示装置的显像原理,是将液晶置于两片导电玻璃之间,靠两个电极间电场的驱动,引起液晶分子扭曲的电场效应,以控制背光源透射或遮蔽功能,从而将影像显示出来。若加上彩色滤光片,则可显示彩色影像。
图1为本申请实施例提供的显示装置的截面结构示意图。
参照图1,显示装置包括:背光模组100和显示面板200,背光模组100用于向显示面板200提供背光源,显示面板200用于图像显示。
显示面板200位于背光模组100的出光侧,显示面板的形状与尺寸通常与背光模组相匹配。通常情况下显示面板200可以设置为矩形,包括天侧、地侧、左侧和右侧,其中天侧和地侧相对,左侧和右侧相对,天侧分别与左侧的一端和右侧的一侧相连,地侧分别与左侧的另一端和右侧的另一端相连。
显示面板200为透射型显示面板,能够对光的透射率进行调制,但本身并不发光。显示面板200具有多个呈阵列排布的像素单元,每个像素单元都可以独立的控制背光模组100入射到该像素单元的光线透过率和色彩,以使全部像素单元透过的光线构成显示的图像。
背光模组100通常位于显示装置的底部,其形状与尺寸与显示装置的形 状与尺寸相适应。当应用于电视或移动终端等领域时,背光模组通常采用矩形的形状。
本申请实施例中的背光模组采用直下式背光模组,用于在整个出光面内均匀的发出光线,为显示面板提供亮度充足且分布均匀的光线,以使显示面板可以正常显示影像。
图2为本申请实施例提供的背光模组的截面结构示意图。图3为本申请实施例提供的背板的俯视结构示意图。
参照图2,背光模组包括:背板11、光源、分体反射片13、扩散板14和光学膜片15。在本申请某些实施例中,光源以灯板12的形式提供。
背板11位于背光模组的底部,具有支撑和承载作用。在本申请实施例中,背板11包括平面部111、倾斜部112和弯折部113。
其中,背板11的平面部111位于底部,通常情况下为一方形或矩形结构,当应用于异形显示装置时,平面部111形状适应于显示装置的形状。
平面部111具有承载灯板12的作用,倾斜部112位于平面部111的四周,倾斜部112沿着平面部111的边缘向背板的一侧进行弯折,通常情况下倾斜部112与平面部111的夹角在30°-90°之间,例如可以是45°。弯折部113沿着倾斜部112远离平面部111的边缘向背板的一侧进行弯折,弯折部113平行于平面部11,弯折部113具有承载和支撑光学膜片等部件的边缘位置的作用。在本申请实施例中,平面部111、倾斜部112和弯折部113为一体结构。
参照图3,背板11的倾斜部112包括:天侧倾斜部112a、地侧倾斜部112b、左侧倾斜部112c和右侧倾斜部112d。其中,天侧倾斜部112a和地侧倾斜部112b相对,左侧倾斜部112c和右侧倾斜部112d相对,天侧倾斜部112a分别与左侧倾斜部112c的一端和右侧倾斜部112d的一端相连,地侧倾斜部112b分别与左侧倾斜部112c的另一端和右侧倾斜部112d的另一端相连。通常情况下,天侧倾斜部112a、地侧倾斜部112b、左侧倾斜部112c和右侧倾斜部112d与平面部111的各个夹角可以相同。图3中的虚线表示平面部111、倾斜部112和弯折部113之间的折弯线,以及倾斜部112之间的分界线。
背板11的材料通常可以采用电镀锌钢板(SECC)或热浸锌钢板(SGCC)等材料进行制作,厚度为0.8-1.0cm。或者,背板11的材质可以采用铝、铁、铝合金或铁合金等材料进行制作。
背板11还对灯板12起到散热的作用。
在本申请实施例中,背光模组为直下式背光模组,采用灯板12作为背光源,灯板12位于背板11的平面部111之上。通常情况下,灯板12整体可呈方形或矩形,当应用于异形显示装置时,其形状与尺寸大小适应于显示装置的形状和尺寸大小。
根据显示装置的尺寸可以设置多个灯板12,灯板12之间通过拼接方式共同提供背光。为了避免灯板12拼接带来的光学问题,相邻灯板12之间的拼缝尽量做到较小,甚至实现无缝拼接。但是实际制作时,由于工艺受限无法做到无缝拼接,因此,相邻灯板12之间会具有设定数值的间隙12a。
根据显示装置的尺寸可以设置多个灯板12,例如,75英寸的电视可以采用2*8个灯板12之间通过拼接方式共同提供背光。
具体地,参照图2,灯板12具体包括:电路板121、发光二极管芯片(即LED芯片)122和封装支架124。每一发光二极管芯片122作为一个发光单元存在。
本申请实施例中的灯板12上不再设置透镜,灯板12上发光二极管芯片122之间的间距较小。电路板121位于平面部111之上,电路板121的形状与灯板12的整体形状相同。在通常情况下,电路板121为板状,整体呈长方形或正方形。
在本申请实施例中,电路板121可为印刷电路板(Printed Circuit Board,简称PCB),PCB包括基板和导电层,导电层经导电材料电镀沉积在基板上,再根据需要刻蚀线路形成电路,导电层的材料可以采用铜。
电路板121的基板可以采用FR4、铝基或玻璃等材料进行制作。或者,电路板121的衬底或衬底基板可以采用柔性材料来制作以形成柔性显示装置。
图2示出的是采用POB(Package on Board,简称POB)封装方式对发光 二极管芯片进行封装,会在发光二极管芯片122的外侧设置封装支架124,封装支架124用于封装保护发光二极管芯片122,阻隔异物进入到发光二极管芯片122内部。
在本申请实施例中,采用POB封装方式对发光二极管芯片进行封装时,其下表面会同时形成贴片电极,该贴片电极与发光二极管芯片的电极对应电连接,待封装后再将封装好的发光二极管芯片122贴片到电路板121的对应位置上。POB封装方式工艺成熟,适应性好。在该实施例中,单个封装支架124和单个发光二极管芯片122构成一发光器件。
采用POB封装方式即先将发光二极管芯片用封装支架封装成单颗LED灯珠,再把灯珠打在电路板上。
在本申请某些实施例中,采用COB(Chip On board,简称COB)封装方式对发光二极管芯片进行封装,则先将发光二极管芯片122焊接到电路板121对应的焊盘上,再在发光二极管芯片122表面采用点胶的方式对发光二极管芯片122进行封装,封装胶为覆盖发光二极管芯片122背离电路板121一侧表面的保护胶。封装胶用于封装保护发光二极管芯片122,阻隔异物进入到发光二极管芯片122内部。即不再采用封装支架。封装胶可以采用透明胶体材料,如透过性较佳的硅胶、改性硅胶或环氧树脂等。COB封装具有较高的效率且成本较低。电路板121用于为发光二极管芯片122提供驱动电信号。发光二极管芯片122与电路板121分别单独制作,电路板121的表面包括多个用于焊接发光二极管芯片122的焊盘,发光二极管芯片122在制作完成后转移至焊盘上方,通过回流焊等工艺将发光二极管芯片122焊接在电路板121上,从而可以通过控制电路板121的输入信号,驱动发光二极管芯片122发光。发光二极管芯片122位于电路板上。发光二极管芯片122的电极焊接在电路板121所暴露的焊盘上,实现两者之间的电连接。
灯板12可以只包括一种颜色的发光二极管芯片122,也可以包括多种颜色的发光二极管芯片122,在此不做限定。
发光二极管芯片122采用的芯片的尺寸在微米级别,由于发光二极管芯 片122的尺寸很小,因此有利于将背光模组的动态发光控制到更小的分区,可以实现更为精细化的动态控制,提升显示装置的动态对比度。
在本申请一些实施例中,发光二极管芯片122的尺寸在500μm以下。
在某些实施例中,发光二极管芯片为miniLED(Mini Light Emitting Diode)芯片,灯板12具体为miniLED灯板,但不限于此。
在本申请某些实施例中,发光二极管芯片122为微型发光二极管122,微型发光二极管122采用的芯片的尺寸在微米级别。灯板12为微型发光二极管灯板12。其中,微型发光二极管122不同于普通的发光二极管,其具体指的是微型发光二极管芯片。
微型发光二极管灯板12作为背光源,相比于传统的发光二极管,具有更小的尺寸,可以实现更为精细化的动态控制,提升显示装置的动态对比度。
图4为本申请实施例提供的分体反射片的俯视结构示意图,图中虚线表示侧反射片的折弯线。
参照图4,分体反射片13具体包括:主反射片131和侧反射片132。
主反射片131位于灯板12背离背板11一侧的表面,具体设置在平面部111对应的位置,主反射片131的形状大小与平面部111的形状大小一致,主反射片131包括多个用于暴露单个封装支架124和单个发光二极管芯片122构成的发光器件的开口。
主反射片131因需要打孔数量居多,工艺较普通LED背光反射片复杂,因此应用于大尺寸显示装置时,无法采用一整张主反射片贴附的方式,本申请实施例中,将主反射片131的尺寸根据灯板12的尺寸进行加工,灯板12和主反射片131均为多个,一个主反射片131对应一个灯板12,主反射片131与灯板12一一对应贴合。主反射片131具体可以采用全敷胶的贴合方式与灯板12精准对位全贴合,也可以采用胶带的贴合方式与灯板12对位局部贴合。
图5为本申请实施例提供的主反射片与灯板的局部结构示意图。
参照图5,主反射片131的尺寸大于对应的灯板12的尺寸,以便主反射片131超出灯板12的部分遮挡相邻灯板12之间的间隙12a,避免相邻灯板 12之间的间隙12a漏洞产生主观问题,提高主观稳定性。
相邻的主反射片131之间可以具有交叠区域131a,以保证相邻的主反射片131之间处于叠拼重合状态,有效遮挡相邻灯板12之间的间隙12a。相邻的主反射片131之间具有的交叠区域131a一般位于灯板12的间隙12a处,在相邻的主反射片131之间的交叠区域131a可能会出现不平整的问题,因此,将交叠区域131a设置为与灯板12互不交叠,避免交叠区域131a影响灯板12发光。
参照图2,侧反射片132位于背板11的倾斜部112面向灯板12的一侧,其形状大小与倾斜部112的形状大小相适应,且侧反射片132远离平面部111的一侧覆盖至弯折部113。位于边缘位置的发光二极管芯片122出射的大角度光线可以被侧反射片132反射回背光模组中被利用,或者被扩散板14和光学膜片15反射回倾斜部112的光线,可以被侧反射片132重新向出光一侧反射,并且反射光线的反射路径随机,因此经过侧反射片132对光线的多次反射,对光线起到了匀化的作用,进而提高光源的利用效率。
参照图4,侧反射片132匹配倾斜部112的设计为多个,多个侧反射片132之间的拼接位置避开倾斜部112的边角位置。具体地,在天侧倾斜部112a分别与左侧倾斜部112c的一端和右侧倾斜部112d的一侧相连的位置,以及地侧倾斜部112b分别与左侧倾斜部112c的另一端和右侧倾斜部112d的另一端相连的位置为倾斜部112的边角位置。多个侧反射片132的拼接位置避开这些边角位置,可以避免在边角位置出现由于侧反射片132的拼接偏差出现的暗影问题。
多个侧反射片132具体包括:天侧反射片132a、地侧反射片132b、左侧反射片132c和右侧反射片132d。其中,天侧反射片132a和地侧反射片132b相对,左侧反射片132c和右侧反射片132d相对,天侧反射片132a分别与左侧反射片132c的一端和右侧反射片132d的一端拼接,地侧反射片132b分别与左侧反射片132c的另一端和右侧反射片132d的另一端拼接。
图6为本申请实施例提供的地侧反射片的俯视结构示意图。图7为本申 请实施例提供的天侧反射片的俯视结构示意图。图中虚线表示侧反射片的折弯线。
天侧反射片132a覆盖天侧倾斜部112a,且两个端部延伸至左侧倾斜部112c和右侧倾斜部112d,使天侧反射片132a与左侧反射片132c拼接的位置位于左侧倾斜部112c,天侧反射片132a与右侧反射片132d拼接的位置位于右侧倾斜部112d。
地侧反射片132b覆盖地侧倾斜部112b,且两个端部延伸至左侧倾斜部112c和右侧倾斜部112d,使地侧反射片132b与左侧反射片132c拼接的位置位于左侧倾斜部112c,地侧反射片132b与右侧反射片132d拼接的位置位于右侧倾斜部112d。
参照图6和图7,天侧反射片132a和地侧反射片132b两侧端部根据背板11中的倾斜部112的倾斜角度进行折弯角度设计,使侧反射片132之间的拼接位置避开倾斜部112的边角位置,可以避免在边角位置出现由于侧反射片132的拼接偏差出现的暗影问题。
为了精确的将各侧反射片132贴合至对应的倾斜部112表面,需要针对不同的侧反射片132进行对位设计。
图8为本申请实施例提供的地侧反射片与地侧倾斜部连接的弯折部在精定位的局部俯视结构示意图。图9为本申请实施例提供的地侧反射片与地侧倾斜部连接的弯折部在粗定位的局部俯视结构示意图。图中虚线表示侧反射片的折弯线。
参照图6、图8和图9,针对地侧反射片132b,可以在地侧倾斜部112b连接的弯折部113设置精定位点凸包1131和粗定位点凸包1132,具体可以设置一个精定位点凸包1131和两个粗定位点凸包1132,两个粗定位点凸包1132分别位于精定位点凸包1131两侧。对应地,地侧反射片132b远离平面部111的一侧具有与精定位点凸包1131匹配的精定位卡槽132b1、与粗定位点凸包1132匹配的粗定位卡槽132b2。地侧反射片132b按照中间精定位和左右两侧粗定位的方式进行对位设计,左右粗定位主要起到地侧反射片132b上下方向 不偏位,中间精定位主要起到地侧反射片132b左右方向不偏位,提高了地侧反射片132b装配偏移的稳定性。
图10为本申请实施例提供的天侧反射片与天侧倾斜部的局部俯视结构示意图。图11为本申请实施例提供的定位凹槽与定位凸起的局部结构示意图。
参照图10,针对天侧反射片132a,可以在天侧倾斜部112a邻***面部111的一侧设置凹痕对位标记线1121,对应地,天侧反射片132a邻***面部111的一侧设置与凹痕对位标记线1121匹配的对位切线132a1。天侧反射片132a在对位贴合时利用对位切线132a1按照对应凹痕对位标记线1121匹配定位,保证了天侧反射片132a对中设计,保证了天侧反射片132a左右方向不偏位,提高了天侧反射片132a装配偏移的稳定性。
参照图11,天侧倾斜部112a在邻***面部111的边缘还具有定位凹槽31,天侧反射片132a邻***面部111的边缘具有与定位凹槽31匹配的定位凸起32,定位凸起32与定位凹槽31对位,保证了天侧反射片132a上下方向不偏位,提高了天侧反射片132a装配偏移的稳定性。
针对左侧反射片132c和右侧反射片132d,在左侧倾斜部112c邻***面部111的边缘设置定位凹槽31,左侧反射片132c邻***面部111的边缘具有与定位凹槽31匹配的定位凸起32;在右侧倾斜部112d邻***面部111的边缘设置定位凹槽31,右侧反射片132d邻***面部111的边缘具有与定位凹槽31匹配的定位凸起32。定位凸起32与定位凹槽31对位,保证了左侧反射片132c和右侧反射片132d上下方向不偏位,提高了左侧反射片132c和右侧反射片132d装配偏移的稳定性。
参照图7,天侧反射片132a的两个端部分别设置边缘对位标记132a2,用于定位左侧反射片132c和右侧反射片132d的边缘位置。左侧反射片132c和右侧反射片132d的边缘位置与边缘对位标记132a2对位,保证了左侧反射片132c和右侧反射片132d左右方向不偏位,提高了左侧反射片132c和右侧反射片132d装配偏移的稳定性。
参照图4,由于左侧反射片132c的边缘位置与边缘对位标记132a2对位, 使得左侧反射片132c和天侧反射片132a的一个边缘交叠,为了保证对位准确,可以设置左侧反射片132c和天侧反射片132a的边缘垂直于平面部111的边缘。同样,由于右侧反射片132d的边缘位置与边缘对位标记132a2对位,使得右侧反射片132d和天侧反射片132a的另一边缘交叠,为了保证对位准确,可以设置右侧反射片132d和天侧反射片132a的另一边缘垂直于平面部111的边缘。
扩散板14位于灯板12的出光侧,扩散板14与灯板12之间存在一定的混光距离,扩散板14在背板11的正投影覆盖主反射片131和侧反射片132在背板11上的正投影,即扩散板14位于整个背板11的正上方。通常情况下扩散板14可以设置为矩形或方形。
扩散板14的作用是对入射光线进行散射,使经过扩散板14的光线更加均匀。扩散板14中设置有散射粒子材料,光线入射到散射粒子材料会不断发生折射与反射,从而达到将光线打散的效果,实现匀光的作用。
扩散板14具有较高的雾度,均匀效果更加,通常可以采用挤出工艺加工,扩散板14所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种。
扩散板14中还可以设置量子点材料,形成量子点扩散板,当发光二极管芯片122为发光二极管芯片时,量子点材料中包括红色量子点材料和绿色量子点材料,红色量子点材料在蓝色光的激发下出射红色光,绿色量子点材料在蓝色光的激发下出射绿色光,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
量子点扩散板,在制作背光模组的后续过程中,不再设置量子点膜,既降低了成本,又使显示装置更轻薄。
光学膜片15位于扩散板14背离主反射片131和侧反射片132的一侧,光学膜片15整层设置,其形状与扩散板14的形状相同,通常情况下可以设置为矩形或方形。
光学膜片15的设置可以使背光模组适应多种多样的实际应用。
在本申请某些实施例中,发光二极管芯片122可以采用蓝光发光二极管芯片,光学膜片15包括量子点层或荧光层。
量子点层中包括红色量子点材料和绿色量子点材料,红色量子点材料在蓝色光的激发下出射红色光,绿色量子点材料在蓝色光的激发下出射绿色光,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
荧光层中包括受激发射红色光和受激发射绿色光的荧光材料,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
除此之外,光学膜片15还可以包括棱镜片,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。
光学膜片15还可以包括反射式偏光片,反射式偏光片作为一种增亮片,可以提高背光模组的亮度,提高光线的利用效率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
光学膜片15不仅可以达到相应的功能,还具有雾化和遮盖效果。
在实际应用中,Mini LED背光设计所用Mini LED颗数是传统背光的十倍以上,单块灯板上的Mini LED数量较多,对应反射片也要开很多孔位。基于传统的反射片装配工艺,很难一次性对位准确,且Mini LED背光设计的混光距离(OD)值很小,一旦反射片与Mini LED对位偏移或者局部浮高,则会导致对应附近Mini LED出射光线受阻,产生局部暗影,背光视效稳定性很难保证,因此基于传统设计方案无法满足目前Mini LED背光的可制造性设计。
以下介绍反射片与灯板之间的贴合对位。
图12a和图12b分别为本申请某些实施例提供的背光模组的两种截面结构示意图。
参照图12a和图12b,背光模组包括:背板11-1、灯板12-1、全敷胶反射片13-1、扩散板14-1、光学膜片15-1和定位支架16-1。
背板11-1用于固定灯板12-1以及支撑固定全敷胶反射片13-1、扩散板14-1和光学膜片15-1等部件的边缘位置,背板11-1还对灯板12-1起到散热的作用。
在本申请实施例中,背光模组为直下式背光模组,采用灯板12-1作为背光源。灯板12-1位于背板11-1之上。通常情况下,灯板12-1整体可呈方形或矩形。灯板12-1包括众多发光二极管光源,由于固晶机量程的限制,并且电路板尺寸过大也会出现板材涨缩严重、焊盘精度不高等诸多问题,灯板12-1的尺寸不宜过大。当应用于大尺寸的显示装置时,通常采用多个灯板12-1相互拼接的方式,提供背光。
具体地,参照图12a,灯板12-1具体包括:电路板121-1、发光二极管芯片(即LED芯片)122-1和封装支架124-1。或者,具体地,参照图12b,灯板12-1具体包括:电路板121-1、发光二极管芯片122-1、反光层123-1和封装胶125-1。其中,每一发光二极管芯片122-1作为一个发光单元存在。
本申请实施例中的灯板12-1上不再设置透镜,灯板12-1上发光二极管芯片122-1之间的间距较小。
电路板121-1位于背板11-1之上,电路板121-1的形状与灯板12-1的整体形状相同。在通常情况下,电路板121-1为板状,整体呈长方形或正方形。
电路板121-1用于为发光二极管芯片122-1提供驱动电信号。发光二极管芯片122-1与电路板121-1分别单独制作,电路板121-1的表面包括多个用于焊接发光二极管芯片122-1的焊盘,发光二极管芯片122-1在制作完成后转移至焊盘上方,通过回流焊等工艺将发光二极管芯片122-1焊接在电路板121-1上,从而可以通过控制电路板121-1的输入信号,驱动发光二极管芯片122-1发光。
在本申请实施例中,电路板121-1可为印刷电路板(Printed Circuit Board,简称PCB),PCB包括基板和导电层,导电层经导电材料电镀沉积在基板上,再根据需要刻蚀线路形成电路,导电层的材料可以采用铜。
电路板121-1的基板可以采用FR4、铝基或玻璃等材料进行制作。或者,电路板121-1的衬底或衬底基板可以采用柔性材料来制作以形成柔性显示装置。
发光二极管芯片122-1位于电路板上。发光二极管芯片122-1的电极焊接 在电路板121-1所暴露的焊盘上,实现两者之间的电连接。
灯板12-1可以只包括一种颜色的发光二极管芯片122-1,也可以包括多种颜色的发光二极管芯片122-1,在此不做限定。
反光层123-1位于电路板121-1靠近发光二极管芯片122-1一侧的表面,为绝缘保护层,具有保护电路板的作用。在本申请实施例中,反光层123-1采用具有反光性质的材料涂覆于电路板121-1的表面,再通过刻蚀等工艺将用于焊接发光二极管芯片122-1的焊盘所在的位置暴露出来,以形成用于暴露发光二极管芯片122-1的开孔。
在本申请实施例中,反光层123-1采用的材料为具有对光进行反射的性质白色油墨。
发光二极管芯片122-1可以采用POB和COB两种方式进行封装。
参照图12a,采用POB封装方式对发光二极管芯片进行封装时,会在发光二极管芯片的外侧设置封装支架124-1,封装支架124-1用于封装保护发光二极管芯片122-1,阻隔异物进入到发光二极管芯片122-1内部。
在本申请某些实施例中,采用POB封装方式对发光二极管芯片进行封装时,其下表面会同时形成贴片电极,该贴片电极与发光二极管芯片的电极对应电连接,待封装后再将封装好的发光二极管芯片122-1贴片到电路板121-1的对应位置上。POB封装方式工艺成熟,适应性好。在该实施例中,单个封装支架124-1和单个发光二极管芯片122-1构成一发光器件。
采用POB封装方式即先将发光二极管芯片用封装支架封装成单颗LED灯珠,再把灯珠打在电路板上。
参见图12b,在本申请另一实施例中,采用COB封装方式对发光二极管芯片进行封装,则先将发光二极管芯片122-1焊接到电路板121-1对应的焊盘上,再在发光二极管芯片122-1表面采用点胶的方式对发光二极管芯片122-1进行封装,发光二极管芯片122-1表面的封装胶125-1可以采用透明胶体材料,如透光性较佳的硅胶、改性硅胶或环氧树脂等。COB封装具有较高的效率且成本较低。
发光二极管芯片122-1采用的芯片的尺寸在微米级别,由于发光二极管芯片122的尺寸很小,因此有利于将背光模组的动态发光控制到更小的分区,可以实现更为精细化的动态控制,提升显示装置的动态对比度。
在本申请一些实施例中,发光二极管芯片122的尺寸在500μm以下。
在某些实施例中,发光二极管芯片为miniLED(Mini Light Emitting Diode)芯片,灯板12-1具体为miniLED灯板,但不限于此。
在本申请某些实施例中,发光二极管芯片122为微型发光二极管122,微型发光二极管122采用的芯片的尺寸在微米级别。灯板12为微型发光二极管灯板12。其中,微型发光二极管122-1不同于普通的发光二极管,其具体指的是微型发光二极管芯片。
微型发光二极管灯板12作为背光源,相比于传统的发光二极管,具有更小的尺寸,可以实现更为精细化的动态控制,提升显示装置的动态对比度。
图13为本申请实施例提供的灯板的俯视结构示意图。图14为本申请实施例提供的全敷胶反射片的俯视结构示意图。
参见图13,在一张灯板12-1的电路板121-1上,定位支架16-1分布于发光二极管芯片122-1的间隔位置,以避免影响发光二极管芯片122-1的出光。
参见图14,全敷胶反射片13-1包括用于暴露定位支架16-1的定位开孔21-1,以及用于暴露发光二极管芯片122-1的开口22-1,定位开孔21-1匹配定位支架16-1设计,开口22-1匹配发光二极管芯片122-1设计。
定位支架16-1一般采用棱锥设计,底部焊盘可以采用尺寸为4*4mm的正方形SMT封装焊盘设计或者点胶封装设计,起到定位全敷胶反射片13-1及支撑扩散板14-1的作用,为全敷胶反射片13-1的精确定位做精准参照。全敷胶反射片13-1中的定位开孔21-1的尺寸大于定位支架16-1的尺寸,例如大于底部焊盘的尺寸0.2mm左右。
定位支架16-1所用材质一般为聚碳酸酯PC。
参见图12a和图12b,一张全敷胶反射片13-1和灯板12-1可以通过两个定位支架16-1进行双精准定位,两个定位支架16-1的排布方式可以保持一致。 在进行全敷胶反射片13-1的全贴合时,将全敷胶反射片13-1的定位开孔21-1从定位支架16-1的顶部从上向下进行一过性精准定位,然后通过压合治具进行压合,如此设计,可以保证灯板12-1与全敷胶反射片13-1的平整度,提高装配稳定性。
反射片因需要打孔数量居多,工艺较普通LED背光反射片复杂,因此应用于大尺寸显示装置时,无法采用一整张反射片贴附的方式,本申请实施例中,将全敷胶反射片13-1的尺寸根据灯板12-1的尺寸进行加工,灯板12-1和全敷胶反射片13-1均为多个,一个全敷胶反射片13-1对应一个灯板12-1,全敷胶反射片13-1可以通过定位支架16-1与灯板12-1一一对应精准贴合。全敷胶反射片13-1具体可以采用全敷胶的贴合方式与灯板12-1精准对位全贴合,相较于相关技术中采用胶带的贴合方式与灯板12-1对位局部贴合,可以保证反射片不浮高,提高Mini LED显示的主观视效稳定性,同时提高反射片装配偏移的稳定性。
参见图15,全敷胶反射片13-1具体可以包括:基材131-1和胶体层132-1。
基材131-1具有支撑和反射作用,基材131-1的材质一般为PET。
胶体层132-1位于基材131-1面向灯板12-1的一侧,用于与灯板12-1全贴合。胶体层132-1的材质一般为双叶型丙烯酸。
全敷胶反射片13-1在制作时采用DXC全覆胶涂布工艺,不同于普通的Mini LED反射片采用的胶带贴合方法,覆胶涂布工艺搭配双叶型丙烯酸胶水性能稳定、膜厚控制更精准更稳定,保证了贴合可靠性。
图16为本申请实施例提供的全敷胶反射片制作时的涂布设备示意图。
参见图16,全敷胶反射片13-1中胶体层132-1的制作工艺流程包括:胶水配方→上膜→膜平衡→上胶→烘干→电晕→涂布→固化→检测→收卷。
胶水配方:对胶水按照配方参数进行调配。
上膜:将基材架上滚轮。
膜平衡:通过多个滚轮上下拉伸,修正基材在传输过程中的倾斜偏移。
上胶:将调配好的胶水注入到涂胶设备中。
烘干:将胶水进行烘干,使其状态呈半液体状态,为后续涂布工艺做准备。
电晕:对基材表面做电晕工艺处理,使基材表面具有更高的附着性,涂胶后更牢固。
涂布:通过涂布设备对基材进行胶体涂布。
固化:将涂布后的基材进行固化处理,使胶体充分和基材黏连。
检验:对涂布后的基材进行平整度一致性检验。
收卷:通过收卷设备,对胶体层加一层离型膜,同时卷起为卷料包装。
参见图15,全敷胶反射片13-1还可以包括:散射粒子层133-1。散射粒子层133-1位于基材131-1背离胶体层132-1的一侧,用于增加反射光线出射方向。
图17为本申请实施例提供的全敷胶反射片的反射光线示意图。图18为相关技术中的反射片的反射光线示意图。
参见图17和图18,当光线射到全敷胶反射片13-1时,散射粒子层133-1可以增加反射光线出射方向,使整体出射光线更均匀。
全敷胶反射片13-1参数设计规格如下:
项目 单位 参数设计值
总厚度Total Thickness μm 185±10
胶层厚度Bondline thickness μm 20±10
分光反射率Reflectance ≥96.6
光泽度Gloss 25±5
拉伸强度Tensile Strength Mpa MD≥75/TD≥60
断裂伸长率Tensile Elongation MD≥30/TD≥25
热收缩率Heat Shrinkage(85℃,30min) MD≤0.4/TD≤0.2
剥离力Release Force gf/inch 2500±500
如上设计保证了全敷胶反射片13-1的厚度尺寸均一稳定、且光学反射率高、热稳定性好。
扩散板14-1位于灯板12-1的出光侧,与全敷胶反射片13-1存在一定的 距离,扩散板14-1的形状与灯板12-1的形状相同。通常情况下扩散板14-1可以设置为矩形或方形。
扩散板14-1的作用是对入射光线进行散射,使经过扩散板14-1的光线更加均匀。扩散板14-1中设置有散射粒子材料,光线入射到散射粒子材料会不断发生折射与反射,从而达到将光线打散的效果,实现匀光的作用。
扩散板14-1具有较高的雾度,均匀效果更加,通常可以采用挤出工艺加工,扩散板14-1所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种。
光学膜片15-1位于扩散板14-1背离反射片13-1的一侧,光学膜片15-1整层设置,其形状与灯板12-1相同,通常情况下可以设置为矩形或方形。
光学膜片15-1的设置可以使背光模组适应多种多样的实际应用。
在本申请实施例中,灯板12-1中的发光二极管芯片可以采用蓝光发光二极管芯片,光学膜片15-1包括量子点层或荧光层。
量子点层中包括红色量子点材料和绿色量子点材料,红色量子点材料在蓝色光的激发下出射红色光,绿色量子点材料在蓝色光的激发下出射绿色光,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
荧光层中包括受激发射红色光和受激发射绿色光的荧光材料,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
除此之外,光学膜片15-1还可以包括棱镜片,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。
光学膜片15-1还可以包括反射式偏光片,反射式偏光片作为一种增亮片,可以提高背光模组的亮度,提高光线的利用效率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
扩散板14-1需要覆盖所有灯板12-1所在的区域,其尺寸相对较大,容易发生塌陷翘曲变形,使背光模组的光学特性变差,甚至损坏发光二极管芯片122-1,因此定位支架16-1还可以起到支撑扩散板14-1的作用。
定位支架16-1可以通过卡扣、螺丝或粘贴的方式固定于灯板12-1上。
图19-图21为本申请实施例提供的定位支架与灯板的连接关系示意图。
参照图19,定位支架16-1通过限位片31-1、辅助柱体32-1和卡扣33-1固定在灯板12-1上,限位片31-1和卡扣33-1分别位于辅助柱体32-1的两端,当卡扣33-1闭合之后,限位片31-1和卡扣33-1通过夹紧灯板12-1使得定位支架16-1固定于灯板12-1上。
参照图20,定位支架16-1与底座34-1连接,底座34-1通过螺丝35-1固定在灯板12-1上,通过旋转螺丝35-1可以对支架16-1进行拆卸。
参照图21,定位支架16-1通过胶体36-1(如双面胶、固体胶或液体)直接粘贴在灯板12-1的表面。
需要说明的是,上述实施例中都是以光源为灯板为例介绍的,但不限于此,也可为灯条等其他光源形式,同时上述实施例中都是以微型发光二极管灯板为例介绍的,对于本领域技术人员来说,但不限于此,也可是其他LED发光器件组件,具体可为microLED或普通LED发光器件。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种显示装置,其特征在于,包括:
    显示面板,用于图像显示;
    背光模组,位于所述显示面板的入光侧,用于提供背光;
    所述背光模组包括:
    背板,具有支撑和承载作用;所述背板包括平面部和包围所述平面部的倾斜部,所述倾斜部向着所述平面部的一侧倾斜设定角度;
    灯板,位于所述背板的所述平面部之上,用于向所述显示面板提供背光;
    分体反射片,包括主反射片和多个侧反射片;所述主反射片位于所述灯板背离所述背板的一侧,所述多个侧反射片位于所述背板的倾斜部面向所述灯板的一侧,且所述多个侧反射片之间拼接位置与所述倾斜部的边角位置互不重叠。
  2. 如权利要求1所述的显示装置,其特征在于,所述灯板和所述主反射片均为多个,所述主反射片与所述灯板一一对应贴合。
  3. 如权利要求2所述的显示装置,其特征在于,所述主反射片的尺寸大于对应的灯板的尺寸;
    相邻的灯板之间具有设定数值的间隙,所述间隙被所述主反射片完全覆盖。
  4. 如权利要求3所述的显示装置,其特征在于,相邻的主反射片之间具有交叠区域。
  5. 如权利要求4所述的显示装置,其特征在于,所述交叠区域位于所述间隙处,且所述交叠区域与所述灯板互不交叠。
  6. 如权利要求1-5任一项所述的显示装置,其特征在于,所述多个侧反射片包括:天侧反射片、地侧反射片、左侧反射片和右侧反射片;
    所述背板的倾斜部包括:天侧倾斜部、地侧倾斜部、左侧倾斜部和右侧倾斜部;
    所述天侧反射片覆盖所述天侧倾斜部,且两个端部延伸至所述左侧倾斜部和所述右侧倾斜部;
    所述地侧反射片覆盖所述地侧倾斜部,且两个端部延伸至所述左侧倾斜部和所述右侧倾斜部。
  7. 如权利要求6所述的显示装置,其特征在于,所述背板还包括连接所述倾斜部远离所述平面部的一侧且平行于所述平面部的弯折部,所述多个侧反射片远离所述平面部的一侧覆盖至所述弯折部;
    在所述地侧倾斜部连接的弯折部设置精定位点凸包和粗定位点凸包;
    所述地侧反射片远离所述平面部的一侧具有与所述精定位点凸包匹配的精定位卡槽、与所述粗定位点凸包匹配的粗定位卡槽。
  8. 如权利要求6所述的显示装置,其特征在于,所述天侧倾斜部邻近所述平面部的一侧具有凹痕对位标记线,所述天侧反射片邻近所述平面部的一侧具有与所述凹痕对位标记线匹配的对位切线;
    所述天侧倾斜部邻近所述平面部的边缘具有定位凹槽,所述天侧反射片邻近所述平面部的边缘具有与所述定位凹槽匹配的定位凸起。
  9. 如权利要求6所述的显示装置,其特征在于,所述左侧倾斜部邻近所述平面部的边缘具有定位凹槽,所述左侧反射片邻近所述平面部的边缘具有与所述定位凹槽匹配的定位凸起;
    所述右侧倾斜部邻近所述平面部的边缘具有定位凹槽,所述右侧反射片邻近所述平面部的边缘具有与所述定位凹槽匹配的定位凸起;
    所述天侧反射片的两个端部分别设置边缘对位标记,用于定位所述左侧反射片和右侧反射片的边缘位置。
  10. 如权利要求9所述的显示装置,其特征在于,所述左侧反射片和所述天侧反射片的边缘交叠且边缘垂直于所述平面部的边缘;
    所述右侧反射片和所述天侧反射片的边缘交叠且边缘垂直于所述平面部的边缘。
  11. 一种显示装置,其特征在于,包括:
    显示面板,用于图像显示;
    灯板,位于所述显示面板的入光侧,用于向所述显示面板提供背光;
    定位支架,固定于所述灯板的一侧;
    全敷胶反射片,全贴合于所述灯板的一侧;
    其中,所述全敷胶反射片具有用于暴露所述定位支架的定位开孔。
PCT/CN2021/121615 2021-04-09 2021-09-29 一种显示装置 WO2022213559A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/457,820 US20230400731A1 (en) 2021-04-09 2023-08-29 Display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110387573.4A CN115202098A (zh) 2021-04-09 2021-04-09 一种显示装置
CN202110387573.4 2021-04-09
CN202120739189.1 2021-04-12
CN202120739189.1U CN215117080U (zh) 2021-04-12 2021-04-12 一种显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/457,820 Continuation US20230400731A1 (en) 2021-04-09 2023-08-29 Display apparatus

Publications (1)

Publication Number Publication Date
WO2022213559A1 true WO2022213559A1 (zh) 2022-10-13

Family

ID=83545994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121615 WO2022213559A1 (zh) 2021-04-09 2021-09-29 一种显示装置

Country Status (2)

Country Link
US (1) US20230400731A1 (zh)
WO (1) WO2022213559A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338503A (ja) * 1999-05-26 2000-12-08 Casio Comput Co Ltd 液晶表示素子
CN210720957U (zh) * 2019-12-02 2020-06-09 深圳市康冠商用科技有限公司 直下式背光模组及显示装置
CN210982989U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN111399280A (zh) * 2020-03-25 2020-07-10 海信视像科技股份有限公司 一种显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315567B1 (ko) * 2014-10-31 2021-10-21 엘지전자 주식회사 백라이트 유닛 및 이를 포함하는 디스플레이 장치
KR102330610B1 (ko) * 2017-05-23 2021-11-23 엘지전자 주식회사 백라이트 유닛 및 이를 포함하는 디스플레이 장치
KR102463819B1 (ko) * 2017-11-30 2022-11-03 엘지디스플레이 주식회사 백라이트 유닛 및 디스플레이 장치
KR102546678B1 (ko) * 2018-09-18 2023-06-23 삼성디스플레이 주식회사 표시장치
KR102613460B1 (ko) * 2019-01-03 2023-12-14 삼성전자주식회사 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338503A (ja) * 1999-05-26 2000-12-08 Casio Comput Co Ltd 液晶表示素子
CN210982989U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN210720957U (zh) * 2019-12-02 2020-06-09 深圳市康冠商用科技有限公司 直下式背光模组及显示装置
CN111399280A (zh) * 2020-03-25 2020-07-10 海信视像科技股份有限公司 一种显示装置

Also Published As

Publication number Publication date
US20230400731A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN211979375U (zh) 一种显示装置
KR101299130B1 (ko) 액정표시장치
CN214098031U (zh) 一种显示装置
CN213399142U (zh) 一种显示装置
WO2022088590A1 (zh) 一种显示装置
US20090146159A1 (en) Light-emitting device, method of manufacturing the light-emitting device and liquid crystal display having the light-emitting device
CN215416207U (zh) 一种显示装置
KR20100094217A (ko) 액정 표시 장치 및 이를 포함하는 표시 장치 세트
CN113568220A (zh) 一种显示装置
US11796859B2 (en) Display apparatus with micro light emitting diode light board
CN113093434A (zh) 一种显示装置
CN101988688A (zh) 导光板以及包括该导光板的液晶显示设备
CN107438905B (zh) 发光器件阵列及包含该发光器件阵列的照明***
US20120314153A1 (en) Liquid crystal display device
CN215678978U (zh) 一种显示装置
CN214098032U (zh) 一种显示装置
WO2021190399A1 (zh) 一种显示装置
CN114428421A (zh) 一种显示装置
WO2022213559A1 (zh) 一种显示装置
CN217387154U (zh) 一种显示装置
CN214474343U (zh) 一种显示装置
CN115407551B (zh) 一种显示装置
WO2022213560A1 (zh) 一种显示装置
KR101807872B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
CN215117080U (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935777

Country of ref document: EP

Kind code of ref document: A1