WO2022210896A1 - Laminate and method for manufacturing laminate - Google Patents

Laminate and method for manufacturing laminate Download PDF

Info

Publication number
WO2022210896A1
WO2022210896A1 PCT/JP2022/016050 JP2022016050W WO2022210896A1 WO 2022210896 A1 WO2022210896 A1 WO 2022210896A1 JP 2022016050 W JP2022016050 W JP 2022016050W WO 2022210896 A1 WO2022210896 A1 WO 2022210896A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
surface layer
thermoplastic resin
particles
Prior art date
Application number
PCT/JP2022/016050
Other languages
French (fr)
Japanese (ja)
Inventor
達也 鈴木
大介 菊地
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2023511486A priority Critical patent/JPWO2022210896A1/ja
Publication of WO2022210896A1 publication Critical patent/WO2022210896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a laminate and a method for manufacturing the laminate.
  • Synthetic paper which is made into a paper-like sheet by stretching a molded sheet containing inorganic fine particles and polypropylene to form a porous layer, has been proposed and put into practical use. These synthetic papers are useful as materials for printing paper, labels and the like.
  • waste recycling has been actively carried out from the viewpoint of reducing environmental pollution caused by plastic waste (see, for example, Patent Document 1). Recycled resin recovered from plastic waste is reused for various purposes. Among them, a resin regenerated from a plastic that is purchased and used by a consumer and then discarded is called a PCR (post-consumer resin). Due to the growing demand for reducing environmental pollution, there is a strong demand for techniques for promoting the use of recycled sheets using PCR.
  • an object of the present invention is to provide a laminate containing a stretched sheet of PCR containing coarse particles, the laminate having an excellent surface appearance, and a method for producing the laminate.
  • the present inventors have completed the present invention having the following gist as a result of intensive studies.
  • a stretched laminate comprising a substrate layer and a first surface layer provided on one surface of the substrate layer,
  • the base material layer contains a thermoplastic resin containing a recycled resin and particles having a maximum particle size Rmax of 60 ⁇ m or more
  • a laminate according to [1] wherein the first surface layer contains a polypropylene-based resin.
  • the laminate further comprises a second surface layer provided on the other surface of the base layer, The laminate according to any one of [1] to [3], wherein the thickness TL2 of the second surface layer and the maximum particle diameter Rmax satisfy the following formula (C1). TL2 ⁇ 0.15 ⁇ Rmax (C1) [5]
  • the laminate further comprises a third surface layer provided on the other surface of the base layer, The laminate according to any one of [1] to [3], wherein the third surface layer includes a heat seal layer. [6] The laminate according to [5], wherein the thickness TL3 of the third surface layer and the maximum particle size Rmax satisfy the following formula (C2).
  • the present invention it is possible to provide a laminate containing a stretched sheet of PCR containing coarse particles and having excellent surface appearance, and a method for producing the laminate.
  • FIG. 4 is a schematic cross-sectional view of another example of a laminate
  • FIG. 4 is a schematic cross-sectional view of another example of a laminate
  • It is a schematic sectional drawing for demonstrating a surface-layer tear and a surface protrusion. It is the photograph image which image
  • the laminate of the present invention has a substrate layer and a first surface layer provided on one surface of the substrate layer.
  • the substrate layer and the first surface layer are stretched layers, and the laminate of the present invention having these layers is a stretched laminate.
  • the substrate layer contains a thermoplastic resin containing recycled resin and particles having a maximum particle size Rmax of 60 ⁇ m or more.
  • the relationship between the thickness TL1 of the first surface layer and the maximum particle size Rmax satisfies the following formula (A). TL1 ⁇ 0.15 ⁇ Rmax (A)
  • A When there is a stretched layer containing coarse particles, a laminate having a surface layer covering the coarse particles can prevent tearing of the laminate as a whole.
  • Coarse particles can be, for example, particles having a particle size of 20 ⁇ m or more, or 30 ⁇ m or more. That is, in this case, coarse particles do not include particles having a particle size of less than 20 ⁇ m or 30 ⁇ m.
  • the laminate of the present invention is a laminate formed by stretching a layer containing coarse particles and recycled resin, but the surface layer can be prevented from breaking, and the surface It is possible to suppress the occurrence of projections. And the laminate of the present invention is excellent in surface appearance.
  • the particles preferably have an average particle diameter R of 30 ⁇ m or more.
  • the relationship between the thickness TL1 of the first surface layer and the average particle diameter R preferably satisfies the following formula (1). TL1 ⁇ 0.25 ⁇ R (1) By satisfying the above relational expression (1), surface layer breakage and surface protrusions are more likely to be suppressed.
  • the thickness TB1 of the substrate layer and the maximum particle size Rmax of the particles preferably satisfy the following formula (B1). 1.2 ⁇ Rmax ⁇ TB1 (B1)
  • the thickness TB1 of the substrate layer and the maximum particle size Rmax of the particles may satisfy the following formula (B2). TB1 ⁇ 1.2 ⁇ Rmax (B2) By satisfying the above formula (B2), the particles often appear near the surface of the base layer when the base layer is stretched.
  • the laminate of the present invention may further have a second surface layer provided on the other surface of the substrate layer (that is, the surface opposite to the surface on which the first surface layer is provided).
  • the laminate of the present invention further has a third surface layer provided on the other surface of the substrate layer (that is, the surface opposite to the surface on which the first surface layer is provided).
  • the third surface layer includes a heat seal layer on the surface.
  • FIG. 1 shows the configuration of a laminate 1 as one embodiment of the present invention.
  • a laminate 1 illustrated in FIG. 1 has a base layer 11 and a first surface layer 12 .
  • FIG. 2 shows the configuration of a laminate 1 as another embodiment of the invention.
  • a laminate 1 illustrated in FIG. 2 has a base layer 11 , a first surface layer 12 and a second surface layer 13 .
  • the second surface layer is provided on the surface of the substrate layer 11 opposite to the surface on which the first surface layer 12 is provided.
  • both the A side and the B side in FIG. 2 serve as printing surfaces.
  • a laminate 1 illustrated in FIG. 3 has a base layer 11 , a first surface layer 12 and a third surface layer 14 .
  • the third surface layer is provided on the surface of the substrate layer 11 opposite to the surface on which the first surface layer 12 is provided.
  • the third surface layer 14 includes a heat seal layer 15 .
  • the heat seal layer 15 is preferably positioned on the outermost surface of the third surface layer 14 .
  • the A side in FIG. 3 becomes the print surface.
  • the C side (that is, the heat seal side) of FIG. 3 is an adhesion surface which becomes an adhesion portion when a printed label is adhered to a plastic container main body, for example, as an in-mold label.
  • the base material layer contains a thermoplastic resin containing recycled resin and particles having a maximum particle size Rmax of 60 ⁇ m or more.
  • the base material layer is formed using a thermoplastic resin composition (hereinafter sometimes referred to as a recycled resin composition).
  • the thermoplastic resin composition contains at least particles having a maximum particle size Rmax of 60 ⁇ m or more and recycled resin.
  • a preferred embodiment of the laminate of the present invention includes a laminate produced using recycled resin pellets (PCR pellets) containing coarse particles. That is, at least part of the thermoplastic resin composition is supplied as a recycled resin derived from PCR pellets, and the base material layer contains coarse particles derived from PCR pellets together with the recycled resin.
  • the coarse particles may not be derived from the PCR pellet, and the base layer may be formed by adding coarse particles to the PCR pellet.
  • the present invention attempts to effectively utilize the recycled resin by including the recycled resin in the base material layer.
  • the thermoplastic resin composition used in the base material layer may contain at least recycled resin, and all of the thermoplastic resin used in the base material layer may be supplied from only recycled resin, or recycled resin and a non-recycled resin (hereinafter also referred to as "non-recycled resin") may be used in combination to supply the thermoplastic resin used in the base material layer.
  • the substrate layer is formed from recycled resin pellets and non-recycled resin pellets.
  • a preferred embodiment of the thermoplastic resin used in the base material layer is a thermoplastic resin in which a recycled resin and a non-recycled resin are used in combination.
  • the thermoplastic resin composition used in the base material layer may contain other components described below.
  • thermoplastic resin composition used for the substrate layer contains at least recycled resin and particles having a maximum particle size Rmax of 60 ⁇ m or more.
  • PCR refers to a resin obtained by reusing or recycling used products (for example, daily necessities such as hangers, food containers, etc.).
  • Types of recycled resins include, for example, polyolefin-based resins, polystyrene-based resins, polyamide-based resins, polyester-based resins, and polycarbonate resins. Among them, polyolefin-based resins are preferred, and polypropylene-based resins are more preferred.
  • the type of coarse particles having a maximum particle diameter Rmax of 60 ⁇ m or more is not particularly limited, and may be inorganic particles or organic particles.
  • inorganic particles include calcium carbonate, talc, titanium oxide, metallic aluminum, and silica. Among them, calcium carbonate is more preferable.
  • Types of organic particles include, for example, polyester and nylon.
  • the organic particles are preferably particles that exist in a solid state during stretching.
  • the shape of the particles includes spherical, needle-like, plate-like, fibrous, and irregular shapes.
  • the content of the particles in the recycled resin composition used in the present invention is preferably within the following range from the viewpoint of exhibiting the effects of the present invention.
  • the content of coarse particles in the recycled resin composition is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the content of particles in the recycled resin composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more. preferable.
  • the particles in the recycled resin pellets is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the content of particles in recycled resin pellets is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more. is more preferable.
  • the maximum particle size Rmax of the particles is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the maximum particle diameter Rmax can be preferably 70 ⁇ m or more, and can be 100 ⁇ m or more.
  • the average particle diameter R is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the average particle diameter R can be 50 ⁇ m or more, and can be 80 ⁇ m or more.
  • the cross section of the base material layer is scanned with a scanning electron microscope. It can be obtained by observing with (SEM).
  • SEM scanning electron microscope
  • the average aspect ratio is 1 to 2
  • the diameter of the circumscribed circle of the particles contained in the substrate layer is measured from the SEM image. If the average aspect ratio is greater than 2, measure the minor diameter of the particles from the SEM image.
  • Ten-point measurement is performed on particles having a diameter of 30 ⁇ m or more, and the diameter corresponding to 50% of the accumulated number can be obtained as the average particle diameter (D50).
  • thermoplastic resin used in the base material layer is a thermoplastic resin in which recycled resin and non-recycled resin are used together.
  • the kind of recycled resin and the kind of unrecycled resin may be the same or different, but it is more preferable that the unrecycled resin contains the same kind of thermoplastic resin as the recycled resin.
  • the type of recycled resin is a propylene polymer
  • the non-recycled resin preferably contains a propylene polymer.
  • the content of the recycled resin in the base material layer is not particularly limited, and can be appropriately selected according to the purpose. and more preferably 35% by mass or more. Moreover, the recycled resin is preferably 80% by mass or less, more preferably 65% by mass or less, relative to the total amount of the thermoplastic resin used in the base material layer.
  • the thermoplastic resin used in the base material layer may contain a thermoplastic resin as a resin that is not a recycled product (non-recycled resin or virgin resin) in addition to the above recycled resin.
  • thermoplastic resins as non-recycled resins include polyolefin resins, polyamide resins, polyester resins, polycarbonate resins, polystyrene resins, poly(meth)acrylate resins, polyvinyl chloride resins, mixed resins thereof, and the like. mentioned. Among them, polyolefin resins are preferable from the viewpoint of water resistance and solvent resistance.
  • thermoplastic resin used in the base material layer as the non-recycled resin is the same type of thermoplastic resin as the first surface layer described later, the adhesiveness with the first surface layer is excellent, and the durability of the laminate is improved. It is preferable because it improves the properties.
  • the polyolefin resin a polypropylene resin, a polyethylene resin, or the like can be preferably used.
  • polypropylene-based resins examples include propylene homopolymers such as isotactic homopolypropylene and syndiotactic homopolypropylene obtained by homopolymerizing propylene, propylene-based ethylene, 1-butene, 1-hexene, 1-heptene, Examples include propylene copolymers obtained by copolymerizing ⁇ -olefins such as 1-octene and 4-methyl-1-pentene.
  • the propylene copolymer may be a binary system or a ternary or higher multicomponent system, and may be a random copolymer or a block copolymer.
  • polyethylene-based resins examples include high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, ethylene, etc., and ⁇ -olefins such as propylene, butene, hexene, heptene, octene, and 4-methylpentene-1.
  • Copolymer maleic acid-modified ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-alkyl acrylate copolymer, ethylene-alkyl methacrylate Ester copolymers, metal salts of ethylene/methacrylic acid copolymers (metals include zinc, aluminum, lithium, sodium, potassium, etc.), ethylene-cyclic olefin copolymers, maleic acid-modified polyethylene and the like can be mentioned.
  • polyolefin-based resins propylene homopolymer or high-density polyethylene is preferable from the viewpoint of moldability and cost.
  • thermoplastic resins one type can be used alone or two or more types can be used in combination.
  • the base material layer can optionally contain other components such as known additives as necessary.
  • Additives include antioxidants, light stabilizers, ultraviolet absorbers, dispersing agents for inorganic fillers, crystal nucleating agents, anti-blocking agents, plasticizers, slip agents such as fatty acid amides, dyes, pigments, mold release agents, and flame retardants.
  • auxiliaries such as repellents can be used.
  • the substrate layer preferably contains an antioxidant, a light stabilizer, and the like.
  • Antioxidants include sterically hindered phenol antioxidants, phosphorus antioxidants, amine antioxidants, and the like.
  • Examples of light stabilizers include sterically hindered amine light stabilizers, benzotriazole light stabilizers, benzophenone light stabilizers, and the like.
  • the content of the antioxidant and light stabilizer is preferably in the range of 0.001% by mass or more and 1% by mass or less with respect to the total amount of the base layer.
  • the base material layer can contain a pore-forming material to the extent that the strength is not impaired.
  • a stretched film of a thermoplastic resin composition containing a pore-forming material as the substrate layer, the rigidity, whiteness and opacity of the substrate layer can be adjusted according to the purpose.
  • the pore-forming material for example, an inorganic pore-forming material mentioned in the first surface layer described later can be used.
  • the inorganic pore-forming materials of the substrate layer and the first surface layer may be of the same type or of different types.
  • the thickness of the base layer can be appropriately determined according to the thickness of the first surface layer and the application or purpose of the laminate. When the substrate layer is thick, the problem of coarse particles can be suppressed.
  • the thickness of the base material layer is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the substrate layer is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the first surface layer is provided on one side of the base layer.
  • the first surface layer is formed using a thermoplastic resin composition.
  • the first surface layer may contain a pore-forming material from the viewpoint of providing a texture of paper.
  • thermoplastic resins used in the first surface layer include polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, and polycarbonate resins.
  • One of these thermoplastic resins can be used alone or in combination of two or more.
  • the thermoplastic resin is preferably a polyolefin-based resin or a polyester-based resin, and more preferably a polypropylene-based resin or a polyethylene-based resin. In particular, if it is a polypropylene-based resin, it is difficult for the surface layer to tear.
  • the first surface layer can contain a pore former.
  • pore-forming material By containing the pore-forming material, pores are easily formed inside the first surface layer during stretching, and the whiteness or opacity can be enhanced.
  • the first surface layer is a porous stretched layer.
  • pore-forming materials include inorganic pore-forming materials and organic pore-forming materials. Either one can be used alone or both can be used in combination.
  • a layer formed using a thermoplastic resin composition containing a pore-forming material is stretched at a predetermined temperature, a large number of fine pores having the pore-forming material as a nucleus can be formed in the layer.
  • Examples of inorganic pore-forming materials include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, and silicon dioxide.
  • Examples of organic pore-forming materials include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, poly-4- Examples include methyl-1-pentene, homopolymers of cyclic olefins, and copolymers of cyclic olefins and ethylene.
  • inorganic pore-forming materials and organic pore-forming materials can be used alone, or two or more of them can be used in combination.
  • the inorganic pore-forming material is preferable from the viewpoint of ease of adjustment of the particle size distribution.
  • heavy calcium carbonate or light calcium carbonate is preferable from the viewpoint of pore-formability, cost, and the like.
  • the median diameter (D50) of the pore-forming material is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, from the viewpoint of uniform dispersion in the porous layer.
  • the median diameter (D50) of the pore-forming material is preferably 10 ⁇ m or less from the viewpoint of facilitating the separation of components such as pigments and binders in the ink from the solvent component and preventing ink from fading or drying failure. more preferably 3 ⁇ m or less, still more preferably 1.5 ⁇ m or less, and particularly preferably 1.3 ⁇ m or less.
  • the particle size of the pore-forming material can also be determined as the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion. Specifically, the cut surface of the film is observed with an electron microscope, the maximum diameters of at least 10 particles of the pore-forming material are measured, and the average value is taken as the average dispersed particle diameter.
  • the content of the pore-forming material in the first surface layer is preferably 45 parts by mass or more, more preferably 60 parts by mass, based on 100 parts by mass of the thermoplastic resin, from the viewpoint of pore-forming properties. or more, more preferably 75 parts by mass or more, and particularly preferably 100 parts by mass or more.
  • the content of the pore forming material in the first surface layer is preferably 250 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of maintaining the strength of the first surface layer appropriately. , more preferably 200 parts by mass or less, still more preferably 150 parts by mass or less, and particularly preferably 125 parts by mass or less.
  • TL1 of the first surface layer ⁇ thickness TL1 of the first surface layer>>
  • the relationship between the thickness TL1 of the first surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer is important to satisfy the following formula (A).
  • the laminate of the present invention is formed by stretching a layer containing recycled resin and coarse particles, it is possible to prevent surface layer breakage by satisfying the above formula (A), Since the occurrence of surface protrusions can be suppressed, a laminate having an excellent appearance can be obtained.
  • the relationship between the thickness TL1 of the first surface layer and the average particle diameter R of coarse particles in the substrate layer is expressed by the following formula (1) is preferably satisfied.
  • TL1 ⁇ 0.25 ⁇ R (1) By satisfying the above relational expression (1), surface layer breakage and surface protrusions are more likely to be suppressed.
  • the thickness of the first surface layer is large, the problem of coarse particles can be suppressed.
  • the thickness is thin, the amount of resin used for the first surface layer can be reduced, leading to cost reduction. It is preferable to set the thickness of the first surface layer while considering the balance between the two.
  • the thickness of the first surface layer is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more, from the viewpoint of preventing surface layer breakage and surface projections. Also, the thickness of the first surface layer is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the laminate of the present invention may have a second surface layer in addition to the substrate layer and the first surface layer.
  • the second surface layer is provided on the other side of the substrate layer opposite to the side on which the first surface layer is provided.
  • the second surface layer is formed using a thermoplastic resin composition.
  • the second surface layer may contain a pore-forming material from the viewpoint of providing a texture of paper.
  • thermoplastic resin and pore-forming material used in the second surface layer are as described in the section ⁇ First surface layer> above.
  • the second surface layer and the first surface layer are not particularly different in conditions such as the components for forming the layers, except that the position formed on the substrate layer is different depending on whether it is formed on the front surface or on the back surface.
  • printing paper printing can be performed on both sides as shown in FIG.
  • the thickness TL2 of the second surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer are It is preferable to satisfy the following formula (C1).
  • the laminate of the present invention is formed by stretching a layer containing coarse particles and recycled resin, it is possible to further prevent surface layer breakage by satisfying the above formula (C1). , the occurrence of surface protrusions can be suppressed.
  • the relationship between the thickness TL2 of the second surface layer and the average particle diameter R of coarse particles in the substrate layer is expressed by the following formula (2a). is preferably satisfied.
  • the thickness of the second surface layer is the same as the thickness of the first surface layer described in the section ⁇ thickness TL1 of first surface layer>> above.
  • the laminate of the present invention may have a third surface layer in addition to the substrate layer and the first surface layer.
  • the third surface layer is provided on the other side of the substrate layer opposite to the side on which the first surface layer is provided.
  • the third surface layer is formed using a thermoplastic resin composition.
  • the third surface layer may contain a pore-forming material from the viewpoint of giving the texture of paper.
  • the third surface layer includes a heat seal layer on the surface. The heat seal layer is preferably arranged on the outermost surface of the third surface layer, as shown in FIG.
  • the heat seal layer functions, for example, as a sticking portion when a printed label for in-mold molding is stuck to a plastic container body.
  • the heat seal layer is, for example, a non-recycled resin used in the base material layer, a thermoplastic resin used in the first surface layer and the second surface layer, or a layer other than the heat seal layer in the third surface layer.
  • a thermoplastic resin whose main component is a thermoplastic resin that exhibits a melting point lower than the melting point of the thermoplastic resin used in Formed using a composition. A detailed description of the heat seal layer will be given later.
  • thermoplastic resin and pore-forming material used in the layers other than the heat seal layer in the third surface layer are the same thermoplastic resins and pore-forming materials as those described in the section ⁇ First surface layer> above. be able to.
  • the side on which the first surface layer is formed functions as a printing surface, as shown in FIG. . Since the heat-seal layer is formed on the third surface layer side, the side on which the third surface layer is formed functions as an adhered portion when the printed label is adhered to the plastic container body.
  • the heat-seal layer has a function of attaching a printed label to the plastic container when attaching the printed label for in-mold molding to the plastic container body.
  • the heat seal layer is formed using, for example, a thermoplastic resin composition containing, as a main component, a thermoplastic resin having a melting point lower than that of the thermoplastic resin forming the base layer and the like.
  • the difference between the melting point of the thermoplastic resin that is the main component of the heat seal layer and the melting point of the thermoplastic resin that constitutes the base layer and the like is preferably 10° C. or higher, more preferably 15° C. or higher.
  • the difference between the melting point of the thermoplastic resin that is the main component of the heat seal layer and the melting point of the thermoplastic resin that constitutes the base layer and the like is preferably 150° C. or less.
  • blocking of the printed label can be suppressed during storage of the printed label for in-mold molding before being attached to the plastic container or during processing of the printed label.
  • the handleability of printed labels for in-mold molding is improved.
  • the heat-seal layer When the heat-seal layer is formed, printing is not performed on the heat-seal layer, so even if the surface layer breaks, problems such as white spots do not occur. Further, even if the surface layer is torn, the heat seal layer melts in the portion where the surface layer is torn, and the tear disappears. Even if the surface layer is torn or has surface protrusions on the heat-seal layer side, the heat-seal layer side is used only as an adhesive surface, not a printed surface. If there is no problem with the surface appearance when the heat-seal layer is pressed, surface layer breakage and the presence of surface protrusions on the heat seal layer side may not be a problem.
  • thermoplastic resins used in the heat seal layer include ultra-low, low, and medium density high-pressure polyethylene, linear low-density polyethylene, ethylene/vinyl acetate copolymer, and ethylene/acrylic acid copolymer. Represented by coalescence, ethylene/alkyl acrylate polymer with 1 to 8 carbon atoms in the alkyl group, ethylene/alkyl methacrylate copolymer with 1 to 8 carbon atoms in the alkyl group, and propylene/ ⁇ -olefin copolymer propylene-based resins, polyester-based resins, styrene-based elastomer resins, polyamide-based resins, and the like, which are used in the present invention.
  • thermoplastic resin used for the heat seal layer linear low-density polyethylene is preferable, and linear low-density polyethylene using a metallocene as a polymerization catalyst is more preferable.
  • an adhesive layer having excellent heat-seal adhesive strength can be obtained.
  • Any other known resin additive may be added to the heat-sealable layer as long as the heat-sealable property is not impaired.
  • examples of other resin additives include dyes, nucleating agents, plasticizers, release agents, flame retardants, antioxidants, light stabilizers, ultraviolet absorbers, and the like.
  • a substance having a tertiary amino group as an antistatic agent, and more preferably a substance having an N,N-dimethylamino group or N,N-diethylamino group.
  • the amount of other resin additives added is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the entire heat seal layer. This can prevent the additive from depositing on the die during continuous production of the laminate.
  • the thermoplastic resin composition may contain the recycled resin described above. That is, the third surface layer can be formed using a thermoplastic resin for the third surface layer containing particles having a maximum particle size Rmax of 60 ⁇ m or more and a recycled resin. As a result, the recycled resin can be contained in the third surface layer in addition to the base layer, and the recycled resin can be effectively utilized. As the recycled resin contained in the thermoplastic resin forming the third surface layer, the same recycled resin as described in the section ⁇ Base layer> can be used.
  • the thickness TL3 of the third surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer are It is important to satisfy the following formula (C2).
  • the laminate of the present invention is formed by stretching a layer containing coarse particles and recycled resin, but by satisfying the above formula (C2), surface layer tearing can be suppressed, It is possible to suppress the occurrence of surface protrusions.
  • the above formula (C2) also includes the case where minute surface layer breakage occurs.
  • the third surface layer includes a heat seal layer, if the damage to the surface layer is extremely small, it will disappear during heat sealing, and there will be no problem with the appearance.
  • the relationship between the thickness TL3 of the third surface layer and the average particle diameter R of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) is expressed by the following formula (2b ) is preferably satisfied.
  • p is preferably 2.0, more preferably 1.6, even more preferably 1.2.
  • the thickness of the third surface layer including the heat seal layer is preferably 13 ⁇ m or more, more preferably 17 ⁇ m or more, and even more preferably 25 ⁇ m or more. Also, the thickness of the third surface layer is preferably 333 ⁇ m or less, more preferably 250 ⁇ m or less, and even more preferably 167 ⁇ m or less.
  • the thickness TL3 of the third surface layer includes the thickness of the heat seal layer, but the thickness of the heat seal layer alone is preferably 1 ⁇ m or more from the viewpoint of reducing appearance defects. 2 ⁇ m or more is more preferable. Moreover, the thickness of the heat seal layer alone is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the total thickness of the layers of the laminate of the present invention is preferably 300 ⁇ m or less from the viewpoint of preventing surface layer breakage and surface protrusions.
  • the ratio of the content of the recycled resin in the entire laminate is not particularly limited, and can be appropriately selected according to the purpose. % or more, more preferably 25 mass % or more, and even more preferably 30 mass % or more.
  • the recycled resin is preferably 50% by mass or less, more preferably 35% by mass or less, relative to the total amount of the laminate.
  • the method for producing the laminate of the present invention is not particularly limited, and the laminate can be produced by a conventional method. be done.
  • the method for producing a laminate of the present invention comprises: - A step of molding a first molding layer using the thermoplastic resin composition for the base material layer; A step of forming a second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer to produce a laminate including the first molding layer and the second molding layer; - stretching the laminate.
  • the first molding layer is molded using a thermoplastic resin composition for a substrate layer containing particles having a maximum particle diameter Rmax of 60 ⁇ m or more and recycled resin.
  • the thermoplastic resin composition for the substrate layer can be obtained, for example, from recycled resin pellets, or by mixing recycled resin pellets and non-recycled resin pellets, and optionally mixing with other components.
  • the second molded layer is molded using a thermoplastic resin composition for the first surface layer, the main component of which is the thermoplastic resin that forms the first surface layer.
  • a layer (film) molding method for the first molding layer and the second molding layer for example, a single-layer or multi-layer T die, I die, etc. connected to a screw type extruder is used to extrude the molten resin into a sheet. , calendar molding, roll molding, inflation molding, and the like.
  • layer (film) molding of the first molding layer and the second molding layer, and Lamination of the first molded layer and the second molded layer can also be carried out in parallel.
  • the first molding layer can be stretched before laminating the second molding layer, or can be stretched after lamination. Since the second molded layer is usually thin, it is preferable to laminate the first molded layer and then stretch it instead of stretching the single layer. Among them, it is preferable that the first molded layer is a biaxially stretched layer because the mechanical strength can be increased. Further, it is preferable that the second molding layer is a uniaxially stretched layer, since a fibril-like surface can be easily formed and the scratch resistance after pigment inkjet printing can be improved. More preferably, the first molded layer is a biaxially stretched layer and the second molded layer is a uniaxially stretched layer.
  • Stretching methods include, for example, a longitudinal stretching method using a difference in circumferential speed between rolls, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these methods, a rolling method, and a simultaneous two-stretching method using a combination of a tenter oven and a pantograph.
  • Examples include an axial stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor.
  • a simultaneous biaxial stretching (inflation molding) method can also be used, in which a circular die connected to a screw extruder is used to extrude a molten resin into a tubular shape, and then air is blown into the tubular shape.
  • the stretching temperature during stretching is preferably in the range of the glass transition temperature of the thermoplastic resin or higher. Also, when the thermoplastic resin is a crystalline resin, the stretching temperature should be above the glass transition point of the non-crystalline portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin. is preferable, and a temperature lower than the melting point of the thermoplastic resin by 2° C. or more and 60° C. or less is preferable.
  • the drawing temperature is preferably 100°C or higher and 164°C or lower, and in the case of high-density polyethylene (melting point 121-134°C), 70°C or higher and 133°C or lower. is preferred.
  • the stretching speed is not particularly limited, but is preferably in the range of 20 m/min or more and 350 m/min or less from the viewpoint of stable stretching molding.
  • the draw ratio can also be appropriately determined in consideration of the properties of the thermoplastic resin to be used.
  • the draw ratio when drawing in one direction is usually about 1.2 times or more, preferably about 2 times or more, and the upper limit is 12 times. Below, preferably 10 times or less.
  • the draw ratio in terms of area draw ratio is generally 1.5 times or more, preferably 4 times or more, and 60 times or less, preferably 50 times or less. If the draw ratio is within the above range, the desired porosity and basis weight are easily obtained, and the opacity is easily improved. In addition, there is a tendency that the laminate is less likely to break, and can be stably stretched.
  • a substrate layer is produced by subjecting the first molded layer to a desired stretching process. Further, the first surface layer is produced by subjecting the second molded layer to a desired stretching process.
  • the laminate of the present invention has a second surface layer or a third surface layer
  • the second surface layer or the third surface layer is formed in the same manner as the first surface layer described above. can be made.
  • a preferred embodiment of the method for producing the laminate of the present invention includes the following steps.
  • the method for producing a laminate of the present invention comprises: - A step of molding a first molding layer using the thermoplastic resin composition for the base material layer; ⁇ Mold the second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer, and use the thermoplastic resin composition for the second surface layer on the first molding layer (second a step of forming a third molded layer on the surface opposite to the surface on which the second molded layer is formed to produce a laminate including the first molded layer, the second molded layer, and the third molded layer; - stretching the laminate.
  • the third molding layer is molded using a thermoplastic resin composition for the second surface layer, the main component of which is a thermoplastic resin for forming the second surface layer.
  • the layer (film) forming method and the stretching method for the first to third molding layers are as described in the section ⁇ First Embodiment>> above. More preferably, the first molded layer is a biaxially stretched layer, and the second molded layer and the third molded layer are uniaxially stretched layers. A second surface layer is produced by subjecting the third molded layer to a desired stretching process.
  • a preferred embodiment of the method for producing the laminate of the present invention includes the following steps.
  • the method for producing a laminate of the present invention comprises: - A step of molding a first molding layer using the thermoplastic resin composition for the base material layer; Using the thermoplastic resin composition for the first surface layer to mold the second molding layer on the first molding layer, and using the thermoplastic resin composition for the third surface layer to mold the first molding layer (the a step of forming a fourth molded layer on the surface opposite to the surface on which the second molded layer is formed to produce a laminate including the first molded layer, the second molded layer, and the fourth molded layer; - stretching the laminate.
  • the fourth molded layer is, for example, a layer molded using a thermoplastic resin composition for the third surface layer, the main component of which is a thermoplastic resin used in layers other than the heat seal layer in the third surface layer, A layer molded using a thermoplastic resin composition for a heat seal layer containing a thermoplastic resin used in the heat seal layer as a main component is laminated.
  • the layer (film) forming method and the stretching method of the first molding layer, the second molding layer, and the fourth molding layer are as described in the above ⁇ first embodiment>> section. More preferably, the first molded layer is a biaxially stretched layer, and the second molded layer and the fourth molded layer are uniaxially stretched layers.
  • a third surface layer is produced by subjecting the fourth molded layer to a desired stretching process.
  • Example 1 A laminate (base film) was produced according to the following procedure. Details of the materials used are as follows (see Table 1 below). "MFR” means melt flow rate.
  • PP Propylene homopolymer having an MFR of 5 g/10 min (230°C, 2.16 kg load) and a melting point of 164°C (DSC peak temperature) (Novatec PP manufactured by Japan Polychem Co., Ltd., trade name “MA4U”)
  • MA4U melting point of 164°C
  • Recycled pellets Propylene polymer with a melting point of 162°C (DSC peak temperature), calcium carbonate (average particle size: 100 ⁇ m, maximum particle size: 140 ⁇ m, average aspect ratio: 1.3), titanium oxide, etc.
  • HDPE High-density polyethylene (Novatec HD manufactured by Nippon Polyethylene Co., Ltd., trade name “HJ381”) with an MFR of 10 g/10 min (190°C, 2.16 kg load) and a melting point of 133°C (DSC peak temperature) ⁇
  • Inorganic fine powder dry-ground calcium carbonate with an average particle size of 1.2 ⁇ m (manufactured by Shiraishi Calcium Co., Ltd., trade name “Softon 1800”) - Ethylene-based elastomer: MFR is 30 g/10 min (190°C, 2.16 kg load) (ethylene-based copolymer manufactured by Dow Chemical Japan Co., Ltd., trade name "ENGAGE8401”)
  • the types and amounts (mass%) of the materials used in the production of the base film are shown in Table 2 below, and the stretching conditions of the base film and the thickness and conditions of each layer are shown in Table 3 below.
  • the material numbers listed in Table 2 correspond to the material numbers listed in Table 1.
  • the laminate was heated to 158° C. and stretched 9 times in the horizontal direction using a tenter stretching machine to obtain a uniaxially stretched/biaxially stretched/uniaxially stretched three-layer structure laminate (base film). .
  • the surface protrusion is a portion where the sheet surface rises due to coarse particles, and corresponds to, for example, portion E shown in FIG.
  • the number of surface protrusions is obtained by illuminating the surface of the substrate with oblique light, visually counting the number of protrusions on the surface within an arbitrary frame of 10 cm ⁇ 10 cm, and calculating the average value of 10 measurements. was obtained by
  • the surface layer tear is a portion where extremely large voids are formed starting from the coarse particles, and a large tear occurs in the surface layer covering the coarse particles. For example, it corresponds to the portion D shown in FIG.
  • the number of surface layer breaks is determined by illuminating the surface of the base material with oblique light and visually counting the number of places where there are microcracks in the uniaxial direction on the surface within an arbitrary frame of 10 cm ⁇ 10 cm. It was obtained by calculating the average value of 10 measurements.
  • Tables 3 and 4 The evaluation results of the laminate (base film) of Example 1 are shown in Tables 3 and 4 below.
  • Table 4 shows the evaluation results of [surface protrusions] and [surface layer breakage]
  • Table 3 shows the results of [coarse particle size (D50)] and [maximum particle size of coarse particles].
  • Table 3 also shows the value of "ratio of the recycled resin component in the thermoplastic resin of the entire laminate".
  • Example 2 [Example 2] to [Example 9]
  • Example 1 the same as Example 1 except that the type and amount (mass%) of the material used in the production of the base film, the stretching conditions, and the thickness of each layer were changed to the conditions shown in Tables 2 and 3.
  • laminates (base films) of Examples 2 to 9 were obtained.
  • the C layer a layer formed using the formulation [C1] on the back surface, and the formulation [C2] as a heat seal layer on the outside of the layer was formed using layers are laminated
  • the laminates (base films) of Examples 2 to 9 were evaluated in the same manner as in Example 1. The results are shown in Table 4 below.
  • Example 1 the same as Example 1 except that the type and amount (mass%) of the material used in the production of the base film, the stretching conditions, and the thickness of each layer were changed to the conditions shown in Tables 2 and 3. Then, laminates (base films) of Comparative Examples 1 to 4 were obtained. The laminates (base films) of Comparative Examples 1 to 4 were evaluated in the same manner as in Example 1. The results are shown in Table 4 below.
  • FIG. 5 shows a photographic image of a portion where the surface layer was torn in the laminate (base film) of the comparative example. In FIG.
  • FIG. 6 shows a photographic image showing that when printing was performed on the surface of the laminate using the laminate in which the surface layer was torn as described above, white spots occurred.
  • the laminate of the present invention which is a laminate made of a stretched sheet containing recycled resin and coarse particles, can prevent the surface layer from tearing, suppress the surface protrusions, and reduce the surface roughness of the sheet. It was found that a laminate having an excellent appearance was obtained.
  • the laminate of the present invention when the laminate of the present invention further has a heat-sealing layer, even if the heat-sealing layer side has surface layer breakage or surface protrusions, the heat-sealing layer side is Since it functions as a sticking surface, there is no problem.
  • the laminates of Examples 4 to 8 were stuck to a plastic container as a printed label by an in-mold molding method, some swelling appeared on the surface after bonding. There was absolutely no problem with the surface appearance from a distance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminate comprising a stretched sheet which includes recycled resin and coarse particles, the surface of said laminate having an excellent appearance. Provided is a stretched laminate comprising a base material layer and a first surface layer provided on one surface of the base material layer, wherein: the base material layer contains a thermoplastic resin which contains recycled resin, and particles which have a maximum particle diameter Rmax of not less than 60 μm; and the thickness TL1 of the first surface layer and the maximum particle diameter Rmax satisfy expression (A). (A): TL1≥0.15×Rmax

Description

積層体及び積層体の製造方法LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
 本発明は、積層体及び積層体の製造方法に関する。 The present invention relates to a laminate and a method for manufacturing the laminate.
 無機微粒子とポリプロピレンとを含む成形シートを延伸して多孔質層を形成し、紙状のシートとした合成紙が提案され、実用化されている。これらの合成紙は、印刷用紙、ラベル等の素材として有用である。
 一方、近年、プラスチック廃棄物による環境汚染を低減する観点から、廃棄物のリサイクルが活発に行われている(例えば、特許文献1参照)。
 プラスチック廃棄物から再生したリサイクル樹脂は再度様々な用途に利用される。中でも、消費者が購入、利用した上で廃棄されたプラスチックから再生した樹脂はPCR(ポストコンスーマレジン)と呼ばれる。
 環境汚染を低減する要請の高まりから、PCRを用いたリサイクルシートの利用を促進するための技術はより強く求められている。
Synthetic paper, which is made into a paper-like sheet by stretching a molded sheet containing inorganic fine particles and polypropylene to form a porous layer, has been proposed and put into practical use. These synthetic papers are useful as materials for printing paper, labels and the like.
On the other hand, in recent years, waste recycling has been actively carried out from the viewpoint of reducing environmental pollution caused by plastic waste (see, for example, Patent Document 1).
Recycled resin recovered from plastic waste is reused for various purposes. Among them, a resin regenerated from a plastic that is purchased and used by a consumer and then discarded is called a PCR (post-consumer resin).
Due to the growing demand for reducing environmental pollution, there is a strong demand for techniques for promoting the use of recycled sheets using PCR.
特開2004-136578号公報JP-A-2004-136578
 しかし、PCRには様々なものがあり、プラスチックの機能化のために加えられた粒子が再生の過程で除去されず、粗大粒子として残っているものもある。
 このようなPCRを用いて得たシートを延伸すると、粗大粒子を起点として極めて大きい空孔が形成されることがあった。
However, there are various types of PCR, and some particles added for functionalization of plastics are not removed in the process of regeneration and remain as coarse particles.
When a sheet obtained by using such PCR is stretched, very large pores may be formed starting from coarse particles.
 そこで、本発明は、粗大粒子を含むPCRの延伸シートを含む積層体であって、表面の外観に優れた積層体、及び該積層体の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a laminate containing a stretched sheet of PCR containing coarse particles, the laminate having an excellent surface appearance, and a method for producing the laminate.
 本発明者らは、上述の課題を解決する為、鋭意検討を行った結果、以下の要旨を有する本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors have completed the present invention having the following gist as a result of intensive studies.
 すなわち、本発明は以下のとおりである。
[1] 基材層と前記基材層の一方の面上に設けられた第1の表面層とを備える、延伸された積層体であって、
 前記基材層は、リサイクル樹脂を含む熱可塑性樹脂と、最大粒子径Rmaxが60μm以上である粒子とを含有し、
 前記第1の表面層の厚さTL1と前記最大粒子径Rmaxが、下記式(A)を満たす、積層体。
 TL1≧0.15×Rmax  (A)
[2] 前記第1の表面層が、ポリプロピレン系樹脂を含有する、[1]に記載の積層体。
[3] 前記粒子が、炭酸カルシウムを含有する、[1]又は[2]に記載の積層体。
[4] 前記積層体が、前記基材層の他方の面上に設けられた第2の表面層をさらに備え、
 前記第2の表面層の厚さTL2と前記最大粒子径Rmaxが、下記式(C1)を満たす、[1]~[3]のいずれかに記載の積層体。
 TL2≧0.15×Rmax  (C1)
[5] 前記積層体が、前記基材層の他方の面上に設けられた第3の表面層をさらに備え、
 前記第3の表面層が、ヒートシール層を含む、[1]~[3]のいずれかに記載の積層体。
[6] 前記第3の表面層の厚さTL3と前記最大粒子径Rmaxが、下記式(C2)を満たす、[5]に記載の積層体。
 TL3×1.2≧0.15×Rmax  (C2)
[7] 前記第3の表面層は、リサイクル樹脂と最大粒子径Rmaxが60μm以上である粒子とを含有する、[5]又は[6]に記載の積層体。
[8] 前記積層体の厚さが、300μm以下である、[1]~[7]のいずれかに記載の積層体。
[9] 最大粒子径Rmaxが60μm以上である粒子及びリサイクル樹脂を含有する基材層用熱可塑性樹脂組成物を用いて第1成形層を成形する工程と、
 第1の表面層用熱可塑性樹脂組成物を用いて前記第1成形層上に第2成形層を成形し、前記第1成形層と前記第2成形層とを含む積層物を作製する工程と、
 前記積層物を延伸する工程と、
 を備える、積層体の製造方法。
That is, the present invention is as follows.
[1] A stretched laminate comprising a substrate layer and a first surface layer provided on one surface of the substrate layer,
The base material layer contains a thermoplastic resin containing a recycled resin and particles having a maximum particle size Rmax of 60 μm or more,
A laminate in which the thickness TL1 of the first surface layer and the maximum particle diameter Rmax satisfy the following formula (A).
TL1≧0.15×Rmax (A)
[2] The laminate according to [1], wherein the first surface layer contains a polypropylene-based resin.
[3] The laminate according to [1] or [2], wherein the particles contain calcium carbonate.
[4] The laminate further comprises a second surface layer provided on the other surface of the base layer,
The laminate according to any one of [1] to [3], wherein the thickness TL2 of the second surface layer and the maximum particle diameter Rmax satisfy the following formula (C1).
TL2≧0.15×Rmax (C1)
[5] The laminate further comprises a third surface layer provided on the other surface of the base layer,
The laminate according to any one of [1] to [3], wherein the third surface layer includes a heat seal layer.
[6] The laminate according to [5], wherein the thickness TL3 of the third surface layer and the maximum particle size Rmax satisfy the following formula (C2).
TL3×1.2≧0.15×Rmax (C2)
[7] The laminate according to [5] or [6], wherein the third surface layer contains recycled resin and particles having a maximum particle size Rmax of 60 μm or more.
[8] The laminate according to any one of [1] to [7], wherein the laminate has a thickness of 300 μm or less.
[9] molding a first molding layer using a thermoplastic resin composition for a substrate layer containing particles having a maximum particle diameter Rmax of 60 μm or more and a recycled resin;
forming a second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer to produce a laminate including the first molding layer and the second molding layer; ,
stretching the laminate;
A method for manufacturing a laminate, comprising:
 本発明によれば、粗大粒子を含むPCRの延伸シートを含む積層体であって、表面の外観に優れた積層体、及び該積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a laminate containing a stretched sheet of PCR containing coarse particles and having excellent surface appearance, and a method for producing the laminate.
積層体の一例の概略断面図である。It is a schematic sectional drawing of an example of a laminated body. 積層体の他の一例の概略断面図である。FIG. 4 is a schematic cross-sectional view of another example of a laminate; 積層体の他の一例の概略断面図である。FIG. 4 is a schematic cross-sectional view of another example of a laminate; 表面層破れと表面突起を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating a surface-layer tear and a surface protrusion. 表面層破れが生じた箇所を撮影した写真画像である。It is the photograph image which image|photographed the location which surface layer tear produced. 表面層破れにより白抜けが生じたことを示す写真画像である。It is a photographic image showing white spots caused by surface layer breakage.
 以下、本発明の積層体及びその製造方法について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一例(代表例)であり、これに限定されない。 Although the laminate of the present invention and its manufacturing method will be described in detail below, the description of the constituent elements described below is an example (representative example) of the present invention, and is not limited thereto.
(積層体)
 本発明の積層体は、基材層と基材層の一方の面上に設けられた第1の表面層とを有する。
 基材層及び第1の表面層は延伸処理された層であり、これらの層を有する本発明の積層体は、延伸された積層体となっている。
 本発明の積層体において、基材層は、リサイクル樹脂を含む熱可塑性樹脂と、最大粒子径Rmaxが60μm以上である粒子とを含有する。
 本発明の積層体において、第1の表面層の厚さTL1と、最大粒子径Rmaxとの関係は、下記式(A)を満たす。
 TL1≧0.15×Rmax  (A)
 粗大粒子を含む延伸層があるとき、この粗大粒子を覆う表面層を設けた積層体であれば積層体全体の破れが防止できる。しかし、表面層があるのみではその表面層に大きな破れ(該表面層の大きな破れを本明細書では、特に「表面層破れ」ともいう)が生じ、積層体表面に欠陥を生じることがある。積層体全体に破れが生じたときはもちろん、上記表面層破れが生じたとき、このような欠陥を生じた表面上に印刷を行うと欠陥部分の印刷に白抜けが生じることがあった。しかし、上記関係式(A)を満たすことにより、表面層破れを低減し、印刷に白抜けが生じにくくなる。粗大粒子は、例えば、20μm以上、又は30μm以上の粒子径を有する粒子であることができる。つまり、この場合、粗大粒子には粒子径20μm又は30μm未満の粒子は含まれない。
 また、表面層破れはなくとも、粗大粒子によりシート表面が盛り上がる箇所(該シート表面が盛り上がっている箇所を本明細書では、特に「表面突起」ともいう)が生じることがあり、シート表面の平坦性が損なわれると、外観不良や印刷不良の問題が生じることがあるが、このような表面突起の数を低減することができる。
 本発明の積層体は、下記実施例でも示す通り、粗大粒子及びリサイクル樹脂を含む層を延伸処理することにより形成された積層体であるが、表面層破れの発生を防止することができ、表面突起の発生を抑制することができる。そして、本発明の積層体は、表面外観に優れている。
 上記粒子は30μm以上の平均粒子径Rを有することが好ましい。第1の表面層の厚さTL1と平均粒子径Rとの関係は、下記式(1)を満たすことが好ましい。
 TL1≧0.25×R  (1)
 上記関係式(1)を満たすことにより、表面層破れ及び表面突起が一層抑制されやすくなる。
(Laminate)
The laminate of the present invention has a substrate layer and a first surface layer provided on one surface of the substrate layer.
The substrate layer and the first surface layer are stretched layers, and the laminate of the present invention having these layers is a stretched laminate.
In the laminate of the present invention, the substrate layer contains a thermoplastic resin containing recycled resin and particles having a maximum particle size Rmax of 60 μm or more.
In the laminate of the present invention, the relationship between the thickness TL1 of the first surface layer and the maximum particle size Rmax satisfies the following formula (A).
TL1≧0.15×Rmax (A)
When there is a stretched layer containing coarse particles, a laminate having a surface layer covering the coarse particles can prevent tearing of the laminate as a whole. However, if there is only a surface layer, a large tear occurs in the surface layer (a large tear in the surface layer is also particularly referred to herein as a "surface layer tear"), and defects may occur on the surface of the laminate. Not only when the entire laminate is torn, but also when the surface layer is torn, when printing is performed on the defective surface, white spots may appear in the defective portion. However, by satisfying the above relational expression (A), surface layer breakage is reduced, and white spots are less likely to occur in printing. Coarse particles can be, for example, particles having a particle size of 20 μm or more, or 30 μm or more. That is, in this case, coarse particles do not include particles having a particle size of less than 20 μm or 30 μm.
In addition, even if there is no surface layer breakage, coarse particles may cause the sheet surface to bulge (herein, the bulging portion of the sheet surface is particularly referred to as "surface protrusion"), and the sheet surface may be flat. Impaired properties can lead to poor appearance and printing problems, but the number of such surface protrusions can be reduced.
As shown in the following examples, the laminate of the present invention is a laminate formed by stretching a layer containing coarse particles and recycled resin, but the surface layer can be prevented from breaking, and the surface It is possible to suppress the occurrence of projections. And the laminate of the present invention is excellent in surface appearance.
The particles preferably have an average particle diameter R of 30 μm or more. The relationship between the thickness TL1 of the first surface layer and the average particle diameter R preferably satisfies the following formula (1).
TL1≧0.25×R (1)
By satisfying the above relational expression (1), surface layer breakage and surface protrusions are more likely to be suppressed.
 また、基材層の厚さTB1と上記粒子の最大粒子径Rmaxとは下記式(B1)を満たすことが好ましい。
 1.2×Rmax<TB1  (B1)
 上記式(B1)を満たすことにより、基材層が延伸された際に粒子が基材層の表面近傍に現れにくくなるため、表面層破れを一層低減することができる。ただし、それでも一部の粒子は表面近傍に現れるため、上記式(A)を見たすことが必要である。
 一方、基材層の厚さTB1と上記粒子の最大粒子径Rmaxとは下記式(B2)を満たすものであってもよい。
 TB1≦1.2×Rmax  (B2)
 上記式(B2)を満たすことにより、基材層が延伸された際に粒子が基材層の表面近傍に現れることが多くなるが、本発明においては上記式(A)を満たすため、上記式(B2)を満たす場合であっても表面層破れを抑制することができる。また、上記式(B2)を満たすような基材層は非常に薄く、積層体全体の厚さを小さくすることができることから、積層体の様々な用途への適用可能性が高めることができる。
Further, the thickness TB1 of the substrate layer and the maximum particle size Rmax of the particles preferably satisfy the following formula (B1).
1.2×Rmax<TB1 (B1)
When the above formula (B1) is satisfied, the particles are less likely to appear in the vicinity of the surface of the substrate layer when the substrate layer is stretched, so that breakage of the surface layer can be further reduced. However, since some particles still appear near the surface, it is necessary to satisfy the above formula (A).
On the other hand, the thickness TB1 of the substrate layer and the maximum particle size Rmax of the particles may satisfy the following formula (B2).
TB1≦1.2×Rmax (B2)
By satisfying the above formula (B2), the particles often appear near the surface of the base layer when the base layer is stretched. In the present invention, since the above formula (A) is satisfied, the above formula Even when (B2) is satisfied, surface layer tearing can be suppressed. In addition, since the substrate layer satisfying the above formula (B2) is very thin and the thickness of the entire laminate can be reduced, the applicability of the laminate to various uses can be enhanced.
 本発明の積層体は、基材層の他方の面(つまり、上記第1の表面層が設けられている面とは反対の面)上に設けられた第2の表面層をさらに有することが好ましい。
 また、本発明の積層体は、基材層の他方の面(つまり、上記第1の表面層が設けられている面とは反対の面)上に設けられた第3の表面層をさらに有することが好ましい。ここで、第3の表面層は表面にヒートシール層を含む。
The laminate of the present invention may further have a second surface layer provided on the other surface of the substrate layer (that is, the surface opposite to the surface on which the first surface layer is provided). preferable.
In addition, the laminate of the present invention further has a third surface layer provided on the other surface of the substrate layer (that is, the surface opposite to the surface on which the first surface layer is provided). is preferred. Here, the third surface layer includes a heat seal layer on the surface.
 図1は、本発明の一実施形態としての積層体1の構成を示す。
 図1に例示する積層体1は、基材層11、及び第1の表面層12を有する。例えば、この積層体を印刷用紙として用い、該積層体に印刷を施す場合には、図1のA側が印刷面になる。
 図2は、本発明の他の一実施形態としての積層体1の構成を示す。
 図2に例示する積層体1は、基材層11、第1の表面層12、及び第2の表面層13を有する。第2の表面層は、基材層11に対し、第1の表面層12が設けられている面とは反対の面に設けられている。例えば、この積層体を印刷用紙として用いる場合には、図2のA側、B側の両面が印刷面になる。
 図3は、本発明の他の一実施形態としての積層体1の構成を示す。
 図3に例示する積層体1は、基材層11、第1の表面層12、及び第3の表面層14を有する。第3の表面層は、基材層11に対し、第1の表面層12が設けられている面とは反対の面に設けられている。また、第3の表面層14は、ヒートシール層15を含む。ヒートシール層15は、第3の表面層14の最表面に位置することが好ましい。例えば、この積層体を印刷ラベルとして用いる場合には、図3のA側が印刷面になる。尚、図3のC側(つまりヒートシール側)は、例えば、インモールド成形用ラベルとして、印刷ラベルをプラスチック容器本体に貼着する際の貼着部分となる接着面である。
FIG. 1 shows the configuration of a laminate 1 as one embodiment of the present invention.
A laminate 1 illustrated in FIG. 1 has a base layer 11 and a first surface layer 12 . For example, when this laminate is used as printing paper and the laminate is printed, the side A in FIG. 1 becomes the printing surface.
FIG. 2 shows the configuration of a laminate 1 as another embodiment of the invention.
A laminate 1 illustrated in FIG. 2 has a base layer 11 , a first surface layer 12 and a second surface layer 13 . The second surface layer is provided on the surface of the substrate layer 11 opposite to the surface on which the first surface layer 12 is provided. For example, when this laminate is used as printing paper, both the A side and the B side in FIG. 2 serve as printing surfaces.
FIG. 3 shows the configuration of a laminate 1 as another embodiment of the invention.
A laminate 1 illustrated in FIG. 3 has a base layer 11 , a first surface layer 12 and a third surface layer 14 . The third surface layer is provided on the surface of the substrate layer 11 opposite to the surface on which the first surface layer 12 is provided. Also, the third surface layer 14 includes a heat seal layer 15 . The heat seal layer 15 is preferably positioned on the outermost surface of the third surface layer 14 . For example, when this laminate is used as a print label, the A side in FIG. 3 becomes the print surface. Incidentally, the C side (that is, the heat seal side) of FIG. 3 is an adhesion surface which becomes an adhesion portion when a printed label is adhered to a plastic container main body, for example, as an in-mold label.
 以下、積層体の構成について説明する。 The structure of the laminate will be described below.
<基材層>
 基材層は、リサイクル樹脂を含む熱可塑性樹脂と、最大粒子径Rmaxが60μm以上である粒子とを含有する。基材層は熱可塑性樹脂組成物(以下、リサイクル樹脂組成物ということがある)を用いて形成される。
 熱可塑性樹脂組成物は、最大粒子径Rmaxが60μm以上である粒子及びリサイクル樹脂を少なくとも含有する。
 本発明の積層体の好ましい実施形態として、粗大粒子を含むリサイクル樹脂ペレット(PCRペレット)を用いて製造される積層体が挙げられる。つまり、熱可塑性樹脂組成物の少なくとも一部はPCRペレット由来のリサイクル樹脂として供給され、基材層は上記リサイクル樹脂とともにPCRペレット由来の粗大粒子を含む。粗大粒子はPCRペレット由来でなくてもよく、PCRペレットに粗大粒子を加えて基材層を形成してもよい。
 このように、本発明は、基材層にリサイクル樹脂を含有させることで、リサイクル樹脂
の有効活用を図っている。
 基材層で用いる熱可塑性樹脂組成物としては、リサイクル樹脂が少なくとも含まれていればよく、基材層で用いる熱可塑性樹脂のすべてをリサイクル樹脂だけから供給してもよいし、あるいは、リサイクル樹脂とリサイクル品でない樹脂(以下、「未リサイクル樹脂」ともいう)とを併用して基材層で用いる熱可塑性樹脂を供給してもよい。この場合、基材層はリサイクル樹脂ペレットと未リサイクル樹脂ペレットとから形成される。
 基材層で用いる熱可塑性樹脂の好ましい態様としては、リサイクル樹脂と未リサイクル樹脂とを併用した熱可塑性樹脂が挙げられる。
 また、基材層で用いる熱可塑性樹脂組成物には、以下で記載するその他の成分を含有させてもよい。
<Base material layer>
The base material layer contains a thermoplastic resin containing recycled resin and particles having a maximum particle size Rmax of 60 μm or more. The base material layer is formed using a thermoplastic resin composition (hereinafter sometimes referred to as a recycled resin composition).
The thermoplastic resin composition contains at least particles having a maximum particle size Rmax of 60 μm or more and recycled resin.
A preferred embodiment of the laminate of the present invention includes a laminate produced using recycled resin pellets (PCR pellets) containing coarse particles. That is, at least part of the thermoplastic resin composition is supplied as a recycled resin derived from PCR pellets, and the base material layer contains coarse particles derived from PCR pellets together with the recycled resin. The coarse particles may not be derived from the PCR pellet, and the base layer may be formed by adding coarse particles to the PCR pellet.
As described above, the present invention attempts to effectively utilize the recycled resin by including the recycled resin in the base material layer.
The thermoplastic resin composition used in the base material layer may contain at least recycled resin, and all of the thermoplastic resin used in the base material layer may be supplied from only recycled resin, or recycled resin and a non-recycled resin (hereinafter also referred to as "non-recycled resin") may be used in combination to supply the thermoplastic resin used in the base material layer. In this case, the substrate layer is formed from recycled resin pellets and non-recycled resin pellets.
A preferred embodiment of the thermoplastic resin used in the base material layer is a thermoplastic resin in which a recycled resin and a non-recycled resin are used in combination.
Further, the thermoplastic resin composition used in the base material layer may contain other components described below.
 基材層に用いられる熱可塑性樹脂組成物には、少なくともリサイクル樹脂と、最大粒子径Rmaxが60μm以上の粒子とが含まれている。
 本明細書において、PCRとは、使用済の製品(例えば、ハンガー等の日用品、食品容器等)を再利用・リサイクルした樹脂をいう。
 リサイクル樹脂の種類としては、例えば、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂等が挙げられる。
 なかでも、ポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂がより好ましい。
The thermoplastic resin composition used for the substrate layer contains at least recycled resin and particles having a maximum particle size Rmax of 60 μm or more.
As used herein, PCR refers to a resin obtained by reusing or recycling used products (for example, daily necessities such as hangers, food containers, etc.).
Types of recycled resins include, for example, polyolefin-based resins, polystyrene-based resins, polyamide-based resins, polyester-based resins, and polycarbonate resins.
Among them, polyolefin-based resins are preferred, and polypropylene-based resins are more preferred.
 最大粒子径Rmaxが60μm以上の粗大粒子の種類としては、特に制限はなく、無機粒子であっても、有機粒子であってもよい。
 無機粒子の種類としては、例えば、炭酸カルシウム、タルク、酸化チタン、金属アルミニウム、シリカ等が挙げられる。なかでも、炭酸カルシウムがより好ましい。
 有機粒子の種類としては、例えば、ポリエステル、ナイロン等が挙げられる。尚、有機粒子は、延伸時に固形の状態で存在する粒子であることが好ましい。
 粒子の形状としては、球状、針状、板状、繊維状、及び不定形状等が挙げられる。
The type of coarse particles having a maximum particle diameter Rmax of 60 μm or more is not particularly limited, and may be inorganic particles or organic particles.
Examples of inorganic particles include calcium carbonate, talc, titanium oxide, metallic aluminum, and silica. Among them, calcium carbonate is more preferable.
Types of organic particles include, for example, polyester and nylon. The organic particles are preferably particles that exist in a solid state during stretching.
The shape of the particles includes spherical, needle-like, plate-like, fibrous, and irregular shapes.
 本発明で用いるリサイクル樹脂組成物中の粒子の含有量は、本発明の効果を発揮するという観点から、以下の範囲であることが好ましい。
 リサイクル樹脂組成物中の粗大粒子の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。一方、リサイクル樹脂組成物中の粒子の含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。
 特に、好ましい実施態様として、粒子が含有されているリサイクル樹脂ペレット(例えば、PCRペレット)を用いてリサイクル樹脂組成物を形成している場合には、リサイクル樹脂ペレット(例えば、PCRペレット)中の粒子の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。一方、リサイクル樹脂ペレット(例えば、PCRペレット)中の粒子の含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。
The content of the particles in the recycled resin composition used in the present invention is preferably within the following range from the viewpoint of exhibiting the effects of the present invention.
The content of coarse particles in the recycled resin composition is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less. On the other hand, the content of particles in the recycled resin composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more. preferable.
In particular, as a preferred embodiment, when the recycled resin composition is formed using recycled resin pellets containing particles (e.g., PCR pellets), the particles in the recycled resin pellets (e.g., PCR pellets) is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less. On the other hand, the content of particles in recycled resin pellets (e.g., PCR pellets) is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more. is more preferable.
 粒子の最大粒子径Rmaxが大きすぎると本発明の効果を担保することができないため、粒子の最大粒子径Rmaxは、好ましくは400μm以下であり、より好ましくは300μm以下である。また、最大粒子径Rmaxは、好ましくは70μm以上であることができ、100μm以上であることができる。同様の観点から、平均粒子径Rは、好ましくは300μm以下であり、より好ましくは250μm以下である。また、平均粒子径Rは50μm以上であることができ、80μm以上であることができる。
 本発明において、粒子の最大粒子径Rmax及び平均粒子径Rを求める方法としては、例えば、基材層中に含有されている粒子の粒子径を求める場合、基材層の断面を走査型電子顕微鏡(SEM)で観察することにより求めることができる。本発明において、平均アスペクト比が1~2である場合、SEM画像から基材層中に含まれる粒子の外接円の直径を測定する。平均アスペクト比が2を超える場合、SEM画像から当該粒子の短径を測定する。直径が30μm以上であった粒子について10点測定を行い、個数累積で50%に当たる直径を平均粒子径(D50)として求めることができる。
If the maximum particle size Rmax of the particles is too large, the effects of the present invention cannot be ensured, so the maximum particle size Rmax of the particles is preferably 400 μm or less, more preferably 300 μm or less. Also, the maximum particle diameter Rmax can be preferably 70 μm or more, and can be 100 μm or more. From the same point of view, the average particle diameter R is preferably 300 μm or less, more preferably 250 μm or less. Also, the average particle diameter R can be 50 μm or more, and can be 80 μm or more.
In the present invention, as a method for obtaining the maximum particle diameter Rmax and the average particle diameter R of the particles, for example, when obtaining the particle diameter of the particles contained in the base material layer, the cross section of the base material layer is scanned with a scanning electron microscope. It can be obtained by observing with (SEM). In the present invention, when the average aspect ratio is 1 to 2, the diameter of the circumscribed circle of the particles contained in the substrate layer is measured from the SEM image. If the average aspect ratio is greater than 2, measure the minor diameter of the particles from the SEM image. Ten-point measurement is performed on particles having a diameter of 30 μm or more, and the diameter corresponding to 50% of the accumulated number can be obtained as the average particle diameter (D50).
 上述したように、基材層で用いる熱可塑性樹脂の好ましい態様としては、リサイクル樹脂と未リサイクル樹脂とを併用した熱可塑性樹脂が挙げられる。
 ここで、リサイクル樹脂の種類と未リサイクル樹脂の種類としては、同じであっても異なっていても構わないが、未リサイクル樹脂が、リサイクル樹脂と同じ種類の熱可塑性樹脂を含んでいることがより好ましい。例えば、リサイクル樹脂の種類がプロピレン重合体である場合、未リサイクル樹脂がプロピレン重合体を含んでいることが好ましい。具体的には、プロピレン重合体のリサイクル樹脂と、プロピレン重合体の未リサイクル樹脂とを混合して得られる熱可塑性樹脂組成物を用いて、基材層を形成するのが好ましい。
As described above, a preferred embodiment of the thermoplastic resin used in the base material layer is a thermoplastic resin in which recycled resin and non-recycled resin are used together.
Here, the kind of recycled resin and the kind of unrecycled resin may be the same or different, but it is more preferable that the unrecycled resin contains the same kind of thermoplastic resin as the recycled resin. preferable. For example, if the type of recycled resin is a propylene polymer, the non-recycled resin preferably contains a propylene polymer. Specifically, it is preferable to form the substrate layer using a thermoplastic resin composition obtained by mixing a recycled propylene polymer resin and an unrecycled propylene polymer resin.
 基材層における、リサイクル樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、基材層全体の量に対して、リサイクル樹脂は、20質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、基材層で用いる熱可塑性樹脂全体の量に対して、リサイクル樹脂は、80質量%以下であることが好ましく、65質量%以下であることがより好ましい。 The content of the recycled resin in the base material layer is not particularly limited, and can be appropriately selected according to the purpose. and more preferably 35% by mass or more. Moreover, the recycled resin is preferably 80% by mass or less, more preferably 65% by mass or less, relative to the total amount of the thermoplastic resin used in the base material layer.
<<未リサイクル樹脂>>
 基材層で用いる熱可塑性樹脂には、上記リサイクル樹脂以外にリサイクル品でない樹脂(未リサイクル樹脂又はバージン樹脂)としての熱可塑性樹脂を含有させることができる。
 この未リサイクル樹脂としての熱可塑性樹脂としては、例えばポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリスチレン系樹脂、ポリ(メタ)アクリレート樹脂、ポリ塩化ビニル樹脂、これらの混合樹脂等が挙げられる。なかでも、耐水性及び耐溶剤性の観点からは、ポリオレフィン系樹脂が好ましい。
 また、未リサイクル樹脂として基材層で用いる熱可塑性樹脂は、後述する第1の表面層と同じ種類の熱可塑性樹脂であると、第1の表面層との接着性に優れ、積層体の耐久性が向上することから、好ましい。
 ポリオレフィン系樹脂としては、ポリプロピレン系樹脂、ポリエチレン系樹脂等を好ましく使用できる。
 ポリプロピレン系樹脂としては、例えばプロピレンを単独重合させたアイソタクティックホモポリプロピレン、シンジオタクティックホモポリプロピレン等のプロピレン単独重合体、プロピレンを主体とし、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン等のα-オレフィン等を共重合させたプロピレン共重合体等が挙げられる。プロピレン共重合体は、2元系でも3元系以上の多元系でもよく、またランダム共重合体でもブロック共重合体でもよい。
 ポリエチレン系樹脂としては、例えば高密度ポリエチレン、中密度ポリエチレン、直鎖線状低密度ポリエチレン、エチレン等を主体とし、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、4-メチルペンテン-1等のα-オレフィンを共重合させた共重合体、マレイン酸変性エチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸アルキルエステル共重合体、エチレン・メタクリル酸アルキルエステル共重合体、エチレン・メタクリル酸共重合体の金属塩(金属は亜鉛、アルミニウム、リチウム、ナトリウム、カリウム等)、エチレン-環状オレフィン共重合体、マレイン酸変性ポリエチレン等が挙げられる。
 上記ポリオレフィン系樹脂のなかでも、成形性及びコストの観点からは、プロピレン単独重合体又は高密度ポリエチレンが好ましい。
 上記熱可塑性樹脂のうち、1種を単独で又は2種以上を組み合わせて使用することができる。
<<Unrecycled Resin>>
The thermoplastic resin used in the base material layer may contain a thermoplastic resin as a resin that is not a recycled product (non-recycled resin or virgin resin) in addition to the above recycled resin.
Examples of thermoplastic resins as non-recycled resins include polyolefin resins, polyamide resins, polyester resins, polycarbonate resins, polystyrene resins, poly(meth)acrylate resins, polyvinyl chloride resins, mixed resins thereof, and the like. mentioned. Among them, polyolefin resins are preferable from the viewpoint of water resistance and solvent resistance.
Further, if the thermoplastic resin used in the base material layer as the non-recycled resin is the same type of thermoplastic resin as the first surface layer described later, the adhesiveness with the first surface layer is excellent, and the durability of the laminate is improved. It is preferable because it improves the properties.
As the polyolefin resin, a polypropylene resin, a polyethylene resin, or the like can be preferably used.
Examples of polypropylene-based resins include propylene homopolymers such as isotactic homopolypropylene and syndiotactic homopolypropylene obtained by homopolymerizing propylene, propylene-based ethylene, 1-butene, 1-hexene, 1-heptene, Examples include propylene copolymers obtained by copolymerizing α-olefins such as 1-octene and 4-methyl-1-pentene. The propylene copolymer may be a binary system or a ternary or higher multicomponent system, and may be a random copolymer or a block copolymer.
Examples of polyethylene-based resins include high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, ethylene, etc., and α-olefins such as propylene, butene, hexene, heptene, octene, and 4-methylpentene-1. Copolymer, maleic acid-modified ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-alkyl acrylate copolymer, ethylene-alkyl methacrylate Ester copolymers, metal salts of ethylene/methacrylic acid copolymers (metals include zinc, aluminum, lithium, sodium, potassium, etc.), ethylene-cyclic olefin copolymers, maleic acid-modified polyethylene and the like can be mentioned.
Among the above polyolefin-based resins, propylene homopolymer or high-density polyethylene is preferable from the viewpoint of moldability and cost.
Among the above thermoplastic resins, one type can be used alone or two or more types can be used in combination.
<<その他の成分>>
 基材層は、必要に応じて公知の添加剤等のその他の成分を任意に含むことができる。
 添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、無機フィラーの分散剤、結晶核剤、アンチブロッキング剤、可塑剤、脂肪酸アミド等のスリップ剤、染料、顔料、離型剤、難燃剤等の公知の助剤が挙げられる。
 屋外での耐久性を高める観点からは、基材層は、酸化防止剤、光安定剤等を含むことが好ましい。
 酸化防止剤としては、立体障害フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が挙げられる。
 光安定剤としては、立体障害アミン系光安定剤、ベンゾトリアゾール系光安定剤、ベンゾフェノン系光安定剤等が挙げられる。
 酸化防止剤及び光安定剤の含有量は、基材層全体の量に対して、0.001質量%以上1質量%以下の範囲内で使用することが好ましい。
<<Other Ingredients>>
The base material layer can optionally contain other components such as known additives as necessary.
Additives include antioxidants, light stabilizers, ultraviolet absorbers, dispersing agents for inorganic fillers, crystal nucleating agents, anti-blocking agents, plasticizers, slip agents such as fatty acid amides, dyes, pigments, mold release agents, and flame retardants. Known auxiliaries such as repellents can be used.
From the viewpoint of enhancing outdoor durability, the substrate layer preferably contains an antioxidant, a light stabilizer, and the like.
Antioxidants include sterically hindered phenol antioxidants, phosphorus antioxidants, amine antioxidants, and the like.
Examples of light stabilizers include sterically hindered amine light stabilizers, benzotriazole light stabilizers, benzophenone light stabilizers, and the like.
The content of the antioxidant and light stabilizer is preferably in the range of 0.001% by mass or more and 1% by mass or less with respect to the total amount of the base layer.
 基材層は、強度を損なわない程度に、空孔形成材を含有することができる。基材層として、空孔形成材を含有する熱可塑性樹脂組成物の延伸フィルムを使用することにより、基材層の剛度、白色度及び不透明度を目的に応じて調整することができる。空孔形成材としては、例えば、後述する第1の表面層で挙げる無機空孔形成材を使用できる。基材層と第1の表面層の無機空孔形成材は同種のものであっても、異種のものであってもよい。
 基材層の厚さは、第1の表面層の厚さと積層体の用途又は目的に応じて適宜決定することができる。基材層の厚さが厚い場合には、粗大粒子の問題を抑制することができる。一方、厚さが薄い場合には、用いるリサイクル樹脂の量を減らすことで粗大粒子の量が減り、粗大粒子の問題を抑制することができる。両者のバランスを考慮しつつ基材層の厚みを設定することが好ましい。通常、基材層の厚さは、15μm以上であることが好ましく、20μm以上がより好ましく、30μm以上がさらに好ましい。また、基材層の厚さは、400μm以下であることが好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。
The base material layer can contain a pore-forming material to the extent that the strength is not impaired. By using a stretched film of a thermoplastic resin composition containing a pore-forming material as the substrate layer, the rigidity, whiteness and opacity of the substrate layer can be adjusted according to the purpose. As the pore-forming material, for example, an inorganic pore-forming material mentioned in the first surface layer described later can be used. The inorganic pore-forming materials of the substrate layer and the first surface layer may be of the same type or of different types.
The thickness of the base layer can be appropriately determined according to the thickness of the first surface layer and the application or purpose of the laminate. When the substrate layer is thick, the problem of coarse particles can be suppressed. On the other hand, when the thickness is small, the amount of coarse particles can be reduced by reducing the amount of recycled resin used, and the problem of coarse particles can be suppressed. It is preferable to set the thickness of the base material layer while considering the balance between the two. Generally, the thickness of the base material layer is preferably 15 μm or more, more preferably 20 μm or more, and even more preferably 30 μm or more. Also, the thickness of the substrate layer is preferably 400 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less.
<第1の表面層>
 第1の表面層は、基材層の一方の面上に設けられる。
 第1の表面層は、熱可塑性樹脂組成物を用いて形成される。
 第1の表面層は、紙の風合いを出す観点から、空孔形成材を含んでもよい。
<First surface layer>
The first surface layer is provided on one side of the base layer.
The first surface layer is formed using a thermoplastic resin composition.
The first surface layer may contain a pore-forming material from the viewpoint of providing a texture of paper.
 第1の表面層で用いる熱可塑性樹脂としては、例えばポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル樹脂、及びポリカーボネート樹脂等が挙げられる。これらの熱可塑性樹脂の1種を単独で又は2種以上を組み合わせて使用できる。熱可塑性樹脂は、層強度の向上の観点から、ポリオレフィン系樹脂又はポリエステル系樹脂であることが好ましく、ポリプロピレン系樹脂又はポリエチレン系樹脂であることがより好ましい。特に、ポリプロピレン系樹脂であると、表面層破れが生じにくい。 Examples of thermoplastic resins used in the first surface layer include polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, and polycarbonate resins. One of these thermoplastic resins can be used alone or in combination of two or more. From the viewpoint of improving layer strength, the thermoplastic resin is preferably a polyolefin-based resin or a polyester-based resin, and more preferably a polypropylene-based resin or a polyethylene-based resin. In particular, if it is a polypropylene-based resin, it is difficult for the surface layer to tear.
<<空孔形成材>>
 第1の表面層は、空孔形成材を含有することができる。空孔形成材の含有により、延伸の際に第1の表面層内部に空孔が形成されやすく、白色度又は不透明度を高めることができる。この場合、第1の表面層は多孔質延伸層である。
 空孔形成材としては、例えば、無機空孔形成材及び有機空孔形成材が挙げられる。いずれかを単独で又は両者を組み合わせて用いることができる。
 空孔形成材を含む熱可塑性樹脂組成物を用いて形成された層を所定温度で延伸した場合、層中に、空孔形成材を核とした微細な空孔を多数形成することができる。
<<Pore forming material>>
The first surface layer can contain a pore former. By containing the pore-forming material, pores are easily formed inside the first surface layer during stretching, and the whiteness or opacity can be enhanced. In this case, the first surface layer is a porous stretched layer.
Examples of pore-forming materials include inorganic pore-forming materials and organic pore-forming materials. Either one can be used alone or both can be used in combination.
When a layer formed using a thermoplastic resin composition containing a pore-forming material is stretched at a predetermined temperature, a large number of fine pores having the pore-forming material as a nucleus can be formed in the layer.
 無機空孔形成材としては、例えば重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、タルク、珪藻土、硫酸バリウム、酸化マグネシウム、酸化亜鉛、二酸化チタン、及び二酸化珪素等が挙げられる。
 有機空孔形成材としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリエチレンスルフィド、ポリフェニレンスルフィド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリメチルメタクリレート、ポリ-4-メチル-1-ペンテン、環状オレフィンの単独重合体、及び環状オレフィンとエチレンとの共重合体等が挙げられる。
 上記無機空孔形成材又は有機空孔形成材の1種を単独で又は2種以上を組み合わせて使用できる。なかでも、粒度分布の調整のしやすさの観点から、無機空孔形成材が好ましい。無機空孔形成材のなかでも、空孔の形成性、コスト等の観点から、重質炭酸カルシウム又は軽質炭酸カルシウムであることが好ましい。
Examples of inorganic pore-forming materials include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, and silicon dioxide.
Examples of organic pore-forming materials include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, poly-4- Examples include methyl-1-pentene, homopolymers of cyclic olefins, and copolymers of cyclic olefins and ethylene.
One of the above inorganic pore-forming materials and organic pore-forming materials can be used alone, or two or more of them can be used in combination. Among them, the inorganic pore-forming material is preferable from the viewpoint of ease of adjustment of the particle size distribution. Among the inorganic pore-forming materials, heavy calcium carbonate or light calcium carbonate is preferable from the viewpoint of pore-formability, cost, and the like.
 空孔形成材の粒子径は、多孔質層内に均一に分散させる観点から、メディアン径(D50)で、好ましくは0.01μm以上であり、より好ましくは0.1μm以上である。また、空孔形成材のメディアン径(D50)は、インク中の顔料及びバインダー等の成分と溶剤成分との分離を容易にし、インクの色沈み又は乾燥不良を防ぐ観点から、好ましくは10μm以下であり、より好ましくは3μm以下であり、さらに好ましくは1.5μm以下であり、特に好ましくは1.3μm以下である。
 なお、空孔形成材の粒子径は、溶融混練と分散により熱可塑性樹脂中に分散したときの平均分散粒子径として、求めることもできる。具体的には、フィルムの切断面を電子顕微鏡で観察し、空孔形成材の粒子の少なくとも10個の最大径を測定し、その平均値を平均分散粒子径とする。
The median diameter (D50) of the pore-forming material is preferably 0.01 μm or more, more preferably 0.1 μm or more, from the viewpoint of uniform dispersion in the porous layer. The median diameter (D50) of the pore-forming material is preferably 10 μm or less from the viewpoint of facilitating the separation of components such as pigments and binders in the ink from the solvent component and preventing ink from fading or drying failure. more preferably 3 μm or less, still more preferably 1.5 μm or less, and particularly preferably 1.3 μm or less.
The particle size of the pore-forming material can also be determined as the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion. Specifically, the cut surface of the film is observed with an electron microscope, the maximum diameters of at least 10 particles of the pore-forming material are measured, and the average value is taken as the average dispersed particle diameter.
 第1の表面層中の空孔形成材の含有量は、空孔の形成性の観点から、熱可塑性樹脂100質量部に対して、好ましくは45質量部以上であり、より好ましくは60質量部以上であり、さらに好ましくは75質量部以上であり、特に好ましくは100質量部以上である。一方、第1の表面層中の空孔形成材の含有量は、第1の表面層の強度を適度に維持する観点から、熱可塑性樹脂100質量部に対して、好ましくは250質量部以下であり、より好ましくは200質量部以下であり、さらに好ましくは150質量部以下であり、特に好ましくは125質量部以下である。 The content of the pore-forming material in the first surface layer is preferably 45 parts by mass or more, more preferably 60 parts by mass, based on 100 parts by mass of the thermoplastic resin, from the viewpoint of pore-forming properties. or more, more preferably 75 parts by mass or more, and particularly preferably 100 parts by mass or more. On the other hand, the content of the pore forming material in the first surface layer is preferably 250 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of maintaining the strength of the first surface layer appropriately. , more preferably 200 parts by mass or less, still more preferably 150 parts by mass or less, and particularly preferably 125 parts by mass or less.
<<第1の表面層の厚さTL1>>
 本発明の積層体において、第1の表面層の厚さTL1と基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の最大粒子径Rmaxとの関係は、下記式(A)を満たすことが重要である。
 TL1≧0.15×Rmax  (A)
 本発明の積層体は、リサイクル樹脂及び粗大粒子を含む層を延伸処理することにより形成されるものではあるが、上記式(A)を満たすことにより表面層破れの発生を防止することができ、表面突起の発生を抑制することができるため、外観に優れた積層体を得ることができる。
 第1の表面層の厚さTL1と基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の平均粒子径Rとの関係は、下記式(1)を満たすことが好ましい。
 TL1≧0.25×R  (1)
 上記関係式(1)を満たすことにより、表面層破れ及び表面突起が一層抑制されやすくなる。
 第1の表面層の厚さが厚い場合には、粗大粒子の問題を抑制することができる。一方、厚さが薄い場合には、用いる第1の表面層用の樹脂の量を減らすことができるためコスト削減につながる。両者のバランスを考慮しつつ第1の表面層の厚みを設定することが好ましい。通常、第1の表面層の厚さは、表面層破れや表面突起の発生防止の観点から、15μm以上であることが好ましく、20μm以上がより好ましく、30μm以上がさらに好ましい。また、第1の表面層の厚さは、400μm以下であることが好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。
<<thickness TL1 of the first surface layer>>
In the laminate of the present invention, the relationship between the thickness TL1 of the first surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) is important to satisfy the following formula (A).
TL1≧0.15×Rmax (A)
Although the laminate of the present invention is formed by stretching a layer containing recycled resin and coarse particles, it is possible to prevent surface layer breakage by satisfying the above formula (A), Since the occurrence of surface protrusions can be suppressed, a laminate having an excellent appearance can be obtained.
The relationship between the thickness TL1 of the first surface layer and the average particle diameter R of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) is expressed by the following formula (1) is preferably satisfied.
TL1≧0.25×R (1)
By satisfying the above relational expression (1), surface layer breakage and surface protrusions are more likely to be suppressed.
When the thickness of the first surface layer is large, the problem of coarse particles can be suppressed. On the other hand, when the thickness is thin, the amount of resin used for the first surface layer can be reduced, leading to cost reduction. It is preferable to set the thickness of the first surface layer while considering the balance between the two. Generally, the thickness of the first surface layer is preferably 15 μm or more, more preferably 20 μm or more, and even more preferably 30 μm or more, from the viewpoint of preventing surface layer breakage and surface projections. Also, the thickness of the first surface layer is preferably 400 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less.
<第2の表面層>
 本発明の積層体は、上記基材層と上記第1の表面層に加え、さらに第2の表面層を有してもよい。
 第2の表面層は、基材層に対して第1表面層が設けられた面とは反対の、他方の面上に設けられる。
 第2の表面層は、熱可塑性樹脂組成物を用いて形成される。
 第2の表面層は、紙の風合いを出す観点から、空孔形成材を含んでもよい。
<Second surface layer>
The laminate of the present invention may have a second surface layer in addition to the substrate layer and the first surface layer.
The second surface layer is provided on the other side of the substrate layer opposite to the side on which the first surface layer is provided.
The second surface layer is formed using a thermoplastic resin composition.
The second surface layer may contain a pore-forming material from the viewpoint of providing a texture of paper.
 第2の表面層で用いる熱可塑性樹脂や空孔形成材については、上記<第1の表面層>の欄で記載した通りである。
 第2の表面層と第1の表面層は、基材層に対し形成されている位置が、表面か裏面かで違う以外、層を形成する成分等の条件についての違いは特にない。
 第2の表面層を有する積層体を、印刷用紙として用いる場合には、図2で示すように、両面に印刷が可能となる。
The thermoplastic resin and pore-forming material used in the second surface layer are as described in the section <First surface layer> above.
The second surface layer and the first surface layer are not particularly different in conditions such as the components for forming the layers, except that the position formed on the substrate layer is different depending on whether it is formed on the front surface or on the back surface.
When the laminate having the second surface layer is used as printing paper, printing can be performed on both sides as shown in FIG.
<<第2の表面層の厚さTL2>>
 本発明の積層体において、第2の表面層の厚さTL2と、基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の最大粒子径Rmaxが、下記式(C1)を満たすことが好ましい。
 TL2≧0.15×Rmax  (C1)
 本発明の積層体は、粗大粒子及びリサイクル樹脂を含む層を延伸処理することにより形成されるものではあるが、上記式(C1)を満たすことにより表面層破れの発生を一層防止することができ、表面突起の発生を抑制することができる。
 第2の表面層の厚さTL2と基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の平均粒子径Rとの関係は、下記式(2a)を満たすことが好ましい。
 TL2≧0.25×R  (2a)
 第2の表面層の厚さは、上記<<第1の表面層の厚さTL1>>の欄で記載した第1の
表面層の厚さと同様である。
<<Second Surface Layer Thickness TL2>>
In the laminate of the present invention, the thickness TL2 of the second surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) are It is preferable to satisfy the following formula (C1).
TL2≧0.15×Rmax (C1)
Although the laminate of the present invention is formed by stretching a layer containing coarse particles and recycled resin, it is possible to further prevent surface layer breakage by satisfying the above formula (C1). , the occurrence of surface protrusions can be suppressed.
The relationship between the thickness TL2 of the second surface layer and the average particle diameter R of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) is expressed by the following formula (2a). is preferably satisfied.
TL2≧0.25×R (2a)
The thickness of the second surface layer is the same as the thickness of the first surface layer described in the section <<thickness TL1 of first surface layer>> above.
<第3の表面層>
 本発明の積層体は、上記基材層と上記第1の表面層に加え、さらに第3の表面層を有してもよい。
 第3の表面層は、基材層に対して第1表面層が設けられた面とは反対の、他方の面上に設けられる。
 第3の表面層は、熱可塑性樹脂組成物を用いて形成される。
 第3の表面層は、紙の風合いを出す観点から、空孔形成材を含んでもよい。
 また、第3の表面層は、表面にヒートシール層を含む。
 ヒートシール層は、図3で示すように、第3の表面層の最表面に配されることが好ましい。
<Third surface layer>
The laminate of the present invention may have a third surface layer in addition to the substrate layer and the first surface layer.
The third surface layer is provided on the other side of the substrate layer opposite to the side on which the first surface layer is provided.
The third surface layer is formed using a thermoplastic resin composition.
The third surface layer may contain a pore-forming material from the viewpoint of giving the texture of paper.
Also, the third surface layer includes a heat seal layer on the surface.
The heat seal layer is preferably arranged on the outermost surface of the third surface layer, as shown in FIG.
 ヒートシール層は、例えば、インモールド成形用の印刷ラベルをプラスチック容器本体に貼着する際の貼着部分として機能する。
 ヒートシール層は、例えば、上記基材層で用いる未リサイクル樹脂や、上記第1の表面層及び上記第2の表面層で用いる熱可塑性樹脂や、第3の表面層におけるヒートシール層以外の層で用いる熱可塑性樹脂(以下、これらの熱可塑性樹脂をまとめて、「基材層等を構成する熱可塑性樹脂」ともいう)の融点より低い融点を示す熱可塑性樹脂を主成分とする熱可塑性樹脂組成物を用いて形成される。ヒートシール層についての詳しい説明は、後述する。
The heat seal layer functions, for example, as a sticking portion when a printed label for in-mold molding is stuck to a plastic container body.
The heat seal layer is, for example, a non-recycled resin used in the base material layer, a thermoplastic resin used in the first surface layer and the second surface layer, or a layer other than the heat seal layer in the third surface layer. A thermoplastic resin whose main component is a thermoplastic resin that exhibits a melting point lower than the melting point of the thermoplastic resin used in Formed using a composition. A detailed description of the heat seal layer will be given later.
 第3の表面層におけるヒートシール層以外の層で用いる熱可塑性樹脂及び空孔形成材は、上記<第1の表面層>の欄で記載したと同様の熱可塑性樹脂や空孔形成材を用いることができる。
 第3の表面層を有する積層体を、例えば、インモールド成形用の印刷ラベルとして用いる場合には、図3で示すように、第1の表面層が形成された側は、印刷面として機能する。第3の表面層側には、ヒートシール層が形成されているため、第3の表面層が形成された側は、印刷ラベルをプラスチック容器本体に貼着する際の貼着部分として機能する。
The thermoplastic resin and pore-forming material used in the layers other than the heat seal layer in the third surface layer are the same thermoplastic resins and pore-forming materials as those described in the section <First surface layer> above. be able to.
When the laminate having the third surface layer is used, for example, as a printed label for in-mold molding, the side on which the first surface layer is formed functions as a printing surface, as shown in FIG. . Since the heat-seal layer is formed on the third surface layer side, the side on which the third surface layer is formed functions as an adhered portion when the printed label is adhered to the plastic container body.
<<ヒートシール層>>
 ヒートシール層は、上述したように、例えば、インモールド成形用の印刷ラベルをプラスチック容器本体に貼着するときに、プラスチック容器に印刷ラベルを貼着する機能を有する。
 ヒートシール層は、上述したように、例えば、基材層等を構成する熱可塑性樹脂の融点より低い融点を示す熱可塑性樹脂を主成分とする熱可塑性樹脂組成物を用いて形成される。
 ヒートシール層の主成分である熱可塑性樹脂の融点と、基材層等を構成する熱可塑性樹脂の融点との差は、10℃以上が好ましく、15℃以上がより好ましい。これにより、インモールド成形用の印刷ラベルをプラスチック容器に貼着するときに、基材層の変形を抑制することができる。一方、ヒートシール層の主成分である熱可塑性樹脂の融点と、基材層等を構成する熱可塑性樹脂の融点との差は、150℃以下が好ましい。これにより、インモールド成形用の印刷ラベルをプラスチック容器に貼着する前の保管時、又は印刷ラベルの加工時において、印刷ラベルのブロッキングを抑制することができる。その結果、インモールド成形用の印刷ラベルのハンドリング性が向上する。
<<Heat seal layer>>
As described above, the heat-seal layer has a function of attaching a printed label to the plastic container when attaching the printed label for in-mold molding to the plastic container body.
As described above, the heat seal layer is formed using, for example, a thermoplastic resin composition containing, as a main component, a thermoplastic resin having a melting point lower than that of the thermoplastic resin forming the base layer and the like.
The difference between the melting point of the thermoplastic resin that is the main component of the heat seal layer and the melting point of the thermoplastic resin that constitutes the base layer and the like is preferably 10° C. or higher, more preferably 15° C. or higher. Thereby, deformation of the base material layer can be suppressed when the printed label for in-mold molding is attached to the plastic container. On the other hand, the difference between the melting point of the thermoplastic resin that is the main component of the heat seal layer and the melting point of the thermoplastic resin that constitutes the base layer and the like is preferably 150° C. or less. As a result, blocking of the printed label can be suppressed during storage of the printed label for in-mold molding before being attached to the plastic container or during processing of the printed label. As a result, the handleability of printed labels for in-mold molding is improved.
 ヒートシール層が形成されていると、ヒートシール層の上に印刷はされないため、たとえ表面層破れが発生したとしても、白抜け等の問題は生じない。また、表面層破れが発生したとしても、表面層破れが発生した部分にヒートシール層が溶融することにより破れが消失することがあり、その場合には外観上問題がなくなる。
 ヒートシール層側に表面層破れや表面突起が発生したとしても、ヒートシール層側は、印刷面ではなく貼着面としてしか使用されないため、印刷ラベルとしてインモールド成形法によりプラスチック容器に貼着させたときに表面外観に問題がなければ、ヒートシール層側の表面層破れや表面突起の存在は問題にならない場合がある。
When the heat-seal layer is formed, printing is not performed on the heat-seal layer, so even if the surface layer breaks, problems such as white spots do not occur. Further, even if the surface layer is torn, the heat seal layer melts in the portion where the surface layer is torn, and the tear disappears.
Even if the surface layer is torn or has surface protrusions on the heat-seal layer side, the heat-seal layer side is used only as an adhesive surface, not a printed surface. If there is no problem with the surface appearance when the heat-seal layer is pressed, surface layer breakage and the presence of surface protrusions on the heat seal layer side may not be a problem.
 ヒートシール層に用いる熱可塑性樹脂の具体例としては、超低密度、低密度、または中密度の高圧法ポリエチレン、直鎖線状低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、アルキル基の炭素数が1~8のエチレン・アクリル酸アルキルエステル重合体、アルキル基の炭素数が1~8のエチレン・メタクリル酸アルキルエステル共重合体、プロピレン・αオレフィン共重合体に代表されるプロピレン系樹脂、ポリエステル系樹脂、スチレン系エラストマー樹脂、ポリアミド系樹脂等を挙げることができる。ヒートシール層に用いる熱可塑性樹脂としては、直鎖状低密度ポリエチレンが好ましく、メタロセンを重合触媒とする直鎖状低密度ポリエチレンがより好ましい。これにより、ヒートシール接着強度に優れる接着層が得られる。
 ヒートシール性を阻害しない範囲で、ヒートシール層に、公知の他の樹脂用添加剤を任意に添加してよい。他の樹脂用添加剤としては、例えば染料、核剤、可塑剤、離型剤、難燃剤、酸化防止剤、光安定剤、紫外線吸収剤等を挙げることができる。
 添加剤として帯電防止剤を添加することにより、本発明の積層体のヒートシール層側における表面抵抗率を低下させることができる。この場合、帯電防止剤として3級アミノ基を有する物質を添加することが好ましく、N,N-ジメチルアミノ基またはN,N-ジエチルアミノ基を有する物質を添加することがより好ましい。これにより、プラスチック容器とラベルとの接着強度を低下させずに本発明の積層体のヒートシール層側に帯電防止性を付与することができる。他の樹脂用添加剤の添加量は、ヒートシール層全体に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。これにより、積層体の連続製造時にダイスに添加剤が堆積する現象を抑制することができる。
Specific examples of thermoplastic resins used in the heat seal layer include ultra-low, low, and medium density high-pressure polyethylene, linear low-density polyethylene, ethylene/vinyl acetate copolymer, and ethylene/acrylic acid copolymer. Represented by coalescence, ethylene/alkyl acrylate polymer with 1 to 8 carbon atoms in the alkyl group, ethylene/alkyl methacrylate copolymer with 1 to 8 carbon atoms in the alkyl group, and propylene/α-olefin copolymer propylene-based resins, polyester-based resins, styrene-based elastomer resins, polyamide-based resins, and the like, which are used in the present invention. As the thermoplastic resin used for the heat seal layer, linear low-density polyethylene is preferable, and linear low-density polyethylene using a metallocene as a polymerization catalyst is more preferable. As a result, an adhesive layer having excellent heat-seal adhesive strength can be obtained.
Any other known resin additive may be added to the heat-sealable layer as long as the heat-sealable property is not impaired. Examples of other resin additives include dyes, nucleating agents, plasticizers, release agents, flame retardants, antioxidants, light stabilizers, ultraviolet absorbers, and the like.
By adding an antistatic agent as an additive, the surface resistivity of the laminate of the present invention on the heat seal layer side can be reduced. In this case, it is preferable to add a substance having a tertiary amino group as an antistatic agent, and more preferably a substance having an N,N-dimethylamino group or N,N-diethylamino group. This makes it possible to impart antistatic properties to the heat-seal layer side of the laminate of the present invention without lowering the adhesive strength between the plastic container and the label. The amount of other resin additives added is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the entire heat seal layer. This can prevent the additive from depositing on the die during continuous production of the laminate.
 第3の表面層は、表面にヒートシール層を含むため、上述したように、積層体におけるシート表面の外観不良の問題を有効に防止することができる。そこで、第3の表面層が上述した粗大粒子及びリサイクル樹脂を含有したとしても、シート表面の外観不良の問題を抑制することができるため、第3の表面層を形成する第3の表面層用熱可塑性樹脂組成物に上述したリサイクル樹脂を含有させてもよい。
 つまり、第3の表面層は、最大粒子径Rmaxが60μm以上である粒子及びリサイクル樹脂を含有する第3の表面層用熱可塑性樹脂を用いて形成することができる。これにより、基材層以外に第3の表面層にも、リサイクル樹脂を含有させることができ、さらにリサイクル樹脂の有効活用を図ることができる。
 第3の表面層を形成する熱可塑性樹脂に含有されるリサイクル樹脂としては、上記<基材層>の欄で記載したリサイクル樹脂と同様のものを使用することができる。
Since the third surface layer includes a heat seal layer on the surface, it is possible to effectively prevent the problem of poor appearance of the surface of the sheet in the laminate, as described above. Therefore, even if the third surface layer contains the above-described coarse particles and recycled resin, the problem of poor appearance of the sheet surface can be suppressed. The thermoplastic resin composition may contain the recycled resin described above.
That is, the third surface layer can be formed using a thermoplastic resin for the third surface layer containing particles having a maximum particle size Rmax of 60 μm or more and a recycled resin. As a result, the recycled resin can be contained in the third surface layer in addition to the base layer, and the recycled resin can be effectively utilized.
As the recycled resin contained in the thermoplastic resin forming the third surface layer, the same recycled resin as described in the section <Base layer> can be used.
<<第3の表面層の厚さTL3>>
 本発明の積層体において、第3の表面層の厚さTL3と、基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の最大粒子径Rmaxが、下記式(C2)を満たすことが重要である。
 TL3×1.2≧0.15×Rmax  (C2)
 本発明の積層体は、粗大粒子及びリサイクル樹脂を含む層を延伸処理することにより形成されるものではあるが、上記式(C2)を満たすことにより表面層破れの発生を抑制することができ、表面突起の発生を抑制することができる。ただし、上記式(C2)は、微小な表面層破れが生じる場合をも包含する。第3の表面層はヒートシール層を含むため、表面層破れが極めて微小なものであればヒートシール時に消失し、外観上の問題がなくなることがあるためである。
 第3の表面層の厚さTL3と、基材層中の粗大粒子(特に、基材層で用いられるリサイクル樹脂組成物に含まれる粒子)の平均粒子径Rとの関係は、下記式(2b)を満たすことが好ましい。
 TL3×p≧0.25×R  (2b)
 上記式(2b)中、pは2.0であることが好ましく、1.6であることがより好ましく、1.2であることがさらに好ましい。
 ヒートシール層を含む第3の表面層の厚さは、外観不良低減の観点から、13μm以上であることが好ましく、17μm以上がより好ましく、25μm以上がさらに好ましい。また、第3の表面層の厚さは、333μm以下であることが好ましく、250μm以下がより好ましく、167μm以下がさらに好ましい。
 第3の表面層の厚さTL3には、ヒートシール層の厚みも含まれているが、ヒートシール層だけの厚みとしては、例えば、外観不良低減の観点から、1μm以上であることが好ましく、2μm以上がより好ましい。また、ヒートシール層だけの厚みは、20μm以下であることが好ましく、10μm以下がより好ましい。
<<thickness TL3 of third surface layer>>
In the laminate of the present invention, the thickness TL3 of the third surface layer and the maximum particle diameter Rmax of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) are It is important to satisfy the following formula (C2).
TL3×1.2≧0.15×Rmax (C2)
The laminate of the present invention is formed by stretching a layer containing coarse particles and recycled resin, but by satisfying the above formula (C2), surface layer tearing can be suppressed, It is possible to suppress the occurrence of surface protrusions. However, the above formula (C2) also includes the case where minute surface layer breakage occurs. This is because, since the third surface layer includes a heat seal layer, if the damage to the surface layer is extremely small, it will disappear during heat sealing, and there will be no problem with the appearance.
The relationship between the thickness TL3 of the third surface layer and the average particle diameter R of coarse particles in the substrate layer (in particular, particles contained in the recycled resin composition used in the substrate layer) is expressed by the following formula (2b ) is preferably satisfied.
TL3×p≧0.25×R (2b)
In the above formula (2b), p is preferably 2.0, more preferably 1.6, even more preferably 1.2.
From the viewpoint of reducing appearance defects, the thickness of the third surface layer including the heat seal layer is preferably 13 μm or more, more preferably 17 μm or more, and even more preferably 25 μm or more. Also, the thickness of the third surface layer is preferably 333 μm or less, more preferably 250 μm or less, and even more preferably 167 μm or less.
The thickness TL3 of the third surface layer includes the thickness of the heat seal layer, but the thickness of the heat seal layer alone is preferably 1 μm or more from the viewpoint of reducing appearance defects. 2 μm or more is more preferable. Moreover, the thickness of the heat seal layer alone is preferably 20 μm or less, more preferably 10 μm or less.
<積層体の特性>
 本発明の積層体の層全体の厚さとしては、表面層破れや表面突起の発生防止の観点から、300μm以下であることが好ましい。
 積層体全体における、リサイクル樹脂の含有量の占める割合としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、積層体全体の量に対して、リサイクル樹脂は、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。また、積層体全体の量に対して、リサイクル樹脂は、50質量%以下であることが好ましく、35質量%以下であることがより好ましい。
<Laminate characteristics>
The total thickness of the layers of the laminate of the present invention is preferably 300 μm or less from the viewpoint of preventing surface layer breakage and surface protrusions.
The ratio of the content of the recycled resin in the entire laminate is not particularly limited, and can be appropriately selected according to the purpose. % or more, more preferably 25 mass % or more, and even more preferably 30 mass % or more. Moreover, the recycled resin is preferably 50% by mass or less, more preferably 35% by mass or less, relative to the total amount of the laminate.
<積層体の製造方法>
 本発明の積層体の製造方法は、特に限定されず、通常の方法により製造することができるが、例えば、本発明の積層体の製造方法の好ましい実施態様として以下の工程を有する製造方法が挙げられる。
<Method for manufacturing laminate>
The method for producing the laminate of the present invention is not particularly limited, and the laminate can be produced by a conventional method. be done.
<<第一の実施態様>>
 本発明の積層体の製造方法は、
 ・基材層用熱可塑性樹脂組成物を用いて第1成形層を成形する工程と、
 ・第1の表面層用熱可塑性樹脂組成物を用いて第1成形層上に第2成形層を成形し、第1成形層と第2成形層とを含む積層物を作製する工程と、
 ・積層物を延伸する工程と、を含む。
 上記積層体の製造方法において、第1成形層は、最大粒子径Rmaxが60μm以上である粒子及びリサイクル樹脂を含有する基材層用熱可塑性樹脂組成物を用いて成形される。基材層用熱可塑性樹脂組成物は、例えば、リサイクル樹脂ペレットから、或いは、リサイクル樹脂ペレットと未リサイクル樹脂ペレットとを混合し、必要に応じその他成分と混合して、得ることができる。
 また、第2成形層は、第1の表面層を形成する熱可塑性樹脂を主成分とする第1の表面層用熱可塑性樹脂組成物を用いて成形される。
 第1成形層や第2成形層の層(フィルム)成形方法としては、例えばスクリュー型押出機に接続された単層又は多層のTダイ、Iダイ等により、溶融樹脂をシート状に押し出すキャスト成形、カレンダー成形、圧延成形、インフレーション成形等が挙げられる。また、フィードブロック、マルチマニホールドを使用した多層ダイス方式、複数のダイスを使用する押出しラミネーション方式等の通常の手法を使用して、第1成形層や第2成形層の層(フィルム)成形と、第1成形層と第2成形層との積層を並行して行うこともできる。
<<First Embodiment>>
The method for producing a laminate of the present invention comprises:
- A step of molding a first molding layer using the thermoplastic resin composition for the base material layer;
A step of forming a second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer to produce a laminate including the first molding layer and the second molding layer;
- stretching the laminate.
In the method for producing a laminate, the first molding layer is molded using a thermoplastic resin composition for a substrate layer containing particles having a maximum particle diameter Rmax of 60 μm or more and recycled resin. The thermoplastic resin composition for the substrate layer can be obtained, for example, from recycled resin pellets, or by mixing recycled resin pellets and non-recycled resin pellets, and optionally mixing with other components.
The second molded layer is molded using a thermoplastic resin composition for the first surface layer, the main component of which is the thermoplastic resin that forms the first surface layer.
As a layer (film) molding method for the first molding layer and the second molding layer, for example, a single-layer or multi-layer T die, I die, etc. connected to a screw type extruder is used to extrude the molten resin into a sheet. , calendar molding, roll molding, inflation molding, and the like. In addition, layer (film) molding of the first molding layer and the second molding layer, and Lamination of the first molded layer and the second molded layer can also be carried out in parallel.
 第1成形層は、第2成形層を積層する前に延伸することもできるし、積層後に延伸することもできる。通常、第2成形層は薄いため、単層での延伸成形ではなく、第1成形層に積層後、延伸することが好ましい。なかでも、第1成形層が二軸延伸層であると、機械強度を高くすることができるため好ましい。また、第2成形層が一軸延伸層であることが、フィブリル状の表面を形成しやすく、顔料インクジェット印刷後の耐擦過性を向上させることができるため、好ましい。
 第1成形層が二軸延伸層であり、第2成形層が一軸延伸層であるとさらに好ましい。
 延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。
 延伸を実施するときの延伸温度は、使用する熱可塑性樹脂が非晶性樹脂の場合、当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、熱可塑性樹脂の融点よりも2℃以上60℃以下低い温度が好ましい。具体的には、プロピレン単独重合体(融点155~167℃)の場合は100℃以上164℃以下の延伸温度が好ましく、高密度ポリエチレン(融点121~134℃)の場合は70℃以上133℃以下の延伸温度が好ましい。
延伸速度は、特に限定されるものではないが、安定した延伸成形の観点から、20m/分以上350m/分以下の範囲内であることが好ましい。
 また、延伸倍率についても、使用する熱可塑性樹脂の特性等を考慮して適宜決定することができる。例えば、プロピレン単独重合体又はプロピレン共重合体を使用する場合、一方向に延伸する場合の延伸倍率は、通常、下限が約1.2倍以上、好ましくは2倍以上であり、上限が12倍以下、好ましくは10倍以下である。一方、二軸延伸する場合の延伸倍率は、面積延伸倍率で通常、下限が1.5倍以上、好ましくは4倍以上であり、上限が60倍以下、好ましくは50倍以下である。
 上記延伸倍率の範囲内であれば、目的の空孔率及び坪量が得られやすく、不透明性が向上しやすい。また、積層体の破断が起きにくく、安定した延伸成形ができる傾向がある。
The first molding layer can be stretched before laminating the second molding layer, or can be stretched after lamination. Since the second molded layer is usually thin, it is preferable to laminate the first molded layer and then stretch it instead of stretching the single layer. Among them, it is preferable that the first molded layer is a biaxially stretched layer because the mechanical strength can be increased. Further, it is preferable that the second molding layer is a uniaxially stretched layer, since a fibril-like surface can be easily formed and the scratch resistance after pigment inkjet printing can be improved.
More preferably, the first molded layer is a biaxially stretched layer and the second molded layer is a uniaxially stretched layer.
Stretching methods include, for example, a longitudinal stretching method using a difference in circumferential speed between rolls, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these methods, a rolling method, and a simultaneous two-stretching method using a combination of a tenter oven and a pantograph. Examples include an axial stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor. A simultaneous biaxial stretching (inflation molding) method can also be used, in which a circular die connected to a screw extruder is used to extrude a molten resin into a tubular shape, and then air is blown into the tubular shape.
When the thermoplastic resin to be used is an amorphous resin, the stretching temperature during stretching is preferably in the range of the glass transition temperature of the thermoplastic resin or higher. Also, when the thermoplastic resin is a crystalline resin, the stretching temperature should be above the glass transition point of the non-crystalline portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin. is preferable, and a temperature lower than the melting point of the thermoplastic resin by 2° C. or more and 60° C. or less is preferable. Specifically, in the case of propylene homopolymer (melting point 155-167°C), the drawing temperature is preferably 100°C or higher and 164°C or lower, and in the case of high-density polyethylene (melting point 121-134°C), 70°C or higher and 133°C or lower. is preferred.
The stretching speed is not particularly limited, but is preferably in the range of 20 m/min or more and 350 m/min or less from the viewpoint of stable stretching molding.
In addition, the draw ratio can also be appropriately determined in consideration of the properties of the thermoplastic resin to be used. For example, when a propylene homopolymer or a propylene copolymer is used, the draw ratio when drawing in one direction is usually about 1.2 times or more, preferably about 2 times or more, and the upper limit is 12 times. Below, preferably 10 times or less. On the other hand, in the case of biaxial stretching, the draw ratio in terms of area draw ratio is generally 1.5 times or more, preferably 4 times or more, and 60 times or less, preferably 50 times or less.
If the draw ratio is within the above range, the desired porosity and basis weight are easily obtained, and the opacity is easily improved. In addition, there is a tendency that the laminate is less likely to break, and can be stably stretched.
 第1成形層に対し、所望の延伸処理工程を施すことにより、基材層が作製される。また、第2成形層に対し、所望の延伸処理工程を施すことにより、第1の表面層が作製される。 A substrate layer is produced by subjecting the first molded layer to a desired stretching process. Further, the first surface layer is produced by subjecting the second molded layer to a desired stretching process.
 本発明の積層体が、第2の表面層又は第3の表面層を有する場合、第2の表面層又は第3の表面層は、上述した第1の表面層を作製する場合と同様にして作製することができる。 When the laminate of the present invention has a second surface layer or a third surface layer, the second surface layer or the third surface layer is formed in the same manner as the first surface layer described above. can be made.
 本発明の積層体が、第2の表面層を有する場合、本発明の積層体の製造方法の好ましい実施態様として以下の工程を有する製造方法が挙げられる。 When the laminate of the present invention has a second surface layer, a preferred embodiment of the method for producing the laminate of the present invention includes the following steps.
<<第二の実施態様>>
 本発明の積層体の製造方法は、
 ・基材層用熱可塑性樹脂組成物を用いて第1成形層を成形する工程と、
 ・第1の表面層用熱可塑性樹脂組成物を用いて第1成形層上に第2成形層を成形し、第2の表面層用熱可塑性樹脂組成物を用いて第1成形層上(第2成形層が形成されている面とは反対の面)に第3成形層を成形し、第1成形層と第2成形層と第3成形層とを含む積層物を作製する工程と、
 ・積層物を延伸する工程と、を含む。
 第3成形層は、第2の表面層を形成する熱可塑性樹脂を主成分とする第2の表面層用熱可塑性樹脂組成物を用いて成形される。
 第1成形層~第3成形層の層(フィルム)成形方法や延伸方法は、上記<<第一の実施態様>>の欄で記載した通りである。
 第1成形層が二軸延伸層であり、第2成形層及び第3成形層が一軸延伸層であるとさらに好ましい。
 第3成形層に対し、所望の延伸処理工程を施すことにより、第2の表面層が作製される。
<<Second Embodiment>>
The method for producing a laminate of the present invention comprises:
- A step of molding a first molding layer using the thermoplastic resin composition for the base material layer;
・Mold the second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer, and use the thermoplastic resin composition for the second surface layer on the first molding layer (second a step of forming a third molded layer on the surface opposite to the surface on which the second molded layer is formed to produce a laminate including the first molded layer, the second molded layer, and the third molded layer;
- stretching the laminate.
The third molding layer is molded using a thermoplastic resin composition for the second surface layer, the main component of which is a thermoplastic resin for forming the second surface layer.
The layer (film) forming method and the stretching method for the first to third molding layers are as described in the section <<First Embodiment>> above.
More preferably, the first molded layer is a biaxially stretched layer, and the second molded layer and the third molded layer are uniaxially stretched layers.
A second surface layer is produced by subjecting the third molded layer to a desired stretching process.
 本発明の積層体が、第3の表面層を有する場合、本発明の積層体の製造方法の好ましい実施態様として以下の工程を有する製造方法が挙げられる。 When the laminate of the present invention has a third surface layer, a preferred embodiment of the method for producing the laminate of the present invention includes the following steps.
<<第三の実施態様>>
 本発明の積層体の製造方法は、
 ・基材層用熱可塑性樹脂組成物を用いて第1成形層を成形する工程と、
 ・第1の表面層用熱可塑性樹脂組成物を用いて第1成形層上に第2成形層を成形し、第3の表面層用熱可塑性樹脂組成物を用いて第1成形層上(第2成形層が形成されている面とは反対の面)に第4成形層を成形し、第1成形層と第2成形層と第4成形層とを含む積層物を作製する工程と、
 ・積層物を延伸する工程と、を含む。
 第4成形層は、例えば、第3の表面層におけるヒートシール層以外の層で用いる熱可塑性樹脂を主成分とする第3の表面層用熱可塑性樹脂組成物を用いて成形される層と、ヒートシール層で用いる熱可塑性樹脂を主成分とするヒートシール層用熱可塑性樹脂組成物を用いて成形される層とが積層されている。
 第1成形層、第2成形層、及び第4成形層の層(フィルム)成形方法や延伸方法は、上記<<第一の実施態様>>の欄で記載した通りである。
 第1成形層が二軸延伸層であり、第2成形層及び第4成形層が一軸延伸層であるとさらに好ましい。
 第4成形層に対し、所望の延伸処理工程を施すことにより、第3の表面層が作製される。
<<Third Embodiment>>
The method for producing a laminate of the present invention comprises:
- A step of molding a first molding layer using the thermoplastic resin composition for the base material layer;
Using the thermoplastic resin composition for the first surface layer to mold the second molding layer on the first molding layer, and using the thermoplastic resin composition for the third surface layer to mold the first molding layer (the a step of forming a fourth molded layer on the surface opposite to the surface on which the second molded layer is formed to produce a laminate including the first molded layer, the second molded layer, and the fourth molded layer;
- stretching the laminate.
The fourth molded layer is, for example, a layer molded using a thermoplastic resin composition for the third surface layer, the main component of which is a thermoplastic resin used in layers other than the heat seal layer in the third surface layer, A layer molded using a thermoplastic resin composition for a heat seal layer containing a thermoplastic resin used in the heat seal layer as a main component is laminated.
The layer (film) forming method and the stretching method of the first molding layer, the second molding layer, and the fourth molding layer are as described in the above <<first embodiment>> section.
More preferably, the first molded layer is a biaxially stretched layer, and the second molded layer and the fourth molded layer are uniaxially stretched layers.
A third surface layer is produced by subjecting the fourth molded layer to a desired stretching process.
 以下に、実施例を挙げて本発明をさらに具体的に説明する。材料、使用量、割合、処理内容、処理手順等は本発明を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 The present invention will be described more specifically below with reference to examples. Materials, usage amounts, proportions, processing details, processing procedures, etc. can be changed as appropriate without departing from the scope of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below. Descriptions of "parts", "%", etc. in the examples are based on mass unless otherwise specified.
(実施例1)
 以下の手順に従って積層体(基材フィルム)を製造した。
 使用した材料の詳細は、次のとおりである(下記表1参照)。尚、「MFR」はメルトフローレートを意味する。
(Example 1)
A laminate (base film) was produced according to the following procedure.
Details of the materials used are as follows (see Table 1 below). "MFR" means melt flow rate.
[材料の詳細]
 ・PP:MFRが5g/10min(230℃、2.16kg荷重)、融点が164℃(DSCピーク温度)であるプロピレン単独重合体(日本ポリケム(株)製ノバテックPP、商品名「MA4U」)
 ・リサイクルペレット:融点が162℃(DSCピーク温度)であるプロピレン重合体、炭酸カルシウム(平均粒子径100μm、最大粒子径140μm、平均アスペクト比1.3)、酸化チタン等粒子含有量:2.8質量%(KW Plastics社製、商品名「KWR-620WT」)
 ・リサイクルペレット:融点が163℃(DSCピーク温度)であるプロピレン重合体、繊維状ナイロン粒子(平均粒子径(短径)80μm、最大粒子径(短径)100μm、平均アスペクト比30~40)、粒子含有量:2.5質量%(Multiplast system社製、商品名「PP-white」)
 ・HDPE:MFRが10g/10min(190℃、2.16kg荷重)、融点が133℃(DSCピーク温度)である高密度ポリエチレン(日本ポリエチレン(株)製ノバテックHD、商品名「HJ381」)
 ・無機微細粉末:平均粒子径が1.2μmの乾式粉砕された炭酸カルシウム(白石カルシウム(株)製、商品名「ソフトン1800」)
 ・エチレン系エラストマー:MFRが30g/10min(190℃、2.16kg荷重)である(ダウ・ケミカル日本(株)製エチレン系共重合体、商品名「ENGAGE8401」)
[material details]
PP: Propylene homopolymer having an MFR of 5 g/10 min (230°C, 2.16 kg load) and a melting point of 164°C (DSC peak temperature) (Novatec PP manufactured by Japan Polychem Co., Ltd., trade name "MA4U")
・Recycled pellets: Propylene polymer with a melting point of 162°C (DSC peak temperature), calcium carbonate (average particle size: 100 µm, maximum particle size: 140 µm, average aspect ratio: 1.3), titanium oxide, etc. Particle content: 2.8 Mass% (manufactured by KW Plastics, trade name “KWR-620WT”)
· Recycled pellets: propylene polymer with a melting point of 163 ° C. (DSC peak temperature), fibrous nylon particles (average particle diameter (minor diameter) 80 μm, maximum particle diameter (minor diameter) 100 μm, average aspect ratio 30 to 40), Particle content: 2.5% by mass (manufactured by Multiplast system, trade name “PP-white”)
HDPE: High-density polyethylene (Novatec HD manufactured by Nippon Polyethylene Co., Ltd., trade name "HJ381") with an MFR of 10 g/10 min (190°C, 2.16 kg load) and a melting point of 133°C (DSC peak temperature)
・ Inorganic fine powder: dry-ground calcium carbonate with an average particle size of 1.2 μm (manufactured by Shiraishi Calcium Co., Ltd., trade name “Softon 1800”)
- Ethylene-based elastomer: MFR is 30 g/10 min (190°C, 2.16 kg load) (ethylene-based copolymer manufactured by Dow Chemical Japan Co., Ltd., trade name "ENGAGE8401")
 基材フィルムの製造にあたって使用した材料の種類と量(質量%)を下記表2に、基材フィルムの延伸条件、各層の厚みや条件を下記表3に記載した。表2中に記載される材料の番号は、表1中に記載される材料の番号に対応している。 The types and amounts (mass%) of the materials used in the production of the base film are shown in Table 2 below, and the stretching conditions of the base film and the thickness and conditions of each layer are shown in Table 3 below. The material numbers listed in Table 2 correspond to the material numbers listed in Table 1.
[手順]
 表2に記載の配合物[A]を250℃に設定された押出機で溶融混練して押出成形し、冷却装置にて70℃まで冷却して単層の無延伸シートを得た。この無延伸シートを145℃に加熱した後、縦方向にロール間で5倍に延伸し、縦一軸延伸フィルムを得た。
 次いで表2に記載の配合物[B]を250℃に設定された押出機で溶融混練して、上記縦一軸延伸フィルムの表面に積層し、表2に記載の配合物[C]を250℃に設定された押出機で溶融混練して、上記縦一軸延伸フィルムの裏面に積層した。
 積層物を158℃に加熱してテンター延伸機を用いて横方向に9倍延伸し、1軸延伸/2軸延伸/1軸延伸された3層構造の積層体(基材フィルム)を得た。
[procedure]
The compound [A] shown in Table 2 was melt-kneaded by an extruder set at 250°C, extruded, and cooled to 70°C by a cooling device to obtain a single-layer unstretched sheet. After heating this unstretched sheet to 145° C., it was stretched 5 times in the longitudinal direction between rolls to obtain a longitudinally uniaxially stretched film.
Next, the compound [B] shown in Table 2 is melt-kneaded in an extruder set at 250 ° C., laminated on the surface of the longitudinal uniaxially stretched film, and the compound [C] shown in Table 2 is added at 250 ° C. It was melt-kneaded with an extruder set to 100° C. and laminated on the back surface of the longitudinally uniaxially stretched film.
The laminate was heated to 158° C. and stretched 9 times in the horizontal direction using a tenter stretching machine to obtain a uniaxially stretched/biaxially stretched/uniaxially stretched three-layer structure laminate (base film). .
[評価]
 実施例で製造した積層体(基材フィルム)について、表面突起の個数、表面層破れの個数、粗大粒子径の大きさを測定した。各試験内容は以下の通りである。
[evaluation]
The number of surface protrusions, the number of surface layer breaks, and the size of coarse particles were measured for the laminates (base films) produced in Examples. The contents of each test are as follows.
[表面突起]
 表面突起とは、粗大粒子によりシート表面が盛り上がっている箇所であり、例えば、図4で示すE部分に該当する。
 表面突起の個数は、基材の表面に斜光を当て、10cm×10cmの任意の枠内にある表面上に突起している箇所の個数を目視にてカウントし、10回測定した平均値を算出することにより求めた。
[Surface protrusion]
The surface protrusion is a portion where the sheet surface rises due to coarse particles, and corresponds to, for example, portion E shown in FIG.
The number of surface protrusions is obtained by illuminating the surface of the substrate with oblique light, visually counting the number of protrusions on the surface within an arbitrary frame of 10 cm × 10 cm, and calculating the average value of 10 measurements. was obtained by
[表面層破れ]
 表面層破れとは、粗大粒子を起点として極めて大きい空孔が形成され、粗大粒子を覆う表面層に大きな破れが生じている部分であり、例えば、図4で示すD部分に該当する。
 表面層破れの個数は、基材の表面に斜光を当て、10cm×10cmの任意の枠内にある表面上に一軸方向への微小な亀裂が入っている箇所の個数を目視にてカウントし、10回測定した平均値を算出することにより求めた。
[Tear surface layer]
The surface layer tear is a portion where extremely large voids are formed starting from the coarse particles, and a large tear occurs in the surface layer covering the coarse particles. For example, it corresponds to the portion D shown in FIG.
The number of surface layer breaks is determined by illuminating the surface of the base material with oblique light and visually counting the number of places where there are microcracks in the uniaxial direction on the surface within an arbitrary frame of 10 cm × 10 cm. It was obtained by calculating the average value of 10 measurements.
[粗大粒子径の大きさ]
 基材層の断面を走査型電子顕微鏡(SEM)で観察した。SEM画像から基材層中に含まれる粒子の外接円の直径又は短径を測定した。直径が30μm以上であった粒子について10点測定を行い、個数累積で50%に当たる直径を平均粒子径(D50)とした。
[Size of coarse particle diameter]
A cross section of the substrate layer was observed with a scanning electron microscope (SEM). The circumscribed circle diameter or minor axis of the particles contained in the substrate layer was measured from the SEM image. Particles with a diameter of 30 μm or more were measured at 10 points, and the diameter corresponding to 50% of the accumulated number was taken as the average particle diameter (D50).
 実施例1の積層体(基材フィルム)に対して、上記評価を行った結果を下記表3及び下記表4に示す。表4に、[表面突起]及び[表面層破れ]の評価結果を、表3に[粗大粒子径の大きさ(D50)]と[粗大粒子の最大粒子径]の結果を記載した。
 尚、「積層体全体の熱可塑性樹脂中におけるリサイクル樹脂成分の占める割合」の値も表3に記載した。
The evaluation results of the laminate (base film) of Example 1 are shown in Tables 3 and 4 below. Table 4 shows the evaluation results of [surface protrusions] and [surface layer breakage], and Table 3 shows the results of [coarse particle size (D50)] and [maximum particle size of coarse particles].
Table 3 also shows the value of "ratio of the recycled resin component in the thermoplastic resin of the entire laminate".
[実施例2]~[実施例9]
 実施例1において、基材フィルムの製造にあたって使用した材料の種類と量(質量%)、延伸条件、各層の厚みを表2及び表3に記載の条件に変更した以外は、実施例1と同様にして、実施例2~実施例9の積層体(基材フィルム)を得た。
 尚、実施例4~実施例8は、裏面にC層(配合物[C1]を用いて形成された層、及び該層の外側にヒートシール層として配合物[C2]を用いて形成された層とが積層されている)が設けられている。
 実施例2~実施例9の積層体(基材フィルム)に対して、実施例1と同様の評価を行った。結果を下記表4に示す。
[Example 2] to [Example 9]
In Example 1, the same as Example 1 except that the type and amount (mass%) of the material used in the production of the base film, the stretching conditions, and the thickness of each layer were changed to the conditions shown in Tables 2 and 3. Then, laminates (base films) of Examples 2 to 9 were obtained.
In Examples 4 to 8, the C layer (a layer formed using the formulation [C1] on the back surface, and the formulation [C2] as a heat seal layer on the outside of the layer was formed using layers are laminated) are provided.
The laminates (base films) of Examples 2 to 9 were evaluated in the same manner as in Example 1. The results are shown in Table 4 below.
[比較例1]~[比較例4]
 実施例1において、基材フィルムの製造にあたって使用した材料の種類と量(質量%)、延伸条件、各層の厚みを表2及び表3に記載の条件に変更した以外は、実施例1と同様にして、比較例1~比較例4の積層体(基材フィルム)を得た。
 比較例1~比較例4の積層体(基材フィルム)に対して、実施例1と同様の評価を行った。結果を下記表4に示す。
 尚、比較例の積層体(基材フィルム)において、表面層破れが生じた箇所を撮影した写真画像を図5に示す。図5では表面層の破れ(白い部分)を確認することができ、その中央に当該破れに起因する粗大粒子の存在を確認することができる。また、このように表面層破れが生じた積層体を用いて、該積層体の表面上に印刷を行った場合、白抜けが生じたことを示す写真画像を図6に示す。
[Comparative Example 1] to [Comparative Example 4]
In Example 1, the same as Example 1 except that the type and amount (mass%) of the material used in the production of the base film, the stretching conditions, and the thickness of each layer were changed to the conditions shown in Tables 2 and 3. Then, laminates (base films) of Comparative Examples 1 to 4 were obtained.
The laminates (base films) of Comparative Examples 1 to 4 were evaluated in the same manner as in Example 1. The results are shown in Table 4 below.
FIG. 5 shows a photographic image of a portion where the surface layer was torn in the laminate (base film) of the comparative example. In FIG. 5, it is possible to confirm the breakage (white portion) of the surface layer, and it is possible to confirm the presence of coarse particles caused by the breakage in the center thereof. Further, FIG. 6 shows a photographic image showing that when printing was performed on the surface of the laminate using the laminate in which the surface layer was torn as described above, white spots occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例の結果より、本発明の積層体は、リサイクル樹脂及び粗大粒子を含む延伸シートからなる積層体であるが、表面層破れの発生を防止でき、表面突起の発生を抑制でき、シート表面の外観に優れた積層体となることがわかった。
 尚、実施例4~8のように、本発明の積層体がヒートシール層をさらに有する場合には、ヒートシール層側に表面層破れや表面突起が生じていても、ヒートシール層側は、貼着面として機能するため問題とならず、実際、実施例4~8の積層体を印刷ラベルとしてインモールド成形法によりプラスチック容器に貼着させたところ、接着後の表面に多少の膨れはみられるものの遠目からは全く表面外観に問題はなかった。
From the results of the examples, the laminate of the present invention, which is a laminate made of a stretched sheet containing recycled resin and coarse particles, can prevent the surface layer from tearing, suppress the surface protrusions, and reduce the surface roughness of the sheet. It was found that a laminate having an excellent appearance was obtained.
In addition, as in Examples 4 to 8, when the laminate of the present invention further has a heat-sealing layer, even if the heat-sealing layer side has surface layer breakage or surface protrusions, the heat-sealing layer side is Since it functions as a sticking surface, there is no problem. Actually, when the laminates of Examples 4 to 8 were stuck to a plastic container as a printed label by an in-mold molding method, some swelling appeared on the surface after bonding. There was absolutely no problem with the surface appearance from a distance.
 本出願は、2021年3月31日に出願された日本特許出願である特願2021-060990号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2021-060990, which is a Japanese patent application filed on March 31, 2021, and all descriptions of the Japanese patent application are incorporated.
1・・・積層体、11・・・基材層、12・・・第1の表面層、13・・・第2の表面層、14・・・第3の表面層、15・・・ヒートシール層、16・・・粗大粒子、A・・・印刷面、B・・・印刷面、C・・・接着面、D・・・表面層破れ、E・・・表面突起

 
DESCRIPTION OF SYMBOLS 1... Laminate, 11... Base material layer, 12... First surface layer, 13... Second surface layer, 14... Third surface layer, 15... Heat Seal layer, 16... Coarse particles, A... Printed surface, B... Printed surface, C... Adhesive surface, D... Surface layer tear, E... Surface protrusion

Claims (9)

  1.  基材層と前記基材層の一方の面上に設けられた第1の表面層とを備える、延伸された積層体であって、
     前記基材層は、リサイクル樹脂を含む熱可塑性樹脂と、最大粒子径Rmaxが60μm以上である粒子とを含有し、
     前記第1の表面層の厚さTL1と前記最大粒子径Rmaxが、下記式(A)を満たす、積層体。
     TL1≧0.15×Rmax  (A)
    A stretched laminate comprising a substrate layer and a first surface layer provided on one side of the substrate layer,
    The base material layer contains a thermoplastic resin containing a recycled resin and particles having a maximum particle size Rmax of 60 μm or more,
    A laminate in which the thickness TL1 of the first surface layer and the maximum particle diameter Rmax satisfy the following formula (A).
    TL1≧0.15×Rmax (A)
  2.  前記第1の表面層が、ポリプロピレン系樹脂を含有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the first surface layer contains a polypropylene-based resin.
  3.  前記粒子が、炭酸カルシウムを含有する、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the particles contain calcium carbonate.
  4.  前記積層体が、前記基材層の他方の面上に設けられた第2の表面層をさらに備え、
     前記第2の表面層の厚さTL2と前記最大粒子径Rmaxが、下記式(C1)を満たす、請求項1~3のいずれか一項に記載の積層体。
     TL2≧0.15×Rmax  (C1)
    The laminate further comprises a second surface layer provided on the other surface of the base layer,
    4. The laminate according to any one of claims 1 to 3, wherein the thickness TL2 of the second surface layer and the maximum particle size Rmax satisfy the following formula (C1).
    TL2≧0.15×Rmax (C1)
  5.  前記積層体が、前記基材層の他方の面上に設けられた第3の表面層をさらに備え、
     前記第3の表面層が、ヒートシール層を含む、請求項1~3のいずれか一項に記載の積層体。
    The laminate further comprises a third surface layer provided on the other surface of the base layer,
    A laminate according to any preceding claim, wherein the third surface layer comprises a heat seal layer.
  6.  前記第3の表面層の厚さTL3と前記最大粒子径Rmaxが、下記式(C2)を満たす、請求項5に記載の積層体。
     TL3×1.2≧0.15×Rmax  (C2)
    6. The laminate according to claim 5, wherein the thickness TL3 of the third surface layer and the maximum particle diameter Rmax satisfy the following formula (C2).
    TL3×1.2≧0.15×Rmax (C2)
  7.  前記第3の表面層は、リサイクル樹脂と最大粒子径Rmaxが60μm以上である粒子とを含有する、請求項5又は6に記載の積層体。 The laminate according to claim 5 or 6, wherein the third surface layer contains recycled resin and particles having a maximum particle diameter Rmax of 60 µm or more.
  8.  前記積層体の厚さが、300μm以下である、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the laminate has a thickness of 300 μm or less.
  9.  最大粒子径Rmaxが60μm以上である粒子及びリサイクル樹脂を含有する基材層用熱可塑性樹脂組成物を用いて第1成形層を成形する工程と、
     第1の表面層用熱可塑性樹脂組成物を用いて前記第1成形層上に第2成形層を成形し、前記第1成形層と前記第2成形層とを含む積層物を作製する工程と、
     前記積層物を延伸する工程と、
     を備える、積層体の製造方法。

     
    A step of molding a first molding layer using a thermoplastic resin composition for a substrate layer containing particles having a maximum particle diameter Rmax of 60 μm or more and a recycled resin;
    forming a second molding layer on the first molding layer using the thermoplastic resin composition for the first surface layer to produce a laminate including the first molding layer and the second molding layer; ,
    stretching the laminate;
    A method for manufacturing a laminate, comprising:

PCT/JP2022/016050 2021-03-31 2022-03-30 Laminate and method for manufacturing laminate WO2022210896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511486A JPWO2022210896A1 (en) 2021-03-31 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060990 2021-03-31
JP2021-060990 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210896A1 true WO2022210896A1 (en) 2022-10-06

Family

ID=83459543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016050 WO2022210896A1 (en) 2021-03-31 2022-03-30 Laminate and method for manufacturing laminate

Country Status (2)

Country Link
JP (1) JPWO2022210896A1 (en)
WO (1) WO2022210896A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301447A (en) * 1991-03-29 1992-10-26 Toray Ind Inc Polyester composite film
JP2000141573A (en) * 1998-11-17 2000-05-23 Toray Ind Inc Polyester biaxially stretched film
US6569515B2 (en) * 1998-01-13 2003-05-27 3M Innovative Properties Company Multilayered polymer films with recyclable or recycled layers
KR20120099546A (en) * 2011-01-28 2012-09-11 도레이첨단소재 주식회사 Polyester release film for forming green sheet
JP2015069020A (en) * 2013-09-30 2015-04-13 帝人デュポンフィルム株式会社 White reflection film
WO2015083558A1 (en) * 2013-12-05 2015-06-11 三菱瓦斯化学株式会社 Multilayer container
JP2015164797A (en) * 2014-02-07 2015-09-17 株式会社村田製作所 Release film and method for manufacturing multilayer ceramic electronic component using the same
JP2016047598A (en) * 2013-01-18 2016-04-07 株式会社ユポ・コーポレーション In-mold label, resin molded product and method for producing the same
US20160168358A1 (en) * 2014-12-11 2016-06-16 Nan Ya Plastics Corporation Halogen-free plastic floor tile and modified polyester composition for use in producing the same
JP2017200761A (en) * 2016-04-28 2017-11-09 東レ株式会社 Biaxially oriented laminate polyester film and magnetic recording medium
JP2020011436A (en) * 2018-07-18 2020-01-23 東レ株式会社 Biaxially oriented polyester film for mold release
WO2020035787A1 (en) * 2018-08-13 2020-02-20 Dierickx Visschers Nv Method for fabricating recycled plastic composite material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301447A (en) * 1991-03-29 1992-10-26 Toray Ind Inc Polyester composite film
US6569515B2 (en) * 1998-01-13 2003-05-27 3M Innovative Properties Company Multilayered polymer films with recyclable or recycled layers
JP2000141573A (en) * 1998-11-17 2000-05-23 Toray Ind Inc Polyester biaxially stretched film
KR20120099546A (en) * 2011-01-28 2012-09-11 도레이첨단소재 주식회사 Polyester release film for forming green sheet
JP2016047598A (en) * 2013-01-18 2016-04-07 株式会社ユポ・コーポレーション In-mold label, resin molded product and method for producing the same
JP2015069020A (en) * 2013-09-30 2015-04-13 帝人デュポンフィルム株式会社 White reflection film
WO2015083558A1 (en) * 2013-12-05 2015-06-11 三菱瓦斯化学株式会社 Multilayer container
JP2015164797A (en) * 2014-02-07 2015-09-17 株式会社村田製作所 Release film and method for manufacturing multilayer ceramic electronic component using the same
US20160168358A1 (en) * 2014-12-11 2016-06-16 Nan Ya Plastics Corporation Halogen-free plastic floor tile and modified polyester composition for use in producing the same
JP2017200761A (en) * 2016-04-28 2017-11-09 東レ株式会社 Biaxially oriented laminate polyester film and magnetic recording medium
JP2020011436A (en) * 2018-07-18 2020-01-23 東レ株式会社 Biaxially oriented polyester film for mold release
WO2020035787A1 (en) * 2018-08-13 2020-02-20 Dierickx Visschers Nv Method for fabricating recycled plastic composite material

Also Published As

Publication number Publication date
JPWO2022210896A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5043177B2 (en) In-mold label
US8187692B2 (en) In-mold label and molded article using the same
TWI681001B (en) Thermoplastic resin film and its manufacturing method, label for in-mold forming, and plastic container with label and manufacturing method thereof
JP5579394B2 (en) In-mold label
MXPA02005888A (en) Polypropylene based compositions and films and labels formed therefrom.
JP5701461B1 (en) Labeled plastic container
JP2011102973A (en) Label for in-mold molding, in-mold molded article and method for molding the same
JP4516214B2 (en) Transparent label
JP2016047598A (en) In-mold label, resin molded product and method for producing the same
US7807243B2 (en) Label for in-mold forming having excellent delabeling property, and container with the label
US8097338B2 (en) In-mold label, and labeled resin-labeled article
JP4817886B2 (en) In-mold label and molded product using the same
WO2022210896A1 (en) Laminate and method for manufacturing laminate
JP2016511437A (en) In-mold label for stretch blow and stretch blow molded product with the label
WO2005120963A1 (en) Labeled resin container
JP7289011B2 (en) Thermal label and method for producing thermal label
JP5753937B1 (en) In-mold label and labeled plastic container
WO2022191248A1 (en) Container with label
WO2024111346A1 (en) Laminate film and container
JP2022159164A (en) laminate
JP2023150257A (en) Thermoplastic resin film, label, and in-mold label
JPH0691795A (en) Laminated resin sheet and its manufacture
JP2022170009A (en) In-mold label
JP2004255784A (en) Laminated sealant film and method for manufacturing it
JP2004155482A (en) Heat-shrinkable polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781106

Country of ref document: EP

Kind code of ref document: A1