WO2022209779A1 - Electromagnetic wave-transmitting metallic lustrous member and method for producing same - Google Patents

Electromagnetic wave-transmitting metallic lustrous member and method for producing same Download PDF

Info

Publication number
WO2022209779A1
WO2022209779A1 PCT/JP2022/011028 JP2022011028W WO2022209779A1 WO 2022209779 A1 WO2022209779 A1 WO 2022209779A1 JP 2022011028 W JP2022011028 W JP 2022011028W WO 2022209779 A1 WO2022209779 A1 WO 2022209779A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electromagnetic wave
metallic luster
substrate
layer
Prior art date
Application number
PCT/JP2022/011028
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 北井
一斗 山形
基希 拝師
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2023510847A priority Critical patent/JPWO2022209779A1/ja
Publication of WO2022209779A1 publication Critical patent/WO2022209779A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Definitions

  • the present invention relates to an electromagnetic wave transmitting metallic luster member and a manufacturing method thereof.
  • members having electromagnetic wave permeability and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a luxurious appearance derived from the metallic luster and electromagnetic wave permeability.
  • Such an electromagnetic wave permeable metallic luster member can be used as a device for transmitting and receiving electromagnetic waves in various devices that require communication, such as door handles of automobiles equipped with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers. It is expected to be applied to equipment and the like. Furthermore, in recent years, with the development of IoT technology, it is expected to be applied in a wide range of fields, such as household appliances such as refrigerators and household appliances, where communication has not been performed in the past.
  • Patent Document 1 discloses an indium oxide-containing layer provided on a surface of a substrate, and a metal layer laminated on the indium oxide-containing layer, wherein the metal layer is at least partially describes an electromagnetic wave transmitting metallic luster member characterized by comprising a plurality of portions that are discontinuous with each other.
  • the present invention was made to solve the above problems, and has excellent electromagnetic wave permeability and brightness, suppresses white turbidity and discoloration caused by stretching, and has excellent durability against humidification and heating.
  • An object of the present invention is to provide a durable metallic luster member.
  • the present inventors have found that by discontinuously providing a metal layer containing an aluminum element and an indium element and containing a specific amount of indium element on a substrate, , found that the above problems can be solved, and completed the present invention.
  • the present invention is as follows. [1] comprising a substrate and a metal layer formed on the substrate; The metal layer includes a plurality of portions that are discontinuous at least in part, The metal layer contains an aluminum element and an indium element, The content of the indium element in the metal layer is more than 90% by mass and 98% by mass or less, Electromagnetic wave permeable metal luster member. [2] The electromagnetic wave transmitting metallic luster member according to [1], wherein the aluminum element is unevenly distributed in the metal layer. [3] The electromagnetic wave transmitting metallic glossy member according to [1] or [2], wherein the metal layer contains at least one element selected from Sn, Si, Ga, Ge, and Pb.
  • an electromagnetic wave-transmitting metallic luster member that has excellent electromagnetic wave transmittance and luster, suppresses cloudiness and discoloration caused by stretching, and has excellent durability against humidification and heating.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention.
  • FIG. 2 is an electron micrograph (SEM image) drawing of the surface of the electromagnetic wave transmitting metallic luster member 1 according to Example 2.
  • FIG. 3 is a diagram for explaining a method for measuring the thickness of the metal layer of the electromagnetic wave transmitting metallic luster member according to one embodiment of the present invention.
  • FIG. 4 is a photographic drawing showing the distribution of Al element and In element when elemental analysis was performed on the electromagnetic wave transmitting metallic luster member of Example 2.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention.
  • FIG. 2 is an electron micrograph (SEM image) drawing of the surface of the electromagnetic wave transmitting metallic luster member 1 according to Example 2.
  • FIG. 3 is a diagram for explaining a method for measuring the thickness of the metal layer of the electromagnetic wave transmitting metallic luster member according to one embodiment of the present invention.
  • FIG. 4 is a photographic diagram in which a TEM image showing the distribution of Al elements in a metal layer and a TEM image showing the distribution of In elements are superimposed.
  • An electromagnetic wave transmitting metallic luster member comprises a base and a metal layer formed on the base,
  • the metal layer includes a plurality of portions that are discontinuous at least in part,
  • the metal layer contains an aluminum element and an indium element,
  • the content of the indium element in the metal layer is more than 90% by mass and 98% by mass or less.
  • An electromagnetic wave transmitting metallic luster member comprises a base and a metal layer formed on the base, wherein the metal layer has a plurality of portions that are discontinuous at least in part. including.
  • FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention
  • FIG. 2 shows the surface of the electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention.
  • An example (Example 2) of an electron micrograph (SEM image) is shown. The image size in the electron micrograph is 6 ⁇ m ⁇ 5 ⁇ m.
  • the electromagnetic wave transmitting metallic luster member 1 includes a substrate 10 and a metal layer 12 formed on the substrate 10. As shown in FIG. In the electromagnetic wave transmitting metallic luster member 1, it is preferable that a discontinuous metal layer 12 is formed on a substrate 10 without forming an underlying layer between the substrate 10 and the metal layer 12. FIG. Since no underlayer is formed between the substrate 10 and the metal layer 12, cloudiness and discoloration due to stretching can be suppressed. It should be noted that any layer (protective layer or the like) that is less likely to cause cloudiness or discoloration due to stretching may be provided between the substrate 10 and the metal layer 12 . See ⁇ 4. other layers>.
  • the metal layer 12 includes a plurality of portions 12a. These portions 12a are at least partially discontinuous from each other, in other words, at least partially separated by gaps 12b. Since these portions 12a are separated by the gap 12b, the sheet resistance of these portions 12a is increased and the interaction with radio waves is reduced, so that the radio waves can be transmitted.
  • Each of these portions 12a is an aggregate of sputtered particles formed by vapor-depositing metal. When sputtered particles form a thin film on a substrate such as substrate 10, the surface diffusivity of the particles on the substrate affects the shape of the thin film.
  • discontinuous state means a state in which they are separated from each other by the gap 12b and, as a result, are electrically insulated from each other. By being electrically insulated, the sheet resistance is increased and the desired electromagnetic wave permeability can be obtained.
  • the form of discontinuity is not particularly limited, and includes, for example, an island shape, a crack structure, and the like.
  • FIG. 2 is an example of an electron micrograph (SEM image) of the surface of the metal layer of the electromagnetic wave permeable metallic luster member 1 .
  • the “island shape” means that the particles, which are aggregates of sputtered particles, are independent of each other, and the particles are slightly separated from each other or partially in contact with each other. It means a structure that is spread all over.
  • a crack structure is a structure in which a metal thin film is divided by cracks. It should be noted that such a crack structure is distinguished from the aforementioned cracks that occur during stretching.
  • the metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a substrate and bending and stretching the metal thin film layer to cause cracks in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability, that is, being easily cracked by stretching, between the substrate and the metal thin film layer.
  • the mode in which the metal layer 12 becomes discontinuous is not particularly limited, but from the viewpoint of productivity, it is preferably "island-shaped".
  • the electromagnetic wave permeability of the electromagnetic wave transparent metallic luster member 1 can be evaluated, for example, by the amount of radio wave transmission attenuation.
  • the radio wave transmission attenuation can be measured, for example, by the method described later in Examples.
  • the radio wave transmission attenuation at 28 GHz can be evaluated using a KEC method measurement evaluation jig and Agilent's spectrum analyzer CXA Signal Analyzer NA9000A.
  • a KEC method measurement evaluation jig and Agilent's spectrum analyzer CXA Signal Analyzer NA9000A There is a correlation between the electromagnetic wave permeability in the millimeter wave radar frequency band (76 to 80 GHz) and the electromagnetic wave permeability in the microwave band (28 GHz).
  • the electromagnetic wave permeability that is, the microwave electric field transmission attenuation amount is used as an index.
  • the radio wave transmission attenuation in the microwave band (28 GHz) is preferably 1 [-dB] or less, more preferably 0.3 [-dB] or less, and 0.1 [-dB] or less. is more preferred.
  • the radio wave transmission attenuation in the microwave band (28 GHz) is preferably 1 [-dB] or less, more preferably 0.3 [-dB] or less, and 0.1 [-dB] or less. is more preferred.
  • the brilliance (appearance) of the electromagnetic wave transmitting metallic luster member 1 can be evaluated by measuring, for example, the Y value (SCI, SCE) and ⁇ E value.
  • the Y value (SCI, SCE) and ⁇ E value can be measured using a spectrophotometer according to geometric condition c of JIS Z 8722.
  • the durability of the electromagnetic wave transparent metallic luster member 1 to humidified heating can be evaluated by each index of the above-mentioned luster (appearance) before and after the humidified heating test at 65°C and 90% RH.
  • the Y value (SCI) after the humidified heating test is preferably 40% or higher, more preferably 50% or higher, and even more preferably 60% or higher. When the Y value (SCI) is 40% or more, the gloss is good and the appearance is excellent. Also, the upper limit of the Y value (SCI) after the humidification heating test is not particularly limited, but is, for example, 70% or less.
  • the ⁇ E value is an index that indicates a change in color tone, and is the L * value, a * value, and b * value (L 1 * , a 1 * , b 1 * ) before the humidification heat test, and the L value after the humidification heat test.
  • a smaller ⁇ E value indicates that the change in color tone due to humidification and heating can be suppressed.
  • the ⁇ E value is preferably 3 or less, more preferably 2 or less, and even more preferably 1 or less.
  • the stretching resistance of the electromagnetic wave transmitting metallic luster member 1 is evaluated using a tensile tester under the conditions of 150° C., 5 mm/min stretching speed, and 20% elongation rate before and after the above-mentioned brilliance (appearance). can be evaluated by each index.
  • the Y value (SCI) after the tensile test is preferably 40% or more, more preferably 50% or more, even more preferably 55% or more. When the Y value (SCI) is 40% or more, the gloss is good and the appearance is excellent.
  • the Y value (SCE) after the tensile test is preferably 1 or less, more preferably 0.3 or less, and even more preferably 0.1 or less. If the Y value (SCE) is more than 1, there is a problem that the appearance becomes cloudy and the appearance is not excellent.
  • the stretchability of the electromagnetic wave transmitting metallic luster member 1 can also be evaluated by measuring the crack width of the metal layer after the tensile test.
  • the tensile test is performed, for example, by the same method as for the luster (appearance). It can be said that the smaller the crack width of the metal layer after the tensile test is, the more the crack generation due to stretching can be suppressed, and the better the stretching resistance is.
  • the crack width of the metal layer after the tensile test is preferably 170 nm or less, more preferably 160 nm or less, even more preferably 150 nm or less.
  • the substrate 10 includes, for example, a substrate film, a resin molding substrate, or an article to which metallic luster is to be imparted.
  • the base film includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene , polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), ABS, and other homopolymers or copolymers.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PP polystyrene
  • polypropylene PP
  • polyethylene polycycloolefin
  • polyurethane acrylic
  • ABS and other homopolymers or copolymers.
  • polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene, and polyurethane are preferable.
  • polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost.
  • the base film may be a single layer film or a laminated film.
  • the thickness is preferably, for example, about 6 ⁇ m to 250 ⁇ m from the viewpoint of ease of processing.
  • a plasma treatment, an easy-adhesion treatment, or the like may be applied.
  • the base film is only an example of the object (substrate 10) on which the metal layer 12 can be formed.
  • the substrate 10 includes the base film as described above, as well as a resin molding base and the article itself to which metallic luster is to be imparted.
  • Resin molded substrates and articles to be imparted with metallic luster include, for example, vehicle structural parts, vehicle-mounted goods, housings for electronic equipment, housings for home appliances, structural parts, mechanical parts, and various automobiles. parts for electronic equipment, household goods such as furniture and kitchen utensils, medical equipment, parts for building materials, other structural parts and exterior parts.
  • a metal layer 12 is formed over the substrate 10 .
  • the metal layer 12 may be provided directly on the surface of the substrate 10, or may be provided indirectly via a layer such as a protective layer provided on the surface of the substrate 10, which is unlikely to cause cracks due to stretching. may be
  • the metal layer 12 is a layer having a metallic appearance, and is preferably a layer having metallic luster.
  • the metal layer 12 contains aluminum element and indium element. Among them, it is preferable that the aluminum element is unevenly distributed in the metal layer 12 . That is, as shown in FIG. 4, it is preferable that the aluminum element is unevenly distributed in one region of the metal layer 12 instead of being uniformly dispersed in the metal layer 12. . As long as the aluminum element is unevenly distributed in the metal layer 12, there is no limitation on the aspect thereof, but as shown in FIG. preferable. In other words, it is preferable that the aluminum element is unevenly distributed in the metal layer 12 so as to surround the indium element. Moreover, it is preferable that the aluminum element and the indium element in the metal layer 12 are not substantially compatible with each other.
  • the aluminum element and the indium element are not compatible with each other (not alloyed) in a range deeper than 14 nm from the surface of the metal layer 12.
  • the reason why the aluminum element and the indium element are substantially incompatible with each other and exist in the metal layer is that the sputtering temperature is low.
  • the content of the indium element in the metal layer 12 is more than 90% by mass and 98% by mass or less.
  • the content of the indium element is more than 90% by mass, the shape of the island becomes disc-shaped, and thus the durability against humidification and heating is excellent.
  • the content of the indium element is 98% by mass or less, aluminum is present in the surroundings, so that the durability is excellent.
  • the content of the indium element in the metal layer 12 is preferably 92% by mass or more.
  • the content of the indium element in the metal layer 12 is preferably 96% by mass or less.
  • the above indium element is not particularly limited and may be contained as an indium alloy as well as indium alone. Examples include In--Sn, In--Cr, and In--Zn. However, as described above, alloys of indium and aluminum are not included.
  • the content of the aluminum element in the metal layer 12 is preferably 2% by mass or more, more preferably 4% by mass or more.
  • An aluminum oxide film is formed around the indium by being 2% by mass or more.
  • the content of the aluminum element in the metal layer 12 is preferably 10% by mass or less, more preferably 8% by mass or less.
  • the above aluminum element is not particularly limited and may be contained as an aluminum alloy in addition to aluminum alone. Examples include Cu, Mn, Si, Mg, Zn and Ni. However, as described above, alloys of indium and aluminum are not included.
  • the metal layer 12 may contain other metal elements. Preferably, it contains at least one element of Sn, Si, Ga, Ge, and Pb. These may exist singly in the metal layer, or may be contained in the form of an alloy. For example, Sn may be included in the metal layer in the form of ITM (indium-tin-metal alloy), which is an alloy with the element indium. By including the other metal elements, the metal layer 12 is more excellent in durability against humidification and heating.
  • ITM indium-tin-metal alloy
  • the thickness of the metal layer 12 is preferably 10 nm or more, more preferably 40 nm or more, even more preferably 60 nm or more, and particularly preferably 80 nm or more.
  • the thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 60 nm or less. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the resin molded product, which is the final product, is also good.
  • the thickness of the metal layer 12 can be measured, for example, by the method described later in Examples.
  • the metal layer 12 is formed on the substrate 10 and includes a plurality of portions that are discontinuous at least in part. If the metal layer 12 is in a continuous state on the substrate 10, sufficient metallic luster can be obtained, but the amount of radio wave transmission attenuation becomes very large, and therefore the electromagnetic wave permeability cannot be ensured.
  • the oxygen concentration in the metal layer 12 In order to discontinuously form the metal layer 12 on the substrate 10, it is preferable to lower the oxygen concentration in the metal layer 12.
  • the surface diffusibility of the particles on the substrate affects the shape of the thin film. It is considered that a discontinuous structure is likely to be formed when it is small and the melting point of the material of the metal layer is low.
  • the surface diffusibility of the metal particles on the substrate surface is promoted to form a metal layer. can be formed in a discontinuous state.
  • the equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually 10 to 1000 nm.
  • the average particle size of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a.
  • the equivalent circle diameter of the portion 12a is the diameter of a perfect circle corresponding to the area of the portion 12a. Also, the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
  • the electromagnetic wave transmitting metallic luster member 1 may include other layers in addition to the metal layer 12 described above, depending on the application.
  • the continuous layers are likely to crack due to stretching. Therefore, when another layer is provided between the substrate 10 and the metal layer 12, it is preferable that the layer is less likely to cause cracks.
  • optical adjustment layer such as a high refractive material for adjusting appearance such as color
  • a protective layer for improving durability such as scratch resistance layer
  • barrier layer corrosion-resistant layer
  • easy-adhesion layer hard coat layer
  • antireflection layer light extraction layer
  • anti-glare layer and the like.
  • Method for producing an electromagnetic wave transmitting metallic luster member In the method for manufacturing an electromagnetic wave transmitting metallic luster member according to the present embodiment, a layer containing at least an indium element and including a plurality of portions that are at least partially discontinuous with each other (hereinafter simply referred to as discontinuous and a second step of vapor-depositing a metal containing aluminum element on the discontinuous layer. Each step will be described in detail below.
  • a layer containing at least an indium element and including a plurality of portions that are at least partially discontinuous with each other is formed on the substrate 10 .
  • the discontinuous layer can be formed, for example, by evaporating a metal containing indium on the surface of the substrate 10 .
  • vapor deposition methods include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating, and chemical vapor deposition (CVD) such as plasma CVD, optical CVD, and laser CVD. Physical vapor deposition is preferred, and sputtering is more preferred. Discontinuous layers of uniform thin films can be formed by this method.
  • the discontinuous layer by a sputtering method using a metal target material containing indium element and substantially free of oxygen (1 volume % or less). More preferably, the metal target material does not contain oxygen at all. Since such a metal target material does not contain oxygen, the wettability with the substrate can be reduced, and the formation of a discontinuous layer on the substrate 10 is promoted. For the same reason, when forming a discontinuous layer, it is preferable to perform vapor deposition in an atmosphere that does not substantially contain oxygen (100 volume ppm or less), and vapor deposition is performed in an atmosphere that does not contain oxygen at all. is more preferred.
  • the indium element contained in the metal target material is not particularly limited and may be contained as an indium alloy as well as indium alone. Examples include In--Sn, In--Cr, and In--Zn.
  • the metal target material may contain silver (Ag), chromium (Cr), etc., in addition to the metal containing indium.
  • Sputtering is performed under vacuum.
  • the atmospheric pressure during sputtering is, for example, 1 Pa or less, preferably 0.7 Pa or less, from the viewpoints of suppressing a decrease in sputtering rate, discharge stability, and the like.
  • the power source used in the sputtering method may be, for example, a DC power source, an AC power source, an MF power source, an RF power source, or a combination thereof.
  • sputtering may be performed multiple times by appropriately setting the metal target material, sputtering conditions, and the like.
  • a metal containing an aluminum element is vapor-deposited on the formed discontinuous layer.
  • the same method as in the first step can be adopted.
  • a metal containing an aluminum element is used as the metal target material.
  • the aluminum element may be contained in the metal target material as aluminum alone, as an aluminum compound, or as an aluminum alloy.
  • the metal target material may contain zinc (Zn), lead (Pb), copper (Cu), silver (Ag), etc., in addition to the metal containing aluminum element.
  • a discontinuous metal layer containing aluminum and indium can be formed on the substrate.
  • the metal layer is formed so as to contain more than 90% by mass and 98% by mass or less of the indium element.
  • the aluminum element and the indium element exist in the metal layer without being compatible with each other. That is, the aluminum element and the indium element exist in the metal layer without forming an alloy.
  • the electromagnetic wave transmitting metallic luster member of the present embodiment has electromagnetic wave transmitting properties, it is preferably used for devices, articles, and parts thereof that transmit and receive electromagnetic waves.
  • the electromagnetic wave transmitting metallic luster member of the present embodiment has electromagnetic wave transmitting properties, it is preferably used for devices, articles, and parts thereof that transmit and receive electromagnetic waves.
  • ECU boxes electrical components, engine peripheral parts, drive system/gear peripheral parts, intake/exhaust system parts, cooling system parts, and the like.
  • electronic devices and home appliances include home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, personal computers, and mobile phones.
  • home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, personal computers, and mobile phones.
  • smart phones digital cameras, tablet PCs, portable music players, portable game machines, battery chargers, electronic information devices such as batteries, and the like.
  • Nitto Denko's Luciax CS9861UAS adheresive layer
  • Matsunami Glass Industry's slide glass glass
  • a sample was obtained.
  • a humidification heating test was performed by placing the glass-attached sample in an environment of 65° C. and 90% RH for 120 hours. The following evaluations of radio wave transmittance and brilliance were performed on the glass-attached sample before the humidification heat test and the glass-attached sample after the humidification heat test.
  • Radio wave transmission attenuation at 28 GHz was measured from the substrate surface side using a free space method evaluation jig (Keycom) LAF-26.5A, an antenna WR-28 and a spectrum analyzer (CXA signal Analyzer NA9000A) manufactured by Agilent. There is a correlation between the electromagnetic wave permeability in the millimeter wave radar frequency band (76 to 80 GHz) and the electromagnetic wave permeability in the microwave band (28 GHz). The electromagnetic wave permeability in the band (28 GHz), that is, the microwave electric field transmission attenuation amount was used as an index and judged according to the following criteria. Table 2 shows the measurement results.
  • a total of five points “a” to “e” obtained by dividing each of the center lines A and B of the horizontal sides into quarters were selected as measurement points.
  • a viewing angle region containing approximately five portions 12a was extracted from the cross-sectional image at each of the selected measurement locations. Five portions 12a at each of these five measurement points, that is, the individual thicknesses of 25 (5 ⁇ 5 points) portions 12a are obtained, and the average value thereof is defined as the "maximum thickness". did.
  • [Contents of aluminum element and indium element] The contents of aluminum element and indium element in the metal layer were measured by fluorescent X-ray analysis. As an analyzer, ZSX Primus III+ manufactured by Rigaku was used. The measured fluorescence intensity was converted to the thickness of the sample using a calibration curve obtained from measurements of an indium simple substance film and an aluminum simple substance film having known thicknesses as reference samples. From the thickness of the obtained sample, mass conversion was performed using an aluminum density of 2.70 g/cm 3 and an indium density of 7.31 g/cm 3 to calculate the contents of aluminum element and indium element in the metal layer.
  • Example 1 As a base film, an easy-to-form PET film manufactured by Mitsubishi Chemical Corporation (product number: G931E75, thickness: 50 ⁇ m) was used. First, using an In—Sn alloy target (Sn ratio of 5% by mass): ITM, a layer composed of an In—Sn alloy was formed as a first layer on the base film by DC pulse sputtering (150 kHz). Sputtering was performed in an atmosphere in which oxygen was not supplied. The resulting first layer had a discontinuous structure. Next, an aluminum (Al)-containing layer was formed as a second layer on the first layer by alternating current sputtering (AC: 40 kHz) using an Al target.
  • ITM In—Sn alloy target
  • AC alternating current sputtering
  • the electromagnetic wave transmitting metallic luster member of Example 1 in which the metal layer was formed on the base film, was obtained.
  • Tables 1 and 2 show the results of various evaluations of the obtained electromagnetic wave transmitting metallic luster member of Example 1. Further, elemental analysis was performed using FE-TEM JEM-2800 manufactured by JEOL Ltd. to measure the distribution of Al element and In element.
  • Example 1 It was confirmed that the metal layer obtained in Example 1 had a discontinuous structure. It was also confirmed that the aluminum element was unevenly distributed in the metal layer so as to surround the indium element. Moreover, the distribution regions of the aluminum element and the indium element overlapped in a range of 14 nm or less in depth from the surface of the metal layer. That is, it was found that the aluminum element and the indium element were not compatible with each other (not alloyed) in a range deeper than 14 nm from the surface of the metal layer.
  • Example 2 to 10 Electromagnetic wave-transmitting metallic luster members of Examples 2 to 10 were produced and evaluated in the same manner as in Example 1, except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2. did. In addition, Examples 7 to 10 were evaluated only from the side of the base material. It was also confirmed that the metal layers in Examples 2 to 10 had a discontinuous structure.
  • FIG. 2 shows an electron micrograph (SEM image) of the surface of the electromagnetic wave transmitting metallic luster member in Example 2. As shown in FIG. Further, it was confirmed that the metal layers in Examples 2 to 10 were unevenly distributed in the metal layer so that the aluminum element surrounded the indium element. Only the results of elemental analysis in Example 2 are shown in FIG. Also in Examples 2 to 10, the distribution regions of the aluminum element and the indium element overlapped in a range of 14 nm or less in depth from the surface of the metal layer (only in Example 2, (d )).
  • Comparative example 1 An electromagnetic wave transmitting metallic luster member of Comparative Example 1 was produced and evaluated in the same manner as in Example 1, except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2.
  • Comparative example 2 An electromagnetic wave transmitting metallic luster member of Comparative Example 2 was produced in the same manner as in Example 1, except that the first layer was made of an In—Sn alloy and the metal layer was formed without providing the second layer. made and evaluated.
  • Comparative Example 3 An electromagnetic wave transmitting metallic luster member of Comparative Example 3 was produced and evaluated in the same manner as in Example 1 except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2.
  • Comparative Example 4 In—Sn alloy target (Sn ratio of 5% by mass): Same as Example 1 except that ITM was changed to In and the contents of aluminum element and indium element in the metal layer were changed as shown in Tables 1 and 2. Then, an electromagnetic wave transmitting metallic glossy member of Comparative Example 4 was produced and evaluated.
  • the electromagnetic wave transmitting metallic luster members of Examples 1 to 10 showed good results in both electromagnetic wave transmittance and appearance after the humidification heating test and after the tensile test.
  • Comparative Example 1 the indium element content in the metal layer was as low as 25% by mass, resulting in a high ⁇ E value and poor brightness (appearance).
  • Comparative Example 2 does not contain Al element, the Y value (SCI) in the humidified heating test is low, and the ⁇ E value is high, resulting in poor brightness (appearance).
  • Comparative Example 3 since the orderliness of the island-like shape was low and defects were generated, the ⁇ E value was high and the brilliance (appearance) was poor.
  • the present invention is not limited to the above embodiments, and can be modified and embodied as appropriate without departing from the gist of the invention.
  • the electromagnetic wave permeable metallic luster member according to the present invention can be used for devices, articles, and parts thereof that transmit and receive electromagnetic waves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention pertains to an electromagnetic wave-transmitting metallic lustrous member that comprises: a base body; and a metal layer formed on the base body. The metal layer includes a plurality of portions that are at least partially discontinuous with each other. The metal layer contains aluminum elements and indium elements, and the contained amount of the indium elements in the metal layer is more than 90 mass% but not more than 98 mass%.

Description

電磁波透過性金属光沢部材、及びその製造方法Electromagnetic wave permeable metallic luster member and manufacturing method thereof
 本発明は、電磁波透過性金属光沢部材、及びその製造方法に関する。 The present invention relates to an electromagnetic wave transmitting metallic luster member and a manufacturing method thereof.
 従来、電磁波透過性及び金属光沢を有する部材が、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電磁波を送受信する装置に好適に用いられている。 Conventionally, members having electromagnetic wave permeability and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a luxurious appearance derived from the metallic luster and electromagnetic wave permeability.
 金属光沢調の部材に金属を使用した場合には、電磁波の送受信が実質的に不可能または妨害されてしまう。したがって、電磁波の送受信を妨げることなく、意匠性を損なわせないために、金属光沢と電磁波透過性の双方を兼ね備えた電磁波透過性金属光沢部材が必要とされている。  If metal is used for metallic luster components, the transmission and reception of electromagnetic waves will be virtually impossible or obstructed. Therefore, there is a need for an electromagnetic wave-transmitting metallic luster member that has both metallic luster and electromagnetic wave transmittance so as not to interfere with the transmission and reception of electromagnetic waves and not to impair the design.
 このような電磁波透過性金属光沢部材は、電磁波を送受信する装置として、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。さらに、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。 Such an electromagnetic wave permeable metallic luster member can be used as a device for transmitting and receiving electromagnetic waves in various devices that require communication, such as door handles of automobiles equipped with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers. It is expected to be applied to equipment and the like. Furthermore, in recent years, with the development of IoT technology, it is expected to be applied in a wide range of fields, such as household appliances such as refrigerators and household appliances, where communication has not been performed in the past.
 電磁波透過性金属光沢部材に関して、特許文献1には、基体の面に設けた酸化インジウム含有層と、前記酸化インジウム含有層に積層された金属層と、を備え、前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含むことを特徴とする電磁波透過性金属光沢部材が記載されている。 Regarding an electromagnetic wave transmitting metallic luster member, Patent Document 1 discloses an indium oxide-containing layer provided on a surface of a substrate, and a metal layer laminated on the indium oxide-containing layer, wherein the metal layer is at least partially describes an electromagnetic wave transmitting metallic luster member characterized by comprising a plurality of portions that are discontinuous with each other.
日本国特開2018-69462号公報Japanese Patent Application Laid-Open No. 2018-69462
 かかる電磁波透過性金属光沢部材においては、屈曲、延伸して3D成形物を製造する際、伸び率が高くなる部位にクラックが生じ、白濁や変色が発生するという問題があった。これは、金属層が酸化インジウム含有層等の下地層を介して形成されると、かかる下地層に起因する割れが発生するためである。クラックが生じ、白濁や変色が発生すると、金属光沢が損なわれてしまい、良好な電磁波透過性と光輝性とを両立できない。 In such an electromagnetic wave permeable metallic luster member, when bending and stretching to produce a 3D molded product, there is a problem that cracks are generated in areas where the elongation rate is high, resulting in cloudiness and discoloration. This is because when the metal layer is formed through an underlying layer such as an indium oxide-containing layer, cracking occurs due to the underlying layer. If cracks occur, cloudiness or discoloration occurs, the metallic luster is impaired, and good electromagnetic wave permeability and luster cannot be achieved at the same time.
 また、電磁波透過性金属光沢部材をスマートフォン等の電子機器で使用する場合に、湿度や熱の影響により品質が劣化しないよう、加湿加熱に対する耐久性を向上させることが求められている。 In addition, when electromagnetic wave permeable metallic luster members are used in electronic devices such as smartphones, there is a demand for improved durability against humidification and heating so that the quality does not deteriorate due to the effects of humidity and heat.
 本発明は、上記問題を解決するためになされたものであり、優れた電磁波透過性及び光輝性を備え、延伸に起因する白濁や変色が抑制され、かつ加湿加熱に対する耐久性に優れた電磁波透過性金属光沢部材を提供することを目的とする。 The present invention was made to solve the above problems, and has excellent electromagnetic wave permeability and brightness, suppresses white turbidity and discoloration caused by stretching, and has excellent durability against humidification and heating. An object of the present invention is to provide a durable metallic luster member.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、アルミニウム元素及びインジウム元素を含み、かつ特定量のインジウム元素を含有する金属層を、基体上に不連続に備えることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that by discontinuously providing a metal layer containing an aluminum element and an indium element and containing a specific amount of indium element on a substrate, , found that the above problems can be solved, and completed the present invention.
 すなわち、本発明は以下のとおりである。
[1]
 基体と、前記基体上に形成された金属層と、を備え、
 前記金属層は少なくとも一部において互いに不連続の状態にある複数の部分を含んでおり、
 前記金属層はアルミニウム元素及びインジウム元素を含み、
 前記金属層における前記インジウム元素の含有量が、90質量%より多く98質量%以下である、
 電磁波透過性金属光沢部材。
[2]
 前記アルミニウム元素は、前記金属層中で偏在している、[1]に記載の電磁波透過性金属光沢部材。
[3]
 前記金属層が、Sn、Si、Ga、Ge、及びPbの少なくとも1種の元素を含有する、[1]または[2]に記載の電磁波透過性金属光沢部材。
[4]
 前記金属層の厚さは、10nm~100nmである、[1]~[3]のいずれかに記載の電磁波透過性金属光沢部材。
[5]
 65℃90%RHの加湿加熱試験後における、JIS Z 8722の幾何条件cに準拠し分光測色計を用いて測定されるY値(SCI)が40%以上である、[1]~[4]のいずれかに記載の電磁波透過性金属光沢部材。
[6]
 前記複数の部分が島状に形成されている、[1]~[5]のいずれかに記載の電磁波透過性金属光沢部材。
[7]
 前記基体が、基材フィルム、樹脂成型物基材、又は金属光沢を付与すべき物品のいずれかである、[1]~[6]のいずれかに記載の電磁波透過性金属光沢部材。
[8]
 基体上に、インジウム元素を少なくとも含み、かつ少なくとも一部において互いに不連続の状態にある複数の部分を含む層を形成する、第1工程と、
 前記第1工程で形成した前記層上に、アルミニウム元素を含む金属を蒸着する、第2工程と、を含む、
 [1]~[7]のいずれかに記載の電磁波透過性金属光沢部材を製造する方法。
[9]
 前記第1工程において、実質的に酸素を含まない雰囲気下でスパッタリングにより前記層を形成する、[8]に記載の方法。
That is, the present invention is as follows.
[1]
comprising a substrate and a metal layer formed on the substrate;
The metal layer includes a plurality of portions that are discontinuous at least in part,
The metal layer contains an aluminum element and an indium element,
The content of the indium element in the metal layer is more than 90% by mass and 98% by mass or less,
Electromagnetic wave permeable metal luster member.
[2]
The electromagnetic wave transmitting metallic luster member according to [1], wherein the aluminum element is unevenly distributed in the metal layer.
[3]
The electromagnetic wave transmitting metallic glossy member according to [1] or [2], wherein the metal layer contains at least one element selected from Sn, Si, Ga, Ge, and Pb.
[4]
The electromagnetic wave transmitting metallic glossy member according to any one of [1] to [3], wherein the metal layer has a thickness of 10 nm to 100 nm.
[5]
Y value (SCI) measured using a spectrophotometer according to geometric condition c of JIS Z 8722 after a humidified heating test at 65 ° C. 90% RH is 40% or more [1] to [4 ] The electromagnetic wave transmitting metallic luster member according to any one of .
[6]
The electromagnetic wave transmitting metallic luster member according to any one of [1] to [5], wherein the plurality of portions are island-shaped.
[7]
The electromagnetic wave transmitting metallic luster member according to any one of [1] to [6], wherein the substrate is a substrate film, a resin molding substrate, or an article to be imparted with metallic luster.
[8]
a first step of forming, on a substrate, a layer containing at least an indium element and containing a plurality of portions that are at least partially discontinuous with each other;
a second step of evaporating a metal containing an aluminum element on the layer formed in the first step;
A method for producing an electromagnetic wave transmitting metallic luster member according to any one of [1] to [7].
[9]
The method of [8], wherein in the first step, the layer is formed by sputtering in an atmosphere substantially free of oxygen.
 本発明によれば、優れた電磁波透過性及び光輝性を備え、延伸に起因する白濁や変色が抑制され、かつ加湿加熱に対する耐久性に優れた電磁波透過性金属光沢部材を提供することができる。 According to the present invention, it is possible to provide an electromagnetic wave-transmitting metallic luster member that has excellent electromagnetic wave transmittance and luster, suppresses cloudiness and discoloration caused by stretching, and has excellent durability against humidification and heating.
図1は、本発明の一実施形態に係る電磁波透過性金属光沢部材1の概略断面図である。FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention. 図2は、実施例2に係る電磁波透過性金属光沢部材1の表面の電子顕微鏡写真(SEM画像)図面である。FIG. 2 is an electron micrograph (SEM image) drawing of the surface of the electromagnetic wave transmitting metallic luster member 1 according to Example 2. FIG. 図3は、本発明の一実施形態に係る電磁波透過性金属光沢部材の金属層の厚さの測定方法を説明するための図である。FIG. 3 is a diagram for explaining a method for measuring the thickness of the metal layer of the electromagnetic wave transmitting metallic luster member according to one embodiment of the present invention. 図4は、実施例2の電磁波透過性金属光沢部材に対し元素分析を実施した際のAl元素、In元素の分布を示す写真図面である。(a)は金属層のTEM画像であり、(b)は金属層におけるAl元素分布を示すTEM画像であり、(c)は金属層におけるIn元素分布を示すTEM画像であり、(d)は金属層におけるAl元素の分布を示すTEM画像とIn元素の分布を示すTEM画像とを重ね合わせた写真図である。FIG. 4 is a photographic drawing showing the distribution of Al element and In element when elemental analysis was performed on the electromagnetic wave transmitting metallic luster member of Example 2. FIG. (a) is a TEM image of the metal layer, (b) is a TEM image showing Al element distribution in the metal layer, (c) is a TEM image showing In element distribution in the metal layer, and (d) is FIG. 4 is a photographic diagram in which a TEM image showing the distribution of Al elements in a metal layer and a TEM image showing the distribution of In elements are superimposed.
 以下、添付図面を参照しつつ、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。
 また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 また、本明細書において、「重量」と「質量」、および、「重量%」や「wt%」と「質量%」は、それぞれ同義語として扱う。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the scope of the present invention. .
In addition, "~" indicating a numerical range is used to include the numerical values described before and after it as a lower limit and an upper limit.
Further, in this specification, "weight" and "mass", as well as "weight %" and "wt %" and "mass %" are treated as synonyms.
 本発明の実施形態にかかる電磁波透過性金属光沢部材は、基体と、前記基体上に形成された金属層と、を備え、
 前記金属層は少なくとも一部において互いに不連続の状態にある複数の部分を含んでおり、
 前記金属層はアルミニウム元素及びインジウム元素を含み、
 前記金属層における前記インジウム元素の含有量が、90質量%より多く98質量%以下である。
An electromagnetic wave transmitting metallic luster member according to an embodiment of the present invention comprises a base and a metal layer formed on the base,
The metal layer includes a plurality of portions that are discontinuous at least in part,
The metal layer contains an aluminum element and an indium element,
The content of the indium element in the metal layer is more than 90% by mass and 98% by mass or less.
<1.基本構成>
 本発明の実施形態にかかる電磁波透過性金属光沢部材は、基体と、前記基体上に形成された金属層と、を備え、前記金属層は少なくとも一部において互いに不連続の状態にある複数の部分を含む。
<1. Basic configuration>
An electromagnetic wave transmitting metallic luster member according to an embodiment of the present invention comprises a base and a metal layer formed on the base, wherein the metal layer has a plurality of portions that are discontinuous at least in part. including.
 図1に、本発明の一実施形態に係る電磁波透過性金属光沢部材1の概略断面図を示し、また、図2に、本発明の一実施形態に係る電磁波透過性金属光沢部材1の表面の電子顕微鏡写真(SEM画像)の一例(実施例2)を示す。なお、電子顕微鏡写真における画像サイズは6μm×5μmである。 FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention, and FIG. 2 shows the surface of the electromagnetic wave transmitting metallic luster member 1 according to one embodiment of the present invention. An example (Example 2) of an electron micrograph (SEM image) is shown. The image size in the electron micrograph is 6 μm×5 μm.
 図1に示すように、電磁波透過性金属光沢部材1は、基体10と、基体10の上に形成された金属層12とを含む。
 電磁波透過性金属光沢部材1は、基体10上に不連続の状態の金属層12が形成されており、基体10と金属層12との間に下地層が形成されていないことが好ましい。基体10と金属層12の間に下地層が形成されていないことにより、延伸に起因する白濁や変色を抑制できる。なお、延伸に起因する白濁や変色を引き起こすおそれの少ない層(保護層等)であれば、基体10と金属層12の間に設けられていてもよい。詳細は下記<4.その他の層>にて説明する。
As shown in FIG. 1, the electromagnetic wave transmitting metallic luster member 1 includes a substrate 10 and a metal layer 12 formed on the substrate 10. As shown in FIG.
In the electromagnetic wave transmitting metallic luster member 1, it is preferable that a discontinuous metal layer 12 is formed on a substrate 10 without forming an underlying layer between the substrate 10 and the metal layer 12. FIG. Since no underlayer is formed between the substrate 10 and the metal layer 12, cloudiness and discoloration due to stretching can be suppressed. It should be noted that any layer (protective layer or the like) that is less likely to cause cloudiness or discoloration due to stretching may be provided between the substrate 10 and the metal layer 12 . See <4. other layers>.
 金属層12は複数の部分12aを含む。これらの部分12aは、少なくとも一部において互いに不連続の状態、言い換えれば、少なくとも一部において隙間12bによって隔てられる。隙間12bによって隔てられるため、これらの部分12aのシート抵抗は大きくなり、電波との相互作用が低下するため、電波を透過させることができる。これらの各部分12aは金属を蒸着することによって形成されたスパッタ粒子の集合体である。スパッタ粒子が基体10等の基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼす。 The metal layer 12 includes a plurality of portions 12a. These portions 12a are at least partially discontinuous from each other, in other words, at least partially separated by gaps 12b. Since these portions 12a are separated by the gap 12b, the sheet resistance of these portions 12a is increased and the interaction with radio waves is reduced, so that the radio waves can be transmitted. Each of these portions 12a is an aggregate of sputtered particles formed by vapor-depositing metal. When sputtered particles form a thin film on a substrate such as substrate 10, the surface diffusivity of the particles on the substrate affects the shape of the thin film.
 なお、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、シート抵抗が大きくなり、所望とする電磁波透過性が得られることになる。不連続の形態は、特に限定されるものではなく、例えば、島状、クラック構造等が含まれる。 The term "discontinuous state" as used in this specification means a state in which they are separated from each other by the gap 12b and, as a result, are electrically insulated from each other. By being electrically insulated, the sheet resistance is increased and the desired electromagnetic wave permeability can be obtained. The form of discontinuity is not particularly limited, and includes, for example, an island shape, a crack structure, and the like.
 図2は電磁波透過性金属光沢部材1の金属層の表面の電子顕微鏡写真(SEM画像)の一例である。「島状」とは、図2に示されているように、スパッタ粒子の集合体である粒子同士が各々独立しており、それらの粒子が、互いに僅かに離隔し又は一部接触した状態で敷き詰められてなる構造を意味する。 FIG. 2 is an example of an electron micrograph (SEM image) of the surface of the metal layer of the electromagnetic wave permeable metallic luster member 1 . As shown in FIG. 2, the “island shape” means that the particles, which are aggregates of sputtered particles, are independent of each other, and the particles are slightly separated from each other or partially in contact with each other. It means a structure that is spread all over.
 また、クラック構造とは、金属薄膜がクラックにより分断された構造である。なお、かかるクラック構造とは、上述した延伸時に生じる割れ(クラック)とは区別される。 Also, a crack structure is a structure in which a metal thin film is divided by cracks. It should be noted that such a crack structure is distinguished from the aforementioned cracks that occur during stretching.
 クラック構造の金属層12は、例えば基体上に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基体と金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。 The metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a substrate and bending and stretching the metal thin film layer to cause cracks in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability, that is, being easily cracked by stretching, between the substrate and the metal thin film layer.
 上述のとおり金属層12が不連続となる態様は特に限定されないが、生産性の観点からは「島状」とすることが好ましい。 As described above, the mode in which the metal layer 12 becomes discontinuous is not particularly limited, but from the viewpoint of productivity, it is preferably "island-shaped".
 電磁波透過性金属光沢部材1の電磁波透過性は、例えば電波透過減衰量により評価することができる。電波透過減衰量は、例えば、実施例で後述する方法により測定できる。 The electromagnetic wave permeability of the electromagnetic wave transparent metallic luster member 1 can be evaluated, for example, by the amount of radio wave transmission attenuation. The radio wave transmission attenuation can be measured, for example, by the method described later in Examples.
 具体的には、28GHzにおける電波透過減衰量をKEC法測定評価治具およびアジレント社製スペクトルアナライザ CXA signal Analyzer NA9000Aを用いて評価できる。ミリ波レーダーの周波数帯域(76~80GHz)における電磁波透過性と、マイクロ波帯域(28GHz)における電磁波透過性には相関性があり、比較的近い値を示すことから、マイクロ波帯域(28GHz)における電磁波透過性、すなわち、マイクロ波電界透過減衰量を指標とする。 Specifically, the radio wave transmission attenuation at 28 GHz can be evaluated using a KEC method measurement evaluation jig and Agilent's spectrum analyzer CXA Signal Analyzer NA9000A. There is a correlation between the electromagnetic wave permeability in the millimeter wave radar frequency band (76 to 80 GHz) and the electromagnetic wave permeability in the microwave band (28 GHz). The electromagnetic wave permeability, that is, the microwave electric field transmission attenuation amount is used as an index.
 マイクロ波帯域(28GHz)における電波透過減衰量は、1[-dB]以下であることが好ましく、0.3[-dB]以下であることがより好ましく、0.1[-dB]以下であることがさらに好ましい。マイクロ波帯域(28GHz)における電波透過減衰量を1[-dB]以下とすることにより、20%以上の電波が遮断されるという問題を回避することができる。 The radio wave transmission attenuation in the microwave band (28 GHz) is preferably 1 [-dB] or less, more preferably 0.3 [-dB] or less, and 0.1 [-dB] or less. is more preferred. By setting the radio wave transmission attenuation in the microwave band (28 GHz) to 1 [-dB] or less, it is possible to avoid the problem of blocking 20% or more of radio waves.
 電磁波透過性金属光沢部材1の光輝性(見栄え)は、例えばY値(SCI、SCE)、及びΔE値等を測定することにより評価できる。Y値(SCI、SCE)、及びΔE値は、JIS Z 8722の幾何条件cに準拠し分光測色計を用いて測定できる。 The brilliance (appearance) of the electromagnetic wave transmitting metallic luster member 1 can be evaluated by measuring, for example, the Y value (SCI, SCE) and ΔE value. The Y value (SCI, SCE) and ΔE value can be measured using a spectrophotometer according to geometric condition c of JIS Z 8722.
 電磁波透過性金属光沢部材1の加湿加熱に対する耐久性は、65℃90%RHの加湿加熱試験前後における上記光輝性(見栄え)の各指標により評価できる。 The durability of the electromagnetic wave transparent metallic luster member 1 to humidified heating can be evaluated by each index of the above-mentioned luster (appearance) before and after the humidified heating test at 65°C and 90% RH.
 加湿加熱試験後のY値(SCI)は大きいほど、加湿加熱による光輝性の減少を抑制できていることを示す。加湿加熱試験後のY値(SCI)は、40%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることがさらに好ましい。Y値(SCI)は40%以上であると光輝性が良好となり、外観に優れる。
 また、加湿加熱試験後のY値(SCI)の上限は特に制限されないが、例えば70%以下である。
The larger the Y value (SCI) after the humidified heat test, the more effectively the decrease in brightness due to humidified heat can be suppressed. The Y value (SCI) after the humidified heating test is preferably 40% or higher, more preferably 50% or higher, and even more preferably 60% or higher. When the Y value (SCI) is 40% or more, the gloss is good and the appearance is excellent.
Also, the upper limit of the Y value (SCI) after the humidification heating test is not particularly limited, but is, for example, 70% or less.
 ΔE値は、色調の変化を示す指標であり、加湿加熱試験前のL値、a値、b値(L 、a 、b )と、加湿加熱試験後のL値、a値、b値(L 、a 、b )を用いて次式で規定される。
ΔE=√[(L -L +(a -a +(b -b
The ΔE value is an index that indicates a change in color tone, and is the L * value, a * value, and b * value (L 1 * , a 1 * , b 1 * ) before the humidification heat test, and the L value after the humidification heat test. * value, a * value, and b * value (L 2 * , a 2 * , b 2 * ) are defined by the following equation.
ΔE = √ [(L 1 * - L 2 * ) 2 + (a 1 * - a 2 * ) 2 + (b 1 * - b 2 * ) 2 ]
 ΔE値は小さいほど、加湿加熱による色調の変化を抑制できていることを示す。ΔE値は、3以下であることが好ましく、2以下であることがより好ましく、1以下であることがさらに好ましい。 A smaller ΔE value indicates that the change in color tone due to humidification and heating can be suppressed. The ΔE value is preferably 3 or less, more preferably 2 or less, and even more preferably 1 or less.
 また、電磁波透過性金属光沢部材1の耐延伸性は、引張試験機を用いて、150℃、5mm/分の延伸速度、伸び率20%の条件で行う引張試験前後における上記光輝性(見栄え)の各指標により評価できる。 In addition, the stretching resistance of the electromagnetic wave transmitting metallic luster member 1 is evaluated using a tensile tester under the conditions of 150° C., 5 mm/min stretching speed, and 20% elongation rate before and after the above-mentioned brilliance (appearance). can be evaluated by each index.
 引張試験後のY値(SCI)は大きいほど、延伸による光輝性の減少を抑制できていることを示す。引張試験後のY値(SCI)は、40%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることがさらに好ましい。Y値(SCI)は40%以上であると光輝性が良好となり、外観に優れる。  The larger the Y value (SCI) after the tensile test, the more the decrease in brightness due to stretching can be suppressed. The Y value (SCI) after the tensile test is preferably 40% or more, more preferably 50% or more, even more preferably 55% or more. When the Y value (SCI) is 40% or more, the gloss is good and the appearance is excellent.
 また、引張試験後のY値(SCE)は小さいほど、延伸による白濁を抑制できていることを示す。引張試験後のY値(SCE)は、1以下であることが好ましく、0.3以下であることがより好ましく、0.1以下であることがさらに好ましい。Y値(SCE)は1超であると、外観が白濁し、外観に優れないという問題がある。 In addition, it indicates that the smaller the Y value (SCE) after the tensile test, the more the white turbidity due to stretching can be suppressed. The Y value (SCE) after the tensile test is preferably 1 or less, more preferably 0.3 or less, and even more preferably 0.1 or less. If the Y value (SCE) is more than 1, there is a problem that the appearance becomes cloudy and the appearance is not excellent.
 電磁波透過性金属光沢部材1の延伸性は、引張試験後の金属層のクラック幅を測定することでも評価できる。引張試験は、例えば、上記光輝性(見栄え)と同様の方法で行う。引張試験後の金属層のクラック幅は小さいほど、延伸によるクラックの発生を抑制できているといえ、耐延伸性に優れることを示す。引張試験後の金属層のクラック幅は170nm以下であることが好ましく、160nm以下であることがより好ましく、150nm以下であることがさらに好ましい。 The stretchability of the electromagnetic wave transmitting metallic luster member 1 can also be evaluated by measuring the crack width of the metal layer after the tensile test. The tensile test is performed, for example, by the same method as for the luster (appearance). It can be said that the smaller the crack width of the metal layer after the tensile test is, the more the crack generation due to stretching can be suppressed, and the better the stretching resistance is. The crack width of the metal layer after the tensile test is preferably 170 nm or less, more preferably 160 nm or less, even more preferably 150 nm or less.
<2.基体>
 基体10としては、電磁波透過性の観点から、例えば、基材フィルム、樹脂成型物基材、又は金属光沢を付与すべき物品が挙げられる。
<2. Substrate>
From the viewpoint of electromagnetic wave permeability, the substrate 10 includes, for example, a substrate film, a resin molding substrate, or an article to which metallic luster is to be imparted.
 より具体的には、基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABS等の単独重合体や共重合体からなる透明フィルムを用いることができる。 More specifically, the base film includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene , polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), ABS, and other homopolymers or copolymers.
 これらの部材によれば、光輝性や電磁波透過性に影響を与えることがない。但し、金属層12を後に形成する観点から、蒸着等の高温に耐え得るものであることが好ましい。そのため、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。 These members do not affect the brilliance or electromagnetic wave permeability. However, from the viewpoint of forming the metal layer 12 later, it is preferable that the material can withstand high temperatures such as vapor deposition. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene, and polyurethane are preferable. Among them, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost.
 基材フィルムは、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。金属層12との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。また、粒子を含有しないものであることが好ましい。 The base film may be a single layer film or a laminated film. The thickness is preferably, for example, about 6 μm to 250 μm from the viewpoint of ease of processing. In order to strengthen the adhesive force with the metal layer 12, a plasma treatment, an easy-adhesion treatment, or the like may be applied. Moreover, it is preferable that it does not contain particles.
 ここで、基材フィルムは、その表面上に金属層12を形成することができる対象(基体10)の一例にすぎない点に注意すべきである。基体10には、上記のとおり基材フィルムの他、樹脂成型物基材、金属光沢を付与すべき物品それ自体も含まれる。樹脂成型物基材、及び金属光沢を付与すべき物品としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。 Here, it should be noted that the base film is only an example of the object (substrate 10) on which the metal layer 12 can be formed. The substrate 10 includes the base film as described above, as well as a resin molding base and the article itself to which metallic luster is to be imparted. Resin molded substrates and articles to be imparted with metallic luster include, for example, vehicle structural parts, vehicle-mounted goods, housings for electronic equipment, housings for home appliances, structural parts, mechanical parts, and various automobiles. parts for electronic equipment, household goods such as furniture and kitchen utensils, medical equipment, parts for building materials, other structural parts and exterior parts.
<3.金属層>
 金属層12は基体10の上に形成される。上述のとおり、金属層12は基体10の面に直接設けられていてもよいし、基体10の面に設けた保護層等の延伸によるクラック発生を引き起こすおそれの少ない層を介して間接的に設けられてもよい。金属層12は、金属調の外観を有する層であり、金属光沢を有する層であることが好ましい。
<3. Metal layer>
A metal layer 12 is formed over the substrate 10 . As described above, the metal layer 12 may be provided directly on the surface of the substrate 10, or may be provided indirectly via a layer such as a protective layer provided on the surface of the substrate 10, which is unlikely to cause cracks due to stretching. may be The metal layer 12 is a layer having a metallic appearance, and is preferably a layer having metallic luster.
 金属層12は、アルミニウム元素及びインジウム元素を含む。なかでも、アルミニウム元素は、金属層12中で偏在していることが好ましい。すなわち、アルミニウム元素は、図4で示すように、金属層12中にアルミニウム元素が均一に散在しているのではなく、金属層12中のいずれかの領域に偏って存在していることが好ましい。アルミニウム元素は金属層12中に偏在しているのであれば、その態様に制限はないが、図4に示すように、アルミニウム元素は、インジウム元素が存在する領域の周囲に偏在していることが好ましい。別の言い方をすれば、アルミニウム元素がインジウム元素を取り囲むようにして金属層12中に偏在していることが好ましい。
 また、金属層12中で、アルミニウム元素とインジウム元素とは、実質的に互いに相溶していないことが好ましい。ここで、実質的に互いに相溶していないとは、金属層12の表面からの深さが14nmより深い範囲ではアルミニウム元素とインジウム元素とが互いに相溶していない(合金化していない)ことを意味する。このように、アルミニウム元素とインジウム元素とが実質的に互いに相溶せずに金属層中に存在するのは、スパッタ温度が低温であるためだと推測される。
The metal layer 12 contains aluminum element and indium element. Among them, it is preferable that the aluminum element is unevenly distributed in the metal layer 12 . That is, as shown in FIG. 4, it is preferable that the aluminum element is unevenly distributed in one region of the metal layer 12 instead of being uniformly dispersed in the metal layer 12. . As long as the aluminum element is unevenly distributed in the metal layer 12, there is no limitation on the aspect thereof, but as shown in FIG. preferable. In other words, it is preferable that the aluminum element is unevenly distributed in the metal layer 12 so as to surround the indium element.
Moreover, it is preferable that the aluminum element and the indium element in the metal layer 12 are not substantially compatible with each other. Here, not being substantially compatible with each other means that the aluminum element and the indium element are not compatible with each other (not alloyed) in a range deeper than 14 nm from the surface of the metal layer 12. means It is presumed that the reason why the aluminum element and the indium element are substantially incompatible with each other and exist in the metal layer is that the sputtering temperature is low.
 金属層12におけるインジウム元素の含有量は、90質量%より多く98質量%以下である。インジウム元素の含有量が90質量%より多いことによって、島の形状が円盤状となるため、加湿加熱に対する耐久性に優れる。また、インジウム元素の含有量が98質量%以下であることによって、アルミニウムが周囲に存在するため、耐久性に優れる。
 金属層12におけるインジウム元素の含有量は、92質量%以上が好ましい。また、金属層12におけるインジウム元素の含有量は、96質量%以下が好ましい。
The content of the indium element in the metal layer 12 is more than 90% by mass and 98% by mass or less. When the content of the indium element is more than 90% by mass, the shape of the island becomes disc-shaped, and thus the durability against humidification and heating is excellent. In addition, since the content of the indium element is 98% by mass or less, aluminum is present in the surroundings, so that the durability is excellent.
The content of the indium element in the metal layer 12 is preferably 92% by mass or more. Moreover, the content of the indium element in the metal layer 12 is preferably 96% by mass or less.
 上記インジウム元素は、インジウム単体の他、インジウム合金として含まれていてもよく、特に制限されない。例えば、In-Sn、In-Cr、及びIn-Zn等が挙げられる。ただし、上述した通り、インジウム元素とアルミニウム元素との合金は含まれない。 The above indium element is not particularly limited and may be contained as an indium alloy as well as indium alone. Examples include In--Sn, In--Cr, and In--Zn. However, as described above, alloys of indium and aluminum are not included.
 金属層12におけるアルミニウム元素の含有量は、2質量%以上が好ましく、4質量%以上がより好ましい。2質量%以上であることにより、インジウムの周りにアルミニウム酸化膜が形成される。また、金属層12におけるアルミニウム元素の含有量は、10質量%以下が好ましく、8質量%以下がより好ましい。 The content of the aluminum element in the metal layer 12 is preferably 2% by mass or more, more preferably 4% by mass or more. An aluminum oxide film is formed around the indium by being 2% by mass or more. Moreover, the content of the aluminum element in the metal layer 12 is preferably 10% by mass or less, more preferably 8% by mass or less.
 上記アルミニウム元素は、アルミニウム単体の他、アルミニウム合金として含まれていてもよく、特に制限されない。例えば、Cu、Mn、Si、Mg、Zn、Ni等が挙げられる。ただし、上述した通り、インジウム元素とアルミニウム元素との合金は含まれない。 The above aluminum element is not particularly limited and may be contained as an aluminum alloy in addition to aluminum alone. Examples include Cu, Mn, Si, Mg, Zn and Ni. However, as described above, alloys of indium and aluminum are not included.
 金属層12は、その他の金属元素を含んでいてもよい。好ましくは、Sn、Si、Ga、Ge、及びPbの少なくとも1種の元素を含有する。これらは、金属層中に単体で存在してもよく、合金の状態で含まれていてもよい。例えば、Snは、インジウム元素との合金である、ITM(インジウムスズ-金属合金)の状態で金属層に含まれていてもよい。金属層12が、上記その他の金属元素を含むことにより、より加湿加熱に対する耐久性に優れるものとなる。 The metal layer 12 may contain other metal elements. Preferably, it contains at least one element of Sn, Si, Ga, Ge, and Pb. These may exist singly in the metal layer, or may be contained in the form of an alloy. For example, Sn may be included in the metal layer in the form of ITM (indium-tin-metal alloy), which is an alloy with the element indium. By including the other metal elements, the metal layer 12 is more excellent in durability against humidification and heating.
 金属層12の厚さは、十分な金属光沢を発揮するという観点から、好ましくは10nm以上であり、より好ましくは40nm以上であり、さらに好ましくは60nm以上であり、特に好ましくは80nm以上である。一方、シート抵抗や電磁波透過性の観点から、好ましくは100nm以下であり、より好ましくは80nm以下であり、さらに好ましくは60nm以下である。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。
 金属層12の厚さは、例えば、実施例で後述する方法により測定できる。
From the viewpoint of exhibiting sufficient metallic luster, the thickness of the metal layer 12 is preferably 10 nm or more, more preferably 40 nm or more, even more preferably 60 nm or more, and particularly preferably 80 nm or more. On the other hand, from the viewpoint of sheet resistance and electromagnetic wave permeability, the thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 60 nm or less. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the resin molded product, which is the final product, is also good.
The thickness of the metal layer 12 can be measured, for example, by the method described later in Examples.
 金属層12は基体10上に形成され、少なくとも一部において互いに不連続の状態にある複数の部分を含む。金属層12が基体10上で連続状態である場合、十分な金属光沢が得られるものの、電波透過減衰量が非常に大きくなり、従って、電磁波透過性を確保することはできない。 The metal layer 12 is formed on the substrate 10 and includes a plurality of portions that are discontinuous at least in part. If the metal layer 12 is in a continuous state on the substrate 10, sufficient metallic luster can be obtained, but the amount of radio wave transmission attenuation becomes very large, and therefore the electromagnetic wave permeability cannot be ensured.
 基体10上に、金属層12を不連続に形成するには、金属層12中の酸素濃度を低くすることが好ましい。金属の蒸着によるスパッタ粒子が基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼし、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられる。基体上に、実質的に酸素を含まないスパッタリング材を用いたり、実質的に酸素を含まない雰囲気下で蒸着を行うことにより、基体表面上の金属粒子の表面拡散性が促進されて、金属層を不連続の状態で形成できると考えられる。 In order to discontinuously form the metal layer 12 on the substrate 10, it is preferable to lower the oxygen concentration in the metal layer 12. When sputtered particles from metal vapor deposition form a thin film on a substrate, the surface diffusibility of the particles on the substrate affects the shape of the thin film. It is considered that a discontinuous structure is likely to be formed when it is small and the melting point of the material of the metal layer is low. By using a sputtering material that does not substantially contain oxygen on the substrate or performing vapor deposition in an atmosphere that does not substantially contain oxygen, the surface diffusibility of the metal particles on the substrate surface is promoted to form a metal layer. can be formed in a discontinuous state.
 金属層12の部分12aの円相当径は特に限定されないが、通常10~1000nmである。複数の部分12aの平均粒径とは、複数の部分12aの円相当径の平均値を意味する。また、部分12aの円相当径とは、部分12aの面積に相当する真円の直径のことである。
 また、各部分12a同士の距離は特に限定されないが、通常は10~1000nm程度である。
The equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually 10 to 1000 nm. The average particle size of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a. The equivalent circle diameter of the portion 12a is the diameter of a perfect circle corresponding to the area of the portion 12a.
Also, the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
<4.その他の層>
 また、本発明の実施形態にかかる電磁波透過性金属光沢部材1は、上述の金属層12の他に、用途に応じてその他の層を備えてもよい。ただし、基体10上に二層以上の連続層が形成されると、延伸による連続層の割れ(クラック)が発生しやすくなる。そのため、基体10と金属層12の間にその他の層を設ける場合は、クラックの発生を引き起こすおそれの少ない層であることが好ましい。
<4. Other layers>
Moreover, the electromagnetic wave transmitting metallic luster member 1 according to the embodiment of the present invention may include other layers in addition to the metal layer 12 described above, depending on the application. However, when two or more continuous layers are formed on the substrate 10, the continuous layers are likely to crack due to stretching. Therefore, when another layer is provided between the substrate 10 and the metal layer 12, it is preferable that the layer is less likely to cause cracks.
 その他の層としては、例えば、色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、バリア層(耐腐食層)、易接着層、ハードコート層、反射防止層、光取出し層、アンチグレア層等が挙げられる。 Other layers include, for example, an optical adjustment layer (color adjustment layer) such as a high refractive material for adjusting appearance such as color, a protective layer (scratch resistance) for improving durability such as scratch resistance layer), barrier layer (corrosion-resistant layer), easy-adhesion layer, hard coat layer, antireflection layer, light extraction layer, anti-glare layer, and the like.
<5.電磁波透過性金属光沢部材の製造方法>
 本実施形態に係る電磁波透過性金属光沢部材の製造方法は、基体上に、インジウム元素を少なくとも含み、かつ少なくとも一部において互いに不連続の状態にある複数の部分を含む層(以下、単に不連続層または第1層ともいう)を形成する、第1工程と、かかる不連続層上に、アルミニウム元素を含む金属を蒸着する、第2工程と、を含むことを特徴とする。以下各工程について詳細に説明する。
<5. Method for producing an electromagnetic wave transmitting metallic luster member>
In the method for manufacturing an electromagnetic wave transmitting metallic luster member according to the present embodiment, a layer containing at least an indium element and including a plurality of portions that are at least partially discontinuous with each other (hereinafter simply referred to as discontinuous and a second step of vapor-depositing a metal containing aluminum element on the discontinuous layer. Each step will be described in detail below.
(1)第1工程
 本工程では、基体10上にインジウム元素を少なくとも含み、かつ少なくとも一部において互いに不連続の状態にある複数の部分を含む層を形成する。
(1) First Step In this step, a layer containing at least an indium element and including a plurality of portions that are at least partially discontinuous with each other is formed on the substrate 10 .
 上記不連続層は、例えば、基体10表面にインジウム元素を含む金属を蒸着することにより形成できる。蒸着の方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD、光CVD、レーザーCVD等の化学蒸着法(CVD)等が挙げられる。好ましくは、物理蒸着法、より好ましくは、スパッタリング法が挙げられる。この方法によって均一な薄膜の不連続層を形成することができる。 The discontinuous layer can be formed, for example, by evaporating a metal containing indium on the surface of the substrate 10 . Examples of vapor deposition methods include physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating, and chemical vapor deposition (CVD) such as plasma CVD, optical CVD, and laser CVD. Physical vapor deposition is preferred, and sputtering is more preferred. Discontinuous layers of uniform thin films can be formed by this method.
 なかでも、インジウム元素を含み、かつ実質的に酸素を含まない(1体積%以下)金属ターゲット材を用いて、スパッタリング法により不連続層を形成することが好ましい。金属ターゲット材は酸素を全く含まない方がより好ましい。かかる金属ターゲット材は酸素を含まないことにより、基体との濡れ性を小さくすることができ、基体10上に不連続層の形成が促進される。また、同様の理由により、不連続層を形成する際、酸素を実質的に含まない(100体積ppm以下)雰囲気下で蒸着を行うことが好ましく、酸素を全く含まない雰囲気下で蒸着を行うことがより好ましい。 Above all, it is preferable to form the discontinuous layer by a sputtering method using a metal target material containing indium element and substantially free of oxygen (1 volume % or less). More preferably, the metal target material does not contain oxygen at all. Since such a metal target material does not contain oxygen, the wettability with the substrate can be reduced, and the formation of a discontinuous layer on the substrate 10 is promoted. For the same reason, when forming a discontinuous layer, it is preferable to perform vapor deposition in an atmosphere that does not substantially contain oxygen (100 volume ppm or less), and vapor deposition is performed in an atmosphere that does not contain oxygen at all. is more preferred.
 金属ターゲット材に含まれるインジウム元素は、インジウム単体の他、インジウム合金として含まれていてもよく、特に制限されない。例えば、In-Sn、In-Cr、及びIn-Zn等が挙げられる。
 また、上記金属ターゲット材には、インジウム元素を含む金属の他、銀(Ag)、クロム(Cr)等を含んでいてもよい。
The indium element contained in the metal target material is not particularly limited and may be contained as an indium alloy as well as indium alone. Examples include In--Sn, In--Cr, and In--Zn.
In addition, the metal target material may contain silver (Ag), chromium (Cr), etc., in addition to the metal containing indium.
 スパッタリングは、真空下で実施される。具体的には、スパッタリング時の気圧は、スパッタリングレートの低下抑制、放電安定性などの観点から、例えば、1Pa以下、好ましくは、0.7Pa以下である。  Sputtering is performed under vacuum. Specifically, the atmospheric pressure during sputtering is, for example, 1 Pa or less, preferably 0.7 Pa or less, from the viewpoints of suppressing a decrease in sputtering rate, discharge stability, and the like.
 スパッタリング法に用いる電源は、例えば、DC電源、AC電源、MF電源およびRF電源のいずれであってもよく、また、これらの組み合わせであってもよい。 The power source used in the sputtering method may be, for example, a DC power source, an AC power source, an MF power source, an RF power source, or a combination thereof.
 また、所望厚さの不連続層を形成するために、金属ターゲット材やスパッタリングの条件などを適宜設定して複数回スパッタリングを実施してもよい。 In addition, in order to form a discontinuous layer with a desired thickness, sputtering may be performed multiple times by appropriately setting the metal target material, sputtering conditions, and the like.
(2)第2工程
 次いで、形成した不連続層上にアルミニウム元素を含む金属を蒸着する。蒸着方法としては、上記第1工程と同様の方法を採用できる。
(2) Second step Next, a metal containing an aluminum element is vapor-deposited on the formed discontinuous layer. As the vapor deposition method, the same method as in the first step can be adopted.
 金属ターゲット材としては、アルミニウム元素を含む金属を使用する。アルミニウム元素は、アルミニウム単体の他、アルミニウム化合物、またはアルミニウム合金として、金属ターゲット材に含まれていてもよい。  A metal containing an aluminum element is used as the metal target material. The aluminum element may be contained in the metal target material as aluminum alone, as an aluminum compound, or as an aluminum alloy.
 また、上記金属ターゲット材には、アルミニウム元素を含む金属の他、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)等を含んでいてもよい。 In addition, the metal target material may contain zinc (Zn), lead (Pb), copper (Cu), silver (Ag), etc., in addition to the metal containing aluminum element.
 本実施形態に係る製造方法によれば、基体上に、アルミニウム元素及びインジウム元素を含む不連続な金属層を形成できる。なお、当該金属層は、インジウム元素を90質量%より多く98質量%以下含有するように形成される。ここで、上述したように、当該金属層中に、アルミニウム元素とインジウム元素は、互いに相溶せずに存在する。すなわち、アルミニウム元素とインジウム元素とが合金を形成することなく金属層中に存在する。 According to the manufacturing method according to the present embodiment, a discontinuous metal layer containing aluminum and indium can be formed on the substrate. The metal layer is formed so as to contain more than 90% by mass and 98% by mass or less of the indium element. Here, as described above, the aluminum element and the indium element exist in the metal layer without being compatible with each other. That is, the aluminum element and the indium element exist in the metal layer without forming an alloy.
<6.電磁波透過性金属光沢部材の用途>
 本実施形態の電磁波透過性金属光沢部材は、電磁波透過性を有することから電磁波を送受信する装置や物品及びその部品等に使用することが好ましい。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
<6. Applications of electromagnetic wave transparent metallic luster member>
Since the electromagnetic wave transmitting metallic luster member of the present embodiment has electromagnetic wave transmitting properties, it is preferably used for devices, articles, and parts thereof that transmit and receive electromagnetic waves. For example, structural parts for vehicles, articles mounted on vehicles, housings for electronic devices, housings for home appliances, structural parts, machine parts, various automobile parts, electronic device parts, furniture, household goods such as kitchen utensils , medical equipment, building material parts, other structural parts and exterior parts.
 より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。 More specifically, for vehicles, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels , ECU boxes, electrical components, engine peripheral parts, drive system/gear peripheral parts, intake/exhaust system parts, cooling system parts, and the like.
 電子機器及び家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。 More specifically, electronic devices and home appliances include home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, personal computers, and mobile phones. , smart phones, digital cameras, tablet PCs, portable music players, portable game machines, battery chargers, electronic information devices such as batteries, and the like.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。
 電磁波透過性金属光沢部材1に係る各種試料を準備した。
 電磁波透過性は、加湿加熱試験前後の電波減衰量の測定を行い、評価した。
 また、加湿加熱に対する耐久性は、加湿加熱試験前後の光輝性(見栄え)の各指標(Y値(SCI)、ΔE値)の測定を行い、評価した。
 また、耐延伸性は、引張試験前後の光輝性(見栄え)のY値(SCI、SCE)の測定を行い、評価した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Various samples of the electromagnetic wave transmitting metallic luster member 1 were prepared.
The electromagnetic wave permeability was evaluated by measuring the amount of radio wave attenuation before and after the humidification heating test.
The durability to humidified heating was evaluated by measuring each index (Y value (SCI), ΔE value) of brightness (appearance) before and after the humidified heating test.
Moreover, the stretch resistance was evaluated by measuring the Y value (SCI, SCE) of the brilliance (appearance) before and after the tensile test.
<加湿加熱試験>
 各実施例および比較例の電磁波透過性金属光沢部材における金属層上に、日東電工製ルシアックスCS9861UAS(粘着層)を形成し、その上に松浪硝子工業製スライドグラス(ガラス)を張り付けて、ガラス貼付試料を得た。当該ガラス貼付試料を、65℃90%RHの環境下で120時間置くことにより加湿加熱試験を実施した。なお、以下の電波透過性および光輝性の評価は、加湿加熱試験前のガラス貼付試料、および加湿加熱試験後のガラス貼付試料においてそれぞれ実施した。
<Humidification heating test>
Nitto Denko's Luciax CS9861UAS (adhesive layer) was formed on the metal layer of the electromagnetic wave transparent metallic luster member of each example and comparative example, and Matsunami Glass Industry's slide glass (glass) was attached thereon, followed by attaching the glass. A sample was obtained. A humidification heating test was performed by placing the glass-attached sample in an environment of 65° C. and 90% RH for 120 hours. The following evaluations of radio wave transmittance and brilliance were performed on the glass-attached sample before the humidification heat test and the glass-attached sample after the humidification heat test.
[電磁波透過性]
 28GHzにおける電波透過減衰量をフリースペース法用評価ジグ(キーコム)LAF-26.5A、アンテナWR-28およびアジレント社製スペクトルアナライザ(CXA signal Analyzer NA9000A)を用いて、基材面側から測定した。ミリ波レーダーの周波数帯域(76~80GHz)における電磁波透過性と、マイクロ波帯域(28GHz)における電磁波透過性には相関性があり、比較的近い値を示すことから、今回の評価では、マイクロ波帯域(28GHz)における電磁波透過性、即ち、マイクロ波電界透過減衰量を指標とし、以下の基準で判断した。測定した結果を表2に示す。
[Electromagnetic wave permeability]
Radio wave transmission attenuation at 28 GHz was measured from the substrate surface side using a free space method evaluation jig (Keycom) LAF-26.5A, an antenna WR-28 and a spectrum analyzer (CXA signal Analyzer NA9000A) manufactured by Agilent. There is a correlation between the electromagnetic wave permeability in the millimeter wave radar frequency band (76 to 80 GHz) and the electromagnetic wave permeability in the microwave band (28 GHz). The electromagnetic wave permeability in the band (28 GHz), that is, the microwave electric field transmission attenuation amount was used as an index and judged according to the following criteria. Table 2 shows the measurement results.
(電波透過減衰量)
 0.1[-dB]以下:◎
 0.1[-dB]超0.3[-dB]以下:〇
 0.3[-dB]超1[-dB]以下:△
 1[-dB]超:×
(Radio wave transmission attenuation)
0.1 [-dB] or less: ◎
0.1 [-dB] to 0.3 [-dB] or less: 〇 0.3 [-dB] to 1 [-dB] or less: △
Over 1 [-dB]: ×
[光輝性(見栄え)]
 Y値(SCI)、ΔE値はコニカミノルタジャパン社製分光測色計CM-2600dを用い、JIS Z 8722の幾何条件cに従って測定した。各ガラス貼付試料につき、ガラス面側から上記分光測色計にて各指標を測定した結果を表1に示し、基材面側から上記分光測色計にて各指標を測定した結果を表2に示す。
 ここでは、見栄えの定量的表現として、金属光沢の定量的表現にY値(SCI)、色調の変化にΔE値を使用した。Y値(SCI)、ΔE値は、以下の基準で評価した。
[Brightness (appearance)]
The Y value (SCI) and ΔE value were measured according to JIS Z 8722 geometric condition c using a spectrophotometer CM-2600d manufactured by Konica Minolta Japan. Table 1 shows the results of measuring each index with the spectrophotometer from the glass surface side for each glass-attached sample, and Table 2 shows the results of measuring each index with the spectrophotometer from the substrate surface side. shown in
Here, as quantitative expression of appearance, Y value (SCI) was used for quantitative expression of metallic luster, and ΔE value was used for change in color tone. Y value (SCI) and ΔE value were evaluated according to the following criteria.
(加湿加熱試験後のY値(SCI))
 50%以上:〇
 40%以上、50%未満:△
 40%未満:×
(Y value (SCI) after humidification heating test)
50% or more: 〇 40% or more, less than 50%: △
Less than 40%: ×
(加湿加熱試験前後のΔE値)
 3以下:〇
 3超:×
(ΔE value before and after humidification heating test)
3 or less: 〇 Over 3: ×
<引張試験>
 各実施例および比較例の電磁波透過性金属光沢部材の延伸は、ミネベアミツミ社製引張試験機TG-10kNを用いて、150℃において5mm/minの延伸速度、伸び率20%の条件で一軸引張試験により行った。伸び率は、以下の式で示される。
 伸び率(%)=100×(L-Lo)/Lo
 なお、Lo:延伸前の試料長さ、L:延伸後の試料長さとする。
<Tensile test>
The electromagnetic wave transmitting metallic luster member of each example and comparative example was stretched using a tensile tester TG-10 kN manufactured by MinebeaMitsumi Co., Ltd. at 150° C. at a stretching rate of 5 mm/min and an elongation rate of 20%. It was done by testing. The elongation rate is shown by the following formula.
Elongation rate (%) = 100 × (L-Lo) / Lo
Note that Lo is the length of the sample before stretching, and L is the length of the sample after stretching.
[光輝性(見栄え)]
 引張試験後の各実施例および比較例の電磁波透過性金属光沢部材において、コニカミノルタジャパン社製分光測色計CM-2600dを用い、JIS Z 8722の幾何条件cに従って、Y値(SCI、SCE)を測定した。
 金属層側から上記分光測色計にて各指標を測定した結果を表1に示し、基材面側から上記分光測色計にて各指標を測定した結果を表2に示す。なお、対照として、引張試験を行っていない各実施例および比較例の電磁波透過性金属光沢部材についても、同様に測定を行った。
 Y値(SCI、SCE)は、以下の基準で評価した。
[Brightness (appearance)]
In the electromagnetic wave transparent metallic luster member of each example and comparative example after the tensile test, the Y value (SCI, SCE) was measured using a spectrophotometer CM-2600d manufactured by Konica Minolta Japan Co., Ltd. according to the geometric condition c of JIS Z 8722. was measured.
Table 1 shows the results of measuring each index with the above spectrophotometer from the metal layer side, and Table 2 shows the results of measuring each index with the above spectrophotometer from the substrate surface side. As a control, the electromagnetic wave transmitting metallic luster members of each example and comparative example, which were not subjected to the tensile test, were also measured in the same manner.
Y values (SCI, SCE) were evaluated according to the following criteria.
(引張試験後のY値(SCI))
 50%以上:〇
 40%以上、50%未満:△
 40%未満:×
(Y value (SCI) after tensile test)
50% or more: 〇 40% or more, less than 50%: △
Less than 40%: ×
<引張試験後のY値(SCE)>
 0.1以下:◎
 0.1超、0.3以下:〇
 0.3超、1以下:△
 1超:×
<Y value (SCE) after tensile test>
0.1 or less: ◎
More than 0.1, 0.3 or less: ○ More than 0.3, 1 or less: △
Over 1: ×
[金属層の厚さ]
 日本電子社製FE-TEM,JEM-2800を用いて、FE-TEM観察を実施して、金属層の厚みを測定した。
 金属層におけるバラツキ、更に詳細には、図1に示す部分12aの厚さにおけるバラツキを考慮して、部分12aの厚さの平均値を金属層の厚さとした。なお、個々の部分12aの厚さは、基体10から垂直方向に最も厚いところの厚さとした。以下、この平均値を、便宜上、「最大の厚さ」と呼ぶ。
 最大の厚さを求めるに際し、まず、電磁波透過性積層部材の表面に現れた金属層において、図3に示すような一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける、断面画像において、おおよそ5個の部分12aが含まれる視野角領域を抽出した。これら計5箇所の測定箇所それぞれにおける、5個の部分12a、即ち、25個(5個×5箇所)の部分12aの個々の厚さを求め、それらの平均値を「最大の厚さ」とした。
[Thickness of metal layer]
Using FE-TEM, JEM-2800 manufactured by JEOL Ltd., FE-TEM observation was performed to measure the thickness of the metal layer.
Considering the variation in the metal layer, more specifically, the variation in the thickness of the portion 12a shown in FIG. 1, the average thickness of the portion 12a was taken as the thickness of the metal layer. The thickness of each portion 12a was the thickness at the thickest point in the vertical direction from the substrate 10. As shown in FIG. Hereinafter, this average value is referred to as "maximum thickness" for convenience.
When determining the maximum thickness, first, in the metal layer appearing on the surface of the electromagnetic wave permeable laminated member, a square region 3 having a side of 5 cm as shown in FIG. A total of five points “a” to “e” obtained by dividing each of the center lines A and B of the horizontal sides into quarters were selected as measurement points.
Next, a viewing angle region containing approximately five portions 12a was extracted from the cross-sectional image at each of the selected measurement locations. Five portions 12a at each of these five measurement points, that is, the individual thicknesses of 25 (5×5 points) portions 12a are obtained, and the average value thereof is defined as the "maximum thickness". did.
[アルミニウム元素およびインジウム元素の含有量]
 金属層におけるアルミニウム元素およびインジウム元素の含有量の測定は、蛍光X線分析により行った。分析装置としてリガク製ZSX Primus III+を用いた。参照試料としての厚みが既知のインジウム単体膜、アルミニウム単体膜の測定から得られた検量線により、測定された蛍光強度を試料の厚みに換算した。得られた試料の厚みから、アルミニウム密度2.70g/cm、インジウム密度7.31g/cmを用いて質量換算を行い、金属層におけるアルミニウム元素およびインジウム元素の含有量を算出した。
[Contents of aluminum element and indium element]
The contents of aluminum element and indium element in the metal layer were measured by fluorescent X-ray analysis. As an analyzer, ZSX Primus III+ manufactured by Rigaku was used. The measured fluorescence intensity was converted to the thickness of the sample using a calibration curve obtained from measurements of an indium simple substance film and an aluminum simple substance film having known thicknesses as reference samples. From the thickness of the obtained sample, mass conversion was performed using an aluminum density of 2.70 g/cm 3 and an indium density of 7.31 g/cm 3 to calculate the contents of aluminum element and indium element in the metal layer.
(実施例1)
 基材フィルムとして、三菱ケミカル社製易成形PETフィルム(品番:G931E75、厚さ:50μm)を用いた。まず、In-Sn合金ターゲット(Sn比5質量%):ITMを用いて、DCパルススパッタリング(150kHz)により、上記基材フィルム上に第1層としてIn-Sn合金からなる層を形成した。なお、スパッタリングは酸素の供給がない雰囲気下で実施した。得られた第1層は不連続構造であった。
 次いで、Alターゲットを用いて交流スパッタリング(AC:40kHz)により、第1層の上に第2層としてアルミニウム(Al)含有層を形成した。以上により、基材フィルム上に上記金属層が形成された実施例1の電磁波透過性金属光沢部材が得られた。
 得られた実施例1の電磁波透過性金属光沢部材に対し、各種評価を行った結果を表1、2に示す。また、日本電子社製FE-TEM JEM-2800を用いて元素分析を行い、Al元素、In元素の分布を測定した。
(Example 1)
As a base film, an easy-to-form PET film manufactured by Mitsubishi Chemical Corporation (product number: G931E75, thickness: 50 μm) was used. First, using an In—Sn alloy target (Sn ratio of 5% by mass): ITM, a layer composed of an In—Sn alloy was formed as a first layer on the base film by DC pulse sputtering (150 kHz). Sputtering was performed in an atmosphere in which oxygen was not supplied. The resulting first layer had a discontinuous structure.
Next, an aluminum (Al)-containing layer was formed as a second layer on the first layer by alternating current sputtering (AC: 40 kHz) using an Al target. As described above, the electromagnetic wave transmitting metallic luster member of Example 1, in which the metal layer was formed on the base film, was obtained.
Tables 1 and 2 show the results of various evaluations of the obtained electromagnetic wave transmitting metallic luster member of Example 1. Further, elemental analysis was performed using FE-TEM JEM-2800 manufactured by JEOL Ltd. to measure the distribution of Al element and In element.
 得られた実施例1における金属層は不連続構造であることが確認できた。また、アルミニウム元素がインジウム元素を取り囲むようにして金属層中に偏在していることが確認できた。また、アルミニウム元素とインジウム元素の分布領域が重なるのは、金属層の表面からの深さが14nm以下の範囲であった。すなわち、金属層の表面からの深さが14nmより深い範囲ではアルミニウム元素とインジウム元素とが互いに相溶していない(合金化していない)ことがわかった。 It was confirmed that the metal layer obtained in Example 1 had a discontinuous structure. It was also confirmed that the aluminum element was unevenly distributed in the metal layer so as to surround the indium element. Moreover, the distribution regions of the aluminum element and the indium element overlapped in a range of 14 nm or less in depth from the surface of the metal layer. That is, it was found that the aluminum element and the indium element were not compatible with each other (not alloyed) in a range deeper than 14 nm from the surface of the metal layer.
(実施例2~10)
 金属層におけるアルミニウム元素、及びインジウム元素の含有量が表1、2となるように変更した以外は実施例1と同様にして、実施例2~10の電磁波透過性金属光沢部材を作製し、評価した。なお、実施例7~10については基材面側からの評価のみを行った。
 また、実施例2~10における金属層は不連続構造であることが確認できた。実施例2における電磁波透過性金属光沢部材の表面の電子顕微鏡写真(SEM画像)を図2に示す。
 また、実施例2~10における金属層は、アルミニウム元素がインジウム元素を取り囲むようにして金属層中に偏在していることが確認できた。実施例2における元素分析の結果のみ、図4に示す。また、実施例2~10においても、アルミニウム元素とインジウム元素の分布領域が重なるのは、金属層の表面からの深さが14nm以下の範囲であった(実施例2のみ、図4の(d)に示す)。
(Examples 2 to 10)
Electromagnetic wave-transmitting metallic luster members of Examples 2 to 10 were produced and evaluated in the same manner as in Example 1, except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2. did. In addition, Examples 7 to 10 were evaluated only from the side of the base material.
It was also confirmed that the metal layers in Examples 2 to 10 had a discontinuous structure. FIG. 2 shows an electron micrograph (SEM image) of the surface of the electromagnetic wave transmitting metallic luster member in Example 2. As shown in FIG.
Further, it was confirmed that the metal layers in Examples 2 to 10 were unevenly distributed in the metal layer so that the aluminum element surrounded the indium element. Only the results of elemental analysis in Example 2 are shown in FIG. Also in Examples 2 to 10, the distribution regions of the aluminum element and the indium element overlapped in a range of 14 nm or less in depth from the surface of the metal layer (only in Example 2, (d )).
(比較例1)
 金属層におけるアルミニウム元素、及びインジウム元素の含有量が表1、2となるように変更した以外は実施例1と同様にして、比較例1の電磁波透過性金属光沢部材を作製し、評価した。
(Comparative example 1)
An electromagnetic wave transmitting metallic luster member of Comparative Example 1 was produced and evaluated in the same manner as in Example 1, except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2.
(比較例2)
 第1層をIn-Sn合金からなる層とし、第2層を設けずに金属層を形成したことを除いては、実施例1と同様にして、比較例2の電磁波透過性金属光沢部材を作製し、評価した。
(Comparative example 2)
An electromagnetic wave transmitting metallic luster member of Comparative Example 2 was produced in the same manner as in Example 1, except that the first layer was made of an In—Sn alloy and the metal layer was formed without providing the second layer. made and evaluated.
(比較例3)
 金属層におけるアルミニウム元素、及びインジウム元素の含有量が表1、2となるように変更した以外は実施例1と同様にして、比較例3の電磁波透過性金属光沢部材を作製し、評価した。
(Comparative Example 3)
An electromagnetic wave transmitting metallic luster member of Comparative Example 3 was produced and evaluated in the same manner as in Example 1 except that the contents of the aluminum element and the indium element in the metal layer were changed as shown in Tables 1 and 2.
(比較例4)
 In-Sn合金ターゲット(Sn比5質量%):ITMをInに変更し、金属層におけるアルミニウム元素、及びインジウム元素の含有量が表1、2となるように変更した以外は実施例1と同様にして、比較例4の電磁波透過性金属光沢部材を作製し、評価した。
(Comparative Example 4)
In—Sn alloy target (Sn ratio of 5% by mass): Same as Example 1 except that ITM was changed to In and the contents of aluminum element and indium element in the metal layer were changed as shown in Tables 1 and 2. Then, an electromagnetic wave transmitting metallic glossy member of Comparative Example 4 was produced and evaluated.
 結果を表1、2に示す。なお、表1、2中の「-」は未測定であることを示す。 The results are shown in Tables 1 and 2. Note that "-" in Tables 1 and 2 indicates unmeasured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示すように、実施例1~10の電磁波透過性金属光沢部材は、加湿加熱試験後及び引張試験後においても、電磁波透過性及び見栄えともに良好な結果となった。
 一方、比較例1は、金属層中におけるインジウム元素の含有量が25質量%と低いため、ΔE値が高くなり、光輝性(見栄え)が劣る結果となった。
 また、比較例2は、Al元素を含まないため、加湿加熱試験のY値(SCI)が低くなり、またΔE値も高くなり、光輝性(見栄え)が劣る結果となった。
 また、比較例3は、島状の形状の秩序性が低く欠陥が生じているため、ΔE値が高くなり、光輝性(見栄え)が劣る結果となった。
 また、比較例4は、In元素の含有量が多く、島状の形状の秩序性が低く欠陥が生じているため、加湿加熱試験のY値(SCI)が低くなり、またΔE値も高くなり、光輝性(見栄え)が劣る結果となった。
As shown in Tables 1 and 2, the electromagnetic wave transmitting metallic luster members of Examples 1 to 10 showed good results in both electromagnetic wave transmittance and appearance after the humidification heating test and after the tensile test.
On the other hand, in Comparative Example 1, the indium element content in the metal layer was as low as 25% by mass, resulting in a high ΔE value and poor brightness (appearance).
In addition, since Comparative Example 2 does not contain Al element, the Y value (SCI) in the humidified heating test is low, and the ΔE value is high, resulting in poor brightness (appearance).
In Comparative Example 3, since the orderliness of the island-like shape was low and defects were generated, the ΔE value was high and the brilliance (appearance) was poor.
In addition, in Comparative Example 4, the content of In element is high, and the orderliness of the island shape is low and defects are generated, so the Y value (SCI) in the humidified heating test is low, and the ΔE value is also high. , resulting in poor brilliance (appearance).
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。 The present invention is not limited to the above embodiments, and can be modified and embodied as appropriate without departing from the gist of the invention.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月29日出願の日本特許出願(特願2021-055601)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-055601) filed on March 29, 2021, the contents of which are incorporated herein by reference.
 本発明に係る電磁波透過性金属光沢部材は、電磁波を送受信する装置や物品及びその部品等に使用することができる。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。 The electromagnetic wave permeable metallic luster member according to the present invention can be used for devices, articles, and parts thereof that transmit and receive electromagnetic waves. For example, structural parts for vehicles, articles mounted on vehicles, housings for electronic devices, housings for home appliances, structural parts, machine parts, various automobile parts, electronic device parts, furniture, household goods such as kitchen utensils , medical equipment, building material parts, other structural parts and exterior parts, etc., where both good design and electromagnetic wave permeability are required.
1 電磁波透過性金属光沢部材
10 基体
12 金属層
12a 部分
12b 隙間
Reference Signs List 1 electromagnetic wave permeable metallic glossy member 10 substrate 12 metal layer 12a portion 12b gap

Claims (9)

  1.  基体と、前記基体上に形成された金属層と、を備え、
     前記金属層は少なくとも一部において互いに不連続の状態にある複数の部分を含んでおり、
     前記金属層はアルミニウム元素及びインジウム元素を含み、
     前記金属層における前記インジウム元素の含有量が、90質量%より多く98質量%以下である、
     電磁波透過性金属光沢部材。
    comprising a substrate and a metal layer formed on the substrate;
    The metal layer includes a plurality of portions that are discontinuous at least in part,
    The metal layer contains an aluminum element and an indium element,
    The content of the indium element in the metal layer is more than 90% by mass and 98% by mass or less,
    Electromagnetic wave permeable metal luster member.
  2.  前記アルミニウム元素は、前記金属層中で偏在している、請求項1に記載の電磁波透過性金属光沢部材。 The electromagnetic wave transmitting metallic luster member according to claim 1, wherein the aluminum element is unevenly distributed in the metal layer.
  3.  前記金属層が、Sn、Si、Ga、Ge、及びPbの少なくとも1種の元素を含有する、請求項1または2に記載の電磁波透過性金属光沢部材。 The electromagnetic wave transmitting metallic luster member according to claim 1 or 2, wherein the metal layer contains at least one element selected from Sn, Si, Ga, Ge, and Pb.
  4.  前記金属層の厚さは、10nm~100nmである、請求項1~3のいずれか1項に記載の電磁波透過性金属光沢部材。 The electromagnetic wave transmitting metallic luster member according to any one of claims 1 to 3, wherein the metal layer has a thickness of 10 nm to 100 nm.
  5.  65℃90%RHの加湿加熱試験後における、JIS Z 8722の幾何条件cに準拠し分光測色計を用いて測定されるY値(SCI)が40%以上である、請求項1~4のいずれか1項に記載の電磁波透過性金属光沢部材。 Claims 1 to 4, wherein the Y value (SCI) measured using a spectrophotometer in accordance with JIS Z 8722 geometric condition c after a humidified heating test at 65 ° C. 90% RH is 40% or more. The electromagnetic wave transmitting metallic luster member according to any one of claims 1 to 3.
  6.  前記複数の部分が島状に形成されている、請求項1~5のいずれか1項に記載の電磁波透過性金属光沢部材。 The electromagnetic wave transmitting metallic luster member according to any one of claims 1 to 5, wherein the plurality of portions are formed in an island shape.
  7.  前記基体が、基材フィルム、樹脂成型物基材、又は金属光沢を付与すべき物品のいずれかである、請求項1~6のいずれか1項に記載の電磁波透過性金属光沢部材。 The electromagnetic wave transmitting metallic glossy member according to any one of claims 1 to 6, wherein the substrate is a substrate film, a resin molding substrate, or an article to which metallic luster is to be imparted.
  8.  基体上に、インジウム元素を少なくとも含み、かつ少なくとも一部において互いに不連続の状態にある複数の部分を含む層を形成する、第1工程と、
     前記第1工程で形成した前記層上に、アルミニウム元素を含む金属を蒸着する、第2工程と、を含む、
     請求項1~7のいずれか1項に記載の電磁波透過性金属光沢部材を製造する方法。
    a first step of forming, on a substrate, a layer containing at least an indium element and containing a plurality of portions that are at least partially discontinuous with each other;
    a second step of evaporating a metal containing an aluminum element on the layer formed in the first step;
    A method for producing an electromagnetic wave transmitting metallic luster member according to any one of claims 1 to 7.
  9.  前記第1工程において、実質的に酸素を含まない雰囲気下でスパッタリングにより前記層を形成する、請求項8に記載の方法。 The method according to claim 8, wherein in said first step, said layer is formed by sputtering in an atmosphere substantially free of oxygen.
PCT/JP2022/011028 2021-03-29 2022-03-11 Electromagnetic wave-transmitting metallic lustrous member and method for producing same WO2022209779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510847A JPWO2022209779A1 (en) 2021-03-29 2022-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055601 2021-03-29
JP2021055601 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209779A1 true WO2022209779A1 (en) 2022-10-06

Family

ID=83456221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011028 WO2022209779A1 (en) 2021-03-29 2022-03-11 Electromagnetic wave-transmitting metallic lustrous member and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022209779A1 (en)
WO (1) WO2022209779A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006613A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding
JP2009006612A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding
JP2009286082A (en) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd Electromagnetic wave transmitting lustrous resin product and its manufacturing method
JP4601262B2 (en) * 2002-03-25 2010-12-22 日本写真印刷株式会社 Cover panel with metallic color
JP4732147B2 (en) * 2005-11-21 2011-07-27 豊田合成株式会社 Resin product, method for producing the same, and method for forming metal film
JP2019031079A (en) * 2017-08-04 2019-02-28 積水化学工業株式会社 Laminate
WO2020067052A1 (en) * 2018-09-25 2020-04-02 積水化学工業株式会社 Radio wave permeable body
US20200299831A1 (en) * 2017-04-07 2020-09-24 Byoung Sam Kim Manufacturing method of radio wave transmittable sensor cover having micro crack and laser hole and radio wave transmittable sensor cover manufactured using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601262B2 (en) * 2002-03-25 2010-12-22 日本写真印刷株式会社 Cover panel with metallic color
JP4732147B2 (en) * 2005-11-21 2011-07-27 豊田合成株式会社 Resin product, method for producing the same, and method for forming metal film
JP2009006613A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding
JP2009006612A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding
JP2009286082A (en) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd Electromagnetic wave transmitting lustrous resin product and its manufacturing method
US20200299831A1 (en) * 2017-04-07 2020-09-24 Byoung Sam Kim Manufacturing method of radio wave transmittable sensor cover having micro crack and laser hole and radio wave transmittable sensor cover manufactured using the same
JP2019031079A (en) * 2017-08-04 2019-02-28 積水化学工業株式会社 Laminate
WO2020067052A1 (en) * 2018-09-25 2020-04-02 積水化学工業株式会社 Radio wave permeable body

Also Published As

Publication number Publication date
JPWO2022209779A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR20190062604A (en) Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film
JP7319079B2 (en) Electromagnetic wave permeable metallic luster article and decorative member
WO2021182381A1 (en) Electromagnetic wave-transmitting metallic lustrous member and method for producing same
US11577491B2 (en) Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor
WO2019208499A1 (en) Electromagnetically permeable article with metallic gloss
CN112020423B (en) Electromagnetic wave-transparent metallic glossy article and metallic film
WO2021182380A1 (en) Electromagnetic-wave-transmissive laminated member and method for manufacturing same
WO2019208493A1 (en) Electromagnetic-wave-permeable metallic-luster article, and decorative member
WO2022209779A1 (en) Electromagnetic wave-transmitting metallic lustrous member and method for producing same
WO2019208504A1 (en) Electromagnetic wave transparent metallic luster article, and metal thin film
JP7319081B2 (en) Electromagnetic wave permeable metallic luster article
JP7319080B2 (en) Electromagnetic wave transparent metallic luster article and metal thin film
JP7319078B2 (en) Electromagnetic wave permeable metallic luster article
CN112004664B (en) Electromagnetic wave-transparent metallic glossy article
WO2019208494A1 (en) Electromagnetic wave transmissive metallic luster product and metal thin film
WO2021187069A1 (en) Electromagnetic wave transmissive metallic luster member
WO2019208490A1 (en) Electromagnetic wave-permeable metal glossy article and method for manufacturing same
WO2019208488A1 (en) Electromagnetic wave transmissive metal luster article
WO2019208489A1 (en) Electromagnetic wave-transmitting metallic-luster article
WO2022181528A1 (en) Electromagnetically permeable member with metallic gloss, and decorative member
JP2022171450A (en) Electromagnetically permeable member with metallic gloss, and decorative member
JP2023013743A (en) Laminate and decorative member
JP2022129029A (en) Electromagnetic wave transmissive metallic sheen member and decorative member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510847

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780000

Country of ref document: EP

Kind code of ref document: A1