WO2022209393A1 - Member applied to part in contact with molten glass and manufacturing method of member - Google Patents

Member applied to part in contact with molten glass and manufacturing method of member Download PDF

Info

Publication number
WO2022209393A1
WO2022209393A1 PCT/JP2022/006407 JP2022006407W WO2022209393A1 WO 2022209393 A1 WO2022209393 A1 WO 2022209393A1 JP 2022006407 W JP2022006407 W JP 2022006407W WO 2022209393 A1 WO2022209393 A1 WO 2022209393A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
refractory brick
metal film
refractory
manufacturing
Prior art date
Application number
PCT/JP2022/006407
Other languages
French (fr)
Japanese (ja)
Inventor
奈美 中澤
章文 丹羽
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280023827.7A priority Critical patent/CN117062784A/en
Priority to KR1020237029257A priority patent/KR20230165752A/en
Priority to JP2023510632A priority patent/JPWO2022209393A1/ja
Publication of WO2022209393A1 publication Critical patent/WO2022209393A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics

Definitions

  • the present invention relates to a member applied to a portion in contact with molten glass in a glass manufacturing facility, and a manufacturing method thereof.
  • Glass manufacturing equipment that manufactures glass products is equipped with multiple devices such as melting furnaces, clarification furnaces, and molding devices.
  • refractory bricks are usually used for members that come into contact with hot molten glass.
  • refractory bricks are sufficiently resistant to molten glass. Therefore, when refractory bricks are used for a long period of time, the refractory bricks are often eroded, or components of the refractory bricks are eluted into the molten glass, resulting in deterioration of the quality of glass products.
  • Patent Documents 1 and 2 In order to deal with such problems, it has been proposed to use platinum, which has good resistance to molten glass, for members that come into contact with molten glass (for example, Patent Documents 1 and 2).
  • JP 2012-121740 A International Publication No. WO2012/070508
  • electroformed bricks have a small porosity of several percent or less. Therefore, when electroformed bricks coated with platinum are used for the part that comes into contact with molten glass, it is expected that hydrogen will not permeate easily. is.
  • electroformed bricks have the property of being vulnerable to thermal shock, and are not suitable for use in equipment where heating/cooling is repeated.
  • the present invention has been made in view of such a background, and in the present invention, a member that is applied to a portion that comes into contact with molten glass is resistant to thermal shock and significantly suppresses the generation of bubbles.
  • the aim is to provide a possible component.
  • Another object of the present invention is to provide a method for manufacturing such a member.
  • a member applied to a portion in contact with molten glass in a glass manufacturing facility a refractory brick having a first surface and a second surface and having a porosity in the range of 10% to 30%; a glass component filled on the first surface side of the refractory brick; a metal film containing platinum disposed on the first surface or the second surface of the refractory brick; has The refractory brick has a total amount of alumina and silica of 50% by mass or more, A member is provided, wherein the maximum penetration depth of the glass component from the first surface is 2000 ⁇ m or more.
  • a method for manufacturing a member applied to a portion in contact with molten glass in a glass manufacturing facility (1) A refractory brick having a first surface and a second surface, a total amount of alumina and silica of 50% by mass or more, and a porosity in the range of 10% to 30%.
  • a step of placing frit (2) A step of melting the frit to form molten glass, and impregnating the refractory brick with the molten glass from the first surface, wherein the molten glass flows from the first surface a step of impregnating so that the maximum penetration depth is 2000 ⁇ m or more; (3) removing the frit remaining on the first surface after the molten glass has solidified; (4) placing a metal film containing platinum on the first surface or the second surface of the refractory brick;
  • the present invention it is possible to provide a member that is applied to a portion that contacts molten glass, is resistant to thermal shock, and can significantly suppress the generation of air bubbles.
  • the present invention can also provide a method for manufacturing such a member.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a member according to one embodiment of the present invention
  • FIG. FIG. 4 is a cross-sectional view schematically showing the configuration of a member according to another embodiment of the present invention
  • FIG. 10 is a diagram showing an example of mapping results of Si in a cross section of a refractory brick before laser processing according to Example 3
  • FIG. 11 is a diagram showing an example of mapping results of Si in a cross section of a refractory brick before laser processing according to Example 11
  • a member applied to a portion in contact with molten glass in a glass manufacturing facility a refractory brick having a first surface and a second surface and having a porosity in the range of 10% to 30%; a glass component filled on the first surface side of the refractory brick; a metal film containing platinum disposed on the first surface or the second surface of the refractory brick; has The refractory brick has a total amount of alumina and silica of 50% by mass or more, A member is provided, wherein the maximum penetration depth of the glass component from the first surface is 2000 ⁇ m or more.
  • the member comprises a refractory brick having a porosity in the range of 10% to 30%, and a platinum and a metal film containing
  • the presence of the metal film can significantly suppress the problem of erosion of the refractory bricks by molten glass and elution of components.
  • the member according to one embodiment of the present invention has a metal film. Therefore, when the member comes into contact with hot molten glass, the above-described water decomposition reaction may occur.
  • the pores on the first surface side of the refractory brick are filled with a glass component.
  • the glass component penetrates from the first surface of the refractory brick to a depth of up to 2000 ⁇ m or more.
  • the glass component can be used as a barrier for hydrogen diffusion. That is, even if a water decomposition reaction occurs between the metal film and the molten glass, the glass component in the refractory bricks can significantly suppress the generated hydrogen from permeating the refractory bricks and being released outside the system. As a result, it is thought that the decomposition reaction of water can be suppressed, and the generation of oxygen gas bubbles can be significantly suppressed.
  • the refractory brick has a porosity in the range of 10% to 30% and is composed of a material with a total amount of silica and alumina of 50% by mass or more.
  • This type of refractory brick has the property of being resistant to thermal shock, unlike general electroformed bricks. Therefore, in one embodiment of the present invention, even if the member is repeatedly heated/cooled, deterioration or breakage of the refractory bricks can be significantly suppressed.
  • one embodiment of the present invention can provide a member that is resistant to thermal shock and can significantly suppress the generation of air bubbles.
  • Patent Document 1 when a member is configured by placing a platinum plate on the surface of a refractory brick, when the member is heated or cooled, due to the difference in thermal expansion between the refractory brick and platinum, the platinum plate may be deformed. Once such deformation occurs in the platinum plate, the deformation may damage the platinum plate, making it difficult to protect the refractory bricks from the molten glass.
  • platinum is provided as a "metal film" in the member according to one embodiment of the present invention.
  • the metal film can follow the deformation of the refractory bricks. Therefore, in the member according to one embodiment of the present invention, the metal film can protect the refractory bricks for a long period of time.
  • FIG. 1 schematically shows a cross section of a member for glass manufacturing equipment (hereinafter referred to as "first member") according to one embodiment of the present invention.
  • the first member 100 has a refractory brick 110, a glass component 120, and a metal film .
  • the refractory brick 110 has a first surface 112 and a second surface 114 facing each other.
  • the refractory brick 110 has a composition such that the total amount of silica and alumina is 50% by mass or more.
  • the glass component 120 is placed on the first surface 112 side of the refractory brick 110 . More specifically, glass component 120 is positioned to fill at least a portion of the pores present at and near first surface 112 of refractory brick 110 .
  • the metal film 130 is placed on the first surface 112 of the refractory brick 110 .
  • the metal film 130 contains platinum and has a role of protecting the refractory bricks 110 from molten glass.
  • a plurality of recesses 140 are formed in the first surface 112 of the refractory brick 110, and the metal film 130 is also filled in these recesses 140.
  • the adhesion between the metal film 130 and the first surface 112 of the refractory brick 110 can be improved.
  • the first member 100 has a refractory brick 110, and the refractory brick 110 has a porosity ranging from 10% to 30%.
  • Such refractory bricks 110 have relatively good thermal shock resistance, unlike electroformed bricks with low porosity. Therefore, the first member 100 can be properly applied to a device in which heating/cooling is repeated.
  • the first member 100 has a glass component 120 filled in the pores of the refractory bricks 110 .
  • the glass component 120 extends from the first surface 112 of the refractory brick 110 to a maximum depth of 2000 ⁇ m or more.
  • the maximum distance in the depth direction of the glass component 120 from the first surface 112 of the refractory brick 110 is referred to as "maximum depth D max ".
  • the maximum depth D max ⁇ 2000 ⁇ m.
  • Such a glass component 120 functions as a barrier for hydrogen permeation.
  • the first member 100 has a platinum-containing metal film 130 and a refractory brick 110 with a porosity in the range of 10% to 30%, the decomposition of water upon contact between the molten glass and the metal film 130 does not occur. It is possible to significantly suppress the hydrogen generated by the reaction from permeating the refractory bricks 110 and being discharged outside the system.
  • the first member 100 can obtain good thermal shock resistance and can significantly suppress the generation of air bubbles when in contact with molten glass.
  • platinum is used in the form of the metal film 130 in the first member 100 .
  • the metal film 130 can follow the deformation of the refractory bricks 110. .
  • the refractory bricks 110 are composed of silica and/or alumina-based materials. Such refractory bricks 110 have a smaller difference in thermal expansion from platinum than, for example, refractory bricks containing zircon, so that the possibility of peeling of the metal film 130 during use can be significantly suppressed.
  • each component will be described by taking the aforementioned first member 100 as an example as a member according to one embodiment of the present invention. Therefore, the reference numerals shown in FIG. 1 are used to represent each component.
  • Refractory brick 110 The type of firebrick 110 is not particularly limited as long as it has the characteristics described above.
  • Refractory brick 110 may be, for example, a sintered brick. In general, sintered bricks are more workable and more resistant to thermal shock than electroformed bricks.
  • the refractory bricks 110 may be composed of alumina-based, silica-based, or alumina-silica-based ceramics.
  • the refractory bricks 110 When the refractory bricks 110 are alumina-based, the refractory bricks 110 contain at least 50% by mass or more of alumina.
  • the amount of alumina is, for example, 60% by mass or more, and may be 70% by mass or more.
  • the amount of alumina may be 100% by weight.
  • the refractory bricks 110 When the refractory bricks 110 are silica-based, the refractory bricks 110 contain at least 50% by mass or more of silica.
  • the amount of silica is, for example, 60% by mass or more, and may be 70% by mass or more.
  • the amount of silica may be 100% by weight.
  • the total amount of alumina and silica in the refractory bricks 110 is at least 50% by mass or more.
  • the sum total of alumina and silica is, for example, 60% by mass or more, and may be 70% by mass or more.
  • the refractory brick 110 may contain 100% by mass of alumina and silica in total. In this case, the amount of silica may range from 10% to 40% by weight.
  • the porosity of the refractory bricks 110 is in the range of 10% to 30%, preferably 20% or less.
  • Glass component 120 The composition of the glass component 120 with which the pores of the refractory brick 110 are filled is not particularly limited.
  • the glass component 120 is glass in which the amount of alkaline component is suppressed.
  • the total amount of lithium, sodium, and potassium is preferably 5% by mass or less in terms of oxides.
  • the reaction between the refractory brick and the glass component 120 can be significantly suppressed.
  • the glass component 120 has a property such that its position does not move significantly during use of the first member 100 .
  • glass component 120 may have a viscosity of 10 2 -10 4 Poise at 1400°C.
  • the maximum penetration depth D max of the glass component 120 is at least 2000 ⁇ m. Permeation of hydrogen through the refractory bricks 110 can be significantly suppressed by setting the maximum penetration depth D max to 2000 ⁇ m or more.
  • the pores in the refractory brick 110 include open pores that can communicate with the first surface 112 and/or the second surface 114 and closed pores that do not communicate with any of the surfaces 112 and 114. exist. Of these, closed pores do not participate in the movement of hydrogen in the first place. Therefore, only open pores are sufficient for filling with the glass component 120 .
  • the maximum penetration depth Dmax is 5000 ⁇ m
  • about 30% or more of the open pores in the region at a depth of 5000 ⁇ m from the surface It is believed that the open pores are sealed and substantially no open pores communicate from the first surface to the second surface.
  • the maximum penetration depth D max is preferably 3000 ⁇ m or more, more preferably 5000 ⁇ m or more, and even more preferably 8000 ⁇ m or more.
  • the composition of the metal film 130 is not limited as long as it contains 50% by mass or more of platinum.
  • the metal film 130 may be composed of platinum or a platinum alloy.
  • the platinum alloy may be a platinum-gold alloy, a platinum-rhodium alloy, a platinum-iridium alloy, or the like.
  • the metal film 130 may be a sprayed film.
  • the thickness of the metal film 130 is not particularly limited.
  • Metal film 130 may, for example, have a thickness in the range of 100 ⁇ m to 700 ⁇ m.
  • the form of the recess 140 is not particularly limited, and the recess 140 may be, for example, a groove extending in one direction, or a substantially circular hole. Such recesses 140 may be formed by laser processing.
  • the depth of the recess 140 may be in the range of 100 ⁇ m to 500 ⁇ m, for example. Also, the aspect ratio of the recess 140 may be in the range of 0.5 to 2.0. Here, the aspect ratio of the recess 140 is represented by the depth of the recess 140 with respect to the minimum width (diameter in the case of a hole) of the recess 140 .
  • the recess 140 may be omitted.
  • the first member 100 is applied to a portion of a glass manufacturing facility that may come into contact with molten glass.
  • Such parts may be, for example, a melting furnace, a fining furnace, a supply pipe for molten glass, and/or a part of a forming apparatus.
  • the first member 100 is preferably applied to an apparatus arranged downstream of the clarification furnace, such as a molding apparatus.
  • FIG. 2 schematically shows a cross section of a member for glass manufacturing equipment (hereinafter referred to as "second member") according to another embodiment of the present invention.
  • the second member 200 has a refractory brick 210, a glass component 220, and a metal film 230.
  • the refractory bricks 210 and the glass component 220 have the same configurations as the refractory bricks 110 and the glass component 120 in the first member 100, respectively. However, in the second member 200 , the arrangement of the metal film 230 is different from that in the first member 100 .
  • the metal film 230 is installed not on the first surface 212 side of the refractory brick 210 but on the second surface 214 side.
  • a plurality of recesses 240 are also formed in the second surface 214 of the refractory brick 210 .
  • the recess 240 does not necessarily have to be provided.
  • the second member 200 is used with the metal film 230 side in contact with the molten glass.
  • the second member 200 also provides the same effect as the first member 100 described above.
  • FIG. 3 schematically shows a flow of a method for manufacturing a member for glass manufacturing equipment according to an embodiment of the present invention (hereinafter referred to as "first method").
  • the first method consists of: A glass raw material is applied to the first surface of a refractory brick having a first surface and a second surface, a total amount of alumina and silica of 50% by mass or more, and a porosity in the range of 10% to 30%.
  • step S110 A step of installing (step S110); a step of melting frit to form molten glass and impregnating the first surface of the refractory brick with the molten glass (step S120); a step of removing frit remaining on the first surface after the molten glass has solidified (step S130); placing a metal film containing platinum on the first surface of the refractory brick (step S140); have
  • the first member 100 shown in FIG. 1 is assumed as the member to be manufactured. Accordingly, the reference numerals shown in FIG. 1 are used when representing each component of the member.
  • Step S110 First, refractory bricks 110 are prepared.
  • the refractory bricks 110 are made of a material with a total amount of silica and alumina of 50% by mass or more and a porosity in the range of 10% to 30%.
  • the refractory bricks 110 may be composed of silica-based, alumina-based, or silica-alumina-based ceramics.
  • the refractory bricks 110 may be sintered bricks.
  • the refractory brick 110 has an initial first surface 116 and an initial second surface 118 .
  • frit is placed on the initial first surface 116 of the refractory brick 110 .
  • FIG. 4 schematically shows a state in which the frit 122 is placed on the initial first surface 116 of the refractory brick 110 .
  • the frit 122 contains a glass frit, a binder, and a solvent (eg, water).
  • the frit 122 may be provided in paste form, for example.
  • Step S120 Next, the frit 122 is melt-processed.
  • the temperature and time of the melting treatment are properly determined based on the composition of the glass frit contained in the frit 122 .
  • the frit 122 When the frit 122 is heated to a high temperature by the melting process, the solvent evaporates and the glass frit melts. The binder vaporizes with the solvent or melts with the glass frit. The melted glass frit penetrates inside from the initial first surface 116 of the refractory brick 110 . As a result, the initial first surface 116 of the refractory brick 110 and the pores present in the vicinity thereof are impregnated with the glass component 120 .
  • FIG. 5 schematically shows a state in which the pores of the refractory brick 110 are impregnated with the glass component 120 .
  • the glass component 120 formed from the frit 122 does not necessarily impregnate the pores of the refractory bricks 110 entirely. That is, as shown in FIG. 5, a portion of glass component 120 may remain on initial first surface 116 of refractory brick 110 as glass layer 124 .
  • the glass component 120 is solidified.
  • Step S130 Next, the glass layer 124 remaining on the initial first surface 116 of the refractory brick 110 is removed.
  • the glass layer 124 may be removed from the initial first surface 116 by mechanical abrasion of the refractory bricks 110 .
  • the initial first surface 116 of the refractory brick 110 may also be polished to form a polished surface. This polished surface may become the new surface (first surface 112 ) of the refractory brick 110 .
  • a refractory brick 110 is obtained in which at least some of the pores in the vicinity of the first surface 112 (or the initial first surface 116) are filled with the glass component 120, as shown in FIG.
  • the maximum penetration depth D max of the glass component 120 from the first surface 112 is 2000 ⁇ m or more.
  • Step S140 A metal film 130 is then applied to the first surface 112 of the refractory brick 110 .
  • recesses 140 may be formed in first surface 112 prior to this treatment.
  • FIG. 7 schematically shows a state in which recesses 140 are formed on first surface 112 of firebrick 110 .
  • the recesses 140 may be a plurality of grooves extending in a certain direction, a plurality of circular holes, or the like. These recesses 140 may have a regular two-dimensional array in top view, or may be randomly arranged.
  • the minimum width of the recess 140 may be in the range of 100 ⁇ m to 200 ⁇ m, for example. Also, the aspect ratio represented by the depth of the recess to the minimum width of the recess may be in the range of 0.5 to 2.0.
  • the recess 140 may be formed by laser processing, for example.
  • the formation of the recess 140 is optional.
  • metal film 130 is placed on the first surface 112 of the refractory brick 110 .
  • metal film 130 contains platinum.
  • the installation method of the metal film 130 is not particularly limited.
  • the metal film 130 may be deposited, for example, by thermal spraying.
  • the thickness of the metal film 130 ranges, for example, from 100 ⁇ m to 500 ⁇ m.
  • the first member 100 as shown in FIG. 1 can be manufactured. It should be noted that in the first method, the initial second surface 118 becomes the second surface 114 of the refractory brick 110 if there is no step of polishing the initial second surface 118 of the refractory brick 110 .
  • the second member 200 as shown in FIG. 2 can be manufactured.
  • various modifications are possible.
  • Examples 1 to 5 are examples, and Examples 11 and 12 are comparative examples.
  • Example 1 A member for evaluation was produced by the first method described above.
  • the dimensions of the refractory brick were 50 mm long, 50 mm wide, and 15 mm thick.
  • One surface measuring 50 mm long by 50 mm wide is called a first surface.
  • Refractory brick A having the composition shown in Table 1 below was used as the refractory brick.
  • This refractory brick A is a sintered brick and has a porosity of 16%.
  • Glass paste was applied to the first surface of the refractory brick.
  • Glass paste contains water, binder and glass frit.
  • the glass contained in the glass frit is called glass A.
  • the composition and softening point of Glass A are shown in Table 2 below.
  • the refractory bricks were heated to 1450° C. in air, held at this temperature for 3 hours, and then slowly cooled. Thereby, the pores near the first surface of the refractory brick were filled with the glass A.
  • the glass layer remaining on the first surface of the refractory brick was removed by mechanical polishing.
  • the holes had a diameter of about 300 ⁇ m and a depth of about 300 ⁇ m. Therefore, the aspect ratio of the holes is about 1.0.
  • a platinum film was formed on the first surface of the refractory bricks by flame spraying.
  • the thickness of the platinum film was about 300 ⁇ m.
  • Example 1 a member for evaluation (hereinafter referred to as "Sample 1") was obtained.
  • Example 2 A member for evaluation was manufactured in the same manner as in Example 1. However, in Example 2, glass B was used as the glass contained in the glass frit. The composition and softening point of Glass B are shown in Table 2 above.
  • the fabricated evaluation member is hereinafter referred to as "Sample 2".
  • Example 3 A member for evaluation was manufactured in the same manner as in Example 1. However, in Example 3, glass C was used as the glass contained in the glass frit. The composition and softening point of Glass C are shown in Table 2 above.
  • Example 3 the fabricated evaluation member will be referred to as "Sample 3".
  • Example 4 A sample for evaluation was produced in the same manner as in Example 1. However, in Example 4, refractory brick B, which is a type of sintered brick, was used as the refractory brick. The composition and porosity of refractory brick B are shown in Table 1 above. Also, in Example 4, glass C was used as the glass contained in the glass frit.
  • the fabricated evaluation member is hereinafter referred to as "Sample 4".
  • Example 5 A sample for evaluation was produced in the same manner as in Example 1. However, in Example 5, glass D was used as the glass contained in the glass frit. The composition and softening point of Glass D are shown in Table 2 above.
  • the fabricated evaluation member is hereinafter referred to as "Sample 5".
  • Example 11 A sample for evaluation was produced in the same manner as in Example 1. However, in Example 11, the refractory bricks were not filled with the glass component. That is, without applying the glass paste, the first surface of the refractory brick was laser-processed and then sprayed with a platinum film to prepare an evaluation sample.
  • Example 11 the fabricated evaluation member will be referred to as "Sample 11".
  • Example 12 A sample for evaluation was produced in the same manner as in Example 1. However, in Example 12, the amount of the glass paste applied was set to 1/10 of that in Example 1 in the step of filling the glass component.
  • Example 12 the fabricated evaluation member will be referred to as "Sample 12".
  • the measurement was performed by photographing an EPMA mapping diagram of silicon (Si) in a cross section obtained by cutting each refractory brick in a direction parallel to the thickness direction. That is, the Si mapping diagram was used to determine the distance from the first surface of the refractory brick to the maximum depth where the glass component exists. The obtained distance was taken as the maximum depth Dmax of the glass component.
  • Si silicon
  • FIG. 8 shows an example of a mapping image of Si in the cross section of the refractory brick before laser processing according to Example 3.
  • FIG. 9 shows an example of a mapping image of Si in a cross section of the refractory brick before laser processing according to Example 11.
  • FIG. 8 shows an example of a mapping image of Si in the cross section of the refractory brick before laser processing according to Example 3.
  • Table 3 summarizes the type of refractory brick, the type of filled glass, and the maximum depth Dmax of the glass component for each sample.
  • a disc-shaped glass block was placed on the surface of the sample platinum film.
  • Glass B was used for the glass block.
  • the sample was then heated to 1400° C. in air to melt the glass block.
  • the contact area of the molten glass with the platinum film is approximately 150 mm 2 . While the temperature of the sample was maintained at 1400° C., the state inside the molten glass, in particular, the presence or absence of bubbles was observed.
  • the holding time at 1400°C is about 120 minutes.
  • thermo cycle test A thermal cycle test was performed using each sample.
  • each sample was heated to 1400°C, held at this temperature for 10 minutes, and then air-cooled for 3 cycles. The tests were performed in air.
  • the condition of the sample was evaluated.
  • the presence or absence of damage to the refractory bricks and the presence or absence of peeling of the platinum film were evaluated.
  • samples 11 and 12 generated many bubbles in the molten glass contact test. On the other hand, it was found that samples 1 to 4 did not generate air bubbles in the molten glass contact test. Also in sample 5, the amount of air bubbles was very small.
  • samples 2 to 4 were confirmed to have good thermal shock resistance.
  • the thermal shock test was conducted by heating each refractory brick to 1300°C in the air and then immersing it in water at 25°C.
  • refractory bricks I to III. All the dimensions of the refractory bricks were length 40 mm x width 40 mm x thickness 100 mm.
  • Table 5 summarizes the composition of the refractory bricks used.
  • the refractory brick I corresponds to the refractory brick A described above, and is an alumina-based sintered brick.
  • Refractory brick II is a zirconia-based sintered brick.
  • Refractory brick III is a zirconia-based electroformed brick (porosity of 1%).
  • Fig. 10 summarizes the state of each refractory brick after the thermal shock test.
  • alumina-based sintered bricks have better thermal shock resistance than electroformed bricks and non-alumina-based sintered bricks.
  • first member according to an embodiment of the present invention 110 refractory brick 112 first surface 114 second surface 116 initial first surface 118 initial second surface 120 glass component 122 frit 124 glass layer 130 metal film 140 recess 200 member according to an embodiment of the present invention (second Element) 210 refractory brick 212 first surface 214 second surface 220 glass component 230 metal film 240 recess

Abstract

Provided is a member which is applied, at a glass manufacturing facility, to a part in contact with molten glass. The member has: a refractory brick that has a first surface and a second surface and that has a porosity in the range of 10%-30%; a glass component filled on the first surface side of the refractory brick; and a metal film including platinum, provided on the first surface or the second surface of the refractory brick. The total amount of alumina and silica in the refractory brick is 50 mass% or more. The greatest penetration depth of the glass component from the first surface is 2000 μm or more.

Description

溶融ガラスと接触する部分に適用される部材、およびその製造方法Member applied to part in contact with molten glass, and manufacturing method thereof
 本発明は、ガラス製造設備において、溶融ガラスと接触する部分に適用される部材、およびその製造方法に関する。 The present invention relates to a member applied to a portion in contact with molten glass in a glass manufacturing facility, and a manufacturing method thereof.
 ガラス製品を製造するガラス製造設備は、溶解炉、清澄炉、および成形装置等の複数の装置を備える。このような装置において、高温の溶融ガラスと接触する部材には、通常、耐火れんがが使用される。 Glass manufacturing equipment that manufactures glass products is equipped with multiple devices such as melting furnaces, clarification furnaces, and molding devices. In such devices, refractory bricks are usually used for members that come into contact with hot molten glass.
 しかしながら、耐火れんがは、溶融ガラスに対する耐性が十分であるとは言い難い。このため、耐火れんがを長時間使用した場合、しばしば、耐火れんがが侵食されたり、耐火れんがの成分が溶融ガラス中に溶出して、ガラス製品の品質が低下したりするという問題が生じ得る。 However, it is difficult to say that refractory bricks are sufficiently resistant to molten glass. Therefore, when refractory bricks are used for a long period of time, the refractory bricks are often eroded, or components of the refractory bricks are eluted into the molten glass, resulting in deterioration of the quality of glass products.
 このような問題に対処するため、溶融ガラスと接触する部材に、溶融ガラスに対して良好な耐性を有する白金を使用することが提案されている(例えば、特許文献1、2)。 In order to deal with such problems, it has been proposed to use platinum, which has good resistance to molten glass, for members that come into contact with molten glass (for example, Patent Documents 1 and 2).
特開2012-121740号公報JP 2012-121740 A 国際公開第WO2012/070508号International Publication No. WO2012/070508
 溶融ガラスが白金と接触すると、溶融ガラス内に気泡が発生することが知られている。 It is known that bubbles are generated in the molten glass when the molten glass comes into contact with platinum.
 これは、高温の溶融ガラス中に含まれる水分が白金と接触した際に、水素と酸素に分解するためであると推察される。すなわち、生成した水素は、白金を透過し、耐火れんがの気孔を介して、系外に放出される。しかしながら、酸素は、白金を透過しにくく、そのまま溶融ガラス中に留まる結果、気泡が発生するものと考えられる。 It is speculated that this is because the moisture contained in the high-temperature molten glass decomposes into hydrogen and oxygen when it comes into contact with platinum. That is, the generated hydrogen permeates platinum and is released outside the system through the pores of the refractory bricks. However, oxygen is difficult to permeate platinum and stays in the molten glass as it is, and as a result, it is thought that bubbles are generated.
 このような気泡が溶融ガラス中に残留すると、製造されるガラス製品の品質が低下するという問題がある。 If such bubbles remain in the molten glass, there is a problem that the quality of the manufactured glass products will deteriorate.
 なお、この問題に対処するため、耐火れんがとして、電鋳れんがを使用することが考えられる。一般に、電鋳れんがは、気孔率が数%以下と小さく、従って、溶融ガラスと接触する部分に、白金で被覆された電鋳れんがを使用した場合、水素の透過が生じ難くなると予想されるためである。しかしながら、電鋳れんがは、熱衝撃に弱いという性質があり、加熱/冷却が繰り返される装置への使用には適さない。 In addition, in order to deal with this problem, it is conceivable to use electroformed bricks as refractory bricks. In general, electroformed bricks have a small porosity of several percent or less. Therefore, when electroformed bricks coated with platinum are used for the part that comes into contact with molten glass, it is expected that hydrogen will not permeate easily. is. However, electroformed bricks have the property of being vulnerable to thermal shock, and are not suitable for use in equipment where heating/cooling is repeated.
 このように、ガラス製造設備において、高温の溶融ガラスと接触する部材に白金を適用しようとすると、多くの問題が生じ得る。 In this way, in glass manufacturing facilities, many problems can occur when platinum is applied to members that come into contact with high-temperature molten glass.
 本発明は、このような背景に鑑みなされたものであり、本発明では、溶融ガラスと接触する部分に適用される部材であって、熱衝撃に強く、気泡の発生を有意に抑制することが可能な部材を提供することを目的とする。また、本発明では、そのような部材の製造方法を提供することを目的とする。 The present invention has been made in view of such a background, and in the present invention, a member that is applied to a portion that comes into contact with molten glass is resistant to thermal shock and significantly suppresses the generation of bubbles. The aim is to provide a possible component. Another object of the present invention is to provide a method for manufacturing such a member.
 本発明では、
 ガラス製造設備において、溶融ガラスと接触する部分に適用される部材であって、
 第1の表面および第2の表面を有し、気孔率が10%~30%の範囲の耐火れんがと、
 前記耐火れんがの前記第1の表面の側に充填されたガラス成分と、
 前記耐火れんがの前記第1の表面または前記第2の表面に設置された、白金を含む金属膜と、
 を有し、
 前記耐火れんがは、アルミナとシリカの合計量が50質量%以上であり、
 前記ガラス成分の前記第1の表面からの最大侵入深さは、2000μm以上である、部材が提供される。
In the present invention,
A member applied to a portion in contact with molten glass in a glass manufacturing facility,
a refractory brick having a first surface and a second surface and having a porosity in the range of 10% to 30%;
a glass component filled on the first surface side of the refractory brick;
a metal film containing platinum disposed on the first surface or the second surface of the refractory brick;
has
The refractory brick has a total amount of alumina and silica of 50% by mass or more,
A member is provided, wherein the maximum penetration depth of the glass component from the first surface is 2000 μm or more.
 また、本発明では、
 ガラス製造設備において、溶融ガラスと接触する部分に適用される部材の製造方法であって、
(1)第1の表面および第2の表面を有し、アルミナとシリカの合計量が50質量%以上であり、気孔率が10%~30%の範囲の耐火れんがの前記第1の表面に、ガラス原料を設置する工程と、
(2)前記ガラス原料を溶融させて溶融ガラスを形成し、前記耐火れんがの前記第1の表面から、前記溶融ガラスを含浸させる工程であって、前記溶融ガラスは、前記第1の表面からの最大侵入深さが2000μm以上となるように含浸される、工程と、
(3)前記溶融ガラスが固化した後、前記第1の表面上に残存する前記ガラス原料を除去する工程と、
(4)前記耐火れんがの前記第1の表面または前記第2の表面に、白金を含む金属膜を設置する工程と、
 を有する、製造方法が提供される。
Moreover, in the present invention,
A method for manufacturing a member applied to a portion in contact with molten glass in a glass manufacturing facility,
(1) A refractory brick having a first surface and a second surface, a total amount of alumina and silica of 50% by mass or more, and a porosity in the range of 10% to 30%. , a step of placing frit;
(2) A step of melting the frit to form molten glass, and impregnating the refractory brick with the molten glass from the first surface, wherein the molten glass flows from the first surface a step of impregnating so that the maximum penetration depth is 2000 μm or more;
(3) removing the frit remaining on the first surface after the molten glass has solidified;
(4) placing a metal film containing platinum on the first surface or the second surface of the refractory brick;
A manufacturing method is provided, comprising:
 本発明では、溶融ガラスと接触する部分に適用される部材であって、熱衝撃に強く、気泡の発生を有意に抑制することが可能な部材を提供できる。また、本発明では、そのような部材の製造方法を提供できる。 According to the present invention, it is possible to provide a member that is applied to a portion that contacts molten glass, is resistant to thermal shock, and can significantly suppress the generation of air bubbles. The present invention can also provide a method for manufacturing such a member.
本発明の一実施形態による部材の構成を模式的に示した断面図である。1 is a cross-sectional view schematically showing the configuration of a member according to one embodiment of the present invention; FIG. 本発明の別の実施形態による部材の構成を模式的に示した断面図である。FIG. 4 is a cross-sectional view schematically showing the configuration of a member according to another embodiment of the present invention; 本発明の一実施形態によるガラス製造設備用の部材の製造方法のフローを概略的に示した図である。It is the figure which showed roughly the flow of the manufacturing method of the member for glass manufacturing facilities by one Embodiment of this invention. 本発明の一実施形態によるガラス製造設備用の部材の製造方法における一工程を模式的に示した図である。It is the figure which showed typically 1 process in the manufacturing method of the member for glass manufacturing facilities by one Embodiment of this invention. 本発明の一実施形態によるガラス製造設備用の部材の製造方法における一工程を模式的に示した図である。It is the figure which showed typically 1 process in the manufacturing method of the member for glass manufacturing facilities by one Embodiment of this invention. 本発明の一実施形態によるガラス製造設備用の部材の製造方法における一工程を模式的に示した図である。It is the figure which showed typically 1 process in the manufacturing method of the member for glass manufacturing facilities by one Embodiment of this invention. 本発明の一実施形態によるガラス製造設備用の部材の製造方法における一工程を模式的に示した図である。It is the figure which showed typically 1 process in the manufacturing method of the member for glass manufacturing facilities by one Embodiment of this invention. 例3によるレーザ加工前の耐火れんがの断面におけるSiのマッピング結果の一例を示した図である。FIG. 10 is a diagram showing an example of mapping results of Si in a cross section of a refractory brick before laser processing according to Example 3; 例11によるレーザ加工前の耐火れんがの断面におけるSiのマッピング結果の一例を示した図である。FIG. 11 is a diagram showing an example of mapping results of Si in a cross section of a refractory brick before laser processing according to Example 11; 各種耐火れんがにおける熱衝撃試験後の状態をまとめて示した写真である。It is the photograph which showed collectively the state after the thermal shock test in various refractory bricks.
 以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.
 本発明の一実施形態では、
 ガラス製造設備において、溶融ガラスと接触する部分に適用される部材であって、
 第1の表面および第2の表面を有し、気孔率が10%~30%の範囲の耐火れんがと、
 前記耐火れんがの前記第1の表面の側に充填されたガラス成分と、
 前記耐火れんがの前記第1の表面または前記第2の表面に設置された、白金を含む金属膜と、
 を有し、
 前記耐火れんがは、アルミナとシリカの合計量が50質量%以上であり、
 前記ガラス成分の前記第1の表面からの最大侵入深さは、2000μm以上である、部材が提供される。
In one embodiment of the invention,
A member applied to a portion in contact with molten glass in a glass manufacturing facility,
a refractory brick having a first surface and a second surface and having a porosity in the range of 10% to 30%;
a glass component filled on the first surface side of the refractory brick;
a metal film containing platinum disposed on the first surface or the second surface of the refractory brick;
has
The refractory brick has a total amount of alumina and silica of 50% by mass or more,
A member is provided, wherein the maximum penetration depth of the glass component from the first surface is 2000 μm or more.
 前述のように、耐火れんがの上に白金を設置して部材を構成した場合、白金と溶融ガラスとの接触による水の分解、および水素の散逸により、溶融ガラス中に気泡が発生するという問題がある。 As mentioned above, when platinum is placed on refractory bricks to construct a member, there is the problem that bubbles are generated in the molten glass due to the decomposition of water and the dissipation of hydrogen due to contact between the platinum and the molten glass. be.
 また、この気泡の問題に対処するため、耐火れんがとして、気孔率が小さい電鋳れんがを使用した場合、装置の加熱/冷却が繰り返された際に、熱衝撃によって、電鋳れんがが損傷を受け得るという問題がある。 In addition, in order to deal with the problem of air bubbles, when an electroformed brick with a small porosity is used as the refractory brick, the electroformed brick is damaged by thermal shock when the apparatus is repeatedly heated and cooled. I have a problem getting.
 これに対して、本発明の一実施形態では、部材は、気孔率が10%~30%の範囲の耐火れんがと、該耐火れんがの第1の表面または第2の表面に設置された、白金を含む金属膜とを有する。 In contrast, in one embodiment of the present invention, the member comprises a refractory brick having a porosity in the range of 10% to 30%, and a platinum and a metal film containing
 このような部材を溶融ガラスと接触する部分に適用した場合、金属膜の存在により、耐火れんがが溶融ガラスによって侵食されたり、成分が溶出したりする問題を、有意に抑制することができる。 When such a member is applied to the part that comes into contact with molten glass, the presence of the metal film can significantly suppress the problem of erosion of the refractory bricks by molten glass and elution of components.
 なお、本発明の一実施形態による部材は、金属膜を有する。このため、部材が高温の溶融ガラスと接触すると、前述のような水の分解反応が生じ得る。 It should be noted that the member according to one embodiment of the present invention has a metal film. Therefore, when the member comes into contact with hot molten glass, the above-described water decomposition reaction may occur.
 しかしながら、本発明の一実施形態では、耐火れんがの第1の表面側の気孔に、ガラス成分が充填されている。特に、本発明の一実施形態では、ガラス成分は、耐火れんがの第1の表面から、最大2000μm以上の深さにまで侵入している。 However, in one embodiment of the present invention, the pores on the first surface side of the refractory brick are filled with a glass component. In particular, in one embodiment of the invention, the glass component penetrates from the first surface of the refractory brick to a depth of up to 2000 μm or more.
 この場合、ガラス成分を水素の拡散のバリアとして利用することができる。すなわち、金属膜と溶融ガラスの間で水の分解反応が生じても、耐火れんが中のガラス成分により、生成した水素が耐火れんがを透過して系外に放出されることを有意に抑制できる。その結果、水の分解反応を抑制できると考えられ、酸素ガスの気泡の発生を有意に抑制することができる。 In this case, the glass component can be used as a barrier for hydrogen diffusion. That is, even if a water decomposition reaction occurs between the metal film and the molten glass, the glass component in the refractory bricks can significantly suppress the generated hydrogen from permeating the refractory bricks and being released outside the system. As a result, it is thought that the decomposition reaction of water can be suppressed, and the generation of oxygen gas bubbles can be significantly suppressed.
 さらに、本発明の一実施形態による部材は、耐火れんがは、気孔率が10%~30%の範囲であり、シリカとアルミナの合計量が50質量%以上の材料で構成される。 Furthermore, in the member according to one embodiment of the present invention, the refractory brick has a porosity in the range of 10% to 30% and is composed of a material with a total amount of silica and alumina of 50% by mass or more.
 このような耐火れんがは、一般的な電鋳れんがとは異なり、熱衝撃に強いという性質がある。従って、本発明の一実施形態では、部材に加熱/冷却が繰り返された場合であっても、耐火れんがが劣化したり破損したりすることを有意に抑制できる。  This type of refractory brick has the property of being resistant to thermal shock, unlike general electroformed bricks. Therefore, in one embodiment of the present invention, even if the member is repeatedly heated/cooled, deterioration or breakage of the refractory bricks can be significantly suppressed.
 以上の効果により、本発明の一実施形態では、熱衝撃に強く、気泡の発生を有意に抑制することが可能な部材を提供できる。 Due to the effects described above, one embodiment of the present invention can provide a member that is resistant to thermal shock and can significantly suppress the generation of air bubbles.
 なお、特許文献1のように、耐火れんがの表面に白金板を設置して部材を構成した場合、部材を加熱した際、または降温した際に、耐火れんがと白金の熱膨張差により、白金板が変形するという問題が生じ得る。いったん、白金板にそのような変形が生じると、変形により白金板が損傷することがあり、溶融ガラスから耐火れんがを保護することは難しくなる。 In addition, as in Patent Document 1, when a member is configured by placing a platinum plate on the surface of a refractory brick, when the member is heated or cooled, due to the difference in thermal expansion between the refractory brick and platinum, the platinum plate may be deformed. Once such deformation occurs in the platinum plate, the deformation may damage the platinum plate, making it difficult to protect the refractory bricks from the molten glass.
 しかしながら、本発明の一実施形態による部材では、白金は、「金属膜」として提供される。この場合、部材が加熱または冷却され、耐火れんがに変形が生じた場合でも、金属膜は、耐火れんがの変形に追従することが可能となる。このため、本発明の一実施形態による部材では、長期にわたって、金属膜により耐火れんがを保護することができる。 However, platinum is provided as a "metal film" in the member according to one embodiment of the present invention. In this case, even if the member is heated or cooled and the refractory bricks are deformed, the metal film can follow the deformation of the refractory bricks. Therefore, in the member according to one embodiment of the present invention, the metal film can protect the refractory bricks for a long period of time.
 (本発明の一実施形態によるガラス製造設備用の部材)
 次に、図面を参照して、本発明の一実施形態によるガラス製造設備用の部材の構成について、より詳しく説明する。
(Member for glass manufacturing equipment according to one embodiment of the present invention)
Next, with reference to the drawings, the configuration of a member for glass manufacturing equipment according to an embodiment of the present invention will be described in more detail.
 図1には、本発明の一実施形態によるガラス製造設備用の部材(以下、「第1の部材」と称する)の断面を、模式的に示す。 FIG. 1 schematically shows a cross section of a member for glass manufacturing equipment (hereinafter referred to as "first member") according to one embodiment of the present invention.
 図1に示すように、第1の部材100は、耐火れんが110と、ガラス成分120と、金属膜130とを有する。 As shown in FIG. 1, the first member 100 has a refractory brick 110, a glass component 120, and a metal film .
 耐火れんが110は、相互に対向する第1の表面112および第2の表面114を有する。耐火れんが110は、シリカとアルミナの合計量が50質量%以上となるような組成を有する。 The refractory brick 110 has a first surface 112 and a second surface 114 facing each other. The refractory brick 110 has a composition such that the total amount of silica and alumina is 50% by mass or more.
 ガラス成分120は、耐火れんが110の第1の表面112の側に設置される。より具体的には、ガラス成分120は、耐火れんが110の第1の表面112およびその近傍に存在する気孔の少なくとも一部を充填するように設置される。 The glass component 120 is placed on the first surface 112 side of the refractory brick 110 . More specifically, glass component 120 is positioned to fill at least a portion of the pores present at and near first surface 112 of refractory brick 110 .
 金属膜130は、耐火れんが110の第1の表面112に設置される。金属膜130は、白金を含み、耐火れんが110を溶融ガラスから保護する役割を有する。 The metal film 130 is placed on the first surface 112 of the refractory brick 110 . The metal film 130 contains platinum and has a role of protecting the refractory bricks 110 from molten glass.
 なお、図1に示した例では、耐火れんが110の第1の表面112には、複数の凹部140が形成されており、金属膜130は、これらの凹部140内にも充填されている。 In the example shown in FIG. 1, a plurality of recesses 140 are formed in the first surface 112 of the refractory brick 110, and the metal film 130 is also filled in these recesses 140.
 このような凹部140を設けることにより、金属膜130と耐火れんが110の第1の表面112との間の密着性を向上させることができる。 By providing such a concave portion 140, the adhesion between the metal film 130 and the first surface 112 of the refractory brick 110 can be improved.
 ただし、これは単なる一例であり、凹部140は、必ずしも設ける必要はない。 However, this is just an example, and the recess 140 does not necessarily have to be provided.
 ここで、第1の部材100は、耐火れんが110を有し、該耐火れんが110は、10%~30%の範囲の気孔率を有する。このような耐火れんが110は、気孔率の低い電鋳れんがとは異なり、比較的良好な熱衝撃性を有する。従って、第1の部材100は、加熱/冷却が繰り返される装置にも、適正に適用することができる。 Here, the first member 100 has a refractory brick 110, and the refractory brick 110 has a porosity ranging from 10% to 30%. Such refractory bricks 110 have relatively good thermal shock resistance, unlike electroformed bricks with low porosity. Therefore, the first member 100 can be properly applied to a device in which heating/cooling is repeated.
 また、第1の部材100は、耐火れんが110の気孔に充填されたガラス成分120を有する。ガラス成分120は、耐火れんが110の第1の表面112から、最大2000μm以上の深さにまで達している。 Also, the first member 100 has a glass component 120 filled in the pores of the refractory bricks 110 . The glass component 120 extends from the first surface 112 of the refractory brick 110 to a maximum depth of 2000 μm or more.
 なお、以下、耐火れんが110の第1の表面112からの、ガラス成分120の深さ方向の最大距離を、「最大深さDmax」と称する。第1の部材100において、最大深さDmax≧2000μmである。 In addition, hereinafter, the maximum distance in the depth direction of the glass component 120 from the first surface 112 of the refractory brick 110 is referred to as "maximum depth D max ". In the first member 100, the maximum depth D max ≧2000 μm.
 このようなガラス成分120は、水素透過のバリアとして機能する。従って、第1の部材100は、白金を含む金属膜130、および気孔率が10%~30%の範囲の耐火れんが110を有するものの、溶融ガラスと金属膜130との接触の際に水の分解反応によって生じた水素が、耐火れんが110を透過して系外に放出されることを、有意に抑制できる。 Such a glass component 120 functions as a barrier for hydrogen permeation. Thus, although the first member 100 has a platinum-containing metal film 130 and a refractory brick 110 with a porosity in the range of 10% to 30%, the decomposition of water upon contact between the molten glass and the metal film 130 does not occur. It is possible to significantly suppress the hydrogen generated by the reaction from permeating the refractory bricks 110 and being discharged outside the system.
 その結果、溶融ガラス中での水の分解反応を有意に抑制できると考えられ、溶融ガラス中に酸素ガスが気泡として発生することを有意に抑制できる。 As a result, it is thought that the decomposition reaction of water in the molten glass can be significantly suppressed, and the generation of oxygen gas as bubbles in the molten glass can be significantly suppressed.
 以上の効果により、第1の部材100では、良好な耐熱衝撃性が得られるとともに、溶融ガラスと接した際の気泡の発生を有意に抑制できる。 Due to the above effects, the first member 100 can obtain good thermal shock resistance and can significantly suppress the generation of air bubbles when in contact with molten glass.
 さらに、第1の部材100において、白金は、金属膜130の形態で使用される。この場合、第1の部材100が急加熱されたり、急冷されたりして、耐火れんが110に変形が生じた場合であっても、金属膜130は、耐火れんが110の変形に追従することができる。 Furthermore, platinum is used in the form of the metal film 130 in the first member 100 . In this case, even if the first member 100 is rapidly heated or cooled and the refractory bricks 110 are deformed, the metal film 130 can follow the deformation of the refractory bricks 110. .
 また、耐火れんが110は、シリカおよび/またはアルミナ系の材料で構成される。このような耐火れんが110は、例えば、ジルコンを含むような耐火れんがに比べて、白金との熱膨張の差が小さいため、使用中の金属膜130の剥離の可能性を有意に抑制できる。 In addition, the refractory bricks 110 are composed of silica and/or alumina-based materials. Such refractory bricks 110 have a smaller difference in thermal expansion from platinum than, for example, refractory bricks containing zircon, so that the possibility of peeling of the metal film 130 during use can be significantly suppressed.
 (本発明の一実施形態による部材の各構成要素)
 次に、前述のような特徴を有する本発明の一実施形態による部材の各構成要素について説明する。
(Each component of the member according to one embodiment of the present invention)
Next, each component of the member according to one embodiment of the present invention having the features described above will be described.
 なお、以下の記載では、明確化のため、本発明の一実施形態による部材として、前述の第1の部材100を例に各構成要素を説明する。そのため、各構成要素を表す際には、図1に示した参照符号を使用する。 In addition, in the following description, for the sake of clarity, each component will be described by taking the aforementioned first member 100 as an example as a member according to one embodiment of the present invention. Therefore, the reference numerals shown in FIG. 1 are used to represent each component.
 (耐火れんが110)
 耐火れんが110は、前述のような特徴を有する限り、その種類は特に限られない。耐火れんが110は、例えば、焼結れんがであってもよい。一般に、焼結れんがは、電鋳れんがに比べて、加工性が高く、熱衝撃に強いという特徴を有する。
(Refractory brick 110)
The type of firebrick 110 is not particularly limited as long as it has the characteristics described above. Refractory brick 110 may be, for example, a sintered brick. In general, sintered bricks are more workable and more resistant to thermal shock than electroformed bricks.
 耐火れんが110は、アルミナ系、シリカ系、またはアルミナ-シリカ系のセラミックスで構成されてもよい。 The refractory bricks 110 may be composed of alumina-based, silica-based, or alumina-silica-based ceramics.
 耐火れんが110がアルミナ系の場合、耐火れんが110には、少なくとも50質量%以上のアルミナが含まれる。アルミナの量は、例えば、60質量%以上であり、70質量%以上であってもよい。アルミナの量は、100質量%であってもよい。 When the refractory bricks 110 are alumina-based, the refractory bricks 110 contain at least 50% by mass or more of alumina. The amount of alumina is, for example, 60% by mass or more, and may be 70% by mass or more. The amount of alumina may be 100% by weight.
 耐火れんが110がシリカ系の場合、耐火れんが110には、少なくとも50質量%以上のシリカが含まれる。シリカの量は、例えば、60質量%以上であり、70質量%以上であってもよい。シリカの量は、100質量%であってもよい。 When the refractory bricks 110 are silica-based, the refractory bricks 110 contain at least 50% by mass or more of silica. The amount of silica is, for example, 60% by mass or more, and may be 70% by mass or more. The amount of silica may be 100% by weight.
 また、耐火れんが110がアルミナ-シリカ系の場合、耐火れんが110におけるアルミナとシリカの総和は、少なくとも50質量%以上である。アルミナとシリカの総和は、例えば、60質量%以上であり、70質量%以上であってもよい。あるいは、耐火れんが110は、アルミナとシリカの総和が100質量%であってもよい。この場合、シリカの量は、10質量%~40質量%の範囲であってもよい。 Also, when the refractory bricks 110 are alumina-silica-based, the total amount of alumina and silica in the refractory bricks 110 is at least 50% by mass or more. The sum total of alumina and silica is, for example, 60% by mass or more, and may be 70% by mass or more. Alternatively, the refractory brick 110 may contain 100% by mass of alumina and silica in total. In this case, the amount of silica may range from 10% to 40% by weight.
 耐火れんが110の気孔率は、10%~30%の範囲であり、20%以下であることが好ましい。 The porosity of the refractory bricks 110 is in the range of 10% to 30%, preferably 20% or less.
 (ガラス成分120)
 耐火れんが110の気孔に充填されるガラス成分120の組成は、特に限られない。
(Glass component 120)
The composition of the glass component 120 with which the pores of the refractory brick 110 are filled is not particularly limited.
 ただし、ガラス成分120は、アルカリ成分の量が抑制されたガラスであることが好ましい。例えば、ガラス成分120において、リチウム、ナトリウム、およびカリウムの合計量は、酸化物換算で、5質量%以下であることが好ましい。 However, it is preferable that the glass component 120 is glass in which the amount of alkaline component is suppressed. For example, in the glass component 120, the total amount of lithium, sodium, and potassium is preferably 5% by mass or less in terms of oxides.
 アルカリ成分の量を抑制した場合、耐火れんがとガラス成分120の間の反応を、有意に抑制することができる。 When the amount of alkali component is suppressed, the reaction between the refractory brick and the glass component 120 can be significantly suppressed.
 また、ガラス成分120は、第1の部材100の使用中に、位置が大きく移動しないような性質を有することが好ましい。例えば、ガラス成分120は、1400℃において、10~10Poiseの粘度を有してもよい。 Further, it is preferable that the glass component 120 has a property such that its position does not move significantly during use of the first member 100 . For example, glass component 120 may have a viscosity of 10 2 -10 4 Poise at 1400°C.
 ガラス成分120の最大侵入深さDmaxは、少なくとも2000μmである。最大侵入深さDmaxを2000μm以上とすることにより、耐火れんが110内の水素の透過を有意に抑制できる。 The maximum penetration depth D max of the glass component 120 is at least 2000 μm. Permeation of hydrogen through the refractory bricks 110 can be significantly suppressed by setting the maximum penetration depth D max to 2000 μm or more.
 なお、耐火れんが110内の気孔には、第1の表面112および/または第2の表面114との気体連通が可能な開気孔と、いずれの表面112、114とも連通していない閉気孔とが存在する。このうち閉気孔は、そもそも水素の移動には関与しない。従って、ガラス成分120で充填する気孔は、開気孔のみで十分である。 The pores in the refractory brick 110 include open pores that can communicate with the first surface 112 and/or the second surface 114 and closed pores that do not communicate with any of the surfaces 112 and 114. exist. Of these, closed pores do not participate in the movement of hydrogen in the first place. Therefore, only open pores are sufficient for filling with the glass component 120 .
 また、開気孔についても、第1の表面112から最大侵入深さDmaxまでの領域にある、全ての開気孔をガラス成分120で充填する必要はない。 Also, with respect to the open pores, it is not necessary to fill all the open pores in the region from the first surface 112 to the maximum penetration depth D max with the glass component 120 .
 本願発明者らの経験によれば、ガラス成分120の組成にもよるが、最大侵入深さDmaxが5000μmの場合、表面から深さ5000μmの領域にある開気孔のうち、約30%以上の開気孔が封止され、第1の表面から第2の表面に連通する開気孔は、実質的に存在しない状態になっていると思われる。 According to the experience of the inventors of the present application, although it depends on the composition of the glass component 120, when the maximum penetration depth Dmax is 5000 μm, about 30% or more of the open pores in the region at a depth of 5000 μm from the surface It is believed that the open pores are sealed and substantially no open pores communicate from the first surface to the second surface.
 最大侵入深さDmaxは、3000μm以上であることが好ましく、5000μm以上であることがより好ましく、8000μm以上であることがさらに好ましい。 The maximum penetration depth D max is preferably 3000 μm or more, more preferably 5000 μm or more, and even more preferably 8000 μm or more.
 (金属膜130)
 金属膜130は、白金を50質量%以上含む限り、その組成は限られない。例えば、金属膜130は、白金で構成されても、白金合金で構成されてもよい。白金合金は、白金-金合金、白金-ロジウム合金、または白金―イリジウム合金等であってもよい。
(Metal film 130)
The composition of the metal film 130 is not limited as long as it contains 50% by mass or more of platinum. For example, the metal film 130 may be composed of platinum or a platinum alloy. The platinum alloy may be a platinum-gold alloy, a platinum-rhodium alloy, a platinum-iridium alloy, or the like.
 金属膜130は、溶射膜であってもよい。 The metal film 130 may be a sprayed film.
 金属膜130の厚さは、特に限られない。金属膜130は、例えば、100μm~700μmの範囲の厚さを有してもよい。 The thickness of the metal film 130 is not particularly limited. Metal film 130 may, for example, have a thickness in the range of 100 μm to 700 μm.
 なお、第1の部材100が図1に示したような凹部140を有し、該凹部140に金属膜130の成分が存在する場合、金属膜130の厚さは、凹部140の底部までの寸法で表される。 In addition, when the first member 100 has the recess 140 as shown in FIG. is represented by
 凹部140の形態は、特に限られず、凹部140は、例えば、一方向に延伸する溝、または略円形の孔等であってもよい。そのような凹部140は、レーザ加工により形成されてもよい。 The form of the recess 140 is not particularly limited, and the recess 140 may be, for example, a groove extending in one direction, or a substantially circular hole. Such recesses 140 may be formed by laser processing.
 凹部140の深さは、例えば、100μm~500μmの範囲であってもよい。また、凹部140のアスペクト比は、0.5~2.0の範囲であってもよい。ここで、凹部140のアスペクト比は、凹部140の最小幅(孔の場合は、直径)に対する凹部140の深さで表される。 The depth of the recess 140 may be in the range of 100 μm to 500 μm, for example. Also, the aspect ratio of the recess 140 may be in the range of 0.5 to 2.0. Here, the aspect ratio of the recess 140 is represented by the depth of the recess 140 with respect to the minimum width (diameter in the case of a hole) of the recess 140 .
 ただし、前述のように、凹部140は、省略されてもよい。 However, as described above, the recess 140 may be omitted.
 (第1の部材100)
 第1の部材100は、ガラス製造設備において、溶融ガラスと接触し得る部位に適用される。
(First member 100)
The first member 100 is applied to a portion of a glass manufacturing facility that may come into contact with molten glass.
 そのような部位は、例えば、溶解炉、清澄炉、溶融ガラスの供給配管、および/または成形装置の一部などであってもよい。 Such parts may be, for example, a melting furnace, a fining furnace, a supply pipe for molten glass, and/or a part of a forming apparatus.
 特に、ガラス製造設備において、清澄炉よりも下流側では、溶融ガラスから気泡を除去する処理は実施されない場合が多い。従って、第1の部材100は、清澄炉よりも下流に配置される装置、例えば成形装置等に適用されることが好ましい。 In particular, in glass manufacturing equipment, there are many cases where the process of removing air bubbles from molten glass is not carried out downstream of the clarifier. Therefore, the first member 100 is preferably applied to an apparatus arranged downstream of the clarification furnace, such as a molding apparatus.
 (本発明の別の実施形態によるガラス製造設備用の部材)
 次に、図2を参照して、本発明の別の実施形態によるガラス製造設備用の部材の構成について説明する。
(Component for glass manufacturing facility according to another embodiment of the invention)
Next, with reference to FIG. 2, the configuration of a member for a glass manufacturing facility according to another embodiment of the invention will be described.
 図2には、本発明の別の実施形態によるガラス製造設備用の部材(以下、「第2の部材」と称する)の断面を、模式的に示す。 FIG. 2 schematically shows a cross section of a member for glass manufacturing equipment (hereinafter referred to as "second member") according to another embodiment of the present invention.
 図2に示すように、第2の部材200は、耐火れんが210と、ガラス成分220と、金属膜230とを有する。 As shown in FIG. 2, the second member 200 has a refractory brick 210, a glass component 220, and a metal film 230.
 第2の部材200において、耐火れんが210およびガラス成分220は、それぞれ、第1の部材100における耐火れんが110およびガラス成分120と同様の構成を有する。ただし、第2の部材200では、金属膜230の配置態様が、第1の部材100とは異なっている。 In the second member 200, the refractory bricks 210 and the glass component 220 have the same configurations as the refractory bricks 110 and the glass component 120 in the first member 100, respectively. However, in the second member 200 , the arrangement of the metal film 230 is different from that in the first member 100 .
 すなわち、第2の部材200において、金属膜230は、耐火れんが210の第1の表面212の側ではなく、第2の表面214の側に設置される。また、複数の凹部240は、耐火れんが210の第2の表面214に形成される。ただし、前述のように、凹部240は、必ずしも設ける必要はない。 That is, in the second member 200 , the metal film 230 is installed not on the first surface 212 side of the refractory brick 210 but on the second surface 214 side. A plurality of recesses 240 are also formed in the second surface 214 of the refractory brick 210 . However, as described above, the recess 240 does not necessarily have to be provided.
 第2の部材200は、金属膜230の側が溶融ガラスと接触するようにして、使用される。 The second member 200 is used with the metal film 230 side in contact with the molten glass.
 第2の部材200においても、前述の第1の部材100と同様の効果が得られることは、当業者には明らかである。 It is obvious to those skilled in the art that the second member 200 also provides the same effect as the first member 100 described above.
 すなわち、第2の部材200においても、良好な耐熱衝撃性が得られるとともに、溶融ガラスと接した際の気泡の発生を有意に抑制できる。 That is, in the second member 200 as well, good thermal shock resistance can be obtained, and the generation of bubbles when in contact with molten glass can be significantly suppressed.
 (本発明の一実施形態によるガラス製造設備用の部材の製造方法)
 次に、図3~図7を参照して、本発明の一実施形態によるガラス製造設備用の部材の製造方法の一例について説明する。
(Manufacturing method of member for glass manufacturing equipment according to one embodiment of the present invention)
Next, an example of a method for manufacturing a member for glass manufacturing equipment according to an embodiment of the present invention will be described with reference to FIGS. 3 to 7. FIG.
 図3には、本発明の一実施形態によるガラス製造設備用の部材の製造方法(以下、「第1の方法」と称する)のフローを概略的に示す。図3に示すように、第1の方法は、
 第1の表面および第2の表面を有し、アルミナとシリカの合計量が50質量%以上であり、気孔率が10%~30%の範囲の耐火れんがの第1の表面に、ガラス原料を設置する工程(工程S110)と、
 ガラス原料を溶融させて溶融ガラスを形成し、耐火れんがの第1の表面から、溶融ガラスを含浸させる工程(工程S120)と、
 溶融ガラスが固化した後、第1の表面上に残存するガラス原料を除去する工程(工程S130)と、
 耐火れんがの第1の表面に、白金を含む金属膜を設置する工程(工程S140)と、
 を有する。
FIG. 3 schematically shows a flow of a method for manufacturing a member for glass manufacturing equipment according to an embodiment of the present invention (hereinafter referred to as "first method"). As shown in FIG. 3, the first method consists of:
A glass raw material is applied to the first surface of a refractory brick having a first surface and a second surface, a total amount of alumina and silica of 50% by mass or more, and a porosity in the range of 10% to 30%. A step of installing (step S110);
a step of melting frit to form molten glass and impregnating the first surface of the refractory brick with the molten glass (step S120);
a step of removing frit remaining on the first surface after the molten glass has solidified (step S130);
placing a metal film containing platinum on the first surface of the refractory brick (step S140);
have
 以下、図4~図7も参照して、各工程について説明する。 Each step will be described below with reference to FIGS. 4 to 7 as well.
 なお、ここでは、明確化のため、製造される部材として、図1に示した第1の部材100を想定する。従って、部材の各構成要素を表す際には、図1に示した参照符号を使用する。 Here, for clarity, the first member 100 shown in FIG. 1 is assumed as the member to be manufactured. Accordingly, the reference numerals shown in FIG. 1 are used when representing each component of the member.
 (工程S110)
 まず、耐火れんが110が準備される。
(Step S110)
First, refractory bricks 110 are prepared.
 前述のように、耐火れんが110は、シリカとアルミナの合計量が50質量%以上であり、気孔率が10%~30%の範囲である材料で構成される。耐火れんが110は、シリカ系、アルミナ系、またはシリカ-アルミナ系のセラミックスで構成されてもよい。 As described above, the refractory bricks 110 are made of a material with a total amount of silica and alumina of 50% by mass or more and a porosity in the range of 10% to 30%. The refractory bricks 110 may be composed of silica-based, alumina-based, or silica-alumina-based ceramics.
 耐火れんが110は、焼結れんがであってもよい。 The refractory bricks 110 may be sintered bricks.
 耐火れんが110は、初期第1表面116および初期第2表面118を有する。 The refractory brick 110 has an initial first surface 116 and an initial second surface 118 .
 次に、耐火れんが110の初期第1表面116に、ガラス原料が設置される。 Next, frit is placed on the initial first surface 116 of the refractory brick 110 .
 図4には、耐火れんが110の初期第1表面116にガラス原料122が設置された状態を模式的に示す。 FIG. 4 schematically shows a state in which the frit 122 is placed on the initial first surface 116 of the refractory brick 110 .
 ガラス原料122は、ガラスフリット、バインダ、および溶媒(例えば、水)を含む。ガラス原料122は、例えば、ペーストの状態で提供されてもよい。 The frit 122 contains a glass frit, a binder, and a solvent (eg, water). The frit 122 may be provided in paste form, for example.
 (工程S120)
 次に、ガラス原料122が溶融処理される。溶融処理の温度および時間は、ガラス原料122に含まれるガラスフリットの組成に基づいて、適正に定められる。
(Step S120)
Next, the frit 122 is melt-processed. The temperature and time of the melting treatment are properly determined based on the composition of the glass frit contained in the frit 122 .
 溶融処理により、ガラス原料122が高温に加熱されると、溶媒が気化するとともに、ガラスフリットが溶融する。バインダは溶媒とともに気化するか、ガラスフリットとともに溶融する。溶融したガラスフリットは、耐火れんが110の初期第1表面116から内部に侵入する。これにより、耐火れんが110の初期第1表面116およびその近傍に存在する気孔に、ガラス成分120が含浸される。 When the frit 122 is heated to a high temperature by the melting process, the solvent evaporates and the glass frit melts. The binder vaporizes with the solvent or melts with the glass frit. The melted glass frit penetrates inside from the initial first surface 116 of the refractory brick 110 . As a result, the initial first surface 116 of the refractory brick 110 and the pores present in the vicinity thereof are impregnated with the glass component 120 .
 図5には、ガラス成分120が耐火れんが110の気孔に含浸された状態を模式的に示す。 FIG. 5 schematically shows a state in which the pores of the refractory brick 110 are impregnated with the glass component 120 .
 なお、ガラス原料122から形成されたガラス成分120は、必ずしも全てが耐火れんが110の気孔に含浸される必要はない。すなわち、図5に示すように、ガラス成分120の一部は、ガラス層124として、耐火れんが110の初期第1表面116に残存してもよい。 It should be noted that the glass component 120 formed from the frit 122 does not necessarily impregnate the pores of the refractory bricks 110 entirely. That is, as shown in FIG. 5, a portion of glass component 120 may remain on initial first surface 116 of refractory brick 110 as glass layer 124 .
 その後、ガラス成分120が固化される。 After that, the glass component 120 is solidified.
 (工程S130)
 次に、耐火れんが110の初期第1表面116に残存するガラス層124が除去される。
(Step S130)
Next, the glass layer 124 remaining on the initial first surface 116 of the refractory brick 110 is removed.
 ガラス層124は、耐火れんが110の機械的研磨法により、初期第1表面116から除去されてもよい。この際に、耐火れんが110の初期第1表面116も研磨され、研磨面が形成されてもよい。この研磨面は、耐火れんが110の新生面(第1の表面112)となってもよい。 The glass layer 124 may be removed from the initial first surface 116 by mechanical abrasion of the refractory bricks 110 . At this time, the initial first surface 116 of the refractory brick 110 may also be polished to form a polished surface. This polished surface may become the new surface (first surface 112 ) of the refractory brick 110 .
 これにより、図6に示すような、第1の表面112(または初期第1表面116)の近傍の気孔の少なくとも一部がガラス成分120で充填された耐火れんが110が得られる。 As a result, a refractory brick 110 is obtained in which at least some of the pores in the vicinity of the first surface 112 (or the initial first surface 116) are filled with the glass component 120, as shown in FIG.
 第1の表面112からのガラス成分120の最大侵入深さDmaxは、2000μm以上である。 The maximum penetration depth D max of the glass component 120 from the first surface 112 is 2000 μm or more.
 (工程S140)
 次に、耐火れんが110の第1の表面112に、金属膜130が設置される。ただし、この処理の前に、第1の表面112に、凹部140を形成してもよい。
(Step S140)
A metal film 130 is then applied to the first surface 112 of the refractory brick 110 . However, recesses 140 may be formed in first surface 112 prior to this treatment.
 図7には、耐火れんが110の第1の表面112に凹部140が形成された状態を模式的に示す。 FIG. 7 schematically shows a state in which recesses 140 are formed on first surface 112 of firebrick 110 .
 凹部140は、一定の方向に延伸する複数の溝、または複数の円形の孔などであってもよい。これらの凹部140は、上面視、規則的二次元配列を有してもよく、あるいはランダムに配置されてもよい。 The recesses 140 may be a plurality of grooves extending in a certain direction, a plurality of circular holes, or the like. These recesses 140 may have a regular two-dimensional array in top view, or may be randomly arranged.
 凹部140の最小幅は、例えば、100μm~200μmの範囲であってもよい。また、凹部の最小幅に対する凹部の深さで表されるアスペクト比は、0.5~2.0の範囲であってもよい。 The minimum width of the recess 140 may be in the range of 100 μm to 200 μm, for example. Also, the aspect ratio represented by the depth of the recess to the minimum width of the recess may be in the range of 0.5 to 2.0.
 凹部140は、例えば、レーザ加工により形成されてもよい。 The recess 140 may be formed by laser processing, for example.
 なお、凹部140の形成は、任意である。 The formation of the recess 140 is optional.
 次に、耐火れんが110の第1の表面112に金属膜130が設置される。前述のように、金属膜130は、白金を含む。 Next, a metal film 130 is placed on the first surface 112 of the refractory brick 110 . As described above, metal film 130 contains platinum.
 金属膜130の設置方法は、特に限られない。金属膜130は、例えば、溶射法により成膜されてもよい。 The installation method of the metal film 130 is not particularly limited. The metal film 130 may be deposited, for example, by thermal spraying.
 金属膜130の厚さは、例えば、100μm~500μmの範囲である。 The thickness of the metal film 130 ranges, for example, from 100 μm to 500 μm.
 以上の工程により、前述の図1に示したような、第1の部材100を製造することができる。なお、第1の方法において、耐火れんが110の初期第2表面118を研磨する工程が存在しない場合、初期第2表面118は、耐火れんが110の第2の表面114となる。 Through the above steps, the first member 100 as shown in FIG. 1 can be manufactured. It should be noted that in the first method, the initial second surface 118 becomes the second surface 114 of the refractory brick 110 if there is no step of polishing the initial second surface 118 of the refractory brick 110 .
 以上、第1の方法を例に、本発明の一実施形態による部材の製造方法について説明した。しかしながら、本発明の一実施形態による部材が、別の方法により製造されてもよいことは、当業者には明らかである。 The method of manufacturing a member according to one embodiment of the present invention has been described above, taking the first method as an example. However, it will be apparent to those skilled in the art that a member according to an embodiment of the invention may be manufactured by other methods.
 例えば、前述の工程S140において、金属膜130を、耐火れんが110の初期第2表面118に形成した場合、図2に示したような第2の部材200を製造できる。この他にも、各種変更が可能である。 For example, when the metal film 130 is formed on the initial second surface 118 of the refractory brick 110 in step S140 described above, the second member 200 as shown in FIG. 2 can be manufactured. In addition to this, various modifications are possible.
 次に、本発明の実施例について説明する。なお、以下の記載において、例1~例5は、実施例であり、例11~例12は、比較例である。 Next, an embodiment of the present invention will be described. In the following description, Examples 1 to 5 are examples, and Examples 11 and 12 are comparative examples.
 (例1)
 前述の第1の方法により、評価用の部材を作製した。
(Example 1)
A member for evaluation was produced by the first method described above.
 耐火れんがの寸法は、縦50mm、横50mm、厚さ15mmとした。縦50mm×横50mmの一つの表面を第1の表面と称する。 The dimensions of the refractory brick were 50 mm long, 50 mm wide, and 15 mm thick. One surface measuring 50 mm long by 50 mm wide is called a first surface.
 耐火れんがには、以下の表1に示す組成の耐火れんがAを使用した。 Refractory brick A having the composition shown in Table 1 below was used as the refractory brick.
Figure JPOXMLDOC01-appb-T000001
 
 
 この耐火れんがAは、焼結れんがであり、気孔率は16%である。
Figure JPOXMLDOC01-appb-T000001


This refractory brick A is a sintered brick and has a porosity of 16%.
 次に、以下の方法を用いて、耐火れんがにガラス成分を充填させた。 Next, the refractory bricks were filled with the glass component using the following method.
 まず、耐火れんがの第1の表面に、ガラスペーストを塗布した。ガラスペーストは、水、バインダおよびガラスフリットを含む。ガラスフリットに含まれるガラスを、ガラスAと称する。また、ガラスAの組成および軟化点を、以下の表2に示す。 First, a glass paste was applied to the first surface of the refractory brick. Glass paste contains water, binder and glass frit. The glass contained in the glass frit is called glass A. Also, the composition and softening point of Glass A are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 
 
 次に、大気中で耐火れんがを1450℃まで加熱し、この温度に3時間保持し、その後徐冷した。これにより、耐火れんがの第1の表面の近傍の気孔に、ガラスAが充填された。
Figure JPOXMLDOC01-appb-T000002


Next, the refractory bricks were heated to 1450° C. in air, held at this temperature for 3 hours, and then slowly cooled. Thereby, the pores near the first surface of the refractory brick were filled with the glass A.
 その後、機械研磨により、耐火れんがの第1の表面上に残留したガラス層を除去した。 After that, the glass layer remaining on the first surface of the refractory brick was removed by mechanical polishing.
 次に、耐火れんがの第1の表面に、レーザ加工法により、多数の円形孔を千鳥配列で形成した。孔の直径は、約300μmとし、深さは、約300μmとした。従って、孔のアスペクト比は、約1.0である。 Next, a large number of circular holes were formed in a zigzag arrangement on the first surface of the refractory brick by laser processing. The holes had a diameter of about 300 μm and a depth of about 300 μm. Therefore, the aspect ratio of the holes is about 1.0.
 次に、フレーム溶射法により、耐火れんがの第1の表面に白金膜を成膜した。白金膜の厚さは、約300μmとした。 Next, a platinum film was formed on the first surface of the refractory bricks by flame spraying. The thickness of the platinum film was about 300 μm.
 これにより、評価用の部材(以下、「サンプル1」と称する)が得られた。 As a result, a member for evaluation (hereinafter referred to as "Sample 1") was obtained.
 (例2)
 例1と同様の方法により、評価用の部材を製造した。ただし、この例2では、ガラスフリットに含まれるガラスとして、ガラスBを使用した。ガラスBの組成および軟化点を、前述の表2に示した。
(Example 2)
A member for evaluation was manufactured in the same manner as in Example 1. However, in Example 2, glass B was used as the glass contained in the glass frit. The composition and softening point of Glass B are shown in Table 2 above.
 以下、作製された評価用の部材を「サンプル2」と称する。 The fabricated evaluation member is hereinafter referred to as "Sample 2".
 (例3)
 例1と同様の方法により、評価用の部材を製造した。ただし、この例3では、ガラスフリットに含まれるガラスとして、ガラスCを使用した。ガラスCの組成および軟化点を、前述の表2に示した。
(Example 3)
A member for evaluation was manufactured in the same manner as in Example 1. However, in Example 3, glass C was used as the glass contained in the glass frit. The composition and softening point of Glass C are shown in Table 2 above.
 以下、作製された評価用の部材を「サンプル3」と称する。 Hereinafter, the fabricated evaluation member will be referred to as "Sample 3".
 (例4)
 例1と同様の方法により、評価用サンプルを製造した。ただし、この例4では、耐火れんがとして、焼結れんがの一種である耐火れんがBを使用した。耐火れんがBの組成および気孔率を、前述の表1に示した。また、この例4では、ガラスフリットに含まれるガラスとして、ガラスCを使用した。
(Example 4)
A sample for evaluation was produced in the same manner as in Example 1. However, in Example 4, refractory brick B, which is a type of sintered brick, was used as the refractory brick. The composition and porosity of refractory brick B are shown in Table 1 above. Also, in Example 4, glass C was used as the glass contained in the glass frit.
 以下、作製された評価用の部材を「サンプル4」と称する。 The fabricated evaluation member is hereinafter referred to as "Sample 4".
 (例5)
 例1と同様の方法により、評価用サンプルを製造した。ただし、この例5では、ガラスフリットに含まれるガラスとして、ガラスDを使用した。ガラスDの組成および軟化点を、前述の表2に示した。
(Example 5)
A sample for evaluation was produced in the same manner as in Example 1. However, in Example 5, glass D was used as the glass contained in the glass frit. The composition and softening point of Glass D are shown in Table 2 above.
 以下、作製された評価用の部材を、「サンプル5」と称する。 The fabricated evaluation member is hereinafter referred to as "Sample 5".
 (例11)
 例1と同様の方法により、評価用サンプルを製造した。ただし、この例11では、耐火れんがにガラス成分を充填させなかった。すなわち、ガラスペーストを塗布せずに、耐火れんがの第1の表面をレーザ加工した後、白金膜を溶射して、評価用サンプルを作製した。
(Example 11)
A sample for evaluation was produced in the same manner as in Example 1. However, in Example 11, the refractory bricks were not filled with the glass component. That is, without applying the glass paste, the first surface of the refractory brick was laser-processed and then sprayed with a platinum film to prepare an evaluation sample.
 以下、作製された評価用の部材を、「サンプル11」と称する。 Hereinafter, the fabricated evaluation member will be referred to as "Sample 11".
 (例12)
 例1と同様の方法により、評価用サンプルを製造した。ただし、この例12では、ガラス成分の充填工程において、ガラスペーストの塗布量を例1の場合の1/10とした。
(Example 12)
A sample for evaluation was produced in the same manner as in Example 1. However, in Example 12, the amount of the glass paste applied was set to 1/10 of that in Example 1 in the step of filling the glass component.
 以下、作製された評価用の部材を、「サンプル12」と称する。 Hereinafter, the fabricated evaluation member will be referred to as "Sample 12".
 (ガラス成分の侵入深さの測定)
 前述の各例において、レーザによる円形孔の加工前に、耐火ガラスの第1の表面からのガラス成分の侵入深さを測定した。
(Measurement of Penetration Depth of Glass Component)
In each of the foregoing examples, the depth of penetration of the glass component from the first surface of the refractory glass was measured prior to machining the circular holes with the laser.
 測定は、各耐火れんがを厚さ方向に平行な方向で切断して得られた断面において、ケイ素(Si)のEPMAマッピング図を撮影して実施した。すなわち、Siのマッピング図を用いて、耐火れんがの第1の表面から、ガラス成分の存在する最大深さまでの距離を求めた。得られた距離を、ガラス成分の最大深さDmaxとした。 The measurement was performed by photographing an EPMA mapping diagram of silicon (Si) in a cross section obtained by cutting each refractory brick in a direction parallel to the thickness direction. That is, the Si mapping diagram was used to determine the distance from the first surface of the refractory brick to the maximum depth where the glass component exists. The obtained distance was taken as the maximum depth Dmax of the glass component.
 図8には、例3によるレーザ加工前の耐火れんがの断面におけるSiのマッピング像の一例を示す。また、図9には、例11によるレーザ加工前の耐火れんがの断面におけるSiのマッピング像の一例を示す。 FIG. 8 shows an example of a mapping image of Si in the cross section of the refractory brick before laser processing according to Example 3. Further, FIG. 9 shows an example of a mapping image of Si in a cross section of the refractory brick before laser processing according to Example 11. In FIG.
 図9から明らかなように、例3における耐火れんがでは、深さ方向にガラス成分は認められない。これに対して、図8から、例3における耐火れんがでは、表面から少なくとも2000μmの深さまで、ガラス成分が充填されていることがわかった。 As is clear from FIG. 9, in the refractory bricks of Example 3, no glass component is observed in the depth direction. On the other hand, it was found from FIG. 8 that the refractory brick in Example 3 was filled with the glass component to a depth of at least 2000 μm from the surface.
 表3には、各サンプルにおける耐火れんがの種類、充填されたガラスの種類、およびガラス成分の最大深さDmaxをまとめて示した。 Table 3 summarizes the type of refractory brick, the type of filled glass, and the maximum depth Dmax of the glass component for each sample.
Figure JPOXMLDOC01-appb-T000003
 
 
 表3から、サンプル1~サンプル5では、ガラス成分の最大侵入深さDmaxが少なくとも2000μmを超えることがわかった。一方、サンプル12では、最大侵入深さDmaxは、1000μm未満であった。
Figure JPOXMLDOC01-appb-T000003


From Table 3, it can be seen that in samples 1 to 5, the maximum penetration depth D max of the glass component exceeds at least 2000 μm. On the other hand, sample 12 had a maximum penetration depth D max of less than 1000 μm.
 (評価)
 (溶融ガラス接触試験)
 各サンプルを用いて、溶融ガラス接触試験を実施した。
(evaluation)
(Molten glass contact test)
A molten glass contact test was performed using each sample.
 この試験は、以下のように実施した。 This test was conducted as follows.
 まず、サンプルの白金膜の表面に、円板ディスク状のガラスブロックを設置した。ガラスブロックには、ガラスBを使用した。 First, a disc-shaped glass block was placed on the surface of the sample platinum film. Glass B was used for the glass block.
 次に、大気中で、サンプルを1400℃まで加熱し、ガラスブロックを溶融させた。溶融したガラスの白金膜との接触面積は、約150mmである。サンプルの温度を1400℃に維持した状態で、溶融ガラス内の状態、特に、気泡の発生有無を観察した。1400℃での保持時間は、約120分である。 The sample was then heated to 1400° C. in air to melt the glass block. The contact area of the molten glass with the platinum film is approximately 150 mm 2 . While the temperature of the sample was maintained at 1400° C., the state inside the molten glass, in particular, the presence or absence of bubbles was observed. The holding time at 1400°C is about 120 minutes.
 (熱サイクル試験)
 各サンプルを用いて、熱サイクル試験を実施した。
(Thermal cycle test)
A thermal cycle test was performed using each sample.
 熱サイクル試験は、各サンプルを1400℃まで加熱し、この温度に10分間保持した後に空冷するサイクルを、3サイクル繰り返して実施した。試験は、大気中で実施した。 In the thermal cycle test, each sample was heated to 1400°C, held at this temperature for 10 minutes, and then air-cooled for 3 cycles. The tests were performed in air.
 試験後に、サンプルの状態を評価した。特に、耐火れんがにおける損傷の有無、および白金膜の剥離の有無等を評価した。 After the test, the condition of the sample was evaluated. In particular, the presence or absence of damage to the refractory bricks and the presence or absence of peeling of the platinum film were evaluated.
 (結果)
 以下の表4には、各評価試験の結果をまとめて示す。
(result)
Table 4 below summarizes the results of each evaluation test.
Figure JPOXMLDOC01-appb-T000004
 
 
 表4に示すように、サンプル11およびサンプル12では、溶融ガラス接触試験において、多くの気泡が発生した。これに対して、サンプル1~サンプル4では、溶融ガラス接触試験において、気泡は発生しないことがわかった。また、サンプル5においても、気泡の量は、僅かであった。
Figure JPOXMLDOC01-appb-T000004


As shown in Table 4, samples 11 and 12 generated many bubbles in the molten glass contact test. On the other hand, it was found that samples 1 to 4 did not generate air bubbles in the molten glass contact test. Also in sample 5, the amount of air bubbles was very small.
 このように、ガラス成分の最大侵入深さDmaxを2000μm以上とすることにより、気泡の発生が有意に抑制されることが確認された。 Thus, it was confirmed that the generation of air bubbles was significantly suppressed by setting the maximum penetration depth D max of the glass component to 2000 μm or more.
 また、サンプル11では、熱サイクル試験後に、白金膜に剥離が生じた。これに対して、サンプル1~サンプル4では、熱サイクル試験後に白金膜の剥離は認められなかった。また、耐火れんがにも、特に異常は認められなかった。 Also, in sample 11, peeling occurred in the platinum film after the thermal cycle test. In contrast, in Samples 1 to 4, no peeling of the platinum film was observed after the thermal cycle test. Also, no particular abnormality was observed in the refractory bricks.
 このように、サンプル2~サンプル4は、良好な耐熱衝撃性を有することが確認された。 Thus, samples 2 to 4 were confirmed to have good thermal shock resistance.
 (追加試験)
 複数の耐火れんがを用いて、熱衝撃試験を実施した。
(additional test)
A thermal shock test was performed using a plurality of refractory bricks.
 熱衝撃試験は、各耐火れんがを大気中で1300℃まで加熱した後、25℃の水中に投入することにより実施した。 The thermal shock test was conducted by heating each refractory brick to 1300°C in the air and then immersing it in water at 25°C.
 耐火れんがには、I~IIIの3種類を使用した。耐火れんがの寸法は、全て、縦40mm×横40mm×厚さ100mmとした。  Three types of refractory bricks, I to III, were used. All the dimensions of the refractory bricks were length 40 mm x width 40 mm x thickness 100 mm.
 以下の表5には、使用した耐火れんがの組成をまとめて示した。 Table 5 below summarizes the composition of the refractory bricks used.
Figure JPOXMLDOC01-appb-T000005
 
 
 耐火れんがIは、前述の耐火れんがAに相当し、アルミナ系の焼結れんがである。耐火れんがIIは、ジルコニア系の焼結れんがである。また、耐火れんがIIIは、ジルコニア系の電鋳れんが(気孔率1%)である。
Figure JPOXMLDOC01-appb-T000005


The refractory brick I corresponds to the refractory brick A described above, and is an alumina-based sintered brick. Refractory brick II is a zirconia-based sintered brick. Refractory brick III is a zirconia-based electroformed brick (porosity of 1%).
 熱衝撃試験後の各耐火れんがの状態を、まとめて図10に示す。 Fig. 10 summarizes the state of each refractory brick after the thermal shock test.
 図10から、耐火れんがIIIでは、大きなクラックが生じていることがわかる。また、耐火れんがIIにおいても、一部にクラックが認められた。 From FIG. 10, it can be seen that large cracks occur in refractory brick III. In addition, cracks were partially observed in refractory brick II.
 これに対して、耐火れんがIでは、試験後にクラック等の異常は認められなかった。 On the other hand, in refractory brick I, no abnormalities such as cracks were observed after the test.
 このように、アルミナ系の焼結れんがは、電鋳造れんがおよび非アルミナ系の焼結れんがに比べて、良好な耐熱衝撃性を有することがわかった。 Thus, it was found that alumina-based sintered bricks have better thermal shock resistance than electroformed bricks and non-alumina-based sintered bricks.
 本願は、2021年3月31日に出願した日本国特許出願第2021-060625号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-060625 filed on March 31, 2021, and the entire contents of the Japanese application are incorporated herein by reference.
 100   本発明の一実施形態による部材(第1の部材)
 110   耐火れんが
 112   第1の表面
 114   第2の表面
 116   初期第1表面
 118   初期第2表面
 120   ガラス成分
 122   ガラス原料
 124   ガラス層
 130   金属膜
 140   凹部
 200   本発明の一実施形態による部材(第2の部材)
 210   耐火れんが
 212   第1の表面
 214   第2の表面
 220   ガラス成分
 230   金属膜
 240   凹部
100 Member (first member) according to an embodiment of the present invention
110 refractory brick 112 first surface 114 second surface 116 initial first surface 118 initial second surface 120 glass component 122 frit 124 glass layer 130 metal film 140 recess 200 member according to an embodiment of the present invention (second Element)
210 refractory brick 212 first surface 214 second surface 220 glass component 230 metal film 240 recess

Claims (16)

  1.  ガラス製造設備において、溶融ガラスと接触する部分に適用される部材であって、
     第1の表面および第2の表面を有し、気孔率が10%~30%の範囲の耐火れんがと、
     前記耐火れんがの前記第1の表面の側に充填されたガラス成分と、
     前記耐火れんがの前記第1の表面または前記第2の表面に設置された、白金を含む金属膜と、
     を有し、
     前記耐火れんがは、アルミナとシリカの合計量が50質量%以上であり、
     前記ガラス成分の前記第1の表面からの最大侵入深さは、2000μm以上である、部材。
    A member applied to a portion in contact with molten glass in a glass manufacturing facility,
    a refractory brick having a first surface and a second surface and having a porosity in the range of 10% to 30%;
    a glass component filled on the first surface side of the refractory brick;
    a metal film containing platinum disposed on the first surface or the second surface of the refractory brick;
    has
    The refractory brick has a total amount of alumina and silica of 50% by mass or more,
    The member, wherein the maximum penetration depth of the glass component from the first surface is 2000 μm or more.
  2.  前記耐火れんがは、アルミナ系の耐火れんがであり、50質量%以上のアルミナを含む、請求項1に記載の部材。 The member according to claim 1, wherein the refractory bricks are alumina-based refractory bricks and contain 50% by mass or more of alumina.
  3.  前記耐火れんがは、焼結れんがである、請求項1または2に記載の部材。 The member according to claim 1 or 2, wherein the refractory bricks are sintered bricks.
  4.  前記金属膜は、100μm~700μmの範囲の厚さを有する、請求項1乃至3のいずれか一項に記載の部材。 The member according to any one of claims 1 to 3, wherein the metal film has a thickness in the range of 100 µm to 700 µm.
  5.  前記金属膜は、白金または白金合金で構成される、請求項1乃至4のいずれか一項に記載の部材。 The member according to any one of claims 1 to 4, wherein the metal film is made of platinum or a platinum alloy.
  6.  前記金属膜は、溶射膜である、請求項1乃至5のいずれか一項に記載の部材。 The member according to any one of claims 1 to 5, wherein the metal film is a sprayed film.
  7.  前記金属膜は、前記耐火れんがの前記第1の表面に設置される、請求項1乃至6のいずれか一項に記載の部材。 The member according to any one of claims 1 to 6, wherein the metal film is placed on the first surface of the refractory brick.
  8.  前記耐火れんがの前記金属膜が設置された表面は、凹部を有する、請求項1乃至7のいずれか一項に記載の部材。 The member according to any one of claims 1 to 7, wherein the surface of the refractory brick on which the metal film is installed has a recess.
  9.  ガラス製造設備において、溶融ガラスと接触する部分に適用される部材の製造方法であって、
    (1)第1の表面および第2の表面を有し、アルミナとシリカの合計量が50質量%以上であり、気孔率が10%~30%の範囲の耐火れんがの前記第1の表面に、ガラス原料を設置する工程と、
    (2)前記ガラス原料を溶融させて溶融ガラスを形成し、前記耐火れんがの前記第1の表面から、前記溶融ガラスを含浸させる工程であって、前記溶融ガラスは、前記第1の表面からの最大侵入深さが2000μm以上となるように含浸される、工程と、
    (3)前記溶融ガラスが固化した後、前記第1の表面上に残存する前記ガラス原料を除去する工程と、
    (4)前記耐火れんがの前記第1の表面または前記第2の表面に、白金を含む金属膜を設置する工程と、
     を有する、製造方法。
    A method for manufacturing a member applied to a portion in contact with molten glass in a glass manufacturing facility,
    (1) A refractory brick having a first surface and a second surface, a total amount of alumina and silica of 50% by mass or more, and a porosity in the range of 10% to 30%. , a step of placing frit;
    (2) A step of melting the frit to form molten glass, and impregnating the refractory brick with the molten glass from the first surface, wherein the molten glass flows from the first surface a step of impregnating so that the maximum penetration depth is 2000 μm or more;
    (3) removing the frit remaining on the first surface after the molten glass has solidified;
    (4) placing a metal film containing platinum on the first surface or the second surface of the refractory brick;
    A manufacturing method.
  10.  前記耐火れんがは、アルミナ系の耐火れんがであり、50質量%以上のアルミナを含む、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the refractory bricks are alumina-based refractory bricks and contain 50% by mass or more of alumina.
  11.  前記耐火れんがは、焼結れんがである、請求項9または10に記載の製造方法。 The manufacturing method according to claim 9 or 10, wherein the refractory bricks are sintered bricks.
  12.  前記金属膜は、100μm~700μmの範囲の厚さを有する、請求項9乃至11のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 11, wherein the metal film has a thickness in the range of 100 µm to 700 µm.
  13.  前記金属膜は、白金または白金合金で構成される、請求項9乃至12のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 12, wherein the metal film is made of platinum or a platinum alloy.
  14.  前記金属膜は、溶射により形成される、請求項9乃至13のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 13, wherein the metal film is formed by thermal spraying.
  15.  さらに、前記(4)の工程の前に、前記金属膜が設置される表面に、凹部を形成する工程を有する、請求項9乃至14のいずれか一項に記載の製造方法。 15. The manufacturing method according to any one of claims 9 to 14, further comprising, before the step (4), forming a recess in the surface on which the metal film is to be placed.
  16.  前記金属膜は、前記耐火れんがの前記第1の表面に設置される、請求項9乃至15のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 15, wherein the metal film is placed on the first surface of the refractory brick.
PCT/JP2022/006407 2021-03-31 2022-02-17 Member applied to part in contact with molten glass and manufacturing method of member WO2022209393A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023827.7A CN117062784A (en) 2021-03-31 2022-02-17 Component suitable for contact with molten glass and method for manufacturing same
KR1020237029257A KR20230165752A (en) 2021-03-31 2022-02-17 Members applied to parts in contact with molten glass and their manufacturing method
JP2023510632A JPWO2022209393A1 (en) 2021-03-31 2022-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060625 2021-03-31
JP2021-060625 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209393A1 true WO2022209393A1 (en) 2022-10-06

Family

ID=83458746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006407 WO2022209393A1 (en) 2021-03-31 2022-02-17 Member applied to part in contact with molten glass and manufacturing method of member

Country Status (5)

Country Link
JP (1) JPWO2022209393A1 (en)
KR (1) KR20230165752A (en)
CN (1) CN117062784A (en)
TW (1) TW202239719A (en)
WO (1) WO2022209393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023050A1 (en) * 1997-10-30 1999-05-14 Johnson Matthey Public Limited Company Fusion-cast refractory article for glass melting furnaces provided with a noble metal coating
JP2007153713A (en) * 2005-12-08 2007-06-21 Tanaka Kikinzoku Kogyo Kk Glass manufacturing unit
JP2013216521A (en) * 2012-04-06 2013-10-24 Nippon Electric Glass Co Ltd Glass production apparatus and glass production method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221570B (en) 2010-11-25 2015-05-20 旭硝子株式会社 Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
JP2012121740A (en) 2010-12-06 2012-06-28 Nippon Electric Glass Co Ltd Glass production apparatus and glass production method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023050A1 (en) * 1997-10-30 1999-05-14 Johnson Matthey Public Limited Company Fusion-cast refractory article for glass melting furnaces provided with a noble metal coating
JP2007153713A (en) * 2005-12-08 2007-06-21 Tanaka Kikinzoku Kogyo Kk Glass manufacturing unit
JP2013216521A (en) * 2012-04-06 2013-10-24 Nippon Electric Glass Co Ltd Glass production apparatus and glass production method using the same

Also Published As

Publication number Publication date
TW202239719A (en) 2022-10-16
CN117062784A (en) 2023-11-14
JPWO2022209393A1 (en) 2022-10-06
KR20230165752A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
US7032412B2 (en) Methods of manufacturing glass sheets with reduced blisters
KR101476751B1 (en) Refractory product for a checker work element of a glass furnace regenerator
KR20110086851A (en) Protective coatings resistant to reactive plasma processing
JP5122855B2 (en) Glass fiber production equipment
US20180104741A1 (en) Powder-Bed-Based Additive Manufacturing Process
JP2009511752A5 (en)
WO2012133107A1 (en) Molten glass holding refractory, glass manufacturing apparatus using molten glass holding refractory and method for manufacturing glass using glass manufacturing apparatus
CN108689591A (en) The method that refractory body, glass overflow form block and formed and use the refractory body
JP5774135B2 (en) Sintered materials based on doped chromium oxide
CN101448758A (en) Refractory article and production process thereof
JP2002521689A (en) Exhaust gas sensor
WO2022209393A1 (en) Member applied to part in contact with molten glass and manufacturing method of member
US9278882B2 (en) Method of producing glass
KR102209272B1 (en) Glass-conveying roll, method for manufacturing same, and method for manufacturing flat glass using same
WO2015056673A1 (en) Exhaust gas sensor and method for manufacturing exhaust gas sensor
KR101768262B1 (en) Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
JP5856738B2 (en) Thermal head
JP2004099441A (en) Zirconia-rich fused refractory
JP2010228942A (en) Method for manufacturing apparatus for producing glass, and apparatus for producing glass
JP7247141B2 (en) Heat storage element and method for manufacturing heat storage element
JPH10317089A (en) Usage of material composed of molybdenum and/or tungsten
Li et al. Thermal Properties and Joinability Investigation of BaO–SrO–SiO2–B2O3 Glasses for Oxygen Transport Membrane Application
JP2000072534A (en) Large scale fire brick, especially brick for bottom of tin bath, and its production
EP3924319A1 (en) Refractory product having a high content of zirconia
CN112805407B (en) Volatilization suppressing member and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510632

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280023827.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779620

Country of ref document: EP

Kind code of ref document: A1