WO2019208499A1 - Electromagnetically permeable article with metallic gloss - Google Patents

Electromagnetically permeable article with metallic gloss Download PDF

Info

Publication number
WO2019208499A1
WO2019208499A1 PCT/JP2019/017034 JP2019017034W WO2019208499A1 WO 2019208499 A1 WO2019208499 A1 WO 2019208499A1 JP 2019017034 W JP2019017034 W JP 2019017034W WO 2019208499 A1 WO2019208499 A1 WO 2019208499A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
substrate
metallic luster
article
indium oxide
Prior art date
Application number
PCT/JP2019/017034
Other languages
French (fr)
Japanese (ja)
Inventor
太一 渡邉
孝洋 中井
暁雷 陳
秀幸 北井
秀行 米澤
幸大 宮本
将治 有本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207029677A priority Critical patent/KR20210005576A/en
Priority to CN201980027688.3A priority patent/CN112004666A/en
Priority claimed from JP2019080643A external-priority patent/JP7319081B2/en
Publication of WO2019208499A1 publication Critical patent/WO2019208499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side

Definitions

  • the present invention relates to an electromagnetic wave transparent metallic luster article.
  • members having electromagnetic wave transparency and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a high-quality appearance derived from the metallic luster and electromagnetic wave transparency.
  • a metallic luster article that combines both luster and electromagnetic wave transmission, in which a cover member of a millimeter wave radar mounted on the front part of an automobile such as a front grill and an emblem is decorated.
  • Millimeter wave radar transmits millimeter wave electromagnetic waves (frequency: about 77 GHz, wavelength: about 4 mm) to the front of the car, receives reflected waves from the target, and measures and analyzes the reflected waves. The distance, target direction, and size can be measured. The measurement result can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like. Since the front part of the automobile in which such a millimeter wave radar is arranged is a so-called automobile face and is a part that gives a large impact to the user, it is preferable to produce a high-class feeling with a metallic glossy front decoration.
  • This kind of metallic luster article is not only a millimeter wave radar but also various devices that require communication, for example, automobile door handles with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers, etc.
  • the application of is expected.
  • IoT technology application in a wide range of fields such as household appliances such as refrigerators, daily life equipment, etc., which has not been conventionally performed, is expected.
  • Patent Document 1 describes a metal thin film transfer material in which Sn is deposited by vacuum deposition.
  • the glitter is improved by increasing the coverage of the metal film, but it is not sufficient. To increase the coverage, it is necessary to increase the film thickness, and there is a problem in terms of cost.
  • the vacuum vapor deposition method described in Patent Document 1 it is difficult to form a wide, uniform and stable film, and the metal film is likely to be oxidized under a low vacuum. Therefore, an article that is excellent in electromagnetic wave permeability and has both a thin metal layer and high glitter is desired.
  • the present invention was made in order to solve these problems in the prior art, and provides an electromagnetic wave transmissive metallic luster article that is excellent in electromagnetic wave permeability and has both a thin metal layer and high glitter. Objective.
  • the present inventors usually have a discontinuous structure, for example, a metal layer made of other metals such as aluminum (Al) has a discontinuous structure and is glossy. It has been found that the average particle size of a plurality of portions in a discontinuous state and in a specific range is excellent in electromagnetic wave permeability and achieves both a reduction in the thickness of the metal layer and high glitter, and the present invention. It came to be completed.
  • One embodiment of the present invention includes a base and a metal layer formed on the base, and the 20 ° gloss is 900 or more.
  • the metal layer relates to an electromagnetic wave transmissive metallic luster article that includes a plurality of portions that are discontinuous with each other at least partially, and an average particle size of the plurality of portions is 30 nm or more and less than 100 nm.
  • Another aspect of the present invention includes a base and a metal layer formed on the base,
  • the metal layer includes a plurality of portions at least partially discontinuous with each other,
  • the coverage of the substrate with the metal layer is 75% or more and less than 100%
  • the present invention relates to an electromagnetic wave transparent metallic glossy article having an average particle size of the plurality of portions of 30 nm or more and less than 100 nm.
  • an indium oxide-containing layer is further provided between the base and the metal layer.
  • the indium oxide-containing layer is preferably provided in a continuous state.
  • the indium oxide-containing layer is made of either indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). It is preferable to include.
  • the thickness of the indium oxide-containing layer is preferably 1 nm to 1000 nm.
  • the thickness of the metal layer is preferably 15 nm to 100 nm.
  • the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer is 0. .02 to 100 may be used.
  • the sheet resistance may be 100 ⁇ / ⁇ or more.
  • the plurality of portions may be formed in an island shape.
  • the metal layer is made of aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof. It is preferable that
  • the substrate is preferably any one of a base film, a resin molded article base, a glass base, or an article to be provided with a metallic luster.
  • an electromagnetic wave transmissive metallic luster article that is excellent in electromagnetic wave transmission properties and has both a thin metal layer and high glitter.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 3 is a view showing an electron micrograph of the surface of an electromagnetic wave transparent metallic glossy article according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the coverage and glossiness of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples.
  • FIG. 5 is a graph showing the relationship between the film thickness and coverage of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 3 is a view showing an electron micrograph
  • FIG. 6 is a diagram showing the relationship between the crystal grains (average particle diameter) and the coverage of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples.
  • FIG. 7 is a view for explaining a method for measuring the thickness of the metal layer of the electromagnetic wave transparent metallic glossy article according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a transmission electron micrograph (TEM image) of a cross section of a metal layer in one embodiment of the present invention.
  • TEM image transmission electron micrograph
  • An electromagnetic wave-transmissive metallic glossy article includes a base and a metal layer formed on the base, and the 20 ° gloss is 900 or more.
  • the metal layer includes a plurality of portions that are discontinuous with each other at least partially, and the average particle size of the plurality of portions is not less than 30 nm and less than 100 nm.
  • An electromagnetic wave transmissive metallic luster article includes a base and a metal layer formed on the base.
  • the metal layer includes a plurality of portions at least partially discontinuous with each other, The coverage of the substrate with the metal layer is 75% or more and less than 100%, The plurality of portions have an average particle size of 30 nm or more and less than 100 nm.
  • FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article (hereinafter referred to as “metallic luster article”) 1 according to an embodiment of the present invention
  • FIG. 3 shows a metallic luster article according to an embodiment of the present invention
  • 1 shows an electron micrograph (SEM image) of the surface of No. 1
  • FIG. 8 shows a transmission electron micrograph (TEM image) of a cross-sectional view of the island-shaped metal layer 11 in one embodiment of the present invention.
  • SEM image electron micrograph
  • TEM image transmission electron micrograph
  • the metallic luster article 1 includes a base 10 and a metal layer 12 formed on the base 10.
  • the metal layer 12 is formed on the substrate 10.
  • the metal layer 12 includes a plurality of portions 12a.
  • the plurality of portions 12a in the metal layer 12 are discontinuous from each other at least in part, in other words, at least partially separated by the gap 12b. Since the sheet is separated by the gap 12b, the sheet resistance of the metallic luster article is increased and the interaction with the radio wave is reduced, so that the radio wave can be transmitted.
  • Each of the plurality of portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering, or the like of metal. Note that the “discontinuous state” in the present specification means a state in which they are separated from each other by the gap 12b, and as a result, are electrically insulated from each other.
  • the sheet resistance increases, and the desired electromagnetic wave permeability can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient glitter can be easily obtained, and electromagnetic wave permeability can be secured.
  • a discontinuous form is not specifically limited, For example, an island-like structure, a crack structure, etc. are contained.
  • the “island-like structure” means that metal particles are independent from each other as shown in FIG. 3, and the particles are spread in a state of being slightly separated or partially in contact with each other. It is the structure which becomes.
  • the crack structure is a structure in which a metal thin film is divided by a crack.
  • the metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to cause a crack in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability between the base film and the metal thin film layer. .
  • the aspect in which the metal layer 12 is discontinuous is not particularly limited, but an island structure is preferable from the viewpoint of productivity.
  • the 20 ° glossiness of the metallic luster article needs to be 900 or more, preferably 1100 or more, and more preferably 1300 or more. If it is less than 900, there is a problem that the metallic appearance cannot be obtained due to inferior luster.
  • the 20 ° glossiness of a metallic luster article can be measured according to JIS Z 8741 (1997 edition). Specifically, the measurement can be performed using PG-IIM (20 ° gloss measurement, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, the measurement of 20 degree glossiness is performed with respect to the surface by the side of a metal layer.
  • the electromagnetic wave permeability of the metallic luster article 1 can be evaluated by, for example, the amount of radio wave transmission attenuation. Note that there is a correlation between the radio wave transmission attenuation in the microwave band (5 GHz) and the radio wave transmission attenuation in the millimeter wave radar frequency band (76 to 80 GHz). A metallic luster article excellent in electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
  • the electromagnetic wave permeability in the microwave band is preferably 10 [-dB] or less, more preferably 5 [-dB] or less, and still more preferably 2 [-dB] or less. If it is larger than 10 [-dB], there is a problem that 90% or more of radio waves are blocked.
  • the sheet resistance of the metallic luster article 1 also has a correlation with the electromagnetic wave permeability.
  • the sheet resistance of the metallic luster article 1 is preferably 100 ⁇ / ⁇ or more.
  • the radio wave transmission attenuation in the microwave band (5 GHz) is about 10 to 0.01 [ ⁇ dB].
  • the sheet resistance of the metallic luster article is more preferably 200 ⁇ / ⁇ or more, and further preferably 600 ⁇ / ⁇ or more. Particularly preferably, it is 1000 ⁇ / ⁇ or more.
  • the sheet resistance of the metallic luster article 1 can be measured by an eddy current measurement method according to JIS-Z2316-1: 2014.
  • the radio wave transmission attenuation amount and sheet resistance of the metallic luster article 1 are affected by the material and thickness of the metal layer 12.
  • the metallic luster article 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
  • the substrate 10 include resins, glasses, and ceramics from the viewpoint of electromagnetic wave transmission.
  • the substrate 10 may be any of a substrate film, a resin molded substrate, a glass substrate, or an article to which a metallic luster is to be imparted.
  • the base film for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PP polypropylene
  • PMMA polyurethane
  • ABS acrylic
  • these members do not affect the glitter and electromagnetic wave transmission.
  • it is preferably one that can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferred. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because of a good balance between heat resistance and cost.
  • the base film may be a single layer film or a laminated film. From the viewpoint of ease of processing, the thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example.
  • plasma treatment, easy adhesion treatment, or the like may be performed.
  • the metal layer 12 may be provided on at least a part of the base film, may be provided only on one side of the base film, or may be provided on both sides.
  • the base film is only an example of an object (substrate 10) on which the metal layer 12 can be formed.
  • the base 10 includes a resin molded product base, a glass base, and an article itself to which a metallic luster is to be imparted.
  • the resin molding base material and the article to be provided with metallic luster include, for example, vehicle structural parts, vehicle-mounted products, electronic equipment casings, home appliance casings, structural parts, mechanical parts, and various automobiles. Examples include parts, electronic device parts, furniture, kitchenware, and other household goods, medical equipment, building material parts, other structural parts, exterior parts, and the like.
  • the metal layer 12 can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate.
  • the substrate 10 to which the metal layer 12 is to be applied preferably satisfies the same materials and conditions as those of the base film.
  • the metallic luster article 1 which concerns on one Embodiment may further be provided with the indium oxide containing layer 11 between the base
  • the indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10 or indirectly through a protective film or the like provided on the surface of the substrate 10.
  • the indium oxide-containing layer 11 is preferably provided in a continuous state on the surface of the substrate 10 to be provided with a metallic luster, in other words, without a gap.
  • the smoothness and corrosion resistance of the indium oxide-containing layer 11, and thus the metal layer 12 and the metallic luster article 1 can be improved, and the indium oxide-containing layer 11 is formed without in-plane variation. It is also easy to do.
  • the indium oxide-containing layer 11 is further provided between the base 10 and the metal layer 12, that is, the indium oxide layer 11 is formed on the base 10 and the metal layer 12 is formed thereon. Accordingly, it is preferable because the metal layer 12 is easily formed in a discontinuous state.
  • the details of the mechanism are not always clear, but when sputtered particles formed by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film. It is considered that the discontinuous structure is more easily formed when the temperature of the metal layer is higher, the wettability of the metal layer to the substrate is lower, and the melting point of the material of the metal layer is lower.
  • indium oxide-containing layer 11 indium oxide (In 2 O 3 ) itself can be used.
  • a metal-containing material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used.
  • ITO or IZO containing the second metal is more preferable in terms of high discharge stability in the sputtering process.
  • a film in a continuous state can be formed along the surface of the substrate.
  • a metal layer laminated on the indium oxide-containing layer is For example, it is preferable because an island-like discontinuous structure is easily obtained.
  • Cr chromium
  • indium (In) but also a discontinuous structure is usually difficult to be applied to the metal layer. It becomes easy to include various metals.
  • the content ratio (content ratio (ZnO / (In 2 O 3 + ZnO)) ⁇ 100), which is a mass ratio of zinc oxide (ZnO) contained in IZO, is, for example, 2 wt% to 20 wt%.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less, from the viewpoint of sheet resistance, electromagnetic wave permeability, and productivity.
  • the thickness is preferably 1 nm or more, and in order to easily facilitate the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. More preferably.
  • the metal layer 12 is formed on the substrate and includes a plurality of portions 12a that are discontinuous with each other at least partially.
  • the average particle size of the plurality of portions 12a is not less than 30 nm and less than 100 nm.
  • the average particle diameter of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a.
  • the equivalent circle diameter of the plurality of portions 12a is a diameter of a perfect circle corresponding to the area of the plurality of portions 12a.
  • the average particle diameter of the plurality of portions 12a can be measured by the method described in the column of Examples.
  • the average particle size of the plurality of portions 12a is set to 30 nm or more and less than 100 nm in the present invention.
  • the average particle diameter of the plurality of portions 12a is preferably 40 nm or more, more preferably 50 nm or more, and further preferably 60 nm or more. Further, it is preferably 99 nm or less, more preferably 98 nm or less, and further preferably 95 nm or less.
  • the coverage of the base with the metal layer 12 is the ratio of the total area of the plurality of portions 12a to the surface area of the base in the region where the metal layer 12 is provided.
  • the coverage of the substrate with the metal layer 12 can be measured by the method described in the column of Examples.
  • the coverage of the base with the metal layer 12 is 75% or more and less than 100%.
  • the coverage of the substrate with the metal layer 12 is preferably 80% or more, more preferably 82% or more, still more preferably 84% or more, and still more preferably 86% or more. Further, it is preferably 98% or less, more preferably 96% or less, and further preferably 94% or less.
  • the average particle diameter of the plurality of portions 12a of the metal layer 12 can be set to the above range by adjusting the power applied to the sputtering target.
  • the glitter can be improved while maintaining high electromagnetic wave permeability. This is because by setting the average particle diameter of the plurality of portions 12a within the above range, both a thin film and a high coverage can be achieved, thereby suppressing diffuse reflection and regular reflection in the visible light region, thereby increasing specular reflection. is there.
  • the metal layer 12 when the metal layer 12 is in a continuous state on the substrate, sufficient glitter can be obtained, but the sheet resistance becomes very small, and therefore electromagnetic wave transmission cannot be ensured.
  • the coverage is 75% or more and less than 100%, and the average particle size of the plurality of portions 12a is 30 nm or more and less than 100 nm. It is possible to obtain an electromagnetic wave-transmitting metallic luster article that is excellent in both the thickness of the metal layer and high luster.
  • the details of the mechanism by which the metal layer 12 becomes discontinuous on the substrate are not necessarily clear, but are estimated to be as follows. That is, in the thin film formation process of the metal layer 12, the ease of forming the discontinuous structure is related to the surface diffusion on the substrate to which the metal layer 12 is applied, the temperature of the substrate is high, and the metal layer with respect to the substrate The lower the melting point of the material of the metal layer, the easier it is to form a discontinuous structure. Therefore, for metals other than aluminum (Al) used in particular in the following examples, for metals with relatively low melting points such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag), It is considered that a discontinuous structure can be formed by a similar method.
  • the metal layer 12 has a relatively low melting point as well as sufficient glitter. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or less is suitable as the metal layer 12. For example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag) It is preferable that at least one kind of metal selected from the above and an alloy containing the metal as a main component are included. In particular, Al and alloys thereof are preferable for the reasons such as the luster and stability of the substance and the price. Moreover, when using an aluminum alloy, it is preferable that aluminum content shall be 50 mass% or more.
  • the thickness of the metal layer 12 is usually preferably 10 nm or more so as to exhibit sufficient glitter, and from the viewpoint of productivity, it is usually preferably 100 nm or less.
  • 15 nm to 100 nm is preferable, 15 nm to 80 nm is more preferable, 15 nm to 70 nm is further preferable, 15 nm to 60 nm is still more preferable, 15 nm to 50 nm is particularly preferable, and 15 nm to 40 nm is most preferable.
  • the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer is preferably in the range of 0.1 to 100. A range of 3 to 35 is more preferable.
  • the metallic luster article of the present embodiment may include other layers depending on the application.
  • Other layers include an optical adjustment layer (color adjustment layer) such as a highly refractive material for adjusting the appearance such as color, and a protective layer (abrasion resistance) for improving durability such as moisture resistance and scratch resistance.
  • Property layer barrier layer (corrosion prevention layer), easy adhesion layer, hard coat layer, antireflection layer, light extraction layer, antiglare layer and the like.
  • a method such as vacuum deposition or sputtering can be used.
  • the indium oxide-containing layer 11 is formed on the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating or the like prior to the formation of the metal layer 12.
  • sputtering is preferable because the thickness can be strictly controlled even in a large area.
  • indium oxide containing layer 11 between the base
  • the metal thin film according to the present embodiment is a metal thin film formed on the substrate 10, and the metal thin film has a thickness of 15 nm to 100 nm, and is a plurality of discontinuous states at least partially. Including the island-shaped portion, the 20 ° glossiness is 900 or more, and the average particle size of the plurality of island-shaped portions is 30 nm or more and less than 100 nm.
  • the metal layer 12 described above can be formed to a thickness of 15 nm to 100 nm, and only this can be used as a metal thin film.
  • a metal layer 12 is formed by sputtering on an indium oxide-containing layer 11 laminated on a substrate 10 such as a substrate film to obtain a film with a metal thin film.
  • an adhesive is applied onto the substrate to produce a substrate with an adhesive layer.
  • a film with a metal thin film is formed by laminating a film with a metal thin film and a substrate with an adhesive layer so that the metal layer 12 and the adhesive layer are in contact with each other and sufficiently adhering them.
  • the metal layer (metal thin film) 12 present on the outermost surface of the substrate can be transferred to the outermost surface of the substrate with the adhesive layer.
  • the above description can be used as it is for the substrate, metal layer, gloss, coverage, and average particle size of a plurality of portions.
  • metallic luster articles and metal thin films are used for an apparatus and an article that transmit and receive electromagnetic waves, and parts thereof.
  • household goods such as structural parts for vehicles, on-vehicle equipment, housing for electronic equipment, housing for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
  • ECU boxes electrical components, engine peripheral components, drive system / gear peripheral components, intake / exhaust system components, cooling system components, and the like.
  • electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, clocks, ventilation fans, projectors, speakers, and other home appliances, personal computers, mobile phones
  • Electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
  • the total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement positions divided by the lateral width of the viewing angle region is defined as the thickness of the metal layer in each viewing angle region.
  • the average value of the metal layer thickness in each viewing angle region was defined as the metal layer thickness (Al film thickness (nm)).
  • Radio wave transmission attenuation The radio wave transmission attenuation at 5 GHz was measured using a spectrum analyzer MS4644B manufactured by Anritsu Co., Ltd. with a sample sandwiched between rectangular waveguide measurement evaluation jigs WR-187.
  • the sheet resistance as a laminate of the metal layer and the indium oxide-containing layer was measured by an eddy current measurement method using a non-contact type resistance measuring device NC-80MAP manufactured by Napson, in accordance with JIS-Z2316.
  • the sheet resistance is preferably 100 ⁇ / ⁇ or more, more preferably 200 ⁇ / ⁇ or more, and further preferably 600 ⁇ / ⁇ or more. If it is less than 100 ⁇ / ⁇ , there is a problem that sufficient electromagnetic wave permeability cannot be obtained.
  • the resistance value was high and exceeded the measurement upper limit of NC-80MAP, the measurement was performed using Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Corporation.
  • the 20 ° glossiness of metallic glossy articles was measured according to JIS Z 8741 (1997 edition). Specifically, the measurement was performed using PG-IIM (20 ° gloss measurement, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, the measurement of 20 degree glossiness was performed with respect to the surface by the side of a metal layer.
  • an aluminum (Al) layer was formed on the ITO layer using AC sputtering (AC: 40 kHz, Al target applied power: 3.1 W / cm 2 ) to obtain a metallic luster article (metal thin film).
  • the obtained aluminum layer was a discontinuous layer.
  • the temperature of the base film when forming the Al layer was set to 130 ° C.
  • Example 2 to 5 The metallic glossy members (metals) of Examples 2 to 5 were used in the same manner as in Example 1 except that the time for forming the aluminum (Al) layer on the ITO layer was changed using AC sputtering (AC: 40 kHz). Thin film).
  • Comparative Example 1 A metallic luster article (metal thin film) of Comparative Example 1 was obtained in the same manner as in Example 1 except that the applied power of the Al target in Example 1 was changed to 9.3 W / cm 2 .
  • Comparative Examples 2 to 5 The metallic luster members of Comparative Examples 2 to 5 (metal) are the same as Comparative Example 1 except that the time for forming the aluminum (Al) layer on the ITO layer is changed using AC sputtering (AC: 40 kHz). Thin film).
  • FIG. 4 is a diagram showing the relationship between the coverage by the metal layer of the substrate of the electromagnetically transparent metallic glossy article of Examples and Comparative Examples and the glossiness
  • FIG. 5 is the electromagnetically transparent metallic gloss of Examples and Comparative Examples
  • FIG. 6 is a diagram showing the relationship between the film thickness of the article and the coverage with the metal layer of the substrate, and FIG. 6 is based on the crystal grains (average particle size) of the electromagnetic wave permeable metallic luster articles of Examples and Comparative Examples It is a figure which shows the relationship of a coverage.
  • the metallic glossy articles of Examples 1 to 5 include a plurality of portions 12a formed in a discontinuous state in the aluminum layer. As a result, it was shown that excellent electromagnetic wave permeability was obtained. Further, the metallic luster articles of Examples 1 to 5 had a high coverage even when the metal layer was a thin film, and all had good glitter and an excellent metallic appearance. On the other hand, the metallic luster articles of Comparative Examples 1 to 5 had a large average particle size in the metal layer portion, a small coverage of the metal layer, a small glossiness, inferior luster and inferior metallic appearance.
  • the metallic luster article according to the present invention can be used for devices and articles for transmitting and receiving electromagnetic waves, and parts thereof.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural components, mechanical parts, various automotive parts, electronic device parts, furniture, kitchenware, etc. It can also be used for various applications that require both design and electromagnetic wave transmission properties, such as medical equipment, building material parts, other structural parts and exterior parts.

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to an electromagnetically permeable article with a metallic gloss (1), provided with a substrate (10) and a metal layer (12) formed on the substrate (10). The 20° gloss is at least 900. The metal layer (12) includes a plurality of portions (12a) that are, at least in part, mutually discontinuous. The average grain diameter of the plurality of portions (12a) is at least 30 nm and less than 100 nm. Another embodiment of the present invention relates to an electromagnetically permeable article with a metallic gloss (1), provided with a substrate (10) and a metal layer (12) formed on the substrate (10). The metal layer includes a plurality of portions (12a) that are, at least in part, mutually discontinuous. The coverage ratio of the substrate (10) by the metal layer (12) is at least 75% and less than 100%, and the average grain diameter of the plurality of portions (12a) is at least 30 nm and less than 100 nm.

Description

電磁波透過性金属光沢物品Electromagnetically transparent metallic luster articles
 本発明は、電磁波透過性金属光沢物品に関する。 The present invention relates to an electromagnetic wave transparent metallic luster article.
 従来、電磁波透過性及び金属光沢を有する部材が、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電磁波を送受信する装置に好適に用いられている。
 例えば、フロントグリル、エンブレムといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材に装飾を施した、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が求められている。
2. Description of the Related Art Conventionally, members having electromagnetic wave transparency and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a high-quality appearance derived from the metallic luster and electromagnetic wave transparency.
For example, there is a need for a metallic luster article that combines both luster and electromagnetic wave transmission, in which a cover member of a millimeter wave radar mounted on the front part of an automobile such as a front grill and an emblem is decorated.
 ミリ波レーダーは、ミリ波帯の電磁波(周波数約77GHz、波長約4mm)を自動車の前方に送信し、ターゲットからの反射波を受信して、反射波を測定、分析することで、ターゲットとの距離や、ターゲットの方向、サイズを計測することができるものである。
 計測結果は、車間計測、速度自動調整、ブレーキ自動調整などに利用することができる。
 このようなミリ波レーダーが配置される自動車のフロント部分は、いわば自動車の顔であり、ユーザに大きなインパクトを与える部分であるから、金属光沢調のフロント装飾で高級感を演出することが好ましい。しかしながら、自動車のフロント部分に金属を使用した場合には、ミリ波レーダーによる電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、ミリ波レーダーの働きを妨げることなく、自動車の意匠性を損なわせないために、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が必要とされている。
Millimeter wave radar transmits millimeter wave electromagnetic waves (frequency: about 77 GHz, wavelength: about 4 mm) to the front of the car, receives reflected waves from the target, and measures and analyzes the reflected waves. The distance, target direction, and size can be measured.
The measurement result can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like.
Since the front part of the automobile in which such a millimeter wave radar is arranged is a so-called automobile face and is a part that gives a large impact to the user, it is preferable to produce a high-class feeling with a metallic glossy front decoration. However, when metal is used for the front part of an automobile, transmission / reception of electromagnetic waves by the millimeter wave radar is substantially impossible or obstructed. Therefore, in order not to impair the design of the automobile without hindering the function of the millimeter wave radar, there is a need for a metallic luster article having both glitter and electromagnetic wave transparency.
 この種の金属光沢物品は、ミリ波レーダーのみならず、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。更に、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。 This kind of metallic luster article is not only a millimeter wave radar but also various devices that require communication, for example, automobile door handles with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers, etc. The application of is expected. Furthermore, in recent years, with the development of IoT technology, application in a wide range of fields such as household appliances such as refrigerators, daily life equipment, etc., which has not been conventionally performed, is expected.
 金属光沢部材に関して、特許文献1には、真空蒸着を用いてSnを蒸着した金属薄膜転写材料が記載されている。 Regarding the metallic luster member, Patent Document 1 describes a metal thin film transfer material in which Sn is deposited by vacuum deposition.
日本国特許第4876850号公報Japanese Patent No. 4,876,850
 しかしながら、従来の技術においては金属膜の被覆率の増加により光輝性は向上するが充分ではなく、被覆率を増加するには厚膜化が必要でありコスト面においても課題があった。特許文献1に記載の真空蒸着法は、広幅で均一かつ安定的な製膜が難しく、低真空下では金属膜が酸化しやすいため厚膜化が必要であった。
 そこで、電磁波透過性に優れ、金属層の薄膜化と高い光輝性を両立する物品が望まれている。
 本願発明は、これら従来技術における問題点を解決するためになされたものであり、電磁波透過性に優れ、金属層の薄膜化と高い光輝性を両立する電磁波透過性金属光沢物品を提供することを目的とする。
However, in the prior art, the glitter is improved by increasing the coverage of the metal film, but it is not sufficient. To increase the coverage, it is necessary to increase the film thickness, and there is a problem in terms of cost. In the vacuum vapor deposition method described in Patent Document 1, it is difficult to form a wide, uniform and stable film, and the metal film is likely to be oxidized under a low vacuum.
Therefore, an article that is excellent in electromagnetic wave permeability and has both a thin metal layer and high glitter is desired.
The present invention was made in order to solve these problems in the prior art, and provides an electromagnetic wave transmissive metallic luster article that is excellent in electromagnetic wave permeability and has both a thin metal layer and high glitter. Objective.
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、通常は不連続構造になり難い、例えば、アルミニウム(Al)等その他の金属からなる金属層を不連続構造とし、光沢度、及び、不連続の状態にある複数の部分の平均粒径を特定の範囲とすることにより電磁波透過性に優れ、金属層の薄膜化と高い光輝性を両立することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors usually have a discontinuous structure, for example, a metal layer made of other metals such as aluminum (Al) has a discontinuous structure and is glossy. It has been found that the average particle size of a plurality of portions in a discontinuous state and in a specific range is excellent in electromagnetic wave permeability and achieves both a reduction in the thickness of the metal layer and high glitter, and the present invention. It came to be completed.
 本発明の一態様は、基体と、前記基体上に形成された金属層とを備え、20°光沢度が900以上であり、
 前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、前記複数の部分の平均粒径が30nm以上100nm未満である電磁波透過性金属光沢物品に関する。
One embodiment of the present invention includes a base and a metal layer formed on the base, and the 20 ° gloss is 900 or more.
The metal layer relates to an electromagnetic wave transmissive metallic luster article that includes a plurality of portions that are discontinuous with each other at least partially, and an average particle size of the plurality of portions is 30 nm or more and less than 100 nm.
 本発明の他の態様は、基体と、前記基体上に形成された金属層とを備え、
 前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、
 前記基体の前記金属層による被覆率が、75%以上100%未満であり、
 前記複数の部分の平均粒径が30nm以上100nm未満である電磁波透過性金属光沢物品に関する。
Another aspect of the present invention includes a base and a metal layer formed on the base,
The metal layer includes a plurality of portions at least partially discontinuous with each other,
The coverage of the substrate with the metal layer is 75% or more and less than 100%,
The present invention relates to an electromagnetic wave transparent metallic glossy article having an average particle size of the plurality of portions of 30 nm or more and less than 100 nm.
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体と前記金属層の間に、酸化インジウム含有層をさらに備えることが好ましい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, it is preferable that an indium oxide-containing layer is further provided between the base and the metal layer.
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は連続状態で設けられていることが好ましい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the indium oxide-containing layer is preferably provided in a continuous state.
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含むことが好ましい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the indium oxide-containing layer is made of either indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). It is preferable to include.
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層の厚さは、1nm~1000nmであることが好ましい。 In one aspect of the electromagnetic wave permeable metallic luster article of the present invention, the thickness of the indium oxide-containing layer is preferably 1 nm to 1000 nm.
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さは、15nm~100nmであることが好ましい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the thickness of the metal layer is preferably 15 nm to 100 nm.
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100であってもよい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer (the thickness of the metal layer / the thickness of the indium oxide-containing layer) is 0. .02 to 100 may be used.
 本発明の電磁波透過性金属光沢物品の一態様において、シート抵抗が、100Ω/□以上であってもよい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the sheet resistance may be 100Ω / □ or more.
 本発明の電磁波透過性金属光沢物品の一態様において、前記複数の部分は島状に形成されていてもよい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the plurality of portions may be formed in an island shape.
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかであることが好ましい。 In one aspect of the electromagnetic wave transmissive metallic luster article of the present invention, the metal layer is made of aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof. It is preferable that
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであることが好ましい。 In one aspect of the electromagnetic wave transmissive metallic glossy article of the present invention, the substrate is preferably any one of a base film, a resin molded article base, a glass base, or an article to be provided with a metallic luster.
 本発明によれば、電磁波透過性に優れ、金属層の薄膜化と高い光輝性を両立する電磁波透過性金属光沢物品を提供することができる。 According to the present invention, it is possible to provide an electromagnetic wave transmissive metallic luster article that is excellent in electromagnetic wave transmission properties and has both a thin metal layer and high glitter.
図1は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention. 図2は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention. 図3は、本発明の一実施形態による電磁波透過性金属光沢物品の表面の電子顕微鏡写真を示す図である。FIG. 3 is a view showing an electron micrograph of the surface of an electromagnetic wave transparent metallic glossy article according to an embodiment of the present invention. 図4は、実施例及び比較例の電磁波透過性金属光沢物品の被覆率と光沢度の関係を示す図である。FIG. 4 is a graph showing the relationship between the coverage and glossiness of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples. 図5は、実施例及び比較例の電磁波透過性金属光沢物品の膜厚と被覆率の関係を示す図である。FIG. 5 is a graph showing the relationship between the film thickness and coverage of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples. 図6は、実施例及び比較例の電磁波透過性金属光沢物品の結晶粒(平均粒径)と被覆率の関係を示す図である。FIG. 6 is a diagram showing the relationship between the crystal grains (average particle diameter) and the coverage of the electromagnetic wave transmissive metallic luster articles of Examples and Comparative Examples. 図7は、本発明の一実施形態による電磁波透過性金属光沢物品の金属層の膜厚の測定方法を説明するための図である。FIG. 7 is a view for explaining a method for measuring the thickness of the metal layer of the electromagnetic wave transparent metallic glossy article according to an embodiment of the present invention. 図8は、本発明の一実施形態における金属層の断面の透過型電子顕微鏡写真(TEM画像)を示す図である。FIG. 8 is a diagram showing a transmission electron micrograph (TEM image) of a cross section of a metal layer in one embodiment of the present invention.
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。以下においては、説明の便宜のために本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following, only preferred embodiments of the present invention are shown for convenience of explanation, but of course, the present invention is not intended to be limited thereto.
 本発明の実施形態にかかる電磁波透過性金属光沢物品は、基体と、前記基体上に形成された金属層とを備え、20°光沢度が900以上であり、
 前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、前記複数の部分の平均粒径が30nm以上100nm未満である。
 本発明の他の実施形態にかかる電磁波透過性金属光沢物品は、基体と、前記基体上に形成された金属層とを備え、
 前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、
 前記基体の前記金属層による被覆率が、75%以上100%未満であり、
 前記複数の部分の平均粒径が30nm以上100nm未満である。
An electromagnetic wave-transmissive metallic glossy article according to an embodiment of the present invention includes a base and a metal layer formed on the base, and the 20 ° gloss is 900 or more.
The metal layer includes a plurality of portions that are discontinuous with each other at least partially, and the average particle size of the plurality of portions is not less than 30 nm and less than 100 nm.
An electromagnetic wave transmissive metallic luster article according to another embodiment of the present invention includes a base and a metal layer formed on the base.
The metal layer includes a plurality of portions at least partially discontinuous with each other,
The coverage of the substrate with the metal layer is 75% or more and less than 100%,
The plurality of portions have an average particle size of 30 nm or more and less than 100 nm.
<1.基本構成>
 図1に、本発明の一実施形態による電磁波透過性金属光沢物品(以下、「金属光沢物品」という。)1の概略断面図を示し、図3に、本発明の一実施形態による金属光沢物品1の表面の電子顕微鏡写真(SEM画像)を示す。また、図8に、本発明の一実施形態における島状構造の金属層11の断面図の透過型電子顕微鏡写真(TEM画像)を示す。
<1. Basic configuration>
FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article (hereinafter referred to as “metallic luster article”) 1 according to an embodiment of the present invention, and FIG. 3 shows a metallic luster article according to an embodiment of the present invention. 1 shows an electron micrograph (SEM image) of the surface of No. 1; FIG. 8 shows a transmission electron micrograph (TEM image) of a cross-sectional view of the island-shaped metal layer 11 in one embodiment of the present invention.
 金属光沢物品1は、基体10と、基体10の上に形成された、金属層12を含む。 The metallic luster article 1 includes a base 10 and a metal layer 12 formed on the base 10.
 金属層12は基体10の上に形成される。金属層12は複数の部分12aを含む。金属層12におけるこれらの複数の部分12aは、少なくとも一部において互いに不連続の状態、言い換えれば、少なくとも一部において隙間12bによって隔てられる。隙間12bによって隔てられるため、金属光沢物品のシート抵抗は大きくなり、電波との相互作用が低下するため、電波を透過させることができる。これらの各複数の部分12aは金属を蒸着、スパッタ等することによって形成されたスパッタ粒子の集合体であってもよい。尚、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、シート抵抗が大きくなり、所望とする電磁波透過性が得られることになる。すなわち、不連続の状態で形成された金属層12によれば、十分な光輝性が得られやすく、電磁波透過性を確保することもできる。不連続の形態は、特に限定されるものではなく、例えば、島状構造、クラック構造等が含まれる。ここで「島状構造」とは、図3に示されているように、金属粒子同士が各々独立しており、それらの粒子が、互いに僅かに離間し又は一部接触した状態で敷き詰められてなる構造である。 The metal layer 12 is formed on the substrate 10. The metal layer 12 includes a plurality of portions 12a. The plurality of portions 12a in the metal layer 12 are discontinuous from each other at least in part, in other words, at least partially separated by the gap 12b. Since the sheet is separated by the gap 12b, the sheet resistance of the metallic luster article is increased and the interaction with the radio wave is reduced, so that the radio wave can be transmitted. Each of the plurality of portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering, or the like of metal. Note that the “discontinuous state” in the present specification means a state in which they are separated from each other by the gap 12b, and as a result, are electrically insulated from each other. By being electrically insulated, the sheet resistance increases, and the desired electromagnetic wave permeability can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient glitter can be easily obtained, and electromagnetic wave permeability can be secured. A discontinuous form is not specifically limited, For example, an island-like structure, a crack structure, etc. are contained. Here, the “island-like structure” means that metal particles are independent from each other as shown in FIG. 3, and the particles are spread in a state of being slightly separated or partially in contact with each other. It is the structure which becomes.
 クラック構造とは、金属薄膜がクラックにより分断された構造である。
 クラック構造の金属層12は、例えば基材フィルム上に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基材フィルムと金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。
The crack structure is a structure in which a metal thin film is divided by a crack.
The metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to cause a crack in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability between the base film and the metal thin film layer. .
 上述のとおり金属層12が不連続となる態様は特に限定されないが、生産性の観点からは島状構造とすることが好ましい。 As described above, the aspect in which the metal layer 12 is discontinuous is not particularly limited, but an island structure is preferable from the viewpoint of productivity.
 本発明の一態様において、金属光沢物品の20°光沢度は、900以上である必要があり、1100以上であることが好ましく、1300以上であることがさらに好ましい。900より小さいと、光輝性に劣り金属外観が得られないという問題がある。
 金属光沢物品の20°光沢度はJIS Z 8741(1997年版)に準拠して測定することができる。具体的には、PG-IIM(20°グロス測定、日本電色工業株式会社製)を用いて測定を行うことができる。なお、20°光沢度の測定は金属層側の面に対して行うものである。
In one embodiment of the present invention, the 20 ° glossiness of the metallic luster article needs to be 900 or more, preferably 1100 or more, and more preferably 1300 or more. If it is less than 900, there is a problem that the metallic appearance cannot be obtained due to inferior luster.
The 20 ° glossiness of a metallic luster article can be measured according to JIS Z 8741 (1997 edition). Specifically, the measurement can be performed using PG-IIM (20 ° gloss measurement, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, the measurement of 20 degree glossiness is performed with respect to the surface by the side of a metal layer.
 金属光沢物品1の電磁波透過性は、例えば電波透過減衰量により評価することができる。
 なお、マイクロ波帯域(5GHz)における電波透過減衰量とミリ波レーダーの周波数帯域(76~80GHz)における電波透過減衰量との間には相関性があり、比較的近い値を示すことから、マイクロ波帯域における電磁波透過性に優れる金属光沢物品は、ミリ波レーダーの周波数帯域における電磁波透過性にも優れる。
 マイクロ波帯域における電磁波透過性は、10[-dB]以下であることが好ましく、5[-dB]以下であるのがより好ましく、2[-dB]以下であることが更に好ましい。10[-dB]より大きいと、90%以上の電波が遮断されるという問題がある。
The electromagnetic wave permeability of the metallic luster article 1 can be evaluated by, for example, the amount of radio wave transmission attenuation.
Note that there is a correlation between the radio wave transmission attenuation in the microwave band (5 GHz) and the radio wave transmission attenuation in the millimeter wave radar frequency band (76 to 80 GHz). A metallic luster article excellent in electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
The electromagnetic wave permeability in the microwave band is preferably 10 [-dB] or less, more preferably 5 [-dB] or less, and still more preferably 2 [-dB] or less. If it is larger than 10 [-dB], there is a problem that 90% or more of radio waves are blocked.
 金属光沢物品1のシート抵抗も電磁波透過性と相関を有する。
 金属光沢物品1のシート抵抗は100Ω/□以上であるのが好ましく、この場合マイクロ波帯域(5GHz)における電波透過減衰量は、10~0.01[-dB]程度となる。
 金属光沢物品のシート抵抗は200Ω/□以上であることがより好ましく、600Ω/□以上であることが更に好ましい。
 また、特に好ましくは、1000Ω/□以上である。
 金属光沢物品1のシート抵抗は、JIS-Z2316-1:2014に従って渦電流測定法により測定することができる。
The sheet resistance of the metallic luster article 1 also has a correlation with the electromagnetic wave permeability.
The sheet resistance of the metallic luster article 1 is preferably 100Ω / □ or more. In this case, the radio wave transmission attenuation in the microwave band (5 GHz) is about 10 to 0.01 [−dB].
The sheet resistance of the metallic luster article is more preferably 200Ω / □ or more, and further preferably 600Ω / □ or more.
Particularly preferably, it is 1000Ω / □ or more.
The sheet resistance of the metallic luster article 1 can be measured by an eddy current measurement method according to JIS-Z2316-1: 2014.
 金属光沢物品1の電波透過減衰量及びシート抵抗は、金属層12の材質や厚さ等により影響を受ける。
 また、金属光沢物品1が酸化インジウム含有層11を備える場合には酸化インジウム含有層11の材質や厚さ等によっても影響を受ける。
The radio wave transmission attenuation amount and sheet resistance of the metallic luster article 1 are affected by the material and thickness of the metal layer 12.
In addition, when the metallic luster article 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
<2.基体>
 基体10としては、電磁波透過性の観点から、樹脂、ガラス、セラミックス等が挙げられる。
 基体10は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであってもよい。
 より具体的には、基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる透明フィルムを用いることができる。
<2. Base>
Examples of the substrate 10 include resins, glasses, and ceramics from the viewpoint of electromagnetic wave transmission.
The substrate 10 may be any of a substrate film, a resin molded substrate, a glass substrate, or an article to which a metallic luster is to be imparted.
More specifically, as the base film, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene A transparent film made of a homopolymer or copolymer such as polypropylene (PP), polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), or ABS can be used.
 これらの部材によれば、光輝性や電磁波透過性に影響を与えることもない。但し、酸化インジウム含有層11や金属層12を後に形成する観点から、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。 These members do not affect the glitter and electromagnetic wave transmission. However, from the viewpoint of forming the indium oxide-containing layer 11 and the metal layer 12 later, it is preferably one that can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferred. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because of a good balance between heat resistance and cost.
 基材フィルムは、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。酸化インジウム含有層11や金属層12との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。
 基体10が基材フィルムの場合、金属層12は基材フィルム上の少なくとも一部に設ければよく、基材フィルムの片面のみに設けてもよく、両面に設けてもよい。
The base film may be a single layer film or a laminated film. From the viewpoint of ease of processing, the thickness is preferably about 6 μm to 250 μm, for example. In order to strengthen the adhesion to the indium oxide-containing layer 11 and the metal layer 12, plasma treatment, easy adhesion treatment, or the like may be performed.
When the base 10 is a base film, the metal layer 12 may be provided on at least a part of the base film, may be provided only on one side of the base film, or may be provided on both sides.
 ここで、基材フィルムは、その表面上に金属層12を形成することができる対象(基体10)の一例にすぎない点に注意すべきである。基体10には、上記のとおり基材フィルムの他、樹脂成型物基材、ガラス基材、金属光沢を付与すべき物品それ自体も含まれる。樹脂成型基材、及び金属光沢を付与すべき物品としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 金属層12は、これら全ての基体上に形成することができ、基体の表面の一部に形成してもよく、基体の表面の全てに形成してもよい。この場合、金属層12を付与すべき基体10は、上記の基材フィルムと同様の材質、条件を満たしていることが好ましい。
Here, it should be noted that the base film is only an example of an object (substrate 10) on which the metal layer 12 can be formed. In addition to the base film as described above, the base 10 includes a resin molded product base, a glass base, and an article itself to which a metallic luster is to be imparted. Examples of the resin molding base material and the article to be provided with metallic luster include, for example, vehicle structural parts, vehicle-mounted products, electronic equipment casings, home appliance casings, structural parts, mechanical parts, and various automobiles. Examples include parts, electronic device parts, furniture, kitchenware, and other household goods, medical equipment, building material parts, other structural parts, exterior parts, and the like.
The metal layer 12 can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate. In this case, the substrate 10 to which the metal layer 12 is to be applied preferably satisfies the same materials and conditions as those of the base film.
<3.酸化インジウム含有層>
 また、一実施形態に係る金属光沢物品1は、図2に示されるように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えてもよい。酸化インジウム含有層11は、基体10の面に直接設けられていてもよいし、基体10の面に設けられた保護膜等を介して間接的に設けられてもよい。酸化インジウム含有層11は、金属光沢を付与すべき基体10の面に連続状態で、言い換えれば、隙間なく、設けられるのが好ましい。連続状態で設けられることにより、酸化インジウム含有層11、ひいては、金属層12や金属光沢物品1の平滑性や耐食性を向上させることができ、また、酸化インジウム含有層11を面内ばらつきなく成膜することも容易となる。
<3. Indium oxide-containing layer>
Moreover, the metallic luster article 1 which concerns on one Embodiment may further be provided with the indium oxide containing layer 11 between the base | substrate 10 and the metal layer 12, as FIG. 2 shows. The indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10 or indirectly through a protective film or the like provided on the surface of the substrate 10. The indium oxide-containing layer 11 is preferably provided in a continuous state on the surface of the substrate 10 to be provided with a metallic luster, in other words, without a gap. By providing in a continuous state, the smoothness and corrosion resistance of the indium oxide-containing layer 11, and thus the metal layer 12 and the metallic luster article 1 can be improved, and the indium oxide-containing layer 11 is formed without in-plane variation. It is also easy to do.
 このように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えること、すなわち、基体10の上に酸化インジウム層11を形成し、その上に金属層12を形成することによれば、金属層12を不連続の状態で形成しやすくなるため好ましい。そのメカニズムの詳細は必ずしも明らかではないが、金属の蒸着やスパッタによるスパッタ粒子が基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼし、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられる。そして、基体上に酸化インジウム含有層を設けることにより、その表面上の金属粒子の表面拡散性が促進されて、金属層を不連続の状態で成長させやすくなると考えられる。 As described above, the indium oxide-containing layer 11 is further provided between the base 10 and the metal layer 12, that is, the indium oxide layer 11 is formed on the base 10 and the metal layer 12 is formed thereon. Accordingly, it is preferable because the metal layer 12 is easily formed in a discontinuous state. The details of the mechanism are not always clear, but when sputtered particles formed by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film. It is considered that the discontinuous structure is more easily formed when the temperature of the metal layer is higher, the wettability of the metal layer to the substrate is lower, and the melting point of the material of the metal layer is lower. By providing the indium oxide-containing layer on the substrate, it is considered that the surface diffusibility of the metal particles on the surface is promoted and the metal layer can be easily grown in a discontinuous state.
 酸化インジウム含有層11として、酸化インジウム(In)そのものを使用することもできるし、例えば、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような金属含有物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。
 これらの酸化インジウム含有層11を用いることにより、基体の面に沿って連続状態の膜を形成することもでき、また、この場合には、酸化インジウム含有層の上に積層される金属層を、例えば、島状の不連続構造としやすくなるため、好ましい。更に、後述するように、この場合には、金属層に、クロム(Cr)又はインジウム(In)だけでなく、通常は不連続構造になり難く、本用途には適用が難しかった、アルミニウム等の様々な金属を含めやすくなる。
As the indium oxide-containing layer 11, indium oxide (In 2 O 3 ) itself can be used. For example, a metal-containing material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used. You can also However, ITO or IZO containing the second metal is more preferable in terms of high discharge stability in the sputtering process.
By using these indium oxide-containing layers 11, a film in a continuous state can be formed along the surface of the substrate. In this case, a metal layer laminated on the indium oxide-containing layer is For example, it is preferable because an island-like discontinuous structure is easily obtained. Furthermore, as will be described later, in this case, not only chromium (Cr) or indium (In) but also a discontinuous structure is usually difficult to be applied to the metal layer. It becomes easy to include various metals.
 ITOに含まれる酸化錫(SnО)の質量比率である含有率(含有率=(SnO/(In+SnO))×100)は特に限定されるものではないが、例えば、2.5wt%~30wt%、より好ましくは、3wt%~10wt%である。また、IZOに含まれる酸化亜鉛(ZnO)の質量比率である含有率(含有率=(ZnO/(In+ZnO))×100)は、例えば、2wt%~20wt%である。 The content ratio (content ratio = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100) which is a mass ratio of tin oxide (SnO 2 ) contained in ITO is not particularly limited. 0.5 wt% to 30 wt%, more preferably 3 wt% to 10 wt%. The content ratio (content ratio = (ZnO / (In 2 O 3 + ZnO)) × 100), which is a mass ratio of zinc oxide (ZnO) contained in IZO, is, for example, 2 wt% to 20 wt%.
 酸化インジウム含有層11の厚さは、シート抵抗や電磁波透過性、生産性の観点から、通常1000nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、積層される金属層12を不連続状態としやすくするためには、1nm以上であることが好ましく、確実に不連続状態にしやすくするためには、2nm以上であることがより好ましく、5nm以上であることが更に好ましい。 The thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less, from the viewpoint of sheet resistance, electromagnetic wave permeability, and productivity. On the other hand, in order to facilitate the discontinuous state of the metal layer 12 to be laminated, the thickness is preferably 1 nm or more, and in order to easily facilitate the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. More preferably.
<4.金属層>
 金属層12は基体上に形成され、少なくとも一部において互いに不連続の状態にある複数の部分12aを含み、複数の部分12aの平均粒径が30nm以上100nm未満である。
<4. Metal layer>
The metal layer 12 is formed on the substrate and includes a plurality of portions 12a that are discontinuous with each other at least partially. The average particle size of the plurality of portions 12a is not less than 30 nm and less than 100 nm.
 ここで、複数の部分12aの平均粒径とは、複数の部分12aの円相当径の平均値を意味する。複数の部分12aの円相当径とは、複数の部分12aの面積に相当する真円の直径のことである。複数の部分12aの平均粒径は、実施例の欄に記載する方法で測定することができる。
 上記の金属層の薄膜化と高い光輝性を達成するために、本発明においては複数の部分12aの平均粒径を30nm以上100nm未満とする。複数の部分12aの平均粒径は40nm以上であることが好ましく、50nm以上であることがより好ましく、60nm以上であることがさらに好ましい。また、99nm以下であることが好ましく、98nm以下であることがより好ましく、95nm以下であることがさらに好ましい。
Here, the average particle diameter of the plurality of portions 12a means the average value of the equivalent circle diameters of the plurality of portions 12a. The equivalent circle diameter of the plurality of portions 12a is a diameter of a perfect circle corresponding to the area of the plurality of portions 12a. The average particle diameter of the plurality of portions 12a can be measured by the method described in the column of Examples.
In order to achieve the thinning of the metal layer and high glitter, the average particle size of the plurality of portions 12a is set to 30 nm or more and less than 100 nm in the present invention. The average particle diameter of the plurality of portions 12a is preferably 40 nm or more, more preferably 50 nm or more, and further preferably 60 nm or more. Further, it is preferably 99 nm or less, more preferably 98 nm or less, and further preferably 95 nm or less.
 基体の金属層12による被覆率とは、金属層12を設けた領域における基体の表面積に対する複数の部分12aの総面積の占める割合である。
 基体の金属層12による被覆率は、実施例の欄に記載する方法で測定することができる。
 上記の金属層の薄膜化と高い光輝性を達成するために、本発明の一態様においては基体の金属層12による被覆率を75%以上100%未満とする。
 基体の金属層12による被覆率は80%以上であることが好ましく、82%以上であることがより好ましく、84%以上であることがさらに好ましく、86%以上であることがよりさらに好ましい。また、98%以下であることが好ましく、96%以下であることがより好ましく、94%以下であることがさらに好ましい。
The coverage of the base with the metal layer 12 is the ratio of the total area of the plurality of portions 12a to the surface area of the base in the region where the metal layer 12 is provided.
The coverage of the substrate with the metal layer 12 can be measured by the method described in the column of Examples.
In order to achieve the above-described thinning of the metal layer and high glitter, in one embodiment of the present invention, the coverage of the base with the metal layer 12 is 75% or more and less than 100%.
The coverage of the substrate with the metal layer 12 is preferably 80% or more, more preferably 82% or more, still more preferably 84% or more, and still more preferably 86% or more. Further, it is preferably 98% or less, more preferably 96% or less, and further preferably 94% or less.
 金属層12の複数の部分12aの平均粒径は、スパッタターゲットの印加電力を調整することにより上記の範囲とすることができる。金属層が含む互いに不連続の状態にある複数の部分12aの平均粒径を上記の範囲とすることにより、高い電磁波透過性を維持したまま、光輝性が向上できる。これは、複数の部分12aの平均粒径を上記の範囲とすることにより、薄膜かつ高被覆率が両立でき、それにより拡散反射が抑制され可視光領域で正反射し鏡面反射が増大するためである。 The average particle diameter of the plurality of portions 12a of the metal layer 12 can be set to the above range by adjusting the power applied to the sputtering target. By setting the average particle diameter of the plurality of portions 12a included in the metal layer in the discontinuous state within the above range, the glitter can be improved while maintaining high electromagnetic wave permeability. This is because by setting the average particle diameter of the plurality of portions 12a within the above range, both a thin film and a high coverage can be achieved, thereby suppressing diffuse reflection and regular reflection in the visible light region, thereby increasing specular reflection. is there.
 従来、結晶粒は製膜量の増加に伴い、隣りあう結晶粒同士が混ざり合い、一つの結晶粒となり成長が促進し、膜厚が増加していた。そのため、膜厚の増加に伴い、被覆率も増加し複数の部分12aの平均粒径が大きくなり、連続膜へと変化してしまうことにより、電磁波透過性が低下していた。そこで、複数の部分12aの平均粒径を上記の範囲とすることにより、隣り合う結晶粒同士の隙間12bを減らすことに成功した。本手法を用いることにより金属層の複数の部分12aの平均粒径と光沢度を特定の範囲に制御可能となり、その結果、薄膜であっても高反射率が得られ、高い電磁波透過性と高い光輝性の両立を実現できた。 Conventionally, with the increase in the amount of film formed, crystal grains adjacent to each other are mixed together to form a single crystal grain, which promotes growth and increases the film thickness. Therefore, as the film thickness increases, the coverage increases, the average particle size of the plurality of portions 12a increases, and the electromagnetic wave permeability decreases due to the change to a continuous film. Therefore, by setting the average grain size of the plurality of portions 12a within the above range, the gap 12b between adjacent crystal grains was successfully reduced. By using this method, the average particle diameter and glossiness of the plurality of portions 12a of the metal layer can be controlled within a specific range. As a result, high reflectivity can be obtained even for a thin film, and high electromagnetic wave permeability and high It was possible to achieve both brilliancy.
 また、金属層12が基体上で連続状態である場合、十分な光輝性は得られるものの、シート抵抗は非常に小さくなり、従って、電磁波透過性を確保することはできない。
 基体上で、金属層12が不連続の状態で形成され、その被覆率を、75%以上100%未満とし、複数の部分12aの平均粒径を30nm以上100nm未満とすることにより、電磁波透過性に優れ、金属層の薄膜化と高い光輝性を両立する電磁波透過性金属光沢物品とすることができる。
Further, when the metal layer 12 is in a continuous state on the substrate, sufficient glitter can be obtained, but the sheet resistance becomes very small, and therefore electromagnetic wave transmission cannot be ensured.
By forming the metal layer 12 in a discontinuous state on the substrate, the coverage is 75% or more and less than 100%, and the average particle size of the plurality of portions 12a is 30 nm or more and less than 100 nm. It is possible to obtain an electromagnetic wave-transmitting metallic luster article that is excellent in both the thickness of the metal layer and high luster.
 金属層12が基体上で不連続状態となるメカニズムの詳細は必ずしも明らかではないが、おおよそ、次のようなものであると推測される。即ち、金属層12の薄膜形成プロセスにおいて、不連続構造の形成しやすさは、金属層12が付与される基体上での表面拡散と関連性があり、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすい、というものである。従って、以下の実施例で特に使用したアルミニウム(Al)以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。 The details of the mechanism by which the metal layer 12 becomes discontinuous on the substrate are not necessarily clear, but are estimated to be as follows. That is, in the thin film formation process of the metal layer 12, the ease of forming the discontinuous structure is related to the surface diffusion on the substrate to which the metal layer 12 is applied, the temperature of the substrate is high, and the metal layer with respect to the substrate The lower the melting point of the material of the metal layer, the easier it is to form a discontinuous structure. Therefore, for metals other than aluminum (Al) used in particular in the following examples, for metals with relatively low melting points such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag), It is considered that a discontinuous structure can be formed by a similar method.
 金属層12は、十分な光輝性を発揮し得ることは勿論、融点が比較的低いものであることが望ましい。金属層12は、スパッタリングを用いた薄膜成長によって形成するのが好ましいためである。このような理由から、金属層12としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の光輝性や安定性、価格等の理由からAlおよびそれらの合金が好ましい。また、アルミニウム合金を用いる場合には、アルミニウム含有量を50質量%以上とすることが好ましい。 It is desirable that the metal layer 12 has a relatively low melting point as well as sufficient glitter. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or less is suitable as the metal layer 12. For example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag) It is preferable that at least one kind of metal selected from the above and an alloy containing the metal as a main component are included. In particular, Al and alloys thereof are preferable for the reasons such as the luster and stability of the substance and the price. Moreover, when using an aluminum alloy, it is preferable that aluminum content shall be 50 mass% or more.
 金属層12の厚さは、十分な光輝性を発揮するように、通常10nm以上が好ましく、一方、生産性の観点から、通常100nm以下が好ましい。例えば、15nm~100nmが好ましく、15nm~80nmがより好ましく、15nm~70nmがさらに好ましく、15nm~60nmがよりさらに好ましく、15nm~50nmが特に好ましく、15nm~40nmが最も好ましい。 The thickness of the metal layer 12 is usually preferably 10 nm or more so as to exhibit sufficient glitter, and from the viewpoint of productivity, it is usually preferably 100 nm or less. For example, 15 nm to 100 nm is preferable, 15 nm to 80 nm is more preferable, 15 nm to 70 nm is further preferable, 15 nm to 60 nm is still more preferable, 15 nm to 50 nm is particularly preferable, and 15 nm to 40 nm is most preferable.
 また、同様の理由から、金属層の厚さと酸化インジウム含有層の厚さとの比(金属層の厚さ/酸化インジウム含有層の厚さ)は、0.1~100の範囲が好ましく、0.3~35の範囲がより好ましい。 For the same reason, the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer (the thickness of the metal layer / the thickness of the indium oxide-containing layer) is preferably in the range of 0.1 to 100. A range of 3 to 35 is more preferable.
 本実施形態の金属光沢物品には、上述の金属層、及び酸化インジウム含有層の他に、用途に応じてその他の層を備えてもよい。
 その他の層としては色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐湿性や耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、バリア層(腐食防止層)、易接着層、ハードコート層、反射防止層、光取出し層、アンチグレア層等が挙げられる。
In addition to the above-described metal layer and indium oxide-containing layer, the metallic luster article of the present embodiment may include other layers depending on the application.
Other layers include an optical adjustment layer (color adjustment layer) such as a highly refractive material for adjusting the appearance such as color, and a protective layer (abrasion resistance) for improving durability such as moisture resistance and scratch resistance. Property layer), barrier layer (corrosion prevention layer), easy adhesion layer, hard coat layer, antireflection layer, light extraction layer, antiglare layer and the like.
<5.金属光沢物品の製造>
 金属光沢物品1の製造方法の一例について、説明する。特に説明しないが、基材フィルム以外の基体を用いた場合についても同様の方法で製造することができる。
<5. Production of metallic luster articles>
An example of the manufacturing method of the metallic luster article 1 will be described. Although not specifically described, the same method can be used when a substrate other than the substrate film is used.
 基体10上に金属層12を形成するにあたっては、例えば、真空蒸着、スパッタリング等の方法を用いることができる。 In forming the metal layer 12 on the substrate 10, for example, a method such as vacuum deposition or sputtering can be used.
 また、基体10上に酸化インジウム含有層11を形成する場合には、金属層12の形成に先立ち、酸化インジウム含有層11を、真空蒸着、スパッタリング、イオンプレーティング等によって形成する。但し、大面積でも厚さを厳密に制御できる点から、スパッタリングが好ましい。 Further, when the indium oxide-containing layer 11 is formed on the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating or the like prior to the formation of the metal layer 12. However, sputtering is preferable because the thickness can be strictly controlled even in a large area.
 尚、基体10と金属層12の間に酸化インジウム含有層11を設ける場合、酸化インジウム含有層11と金属層12の間には、他の層を介在させずに直接接触させるのが好ましい。 In addition, when providing the indium oxide containing layer 11 between the base | substrate 10 and the metal layer 12, it is preferable to contact directly between an indium oxide containing layer 11 and the metal layer 12 without interposing another layer.
<6.金属薄膜>
 本実施形態に係る金属薄膜は、基体10上に形成された金属薄膜であって、前記金属薄膜は、15nm~100nmの厚さを有し、少なくとも一部において互いに不連続の状態にある複数の島状の部分を含み、20°光沢度が900以上であり、前記複数の島状部分の平均粒径が30nm以上100nm未満である。
 上述の金属層12を、厚さ15nm~100nmに形成し、これのみを金属薄膜として使用することもできる。例えば、基材フィルムのような基体10に積層された酸化インジウム含有層11の上に、スパッタリングで金属層12を形成して、金属薄膜付きのフィルムを得る。また、これとは別に、接着剤を基材の上に塗工して接着剤層付きの基材を作製する。金属薄膜付きのフィルムと接着剤層付きの基材を、金属層12と接着剤層が接するように貼り合せ、十分に密着させた後にフィルムと基材を剥離させることで、金属薄膜付きのフィルムの最表面に存在した金属層(金属薄膜)12を接着剤層付きの基材の最表面に転写させることができる。
 基体、金属層、光沢度、被覆率、複数の部分の平均粒径としては、上述の説明をそのまま援用し得る。
<6. Metal thin film>
The metal thin film according to the present embodiment is a metal thin film formed on the substrate 10, and the metal thin film has a thickness of 15 nm to 100 nm, and is a plurality of discontinuous states at least partially. Including the island-shaped portion, the 20 ° glossiness is 900 or more, and the average particle size of the plurality of island-shaped portions is 30 nm or more and less than 100 nm.
The metal layer 12 described above can be formed to a thickness of 15 nm to 100 nm, and only this can be used as a metal thin film. For example, a metal layer 12 is formed by sputtering on an indium oxide-containing layer 11 laminated on a substrate 10 such as a substrate film to obtain a film with a metal thin film. Separately from this, an adhesive is applied onto the substrate to produce a substrate with an adhesive layer. A film with a metal thin film is formed by laminating a film with a metal thin film and a substrate with an adhesive layer so that the metal layer 12 and the adhesive layer are in contact with each other and sufficiently adhering them. The metal layer (metal thin film) 12 present on the outermost surface of the substrate can be transferred to the outermost surface of the substrate with the adhesive layer.
The above description can be used as it is for the substrate, metal layer, gloss, coverage, and average particle size of a plurality of portions.
<7.金属光沢物品及び金属薄膜の用途>
 本実施形態の金属光沢物品及び金属薄膜は、電磁波透過性を有することから電磁波を送受信する装置や物品及びその部品等に使用することが好ましい。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。
 電子機器および家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
<7. Use of metallic luster articles and metal thin films>
Since the metallic luster article and the metal thin film of the present embodiment have electromagnetic wave permeability, it is preferable to use the metallic luster article and the metal thin film for an apparatus and an article that transmit and receive electromagnetic waves, and parts thereof. For example, use for household goods such as structural parts for vehicles, on-vehicle equipment, housing for electronic equipment, housing for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
More specifically, in the case of vehicles, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels ECU boxes, electrical components, engine peripheral components, drive system / gear peripheral components, intake / exhaust system components, cooling system components, and the like.
More specifically, electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, clocks, ventilation fans, projectors, speakers, and other home appliances, personal computers, mobile phones Electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。金属光沢物品1に関して各種試料を準備し、電波透過減衰量(-dB)、20°光沢度を評価した。なお、基体10としては、基材フィルムを用いた。
 電波透過減衰量は、電磁波透過性に関する評価である。電波透過減衰量の値は小さい方が好ましい。
 評価方法の詳細は以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Various samples were prepared for the metallic luster article 1 and evaluated for radio wave transmission attenuation (−dB) and 20 ° glossiness. Note that a base film was used as the substrate 10.
The radio wave transmission attenuation is an evaluation regarding electromagnetic wave transmission. A smaller radio wave transmission attenuation value is preferable.
Details of the evaluation method are as follows.
(1)膜厚の評価方法
 まず、金属光沢物品から、図7に示すように一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける、図8に示すような断面画像(透過型電子顕微鏡写真(TEM画像))を測定し、得られたTEM画像から、5個以上の金属の部分12aが含まれる視野角領域を抽出した。
 5箇所の測定箇所それぞれにおいて抽出された視野角領域における金属層の総断面積を視野角領域の横幅で割ったものを各視野角領域の金属層の膜厚とし、5箇所の測定箇所それぞれにおける、各視野角領域の金属層の膜厚の平均値を金属層の膜厚(Al膜厚(nm))とした。
(1) Evaluation method of film thickness First, as shown in FIG. 7, a square region 3 having a side of 5 cm is appropriately extracted from a metallic luster article, and center lines A and B of the vertical and horizontal sides of the square region 3 are respectively extracted. A total of five points “a” to “e” obtained by dividing each of these into four equal parts were selected as measurement points.
Next, a cross-sectional image (transmission electron micrograph (TEM image)) as shown in FIG. 8 is measured at each selected measurement location, and five or more metal portions 12a are included from the obtained TEM image. The viewing angle region was extracted.
The total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement positions divided by the lateral width of the viewing angle region is defined as the thickness of the metal layer in each viewing angle region. The average value of the metal layer thickness in each viewing angle region was defined as the metal layer thickness (Al film thickness (nm)).
(2)金属層の被覆率(%)
 走査型電子顕微鏡(SEM)を用いて、金属光沢物品の金属層の0.94μm×1.25μmの領域の10万倍のSEM画像を得た。得られたSEM画像を2値化処理し、面積比率を計算して基体の金属層による被覆率を算出した。
(2) Metal layer coverage (%)
A scanning electron microscope (SEM) was used to obtain a 100,000 times SEM image of a 0.94 μm × 1.25 μm region of the metal layer of the metallic luster article. The obtained SEM image was binarized and the area ratio was calculated to calculate the coverage with the metal layer of the substrate.
(3)平均粒径
 走査型電子顕微鏡(SEM)を用いて、金属光沢物品の金属層の1.92μm×2.56μmの領域の5万倍のSEM画像を得た。得られたSEM画像から各部分の面積Vを求め、各部分の粒径RをR=2×(V/π)0.5より求め、その平均値を複数の部分の平均粒径(nm)とした。なお、平均値を求める際にはRが0.01μm以下であるものはノイズとして無視した。
(3) Average particle diameter Using a scanning electron microscope (SEM), an SEM image of 50,000 times the 1.92 μm × 2.56 μm region of the metal layer of the metallic luster article was obtained. The area V of each part is obtained from the obtained SEM image, the particle size R of each part is obtained from R = 2 × (V / π) 0.5 , and the average value is the average particle diameter (nm) of a plurality of parts. It was. Note that when the average value was obtained, those having R of 0.01 μm or less were ignored as noise.
(4)電波透過減衰量
 5GHzにおける電波透過減衰量を、方形導波管測定評価治具WR-187でサンプルを挟み、アンリツ社製スペクトルアナライザMS4644Bを用いて測定した。
(4) Radio wave transmission attenuation The radio wave transmission attenuation at 5 GHz was measured using a spectrum analyzer MS4644B manufactured by Anritsu Co., Ltd. with a sample sandwiched between rectangular waveguide measurement evaluation jigs WR-187.
(5)シート抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に準拠し、渦電流測定法により金属層と酸化インジウム含有層の積層体としてのシート抵抗を測定した。このシート抵抗は、100Ω/□以上であることが好ましく、200Ω/□以上であるのがより好ましく、更に600Ω/□以上であることが更に好ましい。100Ω/□より小さいと、充分な電磁波透過性が得られないという問題がある。
 また抵抗値が高く、NC-80MAPの測定上限を超えてしまう場合は、三菱ケミカル社製ハイレスタMCP-HT450を用いて測定した。
(5) Sheet resistance The sheet resistance as a laminate of the metal layer and the indium oxide-containing layer was measured by an eddy current measurement method using a non-contact type resistance measuring device NC-80MAP manufactured by Napson, in accordance with JIS-Z2316. The sheet resistance is preferably 100Ω / □ or more, more preferably 200Ω / □ or more, and further preferably 600Ω / □ or more. If it is less than 100Ω / □, there is a problem that sufficient electromagnetic wave permeability cannot be obtained.
In addition, when the resistance value was high and exceeded the measurement upper limit of NC-80MAP, the measurement was performed using Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Corporation.
(6)20°光沢度
 金属光沢物品の20°光沢度をJIS Z 8741(1997年版)に準拠して測定した。具体的には、PG-IIM(20°グロス測定、日本電色工業株式会社製)を用いて測定を行った。なお、20°光沢度の測定は金属層側の面に対して行った。
(6) 20 ° Glossiness The 20 ° glossiness of metallic glossy articles was measured according to JIS Z 8741 (1997 edition). Specifically, the measurement was performed using PG-IIM (20 ° gloss measurement, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, the measurement of 20 degree glossiness was performed with respect to the surface by the side of a metal layer.
[実施例1]
 基材フィルムとして、三菱樹脂社製PETフィルム(厚さ125μm、サイズ340mm幅)を用いた。
 先ず、DCマグネトロンスパッタリングを用いて、基材フィルムの面に沿って、5nmの厚さのITO層をその上に直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は10wt%である。
[Example 1]
A PET film (thickness 125 μm, size 340 mm width) manufactured by Mitsubishi Plastics was used as the base film.
First, an ITO layer having a thickness of 5 nm was directly formed on the surface of the base film using DC magnetron sputtering. The temperature of the base film when forming the ITO layer was set to 130 ° C. The content of tin oxide (SnO 2 ) contained in ITO (content rate = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100) is 10 wt%.
 次いで、交流スパッタリング(AC:40kHz、Alターゲットの印加電力3.1W/cm)を用いて、ITO層の上にアルミニウム(Al)層を形成し、金属光沢物品(金属薄膜)を得た。得られたアルミニウム層は不連続層であった。Al層を形成する際の基材フィルムの温度は、130℃に設定した。 Next, an aluminum (Al) layer was formed on the ITO layer using AC sputtering (AC: 40 kHz, Al target applied power: 3.1 W / cm 2 ) to obtain a metallic luster article (metal thin film). The obtained aluminum layer was a discontinuous layer. The temperature of the base film when forming the Al layer was set to 130 ° C.
[実施例2~5]
 交流スパッタリング(AC:40kHz)を用いて、ITO層の上に、アルミニウム(Al)層を形成する時間を変更した以外は実施例1と同様にして、実施例2~5の金属光沢部材(金属薄膜)を得た。
[Examples 2 to 5]
The metallic glossy members (metals) of Examples 2 to 5 were used in the same manner as in Example 1 except that the time for forming the aluminum (Al) layer on the ITO layer was changed using AC sputtering (AC: 40 kHz). Thin film).
[比較例1]
 実施例1におけるAlターゲットの印加電力を9.3W/cmに変更した以外は実施例1と同様にして比較例1の金属光沢物品(金属薄膜)を得た。
[Comparative Example 1]
A metallic luster article (metal thin film) of Comparative Example 1 was obtained in the same manner as in Example 1 except that the applied power of the Al target in Example 1 was changed to 9.3 W / cm 2 .
[比較例2~5]
 交流スパッタリング(AC:40kHz)を用いて、ITO層の上に、アルミニウム(Al)層を形成する時間を変更した以外は比較例1と同様にして、比較例2~5の金属光沢部材(金属薄膜)を得た。
[Comparative Examples 2 to 5]
The metallic luster members of Comparative Examples 2 to 5 (metal) are the same as Comparative Example 1 except that the time for forming the aluminum (Al) layer on the ITO layer is changed using AC sputtering (AC: 40 kHz). Thin film).
 以下の表1に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
 図4は、実施例及び比較例の電磁波透過性金属光沢物品の基体の金属層による被覆率と光沢度の関係を示す図であり、図5は、実施例及び比較例の電磁波透過性金属光沢物品の膜厚と基体の金属層による被覆率の関係を示す図であり、図6は、実施例及び比較例の電磁波透過性金属光沢物品の結晶粒(平均粒径)と基体の金属層による被覆率の関係を示す図である。 FIG. 4 is a diagram showing the relationship between the coverage by the metal layer of the substrate of the electromagnetically transparent metallic glossy article of Examples and Comparative Examples and the glossiness, and FIG. 5 is the electromagnetically transparent metallic gloss of Examples and Comparative Examples. FIG. 6 is a diagram showing the relationship between the film thickness of the article and the coverage with the metal layer of the substrate, and FIG. 6 is based on the crystal grains (average particle size) of the electromagnetic wave permeable metallic luster articles of Examples and Comparative Examples It is a figure which shows the relationship of a coverage.
 これらの図及び表1から明らかなように、実施例1~5の金属光沢物品は、アルミニウム層に不連続な状態に形成された複数の部分12aを含むことから、その生産性、及び光沢度について良好な結果が得られ電磁波透過性に優れることが示された。また、実施例1~5の金属光沢物品は、金属層が薄膜であっても被覆率が高く、いずれも良好な光輝性を有し優れた金属調の外観を呈した。
 一方、比較例1~5の金属光沢物品は、金属層の部分の平均粒径が大きく、金属層の被覆率が小さく、光沢度が小さく光輝性に劣り金属外観に劣るものとなった。
As is apparent from these figures and Table 1, the metallic glossy articles of Examples 1 to 5 include a plurality of portions 12a formed in a discontinuous state in the aluminum layer. As a result, it was shown that excellent electromagnetic wave permeability was obtained. Further, the metallic luster articles of Examples 1 to 5 had a high coverage even when the metal layer was a thin film, and all had good glitter and an excellent metallic appearance.
On the other hand, the metallic luster articles of Comparative Examples 1 to 5 had a large average particle size in the metal layer portion, a small coverage of the metal layer, a small glossiness, inferior luster and inferior metallic appearance.
 なお、以上の実施例で特に使用したアルミニウム(Al)以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。 In addition, for metals other than aluminum (Al) used in particular in the above examples, for metals with relatively low melting points such as zinc (Zn), lead (Pb), copper (Cu), silver (Ag), It is considered that a discontinuous structure can be formed by a similar method.
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。 The present invention is not limited to the above-described embodiments, and can be modified and embodied as appropriate without departing from the spirit of the invention.
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。
なお、本出願は、2018年4月23日出願の日本特許出願(特願2018-082658)および2019年4月22日出願の日本特許出願(特願2019-080643)に基づくものであり、その内容は本出願の中に参照として援用される。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications may be made to the above-described embodiments without departing from the scope of the present invention. And substitutions can be added.
This application is based on a Japanese patent application filed on April 23, 2018 (Japanese Patent Application No. 2018-082658) and a Japanese patent application filed on April 22, 2019 (Japanese Patent Application No. 2019-080643). The contents are incorporated by reference into this application.
 本発明に係る金属光沢物品は、電磁波を送受信する装置や物品及びその部品等に使用することができる。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。 The metallic luster article according to the present invention can be used for devices and articles for transmitting and receiving electromagnetic waves, and parts thereof. For example, applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural components, mechanical parts, various automotive parts, electronic device parts, furniture, kitchenware, etc. It can also be used for various applications that require both design and electromagnetic wave transmission properties, such as medical equipment, building material parts, other structural parts and exterior parts.
1 金属光沢物品
10 基体
11 酸化インジウム含有層
12 金属層
12a 複数の部分
12b 隙間
DESCRIPTION OF SYMBOLS 1 Metal luster article 10 Base | substrate 11 Indium oxide containing layer 12 Metal layer 12a Several parts 12b Gap

Claims (12)

  1.  基体と、前記基体上に形成された金属層とを備え、20°光沢度が900以上であり、
     前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、
     前記複数の部分の平均粒径が30nm以上100nm未満である電磁波透過性金属光沢物品。
    Comprising a substrate and a metal layer formed on the substrate, the 20 ° gloss is 900 or more,
    The metal layer includes a plurality of portions at least partially discontinuous with each other,
    An electromagnetic wave transmissive metallic luster article having an average particle size of the plurality of portions of 30 nm or more and less than 100 nm.
  2.  基体と、前記基体上に形成された金属層とを備え、
     前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含み、
     前記基体の前記金属層による被覆率が、75%以上100%未満であり、
     前記複数の部分の平均粒径が30nm以上100nm未満である電磁波透過性金属光沢物品。
    A substrate and a metal layer formed on the substrate;
    The metal layer includes a plurality of portions at least partially discontinuous with each other,
    The coverage of the substrate with the metal layer is 75% or more and less than 100%,
    An electromagnetic wave transmissive metallic luster article having an average particle size of the plurality of portions of 30 nm or more and less than 100 nm.
  3.  前記基体と前記金属層の間に、酸化インジウム含有層をさらに備える請求項1又は2に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metallic glossy article according to claim 1 or 2, further comprising an indium oxide-containing layer between the substrate and the metal layer.
  4.  前記酸化インジウム含有層は連続状態で設けられている請求項3に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metal glossy article according to claim 3, wherein the indium oxide-containing layer is provided in a continuous state.
  5.  前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含む請求項3又は4のいずれか1項に記載の電磁波透過性金属光沢物品。 5. The indium oxide-containing layer according to claim 3, wherein the indium oxide-containing layer includes any one of indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). Electromagnetic wave permeable metallic luster article.
  6.  前記酸化インジウム含有層の厚さは、1nm~1000nmである請求項3~5のいずれか1項に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metallic glossy article according to any one of claims 3 to 5, wherein the indium oxide-containing layer has a thickness of 1 nm to 1000 nm.
  7.  前記金属層の厚さは、15nm~100nmである請求項1~6のいずれか1項に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metallic glossy article according to any one of claims 1 to 6, wherein the metal layer has a thickness of 15 nm to 100 nm.
  8.  前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100である請求項3~6のいずれか1項に記載の電磁波透過性金属光沢物品。 The ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer (the thickness of the metal layer / the thickness of the indium oxide-containing layer) is 0.02 to 100. 2. An electromagnetic wave transparent metallic luster article according to item 1.
  9.  シート抵抗が、100Ω/□以上である請求項1~8のいずれか1項に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metallic glossy article according to any one of claims 1 to 8, wherein the sheet resistance is 100Ω / □ or more.
  10.  前記複数の部分は島状に形成されている請求項1~9のいずれか1項に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metal glossy article according to any one of claims 1 to 9, wherein the plurality of portions are formed in an island shape.
  11.  前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかである請求項1~10のいずれか1項に記載の電磁波透過性金属光沢物品。 11. The metal layer according to claim 1, wherein the metal layer is aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof. The electromagnetically transparent metallic luster article described.
  12.  前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかである請求項1~11のいずれか1項に記載の電磁波透過性金属光沢物品。 The electromagnetically transparent metal glossy article according to any one of claims 1 to 11, wherein the substrate is any one of a base film, a resin molded article base, a glass base, and an article to be provided with a metallic luster. .
PCT/JP2019/017034 2018-04-23 2019-04-22 Electromagnetically permeable article with metallic gloss WO2019208499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207029677A KR20210005576A (en) 2018-04-23 2019-04-22 Electromagnetically transparent metallic polished articles
CN201980027688.3A CN112004666A (en) 2018-04-23 2019-04-22 Electromagnetic wave transmitting metallic luster article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018082658 2018-04-23
JP2018-082658 2018-04-23
JP2019-080643 2019-04-22
JP2019080643A JP7319081B2 (en) 2018-04-23 2019-04-22 Electromagnetic wave permeable metallic luster article

Publications (1)

Publication Number Publication Date
WO2019208499A1 true WO2019208499A1 (en) 2019-10-31

Family

ID=68295017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017034 WO2019208499A1 (en) 2018-04-23 2019-04-22 Electromagnetically permeable article with metallic gloss

Country Status (1)

Country Link
WO (1) WO2019208499A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132456A1 (en) * 2019-12-26 2021-07-01 大日本印刷株式会社 Metallic decorative sheet and metallic decorative molded body provided with same
WO2021132461A1 (en) * 2019-12-27 2021-07-01 大日本印刷株式会社 Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (en) * 1986-12-22 1994-01-26 株式会社麗光 Deposition film for packaging
JP2008221557A (en) * 2007-03-12 2008-09-25 Ulvac Japan Ltd Sheeny coat and manufacturing method of sheeny coat
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (en) * 1986-12-22 1994-01-26 株式会社麗光 Deposition film for packaging
JP2008221557A (en) * 2007-03-12 2008-09-25 Ulvac Japan Ltd Sheeny coat and manufacturing method of sheeny coat
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132456A1 (en) * 2019-12-26 2021-07-01 大日本印刷株式会社 Metallic decorative sheet and metallic decorative molded body provided with same
WO2021132461A1 (en) * 2019-12-27 2021-07-01 大日本印刷株式会社 Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Similar Documents

Publication Publication Date Title
KR102271407B1 (en) Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film
WO2019208499A1 (en) Electromagnetically permeable article with metallic gloss
US11577491B2 (en) Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor
CN112020423B (en) Electromagnetic wave-transparent metallic glossy article and metallic film
WO2021182380A1 (en) Electromagnetic-wave-transmissive laminated member and method for manufacturing same
WO2021182381A1 (en) Electromagnetic wave-transmitting metallic lustrous member and method for producing same
WO2019208504A1 (en) Electromagnetic wave transparent metallic luster article, and metal thin film
JP7319081B2 (en) Electromagnetic wave permeable metallic luster article
JP7319080B2 (en) Electromagnetic wave transparent metallic luster article and metal thin film
WO2019208494A1 (en) Electromagnetic wave transmissive metallic luster product and metal thin film
CN112004664B (en) Electromagnetic wave-transparent metallic glossy article
JP7319078B2 (en) Electromagnetic wave permeable metallic luster article
WO2019139122A1 (en) Radio wave-transmitting lustrous metal member, article using same, and method for producing same
WO2019208490A1 (en) Electromagnetic wave-permeable metal glossy article and method for manufacturing same
WO2019208488A1 (en) Electromagnetic wave transmissive metal luster article
WO2021187069A1 (en) Electromagnetic wave transmissive metallic luster member
WO2019208489A1 (en) Electromagnetic wave-transmitting metallic-luster article
JP2023013743A (en) Laminate and decorative member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792383

Country of ref document: EP

Kind code of ref document: A1