WO2022209571A1 - 光検出装置および電子機器 - Google Patents

光検出装置および電子機器 Download PDF

Info

Publication number
WO2022209571A1
WO2022209571A1 PCT/JP2022/009275 JP2022009275W WO2022209571A1 WO 2022209571 A1 WO2022209571 A1 WO 2022209571A1 JP 2022009275 W JP2022009275 W JP 2022009275W WO 2022209571 A1 WO2022209571 A1 WO 2022209571A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
semiconductor layer
layer
photodetector
electrode pad
Prior art date
Application number
PCT/JP2022/009275
Other languages
English (en)
French (fr)
Inventor
恵永 香川
隆季 亀嶋
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023510718A priority Critical patent/JPWO2022209571A1/ja
Priority to EP22779796.6A priority patent/EP4318591A1/en
Priority to US18/551,671 priority patent/US20240175802A1/en
Priority to CN202280021887.5A priority patent/CN116998017A/zh
Publication of WO2022209571A1 publication Critical patent/WO2022209571A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures

Definitions

  • the present technology (technology according to the present disclosure) relates to a photodetector and an electronic device, and more particularly to a photodetector and an electronic device having electrode pads.
  • An object of the present technology is to provide a photodetector and an electronic device capable of suppressing an increase in parasitic capacitance of electrode pads.
  • a photodetector includes a first semiconductor layer having a photoelectric conversion unit, one surface of which is a light incident surface and the other surface of which is an element formation surface; In a state in which the insulating layer is interposed between the insulating layer laminated on the light incident surface side and the first semiconductor layer, the insulating layer is exposed from the surface opposite to the surface facing the first semiconductor layer. and an insulating ring that penetrates through the first semiconductor layer in the thickness direction and surrounds the electrode pad in plan view.
  • An electronic device includes the photodetector and an optical system that forms an image of light from a subject on the photodetector.
  • FIG. 1 is a chip layout diagram showing a configuration example of a photodetector according to a first embodiment of the present technology
  • FIG. 1 is a block diagram showing a configuration example of a photodetector according to a first embodiment of the present technology
  • FIG. 1 is an equivalent circuit diagram of a pixel of a photodetector according to a first embodiment of the present technology
  • FIG. It is a top view showing arrangement of an electrode pad concerning a 1st embodiment of this art.
  • FIG. 4B is a vertical sectional view showing a cross section of the electrode pad when viewed along the BB section line of FIG.
  • FIG. 4A is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of the photodetector according to the first embodiment of the present technology when viewed along the AA section line of FIG. 1;
  • FIG. It is a top view showing positional relationship between an insulating ring, a plug, and an electrode pad concerning a 1st embodiment of this art.
  • 6B is a vertical cross-sectional view showing the positional relationship between the insulating ring, the plug, and the electrode pad according to the first embodiment of the present technology when viewed along the CC section line of FIG. 6A.
  • FIG. 4 is a schematic diagram showing a configuration of a capacitor when two insulating rings are provided in the photodetector according to the first embodiment of the present technology; It is process sectional drawing which shows the manufacturing method of the photon detection apparatus which concerns on 1st Embodiment of this technique.
  • 7B is a process cross-sectional view following FIG. 7A;
  • FIG. 7B is a process cross-sectional view subsequent to FIG. 7B;
  • FIG. 7C is a process cross-sectional view subsequent to FIG. 7C;
  • FIG. 7C is a process cross-sectional view subsequent to FIG. 7D;
  • 7E is a plan view showing a resist pattern formed in the process of FIG. 7E;
  • FIG. FIG. 7E is a process cross-sectional view subsequent to FIG.
  • FIG. 7E is a process cross-sectional view subsequent to FIG. 7G
  • FIG. 7H is a process cross-sectional view subsequent to FIG. 7H
  • 7I is a process cross-sectional view subsequent to FIG. 7I
  • FIG. FIG. 7J is a process cross-sectional view subsequent to FIG. 7J
  • 7K is a process cross-sectional view subsequent to FIG. 7K
  • FIG. 7L is a process cross-sectional view subsequent to FIG. 7L
  • FIG. 2 is a plan view showing a positional relationship among one insulating ring, a plug, and an electrode pad according to the first embodiment of the present technology
  • FIG. 4 is a schematic diagram showing a configuration of a capacitor in the case where the photodetector according to the first embodiment of the present technology has one insulating ring;
  • FIG. 3 is a plan view showing the positional relationship among three insulating rings, plugs, and electrode pads according to the first embodiment of the present technology;
  • FIG. 4 is a schematic diagram showing a configuration of a capacitor when three insulating rings are provided in the photodetector according to the first embodiment of the present technology;
  • FIG. 4 is a schematic diagram showing the structure of a capacitor without an insulating ring; 7 is a graph showing the relationship between the number of insulating rings and the calculated combined capacitance.
  • 1 is a diagram showing a conventional photodetector;
  • FIG. 1 is a diagram showing a conventional photodetector;
  • FIG. 1 is a diagram showing a conventional photodetector;
  • FIG. 1 is a diagram showing a conventional photodetector;
  • FIG. 2 is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of a photodetector according to Modification 1 of the first embodiment of the present technology when viewed along the AA section line in FIG. 1;
  • FIG. . 2 is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of a photodetector according to Modification 2 of the first embodiment of the present technology when viewed along the AA section line of FIG. 1;
  • FIG. . 2 is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of a photodetector according to Modification 3 of the first embodiment of the present technology when viewed along the AA section line in FIG. 1;
  • FIG. 10 is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of a photodetector according to Modification 4 of the first embodiment of the present technology when viewed along the AA section line of FIG. 1;
  • FIG. . 10 is a vertical cross-sectional view showing the relative relationship between the electrode pads and the pixel regions of the photodetector according to Modification 5 of the first embodiment of the present technology when viewed along the AA section line of FIG. 1;
  • FIG. . FIG. 12 is a vertical cross-sectional view showing an insulating ring of a photodetector according to Modification 6 of the first embodiment of the present technology;
  • FIG. 12 is a vertical cross-sectional view showing an insulating ring of a photodetector according to Modification 7 of the first embodiment of the present technology
  • 2 is a vertical cross-sectional view showing a relative relationship between an electrode pad and a pixel region of a photodetector according to a second embodiment of the present technology when viewed along the AA section line of FIG. 1
  • FIG. FIG. 7 is a plan view showing the positional relationship among an insulating ring, a plug ring, and an electrode pad according to a second embodiment of the present technology
  • FIG. 21B is a vertical cross-sectional view showing the positional relationship between an insulating ring, a plug ring, and an electrode pad according to the second embodiment of the present technology when viewed along the CC section line of FIG. 21A.
  • FIG. 7 is a vertical cross-sectional view showing the positional relationship among one insulating ring, one plug ring, and electrode pads according to a second embodiment of the present technology;
  • FIG. 10 is a schematic diagram showing a configuration of a capacitor in a case where one insulating ring is provided in the photodetector according to the second embodiment of the present technology; It is a top view showing a resist pattern formed in a process of a manufacturing method of a photodetection device concerning a 2nd embodiment of this art.
  • FIG. 7 is a vertical cross-sectional view showing the positional relationship among one insulating ring, one plug ring, and electrode pads according to a second embodiment of the present technology
  • FIG. 10 is a schematic diagram showing a configuration of
  • FIG. 10 is a vertical cross-sectional view showing cross-sectional shapes of an insulating ring, a plug ring, and an electrode pad according to another form of the second embodiment of the present technology
  • FIG. 10 is a plan view showing a positional relationship among an insulating ring, two plug rings, and electrode pads according to Modification 1 of the second embodiment of the present technology
  • FIG. 25B is a vertical cross-sectional view showing the positional relationship between the insulating ring, the plug ring, and the electrode pads according to Modification 1 of the second embodiment of the present technology when viewed along the CC section line of FIG. 25A.
  • FIG. 10 is a vertical cross-sectional view showing cross-sectional shapes of an insulating ring, a plug ring, and an electrode pad according to another form of the second embodiment of the present technology
  • FIG. 10 is a plan view showing a positional relationship among an insulating ring, two plug rings, and electrode pads according to Modification 1 of the second embodiment of the present technology
  • FIG. 10 is a vertical cross-sectional view showing the positional relationship between one insulating ring, two plug rings, and electrode pads according to Modification 1 of the second embodiment of the present technology
  • FIG. 10 is a schematic diagram showing a configuration of a capacitor in a case where one insulating ring and two plug rings are provided in the photodetector according to Modification 1 of the second embodiment of the present technology
  • FIG. 10 is a vertical cross-sectional view showing cross-sectional shapes of an insulating ring, a plug ring, and an electrode pad according to Modification 2 of the second embodiment of the present technology
  • It is process sectional drawing which shows the manufacturing method of the photodetector based on the modification 2 of 2nd Embodiment of this technique.
  • FIG. 10 is a vertical cross-sectional view showing the positional relationship between one insulating ring, two plug rings, and electrode pads according to Modification 1 of the second embodiment of the present technology
  • FIG. 10 is a schematic diagram showing a configuration of a capacitor in
  • FIG. 28B is a process cross-sectional view subsequent to FIG. 28A;
  • FIG. 28B is a process cross-sectional view subsequent to FIG. 28B;
  • It is process sectional drawing which shows the manufacturing method of the photodetector based on the modification 3 of 2nd Embodiment of this technique.
  • 29B is a process cross-sectional view following FIG. 29A;
  • FIG. 29B is a process cross-sectional view subsequent to FIG. 29B; It is a figure showing a schematic structure of electronic equipment concerning a 3rd embodiment of this art.
  • first to third embodiments are examples of devices and methods for embodying the technical idea of the present technology, and the technical idea of the present technology is The material, shape, structure, arrangement, etc. are not specified as follows. Various modifications can be made to the technical idea of the present technology within the technical scope defined by the claims.
  • CMOS complementary metal oxide semiconductor
  • the photodetector 1 As shown in FIG. 1, the photodetector 1 according to the first embodiment of the present technology mainly includes a semiconductor chip 2 having a square two-dimensional planar shape when viewed from above. That is, the photodetector 1 is mounted on the semiconductor chip 2 . As shown in FIG. 30, the photodetector 1 captures image light (incident light 106) from a subject through an optical system (optical lens) 102, and the amount of incident light 106 formed on an imaging plane is is converted into an electric signal for each pixel and output as a pixel signal.
  • image light incident light 106
  • optical system optical lens
  • a semiconductor chip 2 on which a photodetector 1 is mounted has a rectangular pixel region 2A provided in the center and a rectangular pixel region 2A in a two-dimensional plane including X and Y directions that intersect with each other.
  • a peripheral region 2B is provided outside the pixel region 2A so as to surround the pixel region 2A.
  • the pixel area 2A is a light receiving surface that receives light condensed by the optical system 102 shown in FIG. 30, for example.
  • a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction.
  • the pixels 3 are arranged repeatedly in each of the X and Y directions that intersect each other within a two-dimensional plane.
  • the X direction and the Y direction are orthogonal to each other as an example.
  • a direction orthogonal to both the X direction and the Y direction is the Z direction (thickness direction).
  • a plurality of electrode pads (bonding pads) 14 are arranged in the peripheral region 2B.
  • the semiconductor chip 2 includes a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like.
  • the logic circuit 13 is composed of a CMOS (Complementary MOS) circuit having, for example, an n-channel conductivity type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a p-channel conductivity type MOSFET as field effect transistors.
  • CMOS Complementary MOS
  • the vertical driving circuit 4 is composed of, for example, a shift register.
  • the vertical drive circuit 4 sequentially selects desired pixel drive lines 10, supplies pulses for driving the pixels 3 to the selected pixel drive lines 10, and drives the pixels 3 in row units. That is, the vertical drive circuit 4 sequentially selectively scans the pixels 3 in the pixel region 2A in the vertical direction row by row, and outputs signals from the pixels 3 based on the signal charges generated by the photoelectric conversion elements of the pixels 3 according to the amount of received light.
  • a pixel signal is supplied to the column signal processing circuit 5 through the vertical signal line 11 .
  • the column signal processing circuit 5 is arranged, for example, for each column of the pixels 3, and performs signal processing such as noise removal on the signals output from the pixels 3 of one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
  • a horizontal selection switch (not shown) is connected between the output stage of the column signal processing circuit 5 and the horizontal signal line 12 .
  • the horizontal driving circuit 6 is composed of, for example, a shift register.
  • the horizontal driving circuit 6 sequentially outputs a horizontal scanning pulse to the column signal processing circuit 5 to select each of the column signal processing circuits 5 in order, and the pixels subjected to the signal processing from each of the column signal processing circuits 5 are selected.
  • a signal is output to the horizontal signal line 12 .
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal.
  • signal processing for example, buffering, black level adjustment, column variation correction, and various digital signal processing can be used.
  • the control circuit 8 generates a clock signal and a control signal that serve as references for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • FIG. 3 is an equivalent circuit diagram showing a configuration example of the pixel 3.
  • the pixel 3 includes a photoelectric conversion element PD, a charge accumulation region (floating diffusion) FD for accumulating (holding) signal charges photoelectrically converted by the photoelectric conversion element PD, and photoelectrically converted by the photoelectric conversion element PD. and a transfer transistor TR for transferring the signal charge to the charge accumulation region FD.
  • the pixel 3 also includes a readout circuit 15 electrically connected to the charge accumulation region FD.
  • the photoelectric conversion element PD generates signal charges according to the amount of light received.
  • the photoelectric conversion element PD also temporarily accumulates (holds) the generated signal charges.
  • the photoelectric conversion element PD has a cathode side electrically connected to the source region of the transfer transistor TR, and an anode side electrically connected to a reference potential line (for example, ground).
  • a photodiode for example, is used as the photoelectric conversion element PD.
  • the drain region of the transfer transistor TR is electrically connected to the charge storage region FD.
  • a gate electrode of the transfer transistor TR is electrically connected to a transfer transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the charge accumulation region FD temporarily accumulates and holds signal charges transferred from the photoelectric conversion element PD via the transfer transistor TR.
  • the readout circuit 15 reads out the signal charge accumulated in the charge accumulation region FD and outputs a pixel signal based on the signal charge.
  • the readout circuit 15 includes, but is not limited to, pixel transistors such as an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST. These transistors (AMP, SEL, RST) have a gate insulating film made of, for example, a silicon oxide film ( SiO2 film), a gate electrode, and a pair of main electrode regions functioning as a source region and a drain region. It consists of MOSFETs.
  • These transistors may be MISFETs (Metal Insulator Semiconductor FETs) whose gate insulating film is a silicon nitride film (Si 3 N 4 film), or a laminated film of a silicon nitride film and a silicon oxide film.
  • MISFETs Metal Insulator Semiconductor FETs
  • the amplification transistor AMP has a source region electrically connected to the drain region of the selection transistor SEL, and a drain region electrically connected to the power supply line Vdd and the drain region of the reset transistor.
  • a gate electrode of the amplification transistor AMP is electrically connected to the charge storage region FD and the source region of the reset transistor RST.
  • the selection transistor SEL has a source region electrically connected to the vertical signal line 11 (VSL) and a drain electrically connected to the source region of the amplification transistor AMP.
  • a gate electrode of the select transistor SEL is electrically connected to a select transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the reset transistor RST has a source region electrically connected to the charge storage region FD and the gate electrode of the amplification transistor AMP, and a drain region electrically connected to the power supply line Vdd and the drain region of the amplification transistor AMP.
  • a gate electrode of the reset transistor RST is electrically connected to a reset transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the photodetector 1 (semiconductor chip 2) includes a first semiconductor layer 20 having a first surface S1 and a second surface S2 located opposite to each other, and The first wiring layer 30 is superimposed on the first surface S1, and the second wiring layer 30 is superimposed on the third surface S3, which is the surface of the first wiring layer 30 opposite to the first semiconductor layer 20 side.
  • the wiring layer 40 and the second semiconductor layer 50 overlaid on the fifth surface S5, which is the surface opposite to the first wiring layer side surface (fourth surface S4) of the second wiring layer 40.
  • the first wiring layer 30 is laminated on the first surface S1 of the first semiconductor layer 20, the second wiring layer 40 is laminated on the second semiconductor layer 50, and then the first wiring layer is laminated. It can be realized by overlapping the third surface S3 of the wiring layer 30 and the fourth surface S4 of the second wiring layer 40 and joining them.
  • the second surface S2, which is one surface of the first semiconductor layer 20, is called a light incident surface or a back surface
  • the first surface S1, which is the other surface of the first semiconductor layer 20 is an element formation surface or a main surface. Also called a face.
  • the photodetector 1 (semiconductor chip 2) also includes an insulating layer 60, a color filter 81, and an on-chip lens 82.
  • the insulating layer 60, the color filter 81, and the on-chip lens 82 are laminated on the second surface S2 of the first semiconductor layer 20 in that order.
  • the insulating layer 60 is provided in both the pixel region 2A and the peripheral region 2B, and the color filter 81 and the on-chip lens 82 are provided in the pixel region 2A out of the pixel region 2A and the peripheral region 2B.
  • the photodetector 1 (semiconductor chip 2) includes an electrode pad 14 and an insulating ring 70 surrounding the electrode pad 14 in plan view.
  • the first semiconductor layer 20 is composed of a single-crystal silicon substrate of a first conductivity type, eg, p-type. As shown in FIG. 5, the first semiconductor layer 20 includes a well region 21 of a first conductivity type, eg, p-type, and a semiconductor region of a second conductivity type, eg, n-type, embedded in the well region 21 ( photoelectric conversion unit) 22 .
  • the photoelectric conversion element PD shown in FIG. 3 is configured in a region including the well region 21 and the photoelectric conversion portion 22 .
  • the first semiconductor layer 20 has a pixel region 20a overlapping with the pixel region 2A in plan view and a peripheral region 20b overlapping with the peripheral region 2B in plan view.
  • the peripheral region 20b is provided outside the pixel region 20a in plan view so as to surround the pixel region 20a.
  • the photoelectric conversion unit 22 described above is provided in the pixel region 20a. That is, the first semiconductor layer 20 has a photoelectric conversion section 22 .
  • the photoelectric conversion unit 22 photoelectrically converts incident light to generate signal charges.
  • the pixel region 20a is provided with the charge accumulation region FD, the transfer transistor TR, and the like shown in FIG. Note that when there is no need to distinguish between the pixel region 20a and the peripheral region 20b, the pixel region 20a and the peripheral region 20b are simply referred to as the first semiconductor layer 20 without distinction.
  • the peripheral region 20b is provided with an insulating ring 70 and a plug 75 which will be described later.
  • the peripheral region 20b is provided with an annular groove 24 and a hole 25 in plan view.
  • recesses 23 in which part of the electrode pads 14 are embedded are provided in the peripheral region 20b.
  • the groove 24 penetrates the first semiconductor layer 20 in the thickness direction and surrounds the electrode pad 14 in plan view.
  • 6A and 6B show an example in which two grooves 24 are provided for each electrode pad 14.
  • FIG. One or more grooves 24 can be provided for one electrode pad 14 , but here, it is assumed that two grooves 24 are provided for each electrode pad 14 .
  • the inner groove is called a first groove 24a
  • the outer groove that is, the groove surrounding the first groove 24a in plan view
  • the first grooves 24a and the second grooves 24b are simply referred to as grooves 24 without distinction.
  • the first groove 24a and the second groove 24b may be collectively referred to as the groove 24 in some cases.
  • the hole 25 penetrates the first semiconductor layer 20 in the thickness direction of the first semiconductor layer 20 . More specifically, it penetrates between the bottom surface 23a of the recess 23 and the first surface S1. A plurality of holes 25 are provided. More specifically, two holes 25 are provided.
  • the insulating layer 60 is an insulating film laminated on the second surface S2 side of the first semiconductor layer 20 by, for example, the CVD method.
  • Materials such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), and silicon carbide (SiC) can be used for the insulating layer 60 .
  • the insulating layer 60 fills the interior of the trench 24 .
  • a portion of the insulating layer 60 embedded in the trench 24 is called an insulating layer 61 to distinguish it from the other insulating layers 60 .
  • the insulating layer 60 is deposited on the bottom surface 23 a and side surfaces 23 b of the recess 23 and the inner surface 25 a of the hole 25 .
  • a portion of the insulating layer 60 deposited on the bottom surface 23a and the side surface 23b of the recess 23 is called an insulating layer 62 (first insulating layer) to distinguish it from the other insulating layers 60. As shown in FIG.
  • the portion deposited on the bottom surface 23a is called an insulating layer 62a (eleventh insulating layer).
  • the portion deposited on the side surface 23b is called an insulating layer 62b (twelfth insulating layer).
  • the insulating layer 62a and the insulating layer 62b are simply referred to as the insulating layer 62 without distinction.
  • a portion of the insulating layer 60 deposited on the inner surface 25a of the hole 25 is called an insulating layer 63 (second insulating layer) to distinguish it from the other insulating layers 60 .
  • a plurality of plugs 75 are provided. More specifically, two plugs 75 are provided.
  • the plug 75 is embedded in the hole 25 via the insulating layer 63 and electrically connects the electrode pad 14 and the metal layer 32 described later. More specifically, the plug 75 is embedded in the hole 25 with the insulating layer 63 interposed between it and the first semiconductor layer 20 .
  • One end of the plug 75 is connected to the electrode pad 14 . More specifically, one end of the plug 75 penetrates the insulating layer 62a and is connected to the lower surface 14b of the electrode pad 14, which will be described later.
  • the other end of the plug 75 is connected to the metal layer 32 .
  • the other end of the plug 75 penetrates the first semiconductor layer 20 and extends into the first wiring layer 30 in the thickness direction of the first semiconductor layer 20 . And it is connected to the metal layer 32 in the first wiring layer 30 .
  • the metal layer 32 to which the other end of the plug 75 is connected is called a metal layer 32a to distinguish it from other metal layers 32.
  • tungsten for example, may be used as the material forming the plug 75 .
  • Electrode pad As shown in FIGS. 1, 4A, and 4B, a plurality of electrode pads (bonding pads) 14 are arranged in the peripheral region 2B of the photodetector 1 (semiconductor chip 2).
  • the electrode pads 14 are arranged, for example, along each of four sides in the two-dimensional plane of the semiconductor chip 2 . More specifically, the electrode pads 14 are arranged in a line along each of four sides extending in the X direction and the Y direction, as shown in FIGS. 4A and 4B, for example.
  • the number of electrode pads 14 is not limited to the illustrated number.
  • the electrode pad 14 has an upper surface 14a, a lower surface 14b opposite to the upper surface 14a, and a side surface 14c extending between the upper surface 14a and the lower surface 14b of the second electrode pad.
  • the upper surface 14a is an exposed surface exposed to the outside.
  • the electrode pads 14 are input/output terminals used when electrically connecting the photodetector 1 to an external device. Therefore, the electrode pads 14 are exposed to the outside. More specifically, the upper surface 14a of the electrode pad 14 is exposed to the outside. Further, the upper surface 14a of the electrode pad 14 is flush with the surface S6, which is the surface of the insulating layer 60 opposite to the first semiconductor layer 20 side. A lower surface 14 b of the electrode pad 14 is connected to the plug 75 .
  • the electrode pad 14 is provided on the first semiconductor layer 20 side between the first semiconductor layer 20 and the second semiconductor layer 50 .
  • the electrode pad 14 is exposed from the surface S ⁇ b>6 with the insulating layer 60 (insulating layer 62 ) interposed between the electrode pad 14 and the first semiconductor layer 20 .
  • a part of the electrode pad 14 is buried in the first semiconductor layer 20 . More specifically, the electrode pad 14 is partially embedded in the recess 23 with the insulating layer 62 interposed therebetween.
  • the insulating layer 62 is interposed between the electrode pad 14 and the first semiconductor layer 20, the electrode pad 14, the insulating layer 62, and the first semiconductor layer 20 form a parasitic capacitance. More specifically, the electrode pad 14, the insulating layer 62, and a region 26a, which will be described later, form a parasitic capacitance C1 shown in FIG. 6C.
  • the insulating ring 70 is an insulating ring that penetrates the first semiconductor layer 20 in the thickness direction and surrounds the electrode pad 14 in plan view.
  • the insulating ring 70 is made of an insulating material. More specifically, insulating ring 70 is insulating layer 61 .
  • FIG. 5A and 6B show examples in which two insulating rings 70 are provided for each electrode pad 14.
  • FIG. One or more insulating rings 70 can be provided for one electrode pad 14 , but here, it is assumed that two insulating rings 70 are provided for each electrode pad 14 .
  • the inner insulating ring is referred to as the first insulating ring 70a
  • the outer insulating ring that is, the insulating ring surrounding the first insulating ring 70a in plan view, is referred to as the second insulating ring 70b. call.
  • the first insulating ring 70a is the insulating layer 61 embedded in the first groove 24a
  • the second insulating ring 70b is the insulating layer 61 embedded in the second groove 24b.
  • the first insulating ring 70a and the second insulating ring 70b are simply referred to as the insulating ring 70 without distinction.
  • the insulating ring 70 may include the first insulating ring 70a and the second insulating ring 70b.
  • the width d1 between the outer contour 71 and the inner contour 72 of the insulating ring 70 in plan view is 10 nm or more and 300 nm or less.
  • the first semiconductor layer 20 is divided into a plurality of regions 26 by the insulating ring 70 . Since there are two insulating rings 70 here, the first semiconductor layer 20 is divided into three regions 26 as shown in FIGS. 6A and 6B. Here, in order to distinguish these three regions 26 from each other, the region located inside the first insulating ring 70a is defined as the region 26a, and the region located between the first insulating ring 70a and the second insulating ring 70b is defined as the region 26a. 26b, the region located outside the second insulating ring 70b is referred to as region 26c.
  • the regions 26a, 26b, and 26c are simply referred to as regions 26 without distinction. Also, the regions 26 located inside the insulating ring 70, more specifically the regions 26a and 26b, are electrically floating.
  • the insulating ring 70 and the two regions 26 adjacent to the insulating ring 70 constitute a capacitor. More specifically, the region 26a, the first insulating ring 70a, and the region 26b constitute the capacitor C2 shown in FIG. 6C, and the region 26b, the second insulating ring 70b, and the region 26c constitute the capacitor C3 shown in FIG. 6C. is doing. Together with the parasitic capacitance C1 described above, the three capacitors C1, C2, and C3 shown in FIG. 6C are connected in series.
  • the first wiring layer 30 includes an interlayer insulating film 31, a metal layer 32, first connection pads 33, and vias .
  • the metal layer 32 and the first connection pad 33 are stacked with the interlayer insulating film 31 interposed therebetween as shown.
  • the vias 34 connect the metal layers 32 to each other and connect the metal layers 32 to the first connection pads 33 .
  • the first connection pads 33 face the third surface S ⁇ b>3 of the first wiring layer 30 .
  • the first connection pad 33 is electrically connected to the metal layer 32a.
  • the first connection pad 33 is electrically connected to the metal layer 32a through the multiple metal layers 32 and vias 34 .
  • the first connection pads 33 are electrically connected to the electrode pads 14 via the metal layer 32 a and the plugs 75 .
  • the second wiring layer 40 includes an interlayer insulating film 41 , a metal layer 42 , second connection pads 43 and vias 44 .
  • the metal layer 42 and the second connection pad 43 are laminated via the interlayer insulating film 41 as shown.
  • the vias 44 connect the metal layers 42 to each other and connect the metal layers 42 to the second connection pads 43 .
  • the second connection pads 43 face the fourth surface S ⁇ b>4 of the second wiring layer 40 and are joined to the first connection pads 33 .
  • the electrode pad 14 of the first wiring layer 30 is electrically connected to the metal layer 42 of the second wiring layer 40 .
  • the electrode pads 14, the first connection pads 33, and the second connection pads 43 overlap in the thickness direction.
  • the second semiconductor layer 50 is composed of a single-crystal silicon substrate of a first conductivity type, eg, p-type.
  • the second semiconductor layer 50 is provided with, for example, transistors forming the logic circuit 13 and the readout circuit 15 .
  • a substrate 87 is prepared in which the first semiconductor layer 20, the first wiring layer 30, the second wiring layer 40 and the second semiconductor layer 50 are laminated in that order.
  • diffusion regions such as the n-type semiconductor region 22 and various transistors are already formed in the first semiconductor layer 20 .
  • various transistors are formed in the second semiconductor layer 50 .
  • the second connection pads 43 and the first connection pads 33 are joined together.
  • the insulating layer 60A is laminated on the second surface S2 of the first semiconductor layer 20.
  • a resist pattern 90 is laminated on the surface of the insulating layer 60A opposite to the first semiconductor layer 20 side.
  • the insulating layer 60A and the first semiconductor layer 20 are etched to form the recesses 23 shown in FIG. 7D.
  • FIGS. 7E and 7F a resist pattern 92 is laminated on the insulating layer 60A and the recess 23.
  • FIGS. FIG. 7F is a plan view showing the resist pattern 92 formed in the process of FIG. 7E.
  • etching is performed using the resist pattern 92 as a mask. More specifically, the first semiconductor layer 20 exposed from the opening 92 a of the resist pattern 92 is etched to form the hole 25 penetrating through the first semiconductor layer 20 . Further, the insulating layer 60A and the first semiconductor layer 20 exposed from the openings 92b of the resist pattern 92 are etched to form grooves 24 penetrating the first semiconductor layer 20.
  • FIG. 7G etching is performed using the resist pattern 92 as a mask. More specifically, the first semiconductor layer 20 exposed from the opening 92 a of the resist pattern 92 is etched to form the hole 25 penetrating through the first semiconductor layer 20 . Further, the insulating layer 60A and the first semiconductor layer 20 exposed from the openings
  • the insulating layer 60B is laminated on the insulating layer 60A and the first semiconductor layer 20. Then, as shown in FIG. 7H, the insulating layer 60 described above includes an insulating layer 60A and an insulating layer 60B. The laminated insulating layer 60B is embedded inside the trench 24 . The insulating layer 60B embedded inside the trench 24 corresponds to the insulating layer 61 shown in FIG. 6B. Thus, the insulating ring 70 shown in FIG. 6B is formed.
  • the insulating layer 60B is laminated so as to cover the inner surface 25a of the hole 25.
  • the diameter of hole 25 is larger than the width of groove 24 (width d1 of insulating ring 70)
  • hole 25 is not completely filled with insulating layer 60B, and inner surface 25a is covered with insulating layer 60B.
  • the diameter of the hole 25 is, for example, about two or three times the width of the groove 24 .
  • the hollow portion of the hole 25 after being covered with the insulating layer 60B is called a hole 25A.
  • a tungsten film 75A is laminated so as to cover the insulating layer 60B and fill the inside of the hole 25A, as shown in FIG. 7I. .
  • the entire surface is etched to remove unnecessary portions of the tungsten film 75A. A plug 75 is thus formed.
  • an aluminum film 14A is deposited.
  • a resist pattern 93 is deposited on the aluminum film 14A, and as shown in FIG. 7M, the entire surface is etched to remove unnecessary portions of the aluminum film 14A. Thereby, the electrode pads 14 are formed.
  • the photodetector 1 shown in FIG. 5 is almost completed.
  • the photodetector 1 is formed in each of a plurality of chip forming regions partitioned by scribe lines (dicing lines) on a semiconductor substrate. By dividing the plurality of chip forming regions along scribe lines, the semiconductor chips 2 on which the photodetecting device 1 is mounted are formed.
  • the two capacitors C1 and C2 shown in FIG. 8B are connected in series.
  • the three capacitors C1, C2, and C3 shown in FIG. 6C are connected in series.
  • four capacitors C1, C2, C3, and C4 shown in FIG. 9B are connected in series.
  • the parasitic capacitance accumulated in the electrode pad 14 is the combined capacitance C of these multiple capacitors.
  • the capacitor C4 is composed of the region 26c, the second insulating ring 70c and the region 26dd.
  • the conventional photodetector is not provided with the insulating ring 70, that is, the number of insulating rings is zero.
  • FIG. 11 is a diagram showing the calculation result of the combined capacity. As shown in FIG. 11, when there is one insulating ring 70, the combined capacitance is about one-seventh of that when there are no insulating rings. Also, when the number of insulating rings 70 is three, the combined capacitance is further halved as compared with the case of one. Although FIG. 11 does not show the combined capacitance when there are two insulating rings 70, the value is between the combined capacitance when there is one and the combined capacitance when there are three. Conceivable.
  • the insulating ring 70 penetrates the first semiconductor layer 20 in the thickness direction. Therefore, the region 26 positioned inside the insulating ring 70 is in an electrically floating state, and it is possible to suppress accumulation of charges.
  • the insulating ring 70 By providing the insulating ring 70 by utilizing the space around the electrode pads 14 in this way, it is possible to suppress an increase in the parasitic capacitance accumulated in the electrode pads 14 . Furthermore, by increasing the number of insulating rings 70, an increase in parasitic capacitance accumulated in electrode pad 14 can be further suppressed. As a result, the wiring delay and the RC delay can be suppressed, and the slowing down of the signal speed can be suppressed.
  • an increase in parasitic capacitance accumulated in the electrode pads 14 can be suppressed, so that the electrode pads 14 are arranged on the first semiconductor layer 20 side in the thickness direction. Disadvantage in relocating is small. Therefore, for example, it is possible to make a decision without hesitation to transfer the electrode pads 14 conventionally provided on the second wiring layer 40 to the first semiconductor layer 20 side. Also, the degree of freedom in layout of the electrode pads 14 is increased.
  • the electrode pads 14 were provided on the second wiring layer 40 as shown in FIG. Therefore, the recess 23' is deep in the thickness direction, and the electrode pad 14 is provided at the bottom of the recess 23'. Therefore, in order to place the ball B at a deep position and to provide the wire W at the end of the ball B, it was necessary to increase the volume of the ball B and the electrode pad 14 .
  • the insulating ring 70 can suppress an increase in the combined capacitance C between the first semiconductor layer 20 and the electrode pad 14 . can be transferred to the first semiconductor layer 20 side. Since the electrode pads 14 are moved to the side of the first semiconductor layer 20, wire bonding can be easily performed. Furthermore, the ball size of wire bonding can be reduced, and the dimensions of the semiconductor chip 2 on which the electrode pads 14 and the photodetector 1 are mounted can be reduced. Furthermore, the reliability of wire bonding is improved and the size of the semiconductor chip 2 is reduced, so that the yield of chips from a wafer is increased, which contributes to cost reduction.
  • the electrode pads 14, the first connection pads 33, and the second connection pads 43 overlap in the thickness direction.
  • the conductive path from the electrode pad 14 to the metal layer 42 of the second wiring layer 40 can be made shorter than when the conductive path is formed in the trench portion 83 described in FIGS. Therefore, even with such a configuration, an increase in the parasitic capacitance accumulated in the electrode pad 14 can be suppressed.
  • the number of second insulating rings surrounding the first insulating ring 70a in plan view is one or two in the first embodiment, but is not limited to this, and may be three or more.
  • the insulating ring 70 may include a first insulating ring 70a and at least one second insulating ring surrounding the first insulating ring 70a in plan view.
  • two plugs 75 are provided for each electrode pad 14, the number of plugs 75 is not limited to this and may be one.
  • three or more may be provided for one electrode pad 14 .
  • two holes 25 are provided for each electrode pad 14 , the number of holes 25 is not limited to this, and one hole or three or more holes may be provided according to the number of plugs 75 .
  • Modification 1 of the first embodiment Modification 1 of the first embodiment of the present technology shown in FIG. 13 will be described below.
  • the photodetector 1 according to Modification 1 of the first embodiment differs from the photodetector 1 according to the above-described first embodiment in the shape of the electrode pad 14, and the other parts of the photodetector 1 are different.
  • the configuration is basically the same as that of the photodetector 1 of the first embodiment described above.
  • symbol is attached
  • the electrode pad 14 has a head portion 141 and a trunk portion 142 integrally formed with the head portion 141 .
  • An upper surface 141a of the head 141 is an exposed surface exposed to the outside.
  • the trunk portion 142 is connected to the metal layer 32a.
  • Modification 2 of the first embodiment Modification 2 of the first embodiment of the present technology shown in FIG. 14 will be described below.
  • the photodetector 1 according to Modification 2 of the first embodiment differs from the photodetector 1 according to the above-described first embodiment in that the first substrate (first semiconductor layer 20 and first wiring layer 30) 84 and the second substrate (the second semiconductor layer 50 and the second wiring layer 40) 85 are electrically connected through the trench portion 83.
  • the configuration of the photodetector 1 is as follows. It basically has the same configuration as the photodetector 1 of the first embodiment described above.
  • symbol is attached
  • the photodetector 1 has a trench portion 83 instead of the plug 75 .
  • the trench portion 83 extends from the insulating layer 60 laminated on the first semiconductor layer 20 to the metal layer 42 of the second wiring layer 40 , and one end at a deep position in the extending direction is connected to the metal layer 42 .
  • Electrode pad 14 has head portion 141 and connection portion 143 .
  • An upper surface 141a of the head 141 is an exposed surface exposed to the outside.
  • the connecting portion 143 electrically connects the head portion 141 and the trench portion 83 .
  • the electrode pads 14 do not have to have the connecting portions 143 . In that case, the head portion 141 and the trench portion 83 are directly connected.
  • Modification 3 of the first embodiment Modification 3 of the first embodiment of the present technology shown in FIG. 15 will be described below.
  • the photodetector 1 according to Modification 3 of the first embodiment differs from the photodetector 1 according to Modification 2 of Embodiment 1 and Embodiment 1 described above in that the first substrate 84 and It has only the first substrate 84 out of the second substrate 85, and the first semiconductor layer 20 and the metal layer 32 are electrically connected through the trench portion 83.
  • the configuration of the photodetector 1 is basically the same as that of the photodetector 1 of the above-described first embodiment and modification 2 of the first embodiment.
  • symbol is attached
  • the photodetector 1 has a trench portion 83 instead of the plug 75 .
  • the photodetector 1 also has a first substrate 84 and a support substrate 86 .
  • the trench portion 83 extends from the insulating layer 60 laminated on the first semiconductor layer 20 to the metal layer 32 of the first wiring layer 30 , and one end at a deep position in the extending direction is connected to the metal layer 32 .
  • the connecting portion 143 electrically connects the head portion 141 and the trench portion 83 .
  • the electrode pads 14 do not have to have the connecting portions 143 . In that case, the head portion 141 and the trench portion 83 are directly connected.
  • Modification 4 of the first embodiment of the present technology shown in FIG. 16 will be described below.
  • the photodetector 1 according to Modification 4 of the first embodiment differs from the above-described first embodiment in that the electrode pad 14 protrudes from the surface S6.
  • the configuration is basically the same as that of the first embodiment described above.
  • symbol is attached
  • the electrode pads 14 are stacked on the second surface S2 of the first semiconductor layer 20. As shown in FIG. The electrode pads 14 protrude from the surface S6. Since the color filter 81 and the on-chip lens 82 are provided by applying resin or the like to the surface S6, the surface to be coated is preferably flat. Therefore, in the first embodiment, the electrode pad 14 is provided so that the upper surface 14a of the electrode pad 14 is positioned on the same plane as the surface S6.
  • Modification 5 of the first embodiment of the present technology shown in FIG. 17 will be described below.
  • the photodetector 1 according to Modification 5 of the first embodiment differs from the above-described first embodiment in that the electrode pads 14 are provided at positions recessed from the surface S6.
  • the configuration of the photodetector 1 is basically the same as that of the first embodiment described above.
  • symbol is attached
  • the electrode pads 14 are buried in the first semiconductor layer 20 .
  • the upper surface 14a of the electrode pad 14 is located on the same plane as the second surface S2. Therefore, the portion of the insulating layer 60 that overlaps with the electrode pad 14 in plan view is removed.
  • Modification 6 of the first embodiment Modification 6 of the first embodiment of the present technology shown in FIG. 18 will be described below.
  • the photodetector 1 according to Modification 6 of the first embodiment differs from the above-described first embodiment in that the insulating ring 70 includes an insulating layer 61F and an air gap 28.
  • the configuration of the device 1 is basically the same as that of the first embodiment described above.
  • symbol is attached
  • the inside of the trench 24 is not completely filled with the insulating layer 60 and contains a void 28 . That is, the insulating ring 70 includes both the insulating layer 61F and the air gap 28. As shown in FIG. Air gap 28 functions as an insulating layer and thus can function as part of insulating ring 70 .
  • Modification 7 of the first embodiment of the present technology shown in FIG. 19 will be described below.
  • the photodetector 1 according to Modification 7 of the first embodiment differs from the above-described first embodiment in that the insulating ring 70 includes an air gap 28.
  • the configuration of the photodetector 1 is is basically the same as the above-described first embodiment.
  • symbol is attached
  • the inside of the groove 24 is not filled with the insulating layer 60 but is a void 28 . That is, the insulating ring 70 is composed of the air gap 28 . Since the air gap 28 functions as an insulating layer, it can function as an insulating ring 70 .
  • FIGS. 20, 21A, and 21B A second embodiment of the present technology, shown in FIGS. 20, 21A, and 21B, is described below.
  • the photodetector 1 according to the second embodiment differs from the photodetector 1 according to the first embodiment described above in that it has a ring-shaped plug ring 76 instead of the columnar plug 75 and Instead, a ring-shaped groove 27 is provided in the first semiconductor layer 20, and other than that, the configuration of the photodetector 1 is basically the same as that of the photodetector 1 of the above-described first embodiment. It has become.
  • symbol is attached
  • FIG. 21A the plug ring 76 has an annular shape in a plan view and is arranged inside the contour 14d of the electrode pad 14. As shown in FIG. The groove 27 is annular in plan view.
  • An insulating layer 63 is interposed between the first semiconductor layer 20 and the plug ring 76 .
  • the insulating layer 63 is left between the first semiconductor layer 20 and the plug ring 76 with a thickness of several tens of nanometers or more.
  • the plug ring 76 Since the plug ring 76 penetrates the first semiconductor layer 20 in the thickness direction of the first semiconductor layer 20, it divides the first semiconductor layer 20 into a plurality of regions. More specifically, the plug ring 76 divides the region 26a of the first semiconductor layer 20 in the first embodiment into regions 26d and 26e. The divided regions 26d and 26e are in an electrically floating state. Moreover, it is preferable that the plug ring 76 be provided on the outer peripheral side of the electrode pad 14 as much as possible. This makes the plug ring 76 less susceptible to damage during wire bonding.
  • FIGS. 20, 21A, and 21B two insulating rings 70 are provided in FIGS. 20, 21A, and 21B, for the sake of simplification, as shown in FIG. Consider the configuration of
  • the electrode pad 14, the insulating layer 62 (mainly the insulating layer 62b), and the region 26d constitute the parasitic capacitance C5 shown in FIG. It constitutes C6.
  • Capacitors C5 and C6 connected in series are mainly side component capacitances accumulated on the side surface 14c of the electrode pad 14.
  • the electrode pad 14, the insulating layer 62 (mainly the insulating layer 62a), and the region 26e constitute the parasitic capacitance C7 shown in FIG. 22B. Furthermore, the region 26e and the region 26b form a capacitor C8 with the interlayer insulating film 31 of the first wiring layer 30 interposed therebetween.
  • Capacitors C7 and C8 connected in series are the capacitance of the lower surface component mainly accumulated in the lower surface 14b of the electrode pad 14. FIG. In this way, the plug ring 76 separates the parasitic capacitance to the electrode pad 14 into a pad side component and a bottom surface component.
  • the dimensions 14x and 14y of the electrode pad 14 in plan view shown in FIG. 21A are on the order of 100 ⁇ m, for example, while the dimension 14z of the electrode pad 14 in vertical cross-section shown in FIG. 21B is, for example, several ⁇ m. is the size of That is, the area of the lower surface 14b of the electrode pad 14 is overwhelmingly larger than the area of the side surface 14c.
  • FIGS. 7A to 7D are performed.
  • a resist pattern 92A shown in FIG. 23 is laminated instead of the resist pattern 92 shown in FIG. 7F.
  • the etching process shown in FIG. 7G is performed using the resist pattern 92A. More specifically, the first semiconductor layer 20 exposed from the opening 92c of the resist pattern 92A is etched to form the groove 27 penetrating the first semiconductor layer 20.
  • FIG. 7E the steps shown in FIGS. 7A to 7D are performed.
  • a resist pattern 92A shown in FIG. 23 is laminated instead of the resist pattern 92 shown in FIG. 7F.
  • the etching process shown in FIG. 7G is performed using the resist pattern 92A. More specifically, the first semiconductor layer 20 exposed from the opening 92c of the resist pattern 92A is etched to form the groove 27 penetrating the first semiconductor layer 20.
  • a ring-shaped groove 27 is formed in the first semiconductor layer 20 . Further, the insulating layer 60A and the first semiconductor layer 20 exposed from the openings 92b of the resist pattern 92 are etched to form grooves 24 penetrating the first semiconductor layer 20. Next, as shown in FIG. After that, the steps shown in FIGS. 7H to 7M are performed. Since the ring-shaped groove 27 is formed by the etching process shown in FIG. 7G, the ring-shaped plug ring 76 can be formed.
  • the number of insulating rings 70 that can be provided for one electrode pad 14 may be limited by the spacing between the electrode pads 14 .
  • the plug ring 76 is connected to the lower surface 14b of the electrode pad 14 in the photodetector 1 according to the second embodiment of the present technology, the region on the lower surface 14b side of the electrode pad 14 is This can be effectively used, and the number of capacitors can be increased to suppress an increase in parasitic capacitance regardless of the distance between the electrode pads 14 .
  • the parasitic capacitance C1 closer to the electrode pad 14 is dominant as the parasitic capacitance contributing to the electrode pad 14 .
  • the area of the lower surface 14b of the electrode pad 14 is overwhelmingly larger than the area of the side surface 14c. Therefore, among the dominant parasitic capacitances C1, the parasitic capacitance contributed to the bottom surface 14b is dominant over the parasitic capacitance contributed to the side surface 14c.
  • the parasitic capacitance to the electrode pad 14 can be separated into the side component and the bottom surface component, and the parasitic capacitance contributing to the electrode pad 14 is larger on the bottom surface 14b. Since the capacitor can be provided, an increase in parasitic capacitance can be further suppressed.
  • the width d1 of the insulating ring 70 and the width d2 of the plug ring 76 shown in FIG. 21A are constant along the thickness direction of the first semiconductor layer 20, but are not limited to this. , may have a tapered shape in a vertical cross-sectional view.
  • the width d1 of the insulating ring 70 and the width d2 of the plug ring 76 are larger on the electrode pad 14 side than on the metal layer 32a side in the thickness direction of the first semiconductor layer 20 . It's okay to be fat.
  • the width d2 of the plug ring 76 is the width between the outer contour 77 and the inner contour 78 of the plug ring 76 in plan view, as shown in FIG. 21A.
  • Modification 1 of the second embodiment of the present technology shown in FIGS. 25A and 25B will be described below.
  • the photodetector 1 according to Modification 1 of the second embodiment differs from the photodetector 1 according to the above-described second embodiment in that it has a plurality of plug rings 76. 1 is basically the same as the photodetector 1 of the second embodiment described above.
  • symbol is attached
  • ⁇ Plug ring> 25A and 25B show an example in which two ring-shaped plug rings 76 are provided.
  • the plug ring 76 includes a first plug ring 76a and a second plug ring 76b surrounding the first plug ring 76a in plan view. That is, the plug ring 76 is multiplexed.
  • the first plug ring 76a and the second plug ring 76b are simply referred to as the plug ring 76 without distinction.
  • the first plug ring 76a and the second plug ring 76b are provided in the groove 27a (27) and the groove 27b (27) provided in the first semiconductor layer 20 with the insulating layer 63 interposed therebetween.
  • the first plug ring 76a and the second plug ring 76b penetrate the first semiconductor layer 20 in the thickness direction of the first semiconductor layer 20 and divide the first semiconductor layer 20 into a plurality of regions. More specifically, the first plug ring 76a divides the first semiconductor layer 20 inside the second plug ring 76b (that is, the region 26e in the second embodiment) into a region 26f and a region 26g. . The divided regions 26f and 26g are in an electrically floating state. Also, as in the case of the second embodiment, it is preferable to provide the plug ring 76 as close to the outer circumference of the electrode pad 14 as possible. This makes the plug ring 76 less susceptible to damage during wire bonding.
  • the plug ring 76 may overlap the ball B in the thickness direction of the first semiconductor layer 20 .
  • the plug ring 76 can be made less susceptible to damage during wire bonding, for example, by changing the thickness of the electrode pad 14 and the type of barrier metal.
  • FIGS. 25A and 25B two insulating rings 70 are provided in FIGS. 25A and 25B, for the sake of simplification, as shown in FIG. .
  • the electrode pad 14, the insulating layer 62 (mainly the insulating layer 62a), and the region 26f constitute the parasitic capacitance C9 shown in FIG. together constitute a capacitor C10.
  • the electrode pad 14, the insulating layer 62 (mainly the insulating layer 62a), and the region 26g constitute the parasitic capacitance C11 shown in FIG.
  • a capacitor C12 is formed via. Capacitors C9 and C10 are connected in series, and capacitors C11 and C12 are connected in series.
  • Capacitors C 9 , C 10 , C 11 , and C 12 are capacitances of lower surface components mainly accumulated in the lower surface 14 b of the electrode pad 14 .
  • the lower surface component of the parasitic capacitance to the electrode pad 14 is separated into a plurality of parts.
  • the portion of the first semiconductor layer 20 that overlaps with the electrode pad 14 in plan view is divided into a plurality of floating regions. Since a capacitor can be further provided on the lower surface 14b where the parasitic capacitance contributing to the electrode pad 14 is larger, an increase in parasitic capacitance can be further suppressed.
  • the contact area between the plug ring 76 and the electrode pad 14 can be increased, the contact resistance can be reduced.
  • the plug ring 76 includes the first plug ring 76a and one second plug ring 76b surrounding the first plug ring 76a in plan view
  • the number of the second plug ring 76b is one. , and may be two or more. That is, the plug ring 76 may include a first plug ring 76a and at least one second plug ring 76b surrounding the first plug ring 76a in plan view.
  • Modification 2 of the second embodiment of the present technology shown in FIG. 27 will be described below.
  • the photodetector 1 according to Modification 2 of the second embodiment differs from the photodetector 1 according to the above-described second embodiment in that the insulating ring 70 and the plug ring 76 have reverse tapered shapes when viewed in longitudinal section. Except for the shape, the configuration of the photodetector 1 is basically the same as that of the photodetector 1 of the second embodiment described above.
  • symbol is attached
  • the shape of the insulating ring 70 and the plug ring 76 when viewed in longitudinal section is a reverse tapered shape as shown. As shown in FIG. 27, the width d1 of the insulating ring 70 and the width d2 of the plug ring 76 are narrower on the side of the electrode pad 14 than on the side of the metal layer 32a in the thickness direction of the first semiconductor layer 20. ing.
  • the grooves 24 and 27 for providing the insulating ring 70 and the plug ring 76 are formed in the first semiconductor layer 20.
  • 24 and grooves 27 are formed in the first semiconductor layer 20 before bonding.
  • a first substrate (first semiconductor layer 20 and first wiring layer 30) 84 and a second substrate (second semiconductor layer 50 and second wiring layer 40) 85 are prepared.
  • the first substrate 84 as shown in FIG. 28A, the grooves 24 and 27 are formed in the first semiconductor layer 20 after the transistors and the like are formed in the first semiconductor layer 20 and before the metal layer 32a is formed.
  • An insulating film is laminated thereon.
  • the insulating layer embedded in the trench 24 is the insulating layer 61
  • the insulating layer embedded in the trench 27 is the insulating layer 63 .
  • the first wiring layer 30 is formed.
  • the second substrate 85 a detailed description of the manufacturing method is omitted here.
  • the first substrate 84 and the second substrate 85 are bonded.
  • the insulating layer 63 in the trench 27 may be entirely removed, and then an insulating film may be formed again along the inner surface of the trench 27 .
  • the re-formed insulating film does not fill the inside of the trench 27, but is deposited leaving a gap where the plug ring 76 can be formed. That is, an insulating film is deposited with a constant thickness along the inner surface of trench 27 .
  • a plug ring 76 is embedded in the gap within the groove 27 .
  • Modification 3 of the second embodiment of the present technology will be described below.
  • the photodetector 1 according to Modification 3 of the second embodiment differs from the photodetector 1 according to the second embodiment described above in that, as in Modification 2 of the second embodiment, an insulating ring 70 is provided. and that the shape of the plug ring 76 when viewed in longitudinal section is a reverse tapered shape.
  • Modified Example 3 of the second embodiment employs a manufacturing method different from that of Modified Example 2 of the second embodiment.
  • the configuration of the photodetector 1 is basically the same as that of the photodetector 1 of the above-described second embodiment.
  • symbol is attached
  • the first wiring layer 30 and the second wiring layer 40 are joined together before the material forming the plug ring 76 is embedded in the trench 27.
  • the material forming the plug ring 76 is embedded in the groove 27 before joining.
  • a first substrate (first semiconductor layer 20 and first wiring layer 30) 84 and a second substrate (second semiconductor layer 50 and second wiring layer 40) 85 are prepared.
  • the first substrate 84 as shown in FIG. 29A, after forming the transistors and the like and before forming the metal layer 32a, the grooves 24 and 27 are formed in the first semiconductor layer 20, and the grooves 27 are formed thereon.
  • the insulating layer embedded in the trench 24 is the insulating layer 61
  • the insulating layer embedded in the trench 27 is the insulating layer 63 .
  • a hole for embedding a plug ring 76 is formed in the insulating layer 63 embedded in the groove 27, and a material forming the plug ring 76 is embedded in the hole to form the plug ring 76. do.
  • the first wiring layer 30 is formed. After that, as shown in FIG. 29B, the first substrate 84 and the second substrate 85 are bonded.
  • a hole for embedding the plug ring 76 is formed in the insulating layer 63 embedded in the groove 27, and tungsten is embedded in the hole, but the present invention is not limited to this.
  • an insulating film may be formed as shown in FIG. 7H, and then tungsten may be buried.
  • An electronic device 100 according to the third embodiment includes a photodetector (solid-state imaging device) 101 , an optical lens 102 , a shutter device 103 , a drive circuit 104 and a signal processing circuit 105 .
  • the electronic device 100 of the third embodiment shows an embodiment in which the photodetector 1 described above is used as the photodetector 101 in an electronic device (for example, a camera).
  • An optical lens (optical system) 102 forms an image of image light (incident light 106 ) from a subject on the imaging surface of the photodetector 101 .
  • image light incident light 106
  • the shutter device 103 controls a light irradiation period and a light shielding period for the photodetector 101 .
  • a drive circuit 104 supplies drive signals for controlling the transfer operation of the photodetector 101 and the shutter operation of the shutter device 103 .
  • a drive signal (timing signal) supplied from the drive circuit 104 is used to perform signal transfer of the photodetector 101 .
  • the signal processing circuit 105 performs various signal processing on the signal (pixel signal) output from the photodetector 101 .
  • the video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
  • the parasitic capacitance accumulated in the electrode pad 14 in the photodetector 101 can be suppressed, and the image quality of the video signal can be improved.
  • the electronic device 100 to which the photodetector 1 according to the first and second embodiments can be applied is not limited to cameras, and can be applied to other electronic devices.
  • the present invention may be applied to imaging devices such as camera modules for mobile devices such as mobile phones.
  • the photodetector 101 is the photodetector 1 according to either the first embodiment and its modifications, the second embodiment and its modifications, or the first embodiment and its modifications.
  • the photodetector 1 according to a combination of at least two embodiments or modifications of the example and the second embodiment and its modification can be used in an electronic device.
  • the insulation ring 70 according to Modification 6 and Modification 7 of the above-described first embodiment has the air gap 28.
  • Such a technical idea is applied to the photodetector 1 according to the second embodiment.
  • Various combinations such as application are possible in accordance with respective technical ideas.
  • the insulating ring 70 may be made of a material different from that of the insulating layers laminated on the first surface S ⁇ b>1 and the second surface S ⁇ b>2 of the first semiconductor layer 20 . Furthermore, the insulating ring 70 may be formed by a process different from that for the insulating layers laminated on the first surface S ⁇ b>1 and the second surface S ⁇ b>2 of the first semiconductor layer 20 . For example, an STI (Shallow Trench Isolation) process is performed from the first surface S1 side, a DTI (Deep Trench Isolation) process is performed from the second surface S2 side, and various types, multiple layers, or a plurality of insulating materials are provided in the grooves 24.
  • STI Shallow Trench Isolation
  • DTI Deep Trench Isolation
  • the insulating ring 70 may be formed by laminating them separately.
  • the present technology can be applied to light detection devices in general, including a distance measuring sensor that measures a distance, which is also called a ToF (Time of Flight) sensor.
  • a ranging sensor emits irradiation light toward an object, detects the reflected light that is reflected from the surface of the object, and then detects the reflected light from the irradiation light until the reflected light is received. It is a sensor that calculates the distance to an object based on time.
  • the structure of the insulating ring 70, the plug ring 76, and the electrode pad 14 described above can be adopted as the structure of this distance measuring sensor.
  • the present technology may be configured as follows. (1) a first semiconductor layer having a photoelectric conversion part, one surface of which is a light incident surface and the other surface of which is an element formation surface; an insulating layer laminated on the light incident surface side of the first semiconductor layer; an electrode pad exposed from a surface of the insulating layer opposite to the surface of the insulating layer facing the first semiconductor layer, with the insulating layer interposed between the insulating layer and the first semiconductor layer; an insulating ring that penetrates the first semiconductor layer in the thickness direction and surrounds the electrode pad in a plan view;
  • a photodetector device comprising: (2) The photodetector according to (1), wherein the insulating ring includes a first insulating ring and at least one second insulating ring surrounding the first insulating ring in plan view.
  • a first wiring layer superimposed on the element formation surface of the first semiconductor layer; a second wiring layer superimposed on the surface of the first wiring layer opposite to the surface facing the first semiconductor layer; a second semiconductor layer superimposed on the surface of the second wiring layer opposite to the surface on the first wiring layer side;
  • the first wiring layer has a first connection pad facing a surface opposite to the first semiconductor layer side surface of the first wiring layer and electrically connected to the electrode pad, the second wiring layer has a second connection pad facing the surface opposite to the second semiconductor layer side surface of the second wiring layer and joined to the first connection pad;
  • the plug ring includes a first plug ring and at least one second plug ring surrounding the first plug ring in plan view.
  • the width between the outer contour and the inner contour of the plug ring in a plan view is thicker on the electrode pad side than on the metal layer side in the thickness direction.
  • the width between the outer contour and the inner contour of the plug ring in plan view is narrower on the electrode pad side than on the metal layer side in the thickness direction.
  • the photodetector is a first semiconductor layer having a photoelectric conversion part, one surface of which is a light incident surface and the other surface of which is an element formation surface; an insulating layer laminated on the light incident surface side of the first semiconductor layer; an electrode pad exposed from a surface of the insulating layer opposite to the surface of the insulating layer facing the first semiconductor layer, with the insulating layer interposed between the insulating layer and the first semiconductor layer; an insulating ring that penetrates the first semiconductor layer in the thickness direction and surrounds the electrode pad in a plan view, which is an insulating ring; Electronics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

電極パッドの寄生容量の増加を抑制できる光検出装置を提供する。光検出装置は、光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、第1半導体層の光入射面側に積層された絶縁層と、第1半導体層との間に絶縁層が介在した状態で、絶縁層の第1半導体層側の面とは反対側の面から露出する電極パッドと、第1半導体層を厚み方向に貫通し且つ平面視で電極パッドを囲っている絶縁性を有するリングである絶縁リングと、を備える。

Description

光検出装置および電子機器
 本技術(本開示に係る技術)は、光検出装置および電子機器に関し、特に、電極パッドを有する光検出装置および電子機器に関する。
 積層型イメージセンサのワイヤボンディングパッドについて、ボールの設置のしやすさから、上側基板の表面に電極パッドを配置した構造が提案されている(例えば、特許文献1)。電極パッドを最表面に配置することで、ボールサイズを小さくすることができるので、電極パッドの寸法の縮小が実現でき、従ってチップサイズの縮小が実現できる。
特開2019-68049号公報
 高速動作させるシステムの中では、寄生容量、例えば電極パッドの寄生容量が増加するのを抑制する必要がある。
 本技術は、電極パッドの寄生容量の増加を抑制できる光検出装置及び電子機器を提供することを目的とする。
 本技術の一態様に係る光検出装置は、光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、上記第1半導体層の上記光入射面側に積層された絶縁層と、上記第1半導体層との間に上記絶縁層が介在した状態で、上記絶縁層の上記第1半導体層側の面とは反対側の面から露出する電極パッドと、上記第1半導体層を厚み方向に貫通し且つ平面視で上記電極パッドを囲っている絶縁性を有するリングである絶縁リングと、を備える。
 本技術の一態様に係る電子機器は、上記光検出装置と、上記光検出装置に被写体からの像光を結像させる光学系と、を備える。
本技術の第1実施形態に係る光検出装置の一構成例を示すチップレイアウト図である。 本技術の第1実施形態に係る光検出装置の一構成例を示すブロック図である。 本技術の第1実施形態に係る光検出装置の画素の等価回路図である。 本技術の第1実施形態に係る電極パッドの配列を示す平面図である。 図4AのB-B切断線に沿って断面視した時の、電極パッドの断面を示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 本技術の第1実施形態に係る絶縁リングとプラグと電極パッドとの位置関係を示す平面図である。 図6AのC-C切断線に沿って断面視した時の、本技術の第1実施形態に係る絶縁リングとプラグと電極パッドとの位置関係を示す縦断面図である。 本技術の第1実施形態に係る光検出装置において、絶縁リングが2本の場合のキャパシタの構成を示す模式図である。 本技術の第1実施形態に係る光検出装置の製造方法を示す工程断面図である。 図7Aに引き続く工程断面図である。 図7Bに引き続く工程断面図である。 図7Cに引き続く工程断面図である。 図7Dに引き続く工程断面図である。 図7Eの工程で形成されたレジストパターンを示す平面図である。 図7Eに引き続く工程断面図である。 図7Gに引き続く工程断面図である。 図7Hに引き続く工程断面図である。 図7Iに引き続く工程断面図である。 図7Jに引き続く工程断面図である。 図7Kに引き続く工程断面図である。 図7Lに引き続く工程断面図である。 本技術の第1実施形態に係る1本の絶縁リングとプラグと電極パッドとの位置関係を示す平面図である。 本技術の第1実施形態に係る光検出装置において、絶縁リングが1本の場合のキャパシタの構成を示す模式図である。 本技術の第1実施形態に係る3本の絶縁リングとプラグと電極パッドとの位置関係を示す平面図である。 本技術の第1実施形態に係る光検出装置において、絶縁リングが3本の場合のキャパシタの構成を示す模式図である。 絶縁リングが設けられていない場合のキャパシタの構成を示す模式図である。 絶縁リングの本数と合成容量の計算結果との関係を示すグラフである。 従来の光検出装置を示す図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態の変形例1に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態の変形例2に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態の変形例3に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態の変形例4に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第1実施形態の変形例5に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 本技術の第1実施形態の変形例6に係る光検出装置の絶縁リングを示す縦断面図である。 本技術の第1実施形態の変形例7に係る光検出装置の絶縁リングを示す縦断面図である。 図1のA-A切断線に沿って断面視した時の、本技術の第2実施形態に係る光検出装置の電極パッドと画素領域との相対関係を示す縦断面図である。 本技術の第2実施形態に係る絶縁リングとプラグリングと電極パッドとの位置関係を示す平面図である。 図21AのC-C切断線に沿って断面視した時の、本技術の第2実施形態に係る絶縁リングとプラグリングと電極パッドとの位置関係を示す縦断面図である。 本技術の第2実施形態に係る1本の絶縁リングと1本のプラグリングと電極パッドとの位置関係を示す縦断面図である。 本技術の第2実施形態に係る光検出装置において、絶縁リングが1本の場合のキャパシタの構成を示す模式図である。 本技術の第2実施形態に係る光検出装置の製造方法の工程で形成されたレジストパターンを示す平面図である。 本技術の第2実施形態の他の形態に係る絶縁リングとプラグリングと電極パッドとの断面形状を示す縦断面図である。 本技術の第2実施形態の変形例1に係る絶縁リングと2本のプラグリングと電極パッドとの位置関係を示す平面図である。 図25AのC-C切断線に沿って断面視した時の、本技術の第2実施形態の変形例1に係る絶縁リングとプラグリングと電極パッドとの位置関係を示す縦断面図である。 本技術の第2実施形態の変形例1に係る1本の絶縁リングと2本のプラグリングと電極パッドとの位置関係を示す縦断面図である。 本技術の第2実施形態の変形例1に係る光検出装置において、絶縁リングが1本かつプラグリングが2本の場合のキャパシタの構成を示す模式図である。 本技術の第2実施形態の変形例2に係る絶縁リングとプラグリングと電極パッドとの断面形状を示す縦断面図である。 本技術の第2実施形態の変形例2に係る光検出装置の製造方法を示す工程断面図である。 図28Aに引き続く工程断面図である。 図28Bに引き続く工程断面図である。 本技術の第2実施形態の変形例3に係る光検出装置の製造方法を示す工程断面図である。 図29Aに引き続く工程断面図である。 図29Bに引き続く工程断面図である。 本技術の第3実施形態に係る電子機器の概略構成を示す図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
 以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す第1~第3の実施の形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであって、本技術の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本技術の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 説明は以下の順序で行う。
1.第1実施形態
2.第2実施形態
3.第3実施形態
 [第1実施形態]
 この実施形態1では、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである光検出装置に本技術を適用した一例について説明する。
 ≪光検出装置の全体構成≫
 まず、光検出装置1の全体構成について説明する。図1に示すように、本技術の第1実施形態に係る光検出装置1は、平面視したときの二次元平面形状が方形状の半導体チップ2を主体に構成されている。すなわち、光検出装置1は、半導体チップ2に搭載されている。この光検出装置1は、図30に示すように、光学系(光学レンズ)102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。
 図1に示すように、光検出装置1が搭載された半導体チップ2は、互いに交差するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状の画素領域2Aと、この画素領域2Aの外側に画素領域2Aを囲むようにして設けられた周辺領域2Bとを備えている。
 画素領域2Aは、例えば図30に示す光学系102により集光される光を受光する受光面である。そして、画素領域2Aには、X方向及びY方向を含む二次元平面において複数の画素3が行列状に配置されている。換言すれば、画素3は、二次元平面内で互いに交差するX方向及びY方向のそれぞれの方向に繰り返し配置されている。なお、本実施形態においては、一例としてX方向とY方向とが直交している。また、X方向とY方向との両方に直交する方向がZ方向(厚み方向)である。
 図1に示すように、周辺領域2Bには、電極パッド(ボンディングパッド)14が複数配置されている。
 <ロジック回路>
 図2に示すように、半導体チップ2は、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などを含むロジック回路13を備えている。ロジック回路13は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを有するCMOS(Complenentary MOS)回路で構成されている。
 垂直駆動回路4は、例えばシフトレジスタによって構成されている。垂直駆動回路4は、所望の画素駆動線10を順次選択し、選択した画素駆動線10に画素3を駆動するためのパルスを供給し、各画素3を行単位で駆動する。即ち、垂直駆動回路4は、画素領域2Aの各画素3を行単位で順次垂直方向に選択走査し、各画素3の光電変換素子が受光量に応じて生成した信号電荷に基づく画素3からの画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。
 カラム信号処理回路5は、例えば画素3の列毎に配置されており、1行分の画素3から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。カラム信号処理回路5の出力段には水平選択スイッチ(図示せず)が水平信号線12との間に接続されて設けられる。
 水平駆動回路6は、例えばシフトレジスタによって構成されている。水平駆動回路6は、水平走査パルスをカラム信号処理回路5に順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から信号処理が行われた画素信号を水平信号線12に出力させる。
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。
 <画素>
 図3は、画素3の一構成例を示す等価回路図である。画素3は、光電変換素子PDと、この光電変換素子PDで光電変換された信号電荷を蓄積(保持)する電荷蓄積領域(フローティングディフュージョン:Floating Diffusion)FDと、この光電変換素子PDで光電変換された信号電荷を電荷蓄積領域FDに転送する転送トランジスタTRと、を備えている。また、画素3は、電荷蓄積領域FDに電気的に接続された読出し回路15を備えている。
 光電変換素子PDは、受光量に応じた信号電荷を生成する。光電変換素子PDはまた、生成された信号電荷を一時的に蓄積(保持)する。光電変換素子PDは、カソード側が転送トランジスタTRのソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。光電変換素子PDとしては、例えばフォトダイオードが用いられている。
 転送トランジスタTRのドレイン領域は、電荷蓄積領域FDと電気的に接続されている。転送トランジスタTRのゲート電極は、画素駆動線10(図2参照)のうちの転送トランジスタ駆動線と電気的に接続されている。
 電荷蓄積領域FDは、光電変換素子PDから転送トランジスタTRを介して転送された信号電荷を一時的に蓄積して保持する。
 読出し回路15は、電荷蓄積領域FDに蓄積された信号電荷を読み出し、信号電荷に基づく画素信号を出力する。読出し回路15は、これに限定されないが、画素トランジスタとして、例えば、増幅トランジスタAMPと、選択トランジスタSELと、リセットトランジスタRSTと、を備えている。これらのトランジスタ(AMP,SEL,RST)は、例えば、酸化シリコン膜(SiO膜)からなるゲート絶縁膜と、ゲート電極と、ソース領域及びドレイン領域として機能する一対の主電極領域と、を有するMOSFETで構成されている。また、これらのトランジスタとしては、ゲート絶縁膜が窒化シリコン膜(Si膜)、或いは窒化シリコン膜及び酸化シリコン膜などの積層膜からなるMISFET(Metal Insulator Semiconductor FET)でも構わない。
 増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及びリセットトランジスタのドレイン領域と電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、電荷蓄積領域FD及びリセットトランジスタRSTのソース領域と電気的に接続されている。
 選択トランジスタSELは、ソース領域が垂直信号線11(VSL)と電気的に接続され、ドレインが増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、画素駆動線10(図2参照)のうちの選択トランジスタ駆動線と電気的に接続されている。
 リセットトランジスタRSTは、ソース領域が電荷蓄積領域FD及び増幅トランジスタAMPのゲート電極と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。リセットトランジスタRSTのゲート電極は、画素駆動線10(図2参照)のうちのリセットトランジスタ駆動線と電気的に接続されている。
 ≪光検出装置の具体的な構成≫
 次に、光検出装置1の具体的な構成について、図4A、図4B、図5等を用いて説明する。
 <光検出装置の積層構造>
 図5に示すように、光検出装置1(半導体チップ2)は、互いに反対側に位置する第1の面S1及び第2の面S2を有する第1半導体層20と、第1半導体層20の第1の面S1に重ね合わされている第1配線層30と、第1配線層30の第1半導体層20側の面と反対側の面である第3の面S3に重ね合わされている第2配線層40と、第2配線層40の第1配線層側の面(第4の面S4)と反対側の面である第5の面S5に重ね合わされている第2半導体層50と、を備える。このような積層構造は、例えば、第1配線層30を第1半導体層20の第1の面S1に積層し、第2配線層40を第2半導体層50に積層したのち、第1配線層30の第3の面S3と第2配線層40の第4の面S4とを重ね合わせて接合することにより、実現できる。また、第1半導体層20の一方の面である第2の面S2側を光入射面又は裏面と呼び、第1半導体層20の他方の面である第1の面S1を素子形成面又は主面と呼ぶこともある。
 また、光検出装置1(半導体チップ2)は、絶縁層60と、カラーフィルタ81と、オンチップレンズ82とを備える。絶縁層60、カラーフィルタ81、及びオンチップレンズ82は、その順で第1半導体層20の第2の面S2に積層されている。絶縁層60は、画素領域2Aと周辺領域2Bとの両方に設けられ、カラーフィルタ81及びオンチップレンズ82は、画素領域2Aと周辺領域2Bとのうちの画素領域2Aに設けられている。
 さらに、光検出装置1(半導体チップ2)は、電極パッド14と、平面視で電極パッド14を囲っている絶縁リング70とを備えている。
 <第1半導体層>
 第1半導体層20は、第1導電型、例えばp型の、単結晶シリコン基板で構成されている。図5に示すように、第1半導体層20は、第1導電型、例えばp型のウエル領域21と、ウエル領域21の内部に埋設された、第2導電型、例えばn型の半導体領域(光電変換部)22とを有する。図3に示した光電変換素子PDは、ウエル領域21と光電変換部22とを含む領域に構成されている。
 また、図5に示すように、第1半導体層20は、平面視で画素領域2Aと重なる画素領域20aと、平面視で周辺領域2Bと重なる周辺領域20bとを有する。周辺領域20bは、平面視で画素領域20aの外側に画素領域20aを囲むようにして設けられている。画素領域20aには、上述の光電変換部22が設けられている。すなわち、第1半導体層20は、光電変換部22を有している。光電変換部22は、入射した光を光電変換し、信号電荷を生成する。また、図5には図示を省略しているが、画素領域20aには、図3に示した電荷蓄積領域FD及び転送トランジスタTR等が設けられている。なお、画素領域20aと周辺領域20bとを区別する必要が無い場合には、画素領域20aと周辺領域20bとを区別せず、単に第1半導体層20と呼ぶ。
 これに対して、周辺領域20bには、図5に示すように、絶縁リング70と、後述のプラグ75とが設けられている。周辺領域20bに絶縁リング70と、プラグ75とを設けるために、図6A及び図6Bに示すように、周辺領域20bには、平面視で環状の溝24と、孔25とが設けられている。また、周辺領域20bには、電極パッド14の一部が埋め込まれる凹部23が設けられている。
 溝24は、第1半導体層20を厚み方向に貫通し且つ平面視で電極パッド14を囲っている。図6A及び図6Bは、1つの電極パッド14について溝24が2本ずつ設けられた例を示している。溝24は、1つの電極パッド14に対して1本以上設けることができるが、ここでは、1つの電極パッド14に対して溝24が2本ずつ設けられているものとして、説明する。これら2本の溝24を区別するために、内側の溝を第1溝24aと呼び、外側の溝、すなわち平面視で第1溝24aを囲う溝を、第2溝24bと呼ぶ。これら第1溝24aと第2溝24bとを区別する必要が無い場合には、第1溝24aと第2溝24bとを区別せず、単に溝24と呼ぶ。さらには、第1溝24aと第2溝24bとを含めて、溝24と呼ぶ場合もある。
 孔25は、第1半導体層20の厚み方向において第1半導体層20を貫通している。より具体的には、凹部23の底面23aと第1の面S1との間を貫通している。孔25は、複数設けられている。より具体的には、孔25は、2本設けられている。
 <絶縁層>
 絶縁層60は、例えばCVD法等により、第1半導体層20の第2の面S2側に積層された絶縁膜である。絶縁層60として、例えば酸化シリコン(SiO)、窒化シリコン(Si)、酸窒化シリコン(SiON)、炭化シリコン(SiC)等の材料を採用できる。
 また、絶縁層60は、溝24の内部を埋めている。絶縁層60のうちの溝24内に埋め込まれた部分を、その他の絶縁層60と区別するために絶縁層61と呼ぶ。さらに、絶縁層60は、凹部23の底面23a及び側面23bと、孔25の内面25aとに堆積されている。絶縁層60のうちの凹部23の底面23a及び側面23bに堆積された部分を、その他の絶縁層60と区別するために絶縁層62(第1絶縁層)と呼ぶ。また、絶縁層62のうちの底面23aに堆積された部分と側面23bに堆積された部分とを区別するために、底面23aに堆積された部分を絶縁層62a(第11絶縁層)と呼び、側面23bに堆積された部分を絶縁層62b(第12絶縁層)と呼ぶ。絶縁層62aと絶縁層62bとを区別する必要が無い場合には、絶縁層62aと絶縁層62bとを区別せず、単に絶縁層62と呼ぶ。そして、絶縁層60のうちの孔25の内面25aに堆積された部分を、その他の絶縁層60と区別するために絶縁層63(第2絶縁層)と呼ぶ。
 <プラグ>
 プラグ75は、複数設けられている。より具体的には、プラグ75は、2本設けられている。プラグ75は、絶縁層63を介して孔25内に埋め込まれていて、電極パッド14と後述のメタル層32とを電気的に接続している。より具体的には、プラグ75は、第1半導体層20との間に絶縁層63が介在した状態で孔25内に埋め込まれている。プラグ75の一端は、電極パッド14に接続されている。より具体的には、プラグ75の一端は、絶縁層62aを貫通して、電極パッド14の後述する下面14bに接続されている。プラグ75の他端は、メタル層32に接続されている。より具体的には、プラグ75の他端は、第1半導体層20の厚み方向に、第1半導体層20を突き抜けて、第1配線層30内にまで延在している。そして、第1配線層30内のメタル層32に接続されている。ここで、プラグ75の他端が接続されたメタル層32を、他のメタル層32と区別するためにメタル層32aと呼ぶ。また、プラグ75を構成する材料として、例えばタングステンを用いても良い。
 <電極パッド>
 図1、図4A、及び図4Bに示すように、光検出装置1(半導体チップ2)の周辺領域2Bには、電極パッド(ボンディングパッド)14が複数配置されている。電極パッド14は、例えば、半導体チップ2の二次元平面における4つの辺の各辺に沿って配列されている。より具体的には、電極パッド14は、X方向及びY方向に沿った4つの辺の各辺に沿って、例えば図4A及び図4Bに示すように一列に配列されている。なお、電極パッド14の数は、図示された数に限定されない。
 図6Bに示すように、電極パッド14は、上面14aと、上面14aとは反対側の面である下面14bと、上面14aと2の下面14bとの間に延在する側面である側面14cとを有する。上面14aは、外部に露出している露出面である。電極パッド14は、光検出装置1を外部装置と電気的に接続する際に用いられる入出力端子である。そのため、電極パッド14は外部に露出している。より具体的には、電極パッド14の上面14aは外部に露出している。また、電極パッド14の上面14aは、絶縁層60の第1半導体層20側の面とは反対側の面である面S6と同一平面上にある。そして、電極パッド14の下面14bは、プラグ75と接続されている。
 電極パッド14は、第1半導体層20と第2半導体層50とのうちの第1半導体層20側に設けられている。電極パッド14は、第1半導体層20との間に絶縁層60(絶縁層62)が介在した状態で、面S6から露出している。また、電極パッド14は、その一部が第1半導体層20に埋まっている。より具体的には、電極パッド14は、その一部が絶縁層62を介して凹部23に埋まっている。
 また、電極パッド14と第1半導体層20との間に絶縁層62が介在しているので、電極パッド14と絶縁層62と第1半導体層20とで寄生容量を構成している。より具体的には、電極パッド14と絶縁層62と後述の領域26aとで図6Cに示す寄生容量C1を構成している。
 <絶縁リング>
 図5、図6A及び図6Bに示すように、絶縁リング70は、第1半導体層20を厚み方向に貫通し且つ平面視で電極パッド14を囲っている絶縁性を有するリングである。絶縁リング70は、絶縁材料からなる。より具体的には、絶縁リング70は絶縁層61である。
 図5、図6A及び図6Bは、1つの電極パッド14について絶縁リング70が2本ずつ設けられた例を示している。絶縁リング70は、1つの電極パッド14に対して1本以上設けることができるが、ここでは、1つの電極パッド14に対して2本ずつ設けられているものとして、説明する。2本の絶縁リング70を区別するために、内側の絶縁リングを第1絶縁リング70aと呼び、外側の絶縁リング、すなわち平面視で第1絶縁リング70aを囲う絶縁リングを、第2絶縁リング70bと呼ぶ。第1絶縁リング70aは、第1溝24a内に埋め込まれた絶縁層61であり、第2絶縁リング70bは、第2溝24b内に埋め込まれた絶縁層61である。なお、これら第1絶縁リング70aと第2絶縁リング70bとを区別する必要が無い場合には、第1絶縁リング70aと第2絶縁リング70bとを区別せず、単に絶縁リング70と呼ぶ。さらには、第1絶縁リング70aと第2絶縁リング70bとを含めて、絶縁リング70と呼ぶ場合もある。
 また、図6Aに示すように、平面視における絶縁リング70の外側輪郭71と内側輪郭72との間の幅d1は、10nm以上300nm以下である。
 絶縁リング70は、第1半導体層20の厚み方向において第1半導体層20を貫通しているので、第1半導体層20は絶縁リング70で複数の領域26に分割されている。ここでは絶縁リング70が2本あるので、第1半導体層20は、図6A及び図6Bに示すように3つの領域26に分割されている。ここでは、これら3つの領域26を互いに区別するために、第1絶縁リング70aの内側に位置する領域を領域26a、第1絶縁リング70aと第2絶縁リング70bとの間に位置する領域を領域26b、第2絶縁リング70bの外側に位置する領域を領域26cと呼ぶ。なお、領域26aと、領域26bと、領域26cとを区別する必要が無い場合には、領域26aと、領域26bと、領域26cとを区別せず、単に領域26と呼ぶ。また、絶縁リング70の内側に位置する領域26、より具体的には領域26a及び領域26bは、電気的に浮遊状態にある。
 そして、絶縁リング70と、その絶縁リング70に隣接する2つの領域26とで、キャパシタを構成している。より具体的には、領域26aと第1絶縁リング70aと領域26bとで図6Cに示すキャパシタC2を構成し、領域26bと第2絶縁リング70bと領域26cとで図6Cに示すキャパシタC3を構成している。そして、上述の寄生容量C1とあわせて、図6Cに示す3つのキャパシタC1,C2,C3が直列接続された状態が構成されている。
 <第1配線層>
 図5に示すように、第1配線層30は、層間絶縁膜31と、メタル層32と、第1接続パッド33と、ビア34とを含む。メタル層32及び第1接続パッド33は、図示のように層間絶縁膜31を介して積層されている。ビア34は、メタル層32同士及びメタル層32と第1接続パッド33とを接続している。第1接続パッド33は、第1配線層30の第3の面S3に臨んでいる。第1接続パッド33は、メタル層32aと電気的に接続されている。例えば、第1接続パッド33は、複数層のメタル層32及びビア34を介して、メタル層32aと電気的に接続されている。さらに、第1接続パッド33は、メタル層32a及びプラグ75を介して、電極パッド14と電気的に接続されている。
 <第2配線層>
 図5に示すように、第2配線層40は、層間絶縁膜41と、メタル層42と、第2接続パッド43と、ビア44とを含む。メタル層42及び第2接続パッド43は、図示のように層間絶縁膜41を介して積層されている。ビア44は、メタル層42同士及びメタル層42と第2接続パッド43とを接続している。第2接続パッド43は、第2配線層40の第4の面S4に臨んでいて、第1接続パッド33と接合されている。これにより、第1配線層30の電極パッド14が、第2配線層40のメタル層42と電気的に接続されている。そして、図5に示すように、電極パッド14と、第1接続パッド33と、第2接続パッド43とは、厚み方向で重なっている。
 <第2半導体層>
 図5に示すように、第2半導体層50は、第1導電型、例えばp型の、単結晶シリコン基板で構成されている。第2半導体層50には、例えば、ロジック回路13及び読み出し回路15を構成するトランジスタが設けられている。
 ≪光検出装置の製造方法≫
 以下、図7Aから図7Mまでを参照して、光検出装置1の製造方法について説明する。まず、図7Aに示すように、第1半導体層20と、第1配線層30と、第2配線層40と第2半導体層50と、がその順序で順次重ね合わされた基板87を準備する。図示は省略されているが、第1半導体層20には、n型の半導体領域22等の拡散領域及び各種トランジスタ等がすでに形成されている。図示は省略されているが、第2半導体層50には、各種トランジスタが形成されている。そして、第2接続パッド43と第1接続パッド33とが接合されている。
 次に、図7Bに示すように、第1半導体層20の第2の面S2に、絶縁層60Aを積層する。そして、図7Cに示すように、絶縁層60Aの第1半導体層20側の面と反対側の面にレジストパターン90を積層する。そしてレジストパターン90をマスクとして絶縁層60A及び第1半導体層20をエッチングし、図7Dに示す凹部23を形成する。
 そして、図7E及び図7Fに示すように、絶縁層60A及び凹部23に、レジストパターン92を積層する。図7Fは、図7Eの工程で形成されたレジストパターン92を示す平面図である。そして、図7Gに示すように、レジストパターン92をマスクとしてエッチングを行う。より具体的には、レジストパターン92の開口部92aから露出する第1半導体層20をエッチングして、第1半導体層20を貫通する孔25を形成する。さらに、レジストパターン92の開口部92bから露出する絶縁層60A及び第1半導体層20をエッチングして、第1半導体層20を貫通する溝24を形成する。
 次に、図7Hに示すように、絶縁層60A及び第1半導体層20に対して絶縁層60Bを積層する。なお、上述の絶縁層60は、絶縁層60A及び絶縁層60Bを含んでいる。積層された絶縁層60Bは、溝24の内部に埋めこまれている。溝24の内部に埋めこまれた絶縁層60Bが図6Bに示す絶縁層61に相当する。そして、これにより図6Bに示す絶縁リング70が形成される。
 さらに、図7Hに示すように、絶縁層60Bは、孔25の内面25aを覆うように積層される。孔25の直径は溝24の幅(絶縁リング70の幅d1)より大きいので、孔25は絶縁層60Bで完全に埋められることはなく、内面25aが絶縁層60Bで覆われた状態になる。孔25の直径は、例えば、溝24の幅の2、3倍程度である。また、絶縁層60Bで覆われた後の孔25の空洞部を、孔25Aと呼ぶ。
 そして、メタル層32aに孔25を介して積層された絶縁層60Bを除去した後、図7Iに示すように、絶縁層60Bを覆いかつ孔25Aの内部を埋めるように、タングステン膜75Aを積層する。その後、図7Jに示すように、全面エッチングを行い、タングステン膜75Aの不要な部分を除去する。これにより、プラグ75が形成される。
 その後、図7Kに示すように、アルミ膜14Aを堆積する。そして、図7Lに示すように、アルミ膜14Aにレジストパターン93を堆積し、図7Mに示すように全面エッチングを行いアルミ膜14Aの不要な部分を除去する。これにより、電極パッド14が形成される。
 そして、電極パッド14を形成した後、図示は省略するが、絶縁層60の第1半導体層20側の面とは反対側の面にカラーフィルタ81とオンチップレンズ82とをその順で積層し、図5に示す光検出装置1がほぼ完成する。光検出装置1は、半導体基板にスクライブライン(ダイシングライン)で区画された複数のチップ形成領域の各々に形成される。そして、この複数のチップ形成領域をスクライブラインに沿って個々に分割することにより、光検出装置1を搭載した半導体チップ2が形成される。
 ≪第1実施形態の主な効果≫
 以下、第1実施形態の主な効果を説明する。ここでは、上述の図6A及び図6Cに示す絶縁リング70が2本の場合に加えて、図8A及び図8Bに示す絶縁リング70が1本の場合と、図9A及び図9Bに示す絶縁リング70が3本の場合とを例として、主な効果の説明を行う。
 絶縁リング70が1本の場合、図8Bに示す2つのキャパシタC1,C2が直列接続された状態が構成される。絶縁リング70が2本の場合は、すでに説明したように、図6Cに示す3つのキャパシタC1,C2,C3が直列接続された状態が構成される。そして、絶縁リング70が3本の場合は、図9Bに示す4つのキャパシタC1,C2,C3,C4が直列接続された状態が構成される。電極パッド14に蓄積される寄生容量は、これら複数のキャパシタの合成容量Cとなる。ここで、キャパシタC4は、領域26cと第2絶縁リング70cと領域26ddとで構成されている。
 従来の光検出装置は、絶縁リング70が設けられていない、すなわち絶縁リングの本数はゼロである。図10に示すように、絶縁リング70が設けられていない場合は、キャパシタの合成容量C=C1である。これに対して、絶縁リング70が1本の場合のキャパシタの合成容量C=C1×C2/(C1+C2)であり、2本の場合のキャパシタの合成容量C=C1×C2×C3/(C1+C2+C3)であり、3本の場合のキャパシタの合成容量C=C1×C2×C3×C4/(C1+C2+C3+C4)である。キャパシタを直列接続すると、直列接続の数が増えるほど合成容量が小さくなっていく。図11は、合成容量の計算結果を示す図である。図11に示すように、絶縁リング70が1本の場合、0本の場合と比べて合成容量が約七分の一になっている。また、絶縁リング70が3本の場合、1本の場合と比べて合成容量がさらに二分の一になっている。そして、図11には絶縁リング70が2本の場合の合成容量が示されていないが、その値は、1本の場合の合成容量と3本の場合の合成容量との間の値になると考えられる。
 絶縁リング70は第1半導体層20を厚み方向に貫通している。そのため、絶縁リング70の内側に位置する領域26は電気的に浮遊状態となり、電荷が溜まるのを抑制できる。
 このように、電極パッド14周辺のスペースを活用して絶縁リング70を設けることにより、電極パッド14に蓄積される寄生容量の増加を抑制することができる。さらに、絶縁リング70の数を増やすことにより、電極パッド14に蓄積される寄生容量の増加をより抑制することができる。これにより、配線遅延及びRC遅延を抑制し、信号速度が遅くなることを抑制できる。
 また、本技術の第1実施形態に係る光検出装置1では、電極パッド14に蓄積される寄生容量の増加を抑制することができるので、厚み方向において電極パッド14を第1半導体層20側に移設する上での不利益が小さい。そのため、例えば、従来第2配線層40に設けられていた電極パッド14を、第1半導体層20側に移設するという判断を躊躇なく行うことができる。また、電極パッド14のレイアウトの自由度が増える。
 従来の光検出装置1’の例では、図12に示すように、電極パッド14が第2配線層40に設けられていた。そのため、凹部23’が厚み方向に深く設けられ、凹部23’の底に電極パッド14が設けられていた。そのため、深い位置にボールBを置いて、かつボールBの端部にワイヤWを設けるためには、ボールB及び電極パッド14の体積を大きくする必要があった。
 これに対して、本技術の第1実施形態に係る光検出装置1では、絶縁リング70により第1半導体層20と電極パッド14との間の合成容量Cの増加を抑制できるので、電極パッド14を第1半導体層20側に移設することができる。そして、電極パッド14を第1半導体層20側に移設したので、ワイヤボンディングを容易に行えるようになる。さらには、ワイヤボンディングのボールサイズを小さくすることができ、電極パッド14及び光検出装置1が搭載された半導体チップ2の寸法をより小さくできる。さらに、ワイヤボンディングの信頼性も上がり、半導体チップ2が小さくなるので、ウエハからのチップの取れ高が上がり、コスト削減にも寄与することができる。
 また、電極パッド14と、第1接続パッド33と、第2接続パッド43とは、厚み方向で重なっている。これにより、電極パッド14から第2配線層40のメタル層42までの導電経路を、図14及び図15において説明するトレンチ部83で導電経路を形成する場合より短くすることができる。そのため、このような構成によっても、電極パッド14に蓄積される寄生容量の増加を抑制することができる。
 なお、平面視で第1絶縁リング70aを囲う第2絶縁リングの数は、本第1実施形態では1本又は2本であったが、これに限定されず、3本以上であっても良い。すなわち、絶縁リング70は、第1絶縁リング70aと、平面視で第1絶縁リング70aを囲う少なくとも1本の第2絶縁リングと、を含んでいても良い。
 また、プラグ75は1つの電極パッド14について2本ずつ設けられていたが、これに限らず、1本でも良い。さらには、1つの電極パッド14について3本以上設けられていても良い。孔25についても、1つの電極パッド14について2本ずつ設けられていたが、これに限らず、プラグ75の数に応じて1本又は3本以上設けられていても良い。
 [第1実施形態の変形例1]
 図13に示す本技術の第1実施形態の変形例1について、以下に説明する。本第1実施形態の変形例1に係る光検出装置1が上述の第1実施形態に係る光検出装置1と相違するのは、電極パッド14の形状であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 電極パッド14は、頭部141と、頭部141と一体に形成された胴部142とを有する。頭部141の上面141aは、外部に露出している露出面である。胴部142は、メタル層32aに接続されている。
 ≪第1実施形態の変形例1の主な効果≫
 この第1実施形態の変形例1に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 [第1実施形態の変形例2]
 図14に示す本技術の第1実施形態の変形例2について、以下に説明する。本第1実施形態の変形例2に係る光検出装置1が上述の第1実施形態に係る光検出装置1と相違するのは、第1基板(第1半導体層20及び第1配線層30)84と、第2基板(第2半導体層50及び第2配線層40)85とがトレンチ部83を介して電気的に接続されている点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 光検出装置1は、プラグ75に代えてトレンチ部83を有する。トレンチ部83は、第1半導体層20に積層された絶縁層60から第2配線層40のメタル層42まで延在し、延在方向の深い位置にある一端がメタル層42に接続されている。電極パッド14は、頭部141と接続部143とを有する。頭部141の上面141aは、外部に露出している露出面である。接続部143は、頭部141とトレンチ部83とを電気的に接続している。
 ≪第1実施形態の変形例2の主な効果≫
 この第1実施形態の変形例2に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 なお、電極パッド14は、接続部143を有していなくても良い。その場合、頭部141とトレンチ部83とが直接接続されている構成となる。
 [第1実施形態の変形例3]
 図15に示す本技術の第1実施形態の変形例3について、以下に説明する。本第1実施形態の変形例3に係る光検出装置1が上述の第1実施形態及び第1実施形態の変形例2に係る光検出装置1と相違するのは、上述の第1基板84と第2基板85とのうちの第1基板84のみを有している点、及び第1半導体層20とメタル層32とがトレンチ部83を介して電気的に接続されている点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態及び第1実施形態の変形例2の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 光検出装置1は、プラグ75に代えてトレンチ部83を有する。また、光検出装置1は、第1基板84と、支持基板86とを有する。トレンチ部83は、第1半導体層20に積層された絶縁層60から第1配線層30のメタル層32まで延在し、延在方向の深い位置にある一端がメタル層32に接続されている。接続部143は、頭部141とトレンチ部83とを電気的に接続している。
 ≪第1実施形態の変形例3の主な効果≫
 この第1実施形態の変形例3に係る光検出装置1であっても、上述の第1実施形態及び第1実施形態の変形例2に係る光検出装置1と同様の効果が得られる。
 なお、電極パッド14は、接続部143を有していなくても良い。その場合、頭部141とトレンチ部83とが直接接続されている構成となる。
 [第1実施形態の変形例4]
 図16に示す本技術の第1実施形態の変形例4について、以下に説明する。本第1実施形態の変形例4に係る光検出装置1が上述の第1実施形態と相違するのは、電極パッド14が面S6から突出している点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 電極パッド14は、第1半導体層20の第2の面S2に積層されている。そして、電極パッド14は面S6から突出している。カラーフィルタ81及びオンチップレンズ82は、例えば樹脂等を面S6に塗布して設けられるため、塗布面は平坦な方が好ましい。そこで、第1実施形態では、電極パッド14は、電極パッド14の上面14aが面S6と同一平面上に位置するように設けられていた。
 これに対して、例えば白黒センサなど、カラーフィルタ81及びオンチップレンズ82が不要な光検出装置であれば、電極パッド14が面S6から突出していても、樹脂の塗布性に影響することはない。
 ≪第1実施形態の変形例4の主な効果≫
 この第1実施形態の変形例4に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 [第1実施形態の変形例5]
 図17に示す本技術の第1実施形態の変形例5について、以下に説明する。本第1実施形態の変形例5に係る光検出装置1が上述の第1実施形態と相違するのは、電極パッド14が面S6から窪んだ位置に設けられている点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 電極パッド14は、第1半導体層20内に埋まっている。そして、電極パッド14の上面14aは、第2の面S2と同一平面上に位置している。そのため、絶縁層60のうちの平面視で電極パッド14と重なる部分は、除去されている。
 例えば白黒センサなど、カラーフィルタ81及びオンチップレンズ82が不要な光検出装置であれば、電極パッド14が面S6から窪んだ位置に設けられていても、樹脂の塗布性に影響することはない。
 ≪第1実施形態の変形例5の主な効果≫
 この第1実施形態の変形例5に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 [第1実施形態の変形例6]
 図18に示す本技術の第1実施形態の変形例6について、以下に説明する。本第1実施形態の変形例6に係る光検出装置1が上述の第1実施形態と相違するのは、絶縁リング70が絶縁層61Fと空隙28とを含む点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 図示するように、溝24内は、絶縁層60で完全に埋められておらず、空隙28を含んでいる。つまり、絶縁リング70が絶縁層61Fと空隙28との両方を含んでいる。空隙28は、絶縁層として機能するため、絶縁リング70の一部として機能することができる。
 ≪第1実施形態の変形例6の主な効果≫
 この第1実施形態の変形例6に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 [第1実施形態の変形例7]
 図19に示す本技術の第1実施形態の変形例7について、以下に説明する。本第1実施形態の変形例7に係る光検出装置1が上述の第1実施形態と相違するのは、絶縁リング70が空隙28を含む点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 図示するように、溝24内は、絶縁層60で埋められておらず、空隙28になっている。つまり、絶縁リング70は、空隙28により構成されている。空隙28は、絶縁層として機能するため、絶縁リング70として機能することができる。
 ≪第1実施形態の変形例7の主な効果≫
 この第1実施形態の変形例7に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 [第2実施形態]
 図20、図21A、及び図21Bに示す本技術の第2実施形態について、以下に説明する。本第2実施形態に係る光検出装置1が上述の第1実施形態に係る光検出装置1と相違するのは、柱状のプラグ75に代えてリング状のプラグリング76を有する点、孔25の代わりにリング状の溝27が第1半導体層20に設けられた点であり、それ以外の光検出装置1の構成は、基本的に上述の第1実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 <プラグリング>
 図20、図21A、及び図21Bは、リング状のプラグリング76が1本設けられた例を示している。また、図21Bに示すように、プラグリング76は、一端が電極パッド14に接続され、他端がメタル層32aに接続されていて、電極パッド14とメタル層32aとを電気的に接続している。また、プラグリング76は、絶縁層63を介して溝27内に埋め込まれている。プラグリング76及び溝27は、第1半導体層20の厚み方向に第1半導体層20を貫通している。また、図21Aに示すように、プラグリング76は、平面視で、環状でありかつ電極パッド14の輪郭14dより内側に配置されている。溝27は、平面視で環状である。絶縁層63は、第1半導体層20と前記プラグリング76との間に介在している。ここで、絶縁層63は、第1半導体層20とプラグリング76との間に数十nm以上残してあることが望ましい。
 プラグリング76は、第1半導体層20の厚み方向において第1半導体層20を貫通しているので、第1半導体層20を複数の領域に分割している。より具体的には、プラグリング76は、第1実施形態における第1半導体層20の領域26aを、領域26dと、領域26eとに分割している。分割された領域26d及び領域26eは、電気的に浮遊状態にある。また、プラグリング76は、なるべく電極パッド14の外周側に設けるのが好ましい。これにより、プラグリング76は、ワイヤボンディング時にダメージを受け難くなる。
 ここで、図20、図21A、及び図21Bにおいては絶縁リング70が2本設けられているが、簡略化のために、図22Aに示すように、絶縁リング70が1本の場合について、キャパシタの構成を考える。
 より具体的には、電極パッド14と絶縁層62(主に絶縁層62b)と領域26dとで図22Bに示す寄生容量C5を構成し、領域26dと第1絶縁リング70aと領域26bとでキャパシタC6を構成している。直列接続されたキャパシタC5,C6は、主に電極パッド14の側面14cに蓄積される側面成分の容量である。
 そして、電極パッド14と絶縁層62(主に絶縁層62a)と領域26eとで図22Bに示す寄生容量C7を構成している。さらに、領域26eと領域26bとが、第1配線層30の層間絶縁膜31を介してキャパシタC8を構成している。直列接続されたキャパシタC7,C8は、主に電極パッド14の下面14bに蓄積される下面成分の容量である。このように、プラグリング76は、電極パッド14への寄生容量をパッド側面成分と下面成分とに分離している。
 ここで、図21Aに示す電極パッド14の平面視における寸法14x、14yが例えば100μmオーダーの大きさを有するのに対し、図21Bに示す電極パッド14の縦断面視における寸法14zは例えば数μm程度の大きさである。すなわち、電極パッド14の下面14bの面積は、側面14cの面積より圧倒的に大きい。
 ≪光検出装置の製造方法≫
 以下、光検出装置1の製造方法について説明する。ここでは、上述の第1実施形態に係る光検出装置1の製造方法と異なる点を中心に説明する。まず、図7Aから図7Dまでに示す工程を行う。そして、図7Eに示す工程では、図7Fに示すレジストパターン92に代えて図23に示すレジストパターン92Aを積層する。そして、レジストパターン92Aを用いて、図7Gに示すエッチング工程を行う。より具体的には、レジストパターン92Aの開口部92cから露出する第1半導体層20をエッチングして、第1半導体層20を貫通する溝27を形成する。これにより、第1半導体層20にリング状の溝27を、形成する。さらに、レジストパターン92の開口部92bから露出する絶縁層60A及び第1半導体層20をエッチングして、第1半導体層20を貫通する溝24を形成する。その後、図7Hから図7Mまでに示す工程を行う。図7Gに示すエッチング工程によりリング状の溝27が形成されているので、リング状のプラグリング76を形成することができる。
 ≪第2実施形態の主な効果≫
 この第2実施形態に係る光検出装置1であっても、上述の第1実施形態に係る光検出装置1と同様の効果が得られる。
 ここで、1つの電極パッド14に対して設けることができる絶縁リング70の本数は、電極パッド14同士の間隔により制限を受ける場合があるかもしれない。逆に、絶縁リング70の本数を増やすために、電極パッド14同士の間隔を広げる必要が生じる場合があるかもしれない。このように、絶縁リング70の本数と電極パッド14同士の間隔とにトレードオフが生じる可能性、チップシュリンクが制限を受ける場合が生じる可能性があるかもしれない。
 そのような場合であっても、本技術の第2実施形態に係る光検出装置1では、プラグリング76が電極パッド14の下面14bに接続されるので、電極パッド14の下面14b側の領域を有効活用することができ、電極パッド14同士の間隔に関係なく、寄生容量の増加を抑制するためのキャパシタの数を増やすことができる。
 また、第1実施形態のようにプラグリング76を設けない場合、電極パッド14に寄与する寄生容量としては、電極パッド14により近い寄生容量C1が支配的である。さらには、電極パッド14の側面14cの面積より下面14bの面積の方が圧倒的に大きい。それ故、支配的な寄生容量C1のなかでも、下面14bに寄与する寄生容量の方が側面14cに寄与する寄生容量より支配的である。
 本技術の第2実施形態に係る光検出装置1では、電極パッド14への寄生容量を側面成分と下面成分とに分離することができ、電極パッド14に寄与する寄生容量がより大きい下面14bにキャパシタを設けることができるので、寄生容量の増加をさらに抑制することができる。
 なお、本実施形態2では、図21Aに示す絶縁リング70の幅d1及びプラグリング76の幅d2は、第1半導体層20の厚み方向に沿って、一定であったが、これに限定されず、縦断面視でテーパー形状であっても良い。例えば、図24に示すように、絶縁リング70の幅d1及びプラグリング76の幅d2は、第1半導体層20の厚み方向において電極パッド14側寄りの方が、メタル層32a側寄りの方より太くても良い。ここで、プラグリング76の幅d2とは、図21Aに示すように、平面視におけるプラグリング76の外側輪郭77と内側輪郭78との間の幅である。
 [第2実施形態の変形例1]
 図25A及び図25Bに示す本技術の第2実施形態の変形例1について、以下に説明する。本第2実施形態の変形例1に係る光検出装置1が上述の第2実施形態に係る光検出装置1と相違するのは、プラグリング76を複数有する点であり、それ以外の光検出装置1の構成は、基本的に上述の第2実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 <プラグリング>
 図25A及び図25Bは、リング状のプラグリング76が2本設けられた例を示している。換言すると、プラグリング76は、第1プラグリング76aと、平面視で第1プラグリング76aを囲う第2プラグリング76bと、を含んでいる。すなわち、プラグリング76が多重化されている。なお、第1プラグリング76aと第2プラグリング76bとを区別する必要が無い場合には、第1プラグリング76aと第2プラグリング76bとを区別せず、単にプラグリング76と呼ぶ。
 第1プラグリング76a及び第2プラグリング76bは、第1半導体層20に設けられた溝27a(27)及び溝27b(27)に、絶縁層63を介して設けられている。
 第1プラグリング76a及び第2プラグリング76bは、第1半導体層20の厚み方向において第1半導体層20を貫通し、第1半導体層20を複数の領域に分割している。より具体的には、第1プラグリング76aは、第2プラグリング76bより内側の第1半導体層20(すなわち第2実施形態における領域26e)を、領域26fと、領域26gとに分割している。分割された領域26f及び領域26gは、電気的に浮遊状態にある。また、第2実施形態の場合と同様に、プラグリング76をなるべく電極パッド14の外周側に設けるのが好ましい。これにより、プラグリング76は、ワイヤボンディング時にダメージを受け難くなる。ただし、配置スペースの制約から、プラグリング76がボールBと第1半導体層20の厚み方向において重なってしまうことがあるかもしれない。しかし、そのような場合であっても、例えば、電極パッド14の厚さ、バリアメタルの種類を変えることにより、プラグリング76がワイヤボンディング時のダメージを受け難くすることができる。
 ここで、図25A及び図25Bにおいては絶縁リング70が2本設けられているが、簡略化のために、図26Aに示すように、絶縁リング70が1本の場合について、キャパシタの構成を考える。なお、ここではキャパシタの下面成分についてのみ、説明する。電極パッド14と絶縁層62(主に絶縁層62a)と領域26fとで図26Bに示す寄生容量C9を構成し、領域26fと領域26bとが、第1配線層30の層間絶縁膜31を介してキャパシタC10を構成している。さらに、電極パッド14と絶縁層62(主に絶縁層62a)と領域26gとで図26Bに示す寄生容量C11を構成し、領域26gと領域26bとが、第1配線層30の層間絶縁膜31を介してキャパシタC12を構成している。また、キャパシタC9,C10が直列接続され、キャパシタC11,C12が直列接続されている。キャパシタC9,C10,C11,C12は、主に電極パッド14の下面14bに蓄積される下面成分の容量である。このように、電極パッド14への寄生容量の下面成分を、複数に分離している。
 ≪第2実施形態の変形例1の主な効果≫
 この第2実施形態の変形例1に係る光検出装置1であっても、上述の第2実施形態に係る光検出装置1と同様の効果が得られる。
 また、プラグリング76を多重化することにより、第1半導体層20のうち平面視で電極パッド14と重なる部分を複数の浮遊状態の領域に分割している。電極パッド14に寄与する寄生容量がより大きい下面14bにさらにキャパシタを設けることができるので、寄生容量の増加をさらに抑制することができる。
 また、プラグリング76と電極パッド14との接触面積を増やすことができるため、接触抵抗を低減する事もできる。
 なお、プラグリング76は、第1プラグリング76aと、平面視で第1プラグリング76aを囲う1本の第2プラグリング76bと、を含んでいたが、第2プラグリング76bの数は1本に限定されず、2本以上であっても良い。すなわち、プラグリング76は、第1プラグリング76aと、平面視で第1プラグリング76aを囲う少なくとも1本の第2プラグリング76bと、を含んでいても良い。
 [第2実施形態の変形例2]
 図27に示す本技術の第2実施形態の変形例2について、以下に説明する。本第2実施形態の変形例2に係る光検出装置1が上述の第2実施形態に係る光検出装置1と相違するのは、絶縁リング70及びプラグリング76の縦断面視の形状が逆テーパー形状である点であり、それ以外の光検出装置1の構成は、基本的に上述の第2実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 絶縁リング70及びプラグリング76の縦断面視の形状は、図示するように逆テーパー形状である。絶縁リング70の幅d1及びプラグリング76の幅d2は、図27に示すように、第1半導体層20の厚み方向において電極パッド14側寄りの方が、メタル層32a側寄りの方より細くなっている。
 ≪光検出装置の製造方法≫
 以下、変形例2の光検出装置1の製造方法について説明する。ここでは、上述の第2実施形態に係る光検出装置1の製造方法と異なる点を中心に説明する。なお、ここでは、各部の形状について、簡略化のため、逆テーパー形状にはしていない。
 第2実施形態では、第1配線層30と第2配線層40とを接合してから絶縁リング70及びプラグリング76を設けるための溝24及び溝27を第1半導体層20に形成するのに対し、本第2実施形態の変形例2では、接合前に24及び溝27を第1半導体層20に形成している。
 まず、第1基板(第1半導体層20及び第1配線層30)84と、第2基板(第2半導体層50及び第2配線層40)85とのそれぞれを準備する。第1基板84については、図28Aに示すように、第1半導体層20にトランジスタ等を形成した後、メタル層32aを形成する前に、第1半導体層20に対して溝24及び溝27を形成し、その上に絶縁膜を積層する。そして、溝24内に埋め込まれた絶縁層が絶縁層61であり、溝27内に埋め込まれた絶縁層が絶縁層63である。その後、第1配線層30を形成する。第2基板85については、詳細な製造方法の説明は、ここでは省略する。そして、図28Bに示すように、第1基板84と第2基板85とを接合する。
 その後、図示は省略するが、溝27に埋め込まれた絶縁層63に、プラグリング76を埋め込むための孔や、凹部23等を形成する。その後は、図7Iから図7Mまでに示した工程と同様の工程を行い、図28Cに示すプラグリング76及び絶縁リング70を得る。
 ≪第2実施形態の変形例2の主な効果≫
 この第2実施形態の変形例2に係る光検出装置1であっても、上述の第2実施形態に係る光検出装置1と同様の効果が得られる。
 なお、上述の、溝27に埋め込まれた絶縁層63にプラグリング76を埋め込むための孔を形成する工程において、上記以外の工程が用いられても良い。例えば、溝27内の絶縁層63を一旦全て除去し、その後、溝27の内面に沿って絶縁膜を再度成膜してもよい。再度成膜された絶縁膜は、溝27の内部を埋めるのではなく、プラグリング76が形成できる空隙を残して堆積される。すなわち、溝27の内面に沿って絶縁膜が一定の厚みで堆積される。そして、溝27内の空隙にプラグリング76が埋め込まれる。
 [第2実施形態の変形例3]
 本技術の第2実施形態の変形例3について、以下に説明する。本第2実施形態の変形例3に係る光検出装置1が上述の第2実施形態に係る光検出装置1と相違するのは、上述の第2実施形態の変形例2と同様に絶縁リング70及びプラグリング76の縦断面視の形状が逆テーパー形状である点である。さらに、本第2実施形態の変形例3では、第2実施形態の変形例2とは異なる製造方法を採用している。それ以外の光検出装置1の構成は、基本的に上述の第2実施形態の光検出装置1と同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。
 ≪光検出装置の製造方法≫
 以下、変形例3の光検出装置1の製造方法について説明する。ここでは、上述の第2実施形態及び第2実施形態の変形例2に係る光検出装置1の製造方法と異なる点を中心に説明する。なお、ここでは、各部の形状について、簡略化のため、逆テーパー形状にはしていない。
 第2実施形態の変形例2では、第1配線層30と第2配線層40とを接合してからプラグリング76を構成する材料を溝27に埋め込んでいるのに対し、本第2実施形態の変形例3では、接合前に、プラグリング76を構成する材料を溝27に埋め込んでいる。
 まず、第1基板(第1半導体層20及び第1配線層30)84と、第2基板(第2半導体層50及び第2配線層40)85とのそれぞれを準備する。第1基板84については、図29Aに示すように、トランジスタ等を形成した後、メタル層32aを形成する前に、第1半導体層20に対して溝24及び溝27を形成し、その上に絶縁膜を積層する。そして、溝24内に埋め込まれた絶縁層が絶縁層61であり、溝27内に埋め込まれた絶縁層が絶縁層63である。次いで、同図に示すように、溝27に埋め込まれた絶縁層63に、プラグリング76を埋め込むための孔を形成し、その孔にプラグリング76を構成する材料を埋め込んでプラグリング76を形成する。そして、第1配線層30を形成する。その後、図29Bに示すように、第1基板84と第2基板85とを接合する。
 次いで、図7D、及び図7Kから図7Mまでに示した工程と同様の工程を行い、図29Cに示すプラグリング76及び絶縁リング70を得る。
 ≪第2実施形態の変形例3の主な効果≫
 この第2実施形態の変形例3に係る光検出装置1であっても、上述の第2実施形態に係る光検出装置1と同様の効果が得られる。
 また、第2実施形態の変形例3では、第1基板84と第2基板85とを接合する前にプラグリング76を構成する材料(例えばタングステン)の埋め込みが完了している。そのため、第2実施形態の変形例2において電極パッド14の側壁に接するように残っていたタングステンメタル79(図28C)が、本第2実施形態の変形例3では残っていない。そのため、電極パッド14のパッド抵抗を抑制することができる。
 なお、上述のプラグリング76を形成する工程では、溝27に埋め込まれた絶縁層63に、プラグリング76を埋め込むための孔を形成し、その穴にタングステンを埋め込んでいたが、それに限定されない。溝27を絶縁層63で完全に埋め込むことなく、例えば図7Hに示すように絶縁膜を形成し、その後タングステンを埋め込んでも良い。
 [第3実施形態]
 <電子機器への応用例>
 次に、図30に示す本技術の第3実施形態に係る電子機器について説明する。第3実施形態に係る電子機器100は、光検出装置(固体撮像装置)101と、光学レンズ102と、シャッタ装置103と、駆動回路104と、信号処理回路105とを備えている。第3の実施形態の電子機器100は、光検出装置101として、上述の光検出装置1を電子機器(例えば、カメラ)に用いた場合の実施形態を示す。
 光学レンズ(光学系)102は、被写体からの像光(入射光106)を光検出装置101の撮像面上に結像させる。これにより、光検出装置101内に一定期間にわたって信号電荷が蓄積される。シャッタ装置103は、光検出装置101への光照射期間及び遮光期間を制御する。駆動回路104は、光検出装置101の転送動作及びシャッタ装置103のシャッタ動作を制御する駆動信号を供給する。駆動回路104から供給される駆動信号(タイミング信号)により、光検出装置101の信号転送を行う。信号処理回路105は、光検出装置101から出力される信号(画素信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。
 このような構成により、第3実施形態の電子機器100では、光検出装置101において電極パッド14に蓄積される寄生容量を抑制でき、映像信号の画質の向上を図ることができる。
 なお、第1から第2の実施形態に係る光検出装置1を適用できる電子機器100としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
 また、第3実施形態では、光検出装置101として、第1実施形態及びその変形例、又は第2実施形態及びその変形例のいずれかに係る光検出装置1、又は第1実施形態及びその変形例と、第2実施形態及びその変形例との少なくとも2つの実施形態又は変形例の組み合わせに係る光検出装置1を電子機器に用いることができる。
 [その他の実施形態]
 上記のように、本技術は第1実施形態から第3実施形態までによって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、第1実施形態から第3実施形態までにおいて説明したそれぞれの技術的思想を互いに組み合わせることも可能である。例えば、上述の第1実施形態の変形例6及び変形例7に係る絶縁リング70は空隙28を備えていたが、このような技術的思想を、第2実施形態に記載の光検出装置1に適用する等、それぞれの技術的思想に沿った種々の組み合わせが可能である。
 なお、絶縁リング70は、第1半導体層20の第1の面S1及び第2の面S2に積層された絶縁層と異なる材料で構成されていても良い。さらに、絶縁リング70は、第1半導体層20の第1の面S1及び第2の面S2に積層された絶縁層と異なるプロセスで形成されても良い。例えば、第1の面S1側からSTI(Shallow Trench Isolation)工程を行い、第2の面S2側からDTI(Deep Trench Isolation)工程を行い、溝24内に絶縁材を多種、多層、又は複数部にわけて積層して、絶縁リング70を形成しても良い。
 また、本技術は、上述したイメージセンサとしての固体撮像装置の他、ToF(Time of Flight)センサともよばれる距離を測定する測距センサなども含む光検出装置全般に適用
することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射され返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの構造として、上述した絶縁リング70、プラグリング76、及び電極パッド14の構造を採用することができる。
 このように、本技術はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本技術の技術的範囲は上記の説明から妥当な特許請求の範囲に記載された発明特定事項によってのみ定められるものである。
 また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があっても良い。
 なお、本技術は、以下のような構成としてもよい。
(1)
 光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、
 前記第1半導体層の前記光入射面側に積層された絶縁層と、
 前記第1半導体層との間に前記絶縁層が介在した状態で、前記絶縁層の前記第1半導体層側の面とは反対側の面から露出する電極パッドと、
 前記第1半導体層を厚み方向に貫通し且つ平面視で前記電極パッドを囲っている絶縁性を有するリングである絶縁リングと、
 を備えた光検出装置。
(2)
 前記絶縁リングは、第1絶縁リングと、平面視で前記第1絶縁リングを囲う少なくとも1本の第2絶縁リングと、を含む、(1)に記載の光検出装置。
(3)
 平面視における前記絶縁リングの外側輪郭と内側輪郭との間の幅が10nm以上300nm以下である、(1)又は(2)に記載の光検出装置。
(4)
 前記絶縁リングは、絶縁材料と空隙とうちの少なくとも一方を含む、(1)から(3)のいずれかに記載の光検出装置。
(5)
 前記第1半導体層の前記素子形成面に重ね合わされている第1配線層と、
 前記第1配線層の前記第1半導体層側の面と反対側の面に重ね合わされている第2配線層と、
 前記第2配線層の前記第1配線層側の面と反対側の面に重ね合わされている第2半導体層と、を備え、
 前記第1配線層は、前記第1配線層の前記第1半導体層側の面とは反対側の面に臨み前記電極パッドと電気的に接続された第1接続パッドを有し、
 前記第2配線層は、前記第2配線層の前記第2半導体層側の面とは反対側の面に臨み前記第1接続パッドと接合された第2接続パッドを有し、
 前記電極パッドと、前記第1接続パッドと、前記第2接続パッドとは、厚み方向で重なっている、(1)から(4)のいずれかに記載の光検出装置。
(6)
 前記第1半導体層の前記素子形成面に重ね合わされ、メタル層を含む第1配線層と、
 前記第1半導体層の厚み方向に前記第1半導体層を貫通し、平面視で環状であり且つ前記電極パッドの輪郭より内側に配置されたプラグリングと、
 前記第1半導体層と前記プラグリングとの間に介在している絶縁層と、を備え、
 前記プラグリングは、一端が前記電極パッドに接続され、他端が前記メタル層に接続されていて、前記電極パッドと前記メタル層とを電気的に接続している、(1)に記載の光検出装置。
(7)
 前記プラグリングは、第1プラグリングと、平面視で前記第1プラグリングを囲う少なくとも1本の第2プラグリングと、を含む、(6)に記載の光検出装置。
(8)
 平面視における前記プラグリングの外側輪郭と内側輪郭との間の幅は、厚み方向において前記電極パッド側寄りの方が、前記メタル層側寄りの方より太い、(6)又は(7)に記載の光検出装置。
(9)
 平面視における前記プラグリングの外側輪郭と内側輪郭との間の幅は、厚み方向において前記電極パッド側寄りの方が、前記メタル層側寄りの方より細い、(6)又は(7)に記載の光検出装置。
(10)
 前記電極パッドの露出する面は、前記光入射面側に積層された前記絶縁層の、前記第1半導体層側の面とは反対側の面と同一平面上にある、(1)から(9)のいずれかに記載の光検出装置。
(11)
 光検出装置と、前記光検出装置に被写体からの像光を結像させる光学系と、を備え、
 前記光検出装置は、
 光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、
 前記第1半導体層の前記光入射面側に積層された絶縁層と、
 前記第1半導体層との間に前記絶縁層が介在した状態で、前記絶縁層の前記第1半導体層側の面とは反対側の面から露出する電極パッドと、
 前記第1半導体層を厚み方向に貫通し且つ平面視で前記電極パッドを囲っている絶縁性を有するリングである絶縁リングと、を有する、
 電子機器。
 1 光検出装置
 2 半導体チップ
 2A 画素領域
 2B 周辺領域
 3 画素
 4 垂直駆動回路
 5 カラム信号処理回路
 6 水平駆動回路
 7 出力回路
 8 制御回路
 10 画素駆動線
 11 垂直信号線
 12 水平信号線
 13 ロジック回路
 15 読出し回路
 20 第1半導体層
 23 凹部
 24 溝
 25 孔
 26,26a,26b,26c,26d,26e,26f,26g 領域
 27 溝
 28 空隙
 30 第1配線層
 33 第1接続パッド
 40 第2配線層
 43 第2接続パッド
 50 第2半導体層
 60 絶縁層
 70 絶縁リング
 75 プラグ
 76 プラグリング
 100 電子機器
 
 

Claims (11)

  1.  光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、
     前記第1半導体層の前記光入射面側に積層された絶縁層と、
     前記第1半導体層との間に前記絶縁層が介在した状態で、前記絶縁層の前記第1半導体層側の面とは反対側の面から露出する電極パッドと、
     前記第1半導体層を厚み方向に貫通し且つ平面視で前記電極パッドを囲っている絶縁性を有するリングである絶縁リングと、
     を備えた光検出装置。
  2.  前記絶縁リングは、第1絶縁リングと、平面視で前記第1絶縁リングを囲う少なくとも1本の第2絶縁リングと、を含む、請求項1に記載の光検出装置。
  3.  平面視における前記絶縁リングの外側輪郭と内側輪郭との間の幅が10nm以上300nm以下である、請求項1に記載の光検出装置。
  4.  前記絶縁リングは、絶縁材料と空隙とうちの少なくとも一方を含む、請求項1に記載の光検出装置。
  5.  前記第1半導体層の前記素子形成面に重ね合わされている第1配線層と、
     前記第1配線層の前記第1半導体層側の面と反対側の面に重ね合わされている第2配線層と、
     前記第2配線層の前記第1配線層側の面と反対側の面に重ね合わされている第2半導体層と、を備え、
     前記第1配線層は、前記第1配線層の前記第1半導体層側の面とは反対側の面に臨み前記電極パッドと電気的に接続された第1接続パッドを有し、
     前記第2配線層は、前記第2配線層の前記第2半導体層側の面とは反対側の面に臨み前記第1接続パッドと接合された第2接続パッドを有し、
     前記電極パッドと、前記第1接続パッドと、前記第2接続パッドとは、厚み方向で重なっている、請求項1に記載の光検出装置。
  6.  前記第1半導体層の前記素子形成面に重ね合わされ、メタル層を含む第1配線層と、
     前記第1半導体層の厚み方向に前記第1半導体層を貫通し、平面視で環状であり且つ前記電極パッドの輪郭より内側に配置されたプラグリングと、
     前記第1半導体層と前記プラグリングとの間に介在している絶縁層と、を備え、
     前記プラグリングは、一端が前記電極パッドに接続され、他端が前記メタル層に接続されていて、前記電極パッドと前記メタル層とを電気的に接続している、請求項1に記載の光検出装置。
  7.  前記プラグリングは、第1プラグリングと、平面視で前記第1プラグリングを囲う少なくとも1本の第2プラグリングと、を含む、請求項6に記載の光検出装置。
  8.  平面視における前記プラグリングの外側輪郭と内側輪郭との間の幅は、厚み方向において前記電極パッド側寄りの方が、前記メタル層側寄りの方より太い、請求項6に記載の光検出装置。
  9.  平面視における前記プラグリングの外側輪郭と内側輪郭との間の幅は、厚み方向において前記電極パッド側寄りの方が、前記メタル層側寄りの方より細い、請求項6に記載の光検出装置。
  10.  前記電極パッドの露出する面は、前記光入射面側に積層された前記絶縁層の、前記第1半導体層側の面とは反対側の面と同一平面上にある、請求項1に記載の光検出装置。
  11.  光検出装置と、前記光検出装置に被写体からの像光を結像させる光学系と、を備え、
     前記光検出装置は、
     光電変換部を有し、一方の面が光入射面であり他方の面が素子形成面である第1半導体層と、
     前記第1半導体層の前記光入射面側に積層された絶縁層と、
     前記第1半導体層との間に前記絶縁層が介在した状態で、前記絶縁層の前記第1半導体層側の面とは反対側の面から露出する電極パッドと、
     前記第1半導体層を厚み方向に貫通し且つ平面視で前記電極パッドを囲っている絶縁性を有するリングである絶縁リングと、を有する、
     電子機器。
     
PCT/JP2022/009275 2021-03-30 2022-03-04 光検出装置および電子機器 WO2022209571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023510718A JPWO2022209571A1 (ja) 2021-03-30 2022-03-04
EP22779796.6A EP4318591A1 (en) 2021-03-30 2022-03-04 Light detection device and electronic apparatus
US18/551,671 US20240175802A1 (en) 2021-03-30 2022-03-04 Photodetection device and electronic device
CN202280021887.5A CN116998017A (zh) 2021-03-30 2022-03-04 光电检测装置和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-058329 2021-03-30
JP2021058329 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209571A1 true WO2022209571A1 (ja) 2022-10-06

Family

ID=83458573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009275 WO2022209571A1 (ja) 2021-03-30 2022-03-04 光検出装置および電子機器

Country Status (6)

Country Link
US (1) US20240175802A1 (ja)
EP (1) EP4318591A1 (ja)
JP (1) JPWO2022209571A1 (ja)
CN (1) CN116998017A (ja)
TW (1) TW202247441A (ja)
WO (1) WO2022209571A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043502A (ja) * 2000-07-25 2002-02-08 Toshiba Corp マルチチップ半導体装置、ならびにマルチチップ半導体装置用チップ及びその製造方法
JP2006019455A (ja) * 2004-06-30 2006-01-19 Nec Electronics Corp 半導体装置およびその製造方法
US20090085143A1 (en) * 2007-10-01 2009-04-02 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing the same
JP2012033894A (ja) * 2010-06-30 2012-02-16 Canon Inc 固体撮像装置
JP2012064709A (ja) * 2010-09-15 2012-03-29 Sony Corp 固体撮像装置及び電子機器
JP2012084609A (ja) * 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2013251539A (ja) * 2012-05-30 2013-12-12 Samsung Electronics Co Ltd シリコン貫通ビアの構造物およびその形成方法
JP2019068049A (ja) 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンシング装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043502A (ja) * 2000-07-25 2002-02-08 Toshiba Corp マルチチップ半導体装置、ならびにマルチチップ半導体装置用チップ及びその製造方法
JP2006019455A (ja) * 2004-06-30 2006-01-19 Nec Electronics Corp 半導体装置およびその製造方法
US20090085143A1 (en) * 2007-10-01 2009-04-02 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing the same
JP2012033894A (ja) * 2010-06-30 2012-02-16 Canon Inc 固体撮像装置
JP2012064709A (ja) * 2010-09-15 2012-03-29 Sony Corp 固体撮像装置及び電子機器
JP2012084609A (ja) * 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2013251539A (ja) * 2012-05-30 2013-12-12 Samsung Electronics Co Ltd シリコン貫通ビアの構造物およびその形成方法
JP2019068049A (ja) 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンシング装置及びその製造方法

Also Published As

Publication number Publication date
TW202247441A (zh) 2022-12-01
US20240175802A1 (en) 2024-05-30
JPWO2022209571A1 (ja) 2022-10-06
EP4318591A1 (en) 2024-02-07
CN116998017A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
KR102663337B1 (ko) 반도체 장치 및 전자 기기
US10553637B2 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
JP5489705B2 (ja) 固体撮像装置および撮像システム
CN110506337B (zh) 固态成像元件
KR101159036B1 (ko) 고체 촬상 장치
JP4725095B2 (ja) 裏面入射型固体撮像装置及びその製造方法
US9177981B2 (en) Solid-state imaging device having a metallic pad periphery guard ring
JP2018101699A (ja) 固体撮像装置、固体撮像装置の製造方法および電子機器
US20120061789A1 (en) Image sensor with improved noise shielding
JP6200035B2 (ja) 半導体装置
TW202247443A (zh) 光檢測裝置及電子機器
WO2020137334A1 (ja) 光電変換素子、固体撮像装置及び電子機器
WO2022209571A1 (ja) 光検出装置および電子機器
US20230254608A1 (en) Imaging device
KR20180022261A (ko) 이미지 센서
WO2023188891A1 (ja) 光検出装置及び電子機器
US20220415954A1 (en) Image sensor with stack structure in which two semiconductor chips are combined with each other
WO2023013138A1 (ja) 光検出装置、光検出装置の製造方法、及び電子機器
US20220059594A1 (en) Solid-state imaging device
CN118202466A (zh) 光检测装置和电子设备
CN115692436A (zh) 具有深沟槽隔离结构的图像传感器像素
JP2018022924A (ja) 固体撮像装置およびその製造方法
JP2017126783A (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510718

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280021887.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18551671

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779796

Country of ref document: EP

Effective date: 20231030