WO2022209335A1 - Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof - Google Patents

Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof Download PDF

Info

Publication number
WO2022209335A1
WO2022209335A1 PCT/JP2022/005177 JP2022005177W WO2022209335A1 WO 2022209335 A1 WO2022209335 A1 WO 2022209335A1 JP 2022005177 W JP2022005177 W JP 2022005177W WO 2022209335 A1 WO2022209335 A1 WO 2022209335A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
sheet
curing
composite sheet
resin composition
Prior art date
Application number
PCT/JP2022/005177
Other languages
French (fr)
Japanese (ja)
Inventor
仁孝 南方
政秀 金子
亮 吉松
真也 坂口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022528624A priority Critical patent/JP7148758B1/en
Publication of WO2022209335A1 publication Critical patent/WO2022209335A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds

Definitions

  • the present disclosure relates to a composite sheet and its manufacturing method, and a laminate and its manufacturing method.
  • Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use.
  • a composite composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member.
  • a composite obtained by impregnating a porous ceramic sintered body for example, a boron nitride sintered body
  • a resin-impregnated boron nitride sintered body the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
  • the resin part is maintained in a semi-cured state, and the adhesion is improved by further curing the resin when connecting to an adherend such as a metal sheet.
  • the inventors of the present invention have found that the resin is in a semi-cured state and becomes fluid due to heating at the time of connection, so that part of the resin flows out from the side of the composite, reducing the amount of resin in the composite, voids, etc. It has been found that the insulation may not be exhibited to the extent expected. The present disclosure is made based on this finding.
  • One aspect of the present disclosure is a composite sheet including a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate, the composite sheet having a hardened region including the outer periphery of the sheet. and a composite sheet in which the curing rate of the resin in the cured region is higher than the curing rate of the resin in the other regions.
  • the above-mentioned composite sheet has a cured region having a higher curing rate than other regions in the region including the outer periphery, thereby suppressing the resin from flowing out when connecting to the adherend, and the obtained adherend is excellent. Insulating properties can be exhibited.
  • the curing rate of the resin in the region other than the cured region is lower than that in the cured region, the adhesiveness to the adherend can also be ensured.
  • the hardened region may be provided over the entire outer periphery of the sheet. By providing the hardening region over the entire circumference of the outer periphery of the sheet, it is possible to further suppress the outflow of the resin when connecting to the adherend, and further improve the insulation properties of the obtained laminate. can.
  • the hardened region may extend along the thickness direction of the sheet.
  • the width of the cured region in a cross section along the thickness direction of the sheet may be 1 to 20% of the total length of the sheet.
  • both adhesion to the adherend and insulating properties of the laminate obtained by connection to the adherend can be achieved at a higher level.
  • the cured region may be a resin layer provided on the side surface of the nitride sintered plate.
  • the above resin may contain a thermosetting resin.
  • a thermosetting resin By including a thermosetting resin in the resin, curing can be accelerated when connecting to an adherend, and the outflow of the resin from areas other than the cured resin of the composite sheet can be further suppressed.
  • the difference between the maximum value and the minimum value of the curing rate of the resin may be 30% or more.
  • the difference between the curing rate of the resin in the cured region (corresponding to the maximum value) and the curing rate of the resin in the other regions (corresponding to the minimum value) is 30% or more, the resin outflow can be further reduced, and sufficient adhesiveness can be ensured.
  • the curing rate of the resin in the curing region may be 60% or more.
  • One aspect of the present disclosure provides a laminate comprising the composite sheet described above and a metal sheet provided on the composite sheet.
  • the laminate includes the above-described composite sheet, it can exhibit excellent insulating properties.
  • One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to heat the resin composition filled in the mechanism.
  • a first curing step of semi-curing, and a second curing step of curing or semi-curing the resin composition by irradiating a region including the outer periphery of the resin-impregnated sheet with heat or laser light. provides a method of manufacturing a composite sheet.
  • a hardened region can be formed in the region including the outer peripheral edge of the sheet by performing a plurality of treatments for promoting the hardening reaction on the region including the outer peripheral edge.
  • the composite sheet described above can be manufactured.
  • One aspect of the present disclosure is a first impregnation step of obtaining a first resin-impregnated sheet by impregnating a region including the outer periphery of a porous nitride sintered plate with a first resin composition, and the first resin-impregnated sheet.
  • a first curing step of curing or semi-curing the first resin composition filled in the pores by heating to obtain a first resin-filled sheet containing a resin in a region including the outer peripheral edge; and the first resin-filled sheet
  • a second impregnation step of obtaining a second resin-impregnated sheet by impregnating the second resin composition into the and a method for manufacturing a composite sheet.
  • the region including the outer periphery of the nitride sintered plate is preliminarily impregnated with the first resin composition, cured or semi-cured, and then the entire surface of the nitride sintered plate is impregnated with the second resin composition. and hardening or semi-hardening.
  • the area including the outer edge of the sheet is subjected to a plurality of treatments for accelerating the curing reaction, and the curing of this area progresses more than the other areas. Therefore, the composite sheet described above can be manufactured.
  • One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to obtain the resin composition filled in the pores.
  • the side surface of the resin-filled sheet is coated with a third resin having a higher curing rate than the resin constituting the resin-filled sheet.
  • One aspect of the present disclosure provides a method for manufacturing a laminate, which includes a lamination step of laminating the composite sheet obtained by the above-described manufacturing method and a metal sheet, and heating and pressurizing them.
  • the above manufacturing method uses the above composite sheet, it is possible to provide a laminate capable of exhibiting excellent insulation.
  • the present disclosure it is possible to provide a composite sheet that has excellent adhesion to an adherend and can exhibit excellent insulating properties after being adhered to an adherend. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.
  • FIG. 1 is a perspective view showing an example of a composite sheet.
  • FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view showing another example of the composite sheet.
  • FIG. 4 is a cross-sectional view showing an example of a laminate.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • One embodiment of the composite sheet includes a porous nitride sintered plate and resin filled in the pores of the nitride sintered plate.
  • the composite sheet has a hardening region including the outer periphery of the sheet, and the hardening rate of the resin in the hardening region is higher than the hardening rate of the resin in the other regions.
  • the shape of the sheet is not particularly limited, it is generally rectangular parallelepiped.
  • FIG. 1 is a perspective view showing an example of a composite sheet.
  • FIG. 2 is a schematic diagram showing a cross section along line II-II of FIG.
  • the composite sheet 10 has a hardened region 14 provided around the outer periphery of the sheet and a region surrounded by the hardened region 14 (another region 12).
  • the composite sheet 10 is shown as an example in which the cured region 14 is provided continuously over the entire outer periphery of the sheet, but it may be provided discontinuously. From the viewpoint of suppressing outflow of the resin when the composite sheet 10 is heat-treated, it is more desirable that the cured region 14 is continuously provided over the entire circumference of the outer peripheral edge.
  • Whether or not it is the cured area 14 can be confirmed by checking whether the resin hardening rate is large at the outer peripheral edge of the sheet with reference to the hardening rate of the resin in the central region of the main surface of the composite sheet 10 . Simply, it can be done by examining the calorific value by differential scanning calorimetry of a resin sample collected from the relevant location (for example, an area of about 1 mm from the outer peripheral edge toward the center including the outer peripheral edge).
  • the cured region 14 extends along the thickness direction of the sheet and is shown as an example formed continuously with a uniform width.
  • the widths t ⁇ b>1 and t ⁇ b>2 of the cured regions 14 in the cross section along the sheet thickness direction can be adjusted according to the performance required of the composite sheet 10 .
  • the width of the cured region 14 may be, for example, 20% or less, 15% or less, or 10% or less based on the total length L of the composite sheet 10 .
  • the width of the hardened region 14 may be, for example, 1% or more, 3% or more, or 5% or more based on the total length L of the composite sheet 10 in the same cross section.
  • the width of the cured region 14 may be adjusted within the above range, and may be, for example, 1-20% or 5-10% of the total length L of the composite sheet 10 .
  • the widths t1 and t2 of the hardened region may be the same or different, but even if they are different, it is desirable that both the widths t1 and t2 of the hardened region are within the above range.
  • the thickness of the composite sheet 10 may be, for example, less than 10.0 mm, 5.0 mm or less, or 2.0 mm or less.
  • the lower limit of the thickness of the composite sheet 10 may be, for example, 0.1 mm or more, 0.2 mm or more, or 0.3 mm or more. This allows the composite sheet 10 to be sufficiently miniaturized.
  • Such a composite sheet 10 is suitably used as a part of a semiconductor device, for example.
  • the thickness of the composite sheet 10 may be adjusted within the ranges described above, and may be, for example, 0.1-10.0 mm, or 0.2-2.0 mm.
  • the thickness of the composite sheet 10 is measured along the direction perpendicular to the main surface.
  • the thickness of the composite sheet 10 is not constant, the thickness is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
  • the size of the composite sheet 10 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
  • porous nitride sintered plates include boron nitride sintered plates.
  • the nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles.
  • the median pore size of the pores of the nitride sintered plate may be, for example, 6.0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.5 ⁇ m or less. Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased.
  • the median pore diameter of the pores of the nitride sintered plate may be, for example, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.5 ⁇ m or more. Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it has excellent adhesion to other members (adherends).
  • the median pore size of the pores of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.3-6.0 ⁇ m.
  • the median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite is heated to remove the semi-cured resin layer and the first resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
  • the porosity of the nitride sintered plate that is, the ratio of the pore volume (V1) in the nitride sintered plate may be 30 to 65% by volume, and may be 40 to 60% by volume. If the porosity becomes too large, the strength of the nitride sintered plate tends to decrease. On the other hand, if the porosity is too small, less resin tends to ooze out when the composite is adhered to another member.
  • the porosity is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the nitride sintered plate, and using this bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1).
  • the nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
  • the theoretical density A is 2280 kg/m 3 .
  • aluminum nitride the theoretical density A is 3260 kg/m 3 .
  • silicon nitride the theoretical density A is 3170 kg/m 3 .
  • Porosity (volume%) [1-(B/A)] x 100 (1)
  • the bulk density B may be 800 to 1500 kg/m 3 or 1000 to 1400 kg/m 3 . If the bulk density B becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density B is too high, the amount of resin filled in the composite may decrease, resulting in a loss of good adhesion of the composite.
  • the thickness of the nitride sintered plate may be, for example, 10.0 mm or less, 5.0 mm or less, or 2.0 mm or less.
  • the lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more.
  • the thickness of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.1-10.0 mm, or 0.3-2.0 mm.
  • the thickness of the nitride sintered plate is measured along the direction orthogonal to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the arithmetic average value is It is sufficient if it is in the range described above.
  • the resin contained in the composite sheet 10 is a cured product (C stage) or semi-cured product (B stage) of a resin composition containing a main agent and a curing agent.
  • the cured product is obtained by completing the curing reaction of the resin composition.
  • the semi-cured product is obtained by partially progressing the curing reaction of the resin composition.
  • the semi-cured product can be further cured by a subsequent curing treatment.
  • the resin may contain a thermosetting resin or the like that is generated by the reaction of the main agent and curing agent in the resin composition.
  • the semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by a differential scanning calorimeter, for example, that the resin contained in the composite sheet 10 is a semi-cured product (B stage) before becoming a cured product (C stage).
  • the curing rate of the resin in the cured region 14 of the composite sheet 10 is in a state of being more advanced than the curing rate of the resin in the other regions.
  • the curing rate of the resin in the cured region 14 may be, for example, 40% or more, 50% or more, 60% or more, 65% or more, 70% or more, 75% or more, or 80% or more.
  • the curing rate of the resin in the cured region 14 is within the above range, it is possible to further suppress the resin from flowing out of the composite sheet 10 from other regions during adhesion to the adherend, and the insulating property of the obtained laminate is improved. can be further improved.
  • the upper limit of the curing rate of the resin in the curing region 14 is not particularly limited, but may be, for example, 90% or less, 88% or less, or 86% or less.
  • the cure rate of the resin in the cure zone 14 may be adjusted within the ranges described above, and may be, for example, 20-90%, 50-86%, or 60-86%.
  • the difference between the maximum value and the minimum value of the curing rate of the resin in the composite sheet 10 is desirably 10% or more, 20% or more, or 30% or more.
  • the difference may be, for example, the difference between the curing rate of the resin in the cured region (corresponding to the maximum value) and the curing rate of the resin in the other region (corresponding to the minimum value).
  • the difference may be, for example, 35% or more, 40% or more, 45% or more, or 50% or more.
  • the difference may be 80% or less, 70% or less, or 60% or less.
  • the difference between the maximum value and the minimum value of the curing rate of the resin in the composite sheet 10 may be adjusted within the range described above, and may be, for example, 10-80% or 30-60%.
  • the cure rate of the resin herein can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (A).
  • Resins include, for example, epoxy resins, silicone resins, cyanate resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, bismaleimide resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
  • epoxy resins silicone resins, cyanate resins,
  • a modification of the composite sheet may be, for example, a sintered nitride plate with a resin layer on the outer peripheral side surface.
  • the cured region of the composite sheet may be composed of the resin layer, and the other region may be a nitride sintered plate (resin-impregnated body) impregnated with resin.
  • FIG. 3 is a schematic cross-sectional view showing another example of the composite sheet.
  • the composite sheet 10 has a resin-impregnated body 13 and a resin layer 15 provided on the outer peripheral side surface of the resin-impregnated body 13 .
  • the resin layer 15 corresponds to the cured region
  • the resin-impregnated body 13 corresponds to other regions.
  • the component of the resin layer 15 may be the same as or different from the resin constituting the resin-impregnated body 13, but it improves the adhesiveness between the resin-impregnated body 13 and the resin layer 15, From the viewpoint of improving the insulation after adhering to the body, it is desirable to be composed of the same resin.
  • the composite sheet 10 described above is useful for forming a laminate that requires a high degree of insulation, such as a laminate that is laminated with a metal sheet or the like, because the outflow of the resin during heating is suppressed.
  • a laminate includes the composite sheet and a metal sheet provided on the composite sheet.
  • the composite sheet and the metal sheet may be joined by a cured resin of the composite sheet.
  • the composite sheet and the metal sheet are joined via a cured resin.
  • the metal sheet is not particularly limited as long as it is made of metal and has a sheet shape.
  • the adherend (another member) mentioned in the description of the composite above may be a metal sheet.
  • the metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
  • FIG. 4 is a cross-sectional view showing an example of a laminate.
  • FIG. 4 shows a cross section of the laminate 20 cut along the lamination direction.
  • the laminate 20 includes the composite sheet 10 described above and metal sheets 22 laminated on a pair of main surfaces (two main surfaces) of the composite sheet 10 .
  • the material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both major surfaces of the composite sheet 10 . In a variant, only one major surface of composite sheet 10 may be provided with metal sheet 22 .
  • the metal sheet 22 in the laminate 20 is in contact with the composite sheet 10. Thereby, the metal sheet 22 and the composite sheet 10 are adhered with high adhesion. In order to fix this state, the composite sheet 10 may be cured and the two may be joined together with a cured resin. Since the metal sheet 22 and the composite sheet 10 are adhered to each other with high adhesion, the laminated body 20 can be suitably used as a heat dissipation member, for example, in a semiconductor device or the like.
  • the thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm.
  • the lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more.
  • the laminated body 20 can be sufficiently miniaturized.
  • Such a laminate 20 is suitably used as a component of a semiconductor device, for example.
  • the thickness of the laminate 20 may be adjusted within the ranges described above, and may be, for example, 0.6-12.0 mm, or 0.6-6.0 mm.
  • the laminate 20 includes the composite sheet 10, it is possible to achieve both high levels of thermal conductivity and insulation reliability. For example, by increasing the curing rate of the resin in the cured region in advance, the outflow of the resin when forming the laminate is sufficiently suppressed, and the expected insulation properties of the composite sheet 10 can be sufficiently exhibited. .
  • the above-mentioned composite sheet can be produced, for example, by impregnating the nitride sintered plate with a resin and then subjecting the region including the outer periphery to multiple hardening treatments (manufacturing method A), the outer periphery of the nitride sintered plate Only the resin is impregnated and cured or semi-cured, and then the resin is further impregnated and the whole is cured or semi-cured in the same manner.
  • Production method A is desirable from the viewpoint of facilitating adjustment of the range of the cured region.
  • One embodiment of the method for producing a composite sheet includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to a mechanism.
  • a nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used.
  • a nitride sintered plate prepared by the following sintering process may be used.
  • the sintering step described later can be omitted.
  • a raw material powder containing nitride is prepared.
  • the nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
  • the boron nitride may be amorphous boron nitride or hexagonal boron nitride.
  • the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10 ⁇ m, or an average particle size of 3.0 to 40 ⁇ m. Certain hexagonal boron nitride powders can be used.
  • a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body.
  • the molding may be carried out, for example, by uniaxial pressing or cold isostatic pressing (CIP).
  • a sintering aid may be blended into the formulation prior to molding.
  • sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid.
  • the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.1 parts per 100 parts by mass of the total of the nitride and the sintering aid.
  • the compounding amount of the sintering aid may be, for example, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid.
  • the amount of the sintering aid may be adjusted within the above range, for example, 0.01 to 20 parts by mass, or 0.01 to 10 parts by mass, relative to the total 100 parts by mass of the nitride and the sintering aid. It may be parts by mass.
  • the compound may be formed into a sheet-like molded body by, for example, a doctor blade method.
  • the molding method is not particularly limited, and press molding may be performed using a mold to form a molded body.
  • the molding pressure may be, for example, 5-350 MPa.
  • the shape of the compact may be a sheet with a thickness of less than 2 mm. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite having a thickness of less than 2 mm can be produced without cutting the nitride sintered plate.
  • the material loss due to processing can be reduced by forming the block into a sheet from the compact stage. Therefore, the composite can be manufactured with high yield.
  • the sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher.
  • the sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower.
  • the sintering time may be, for example, 1 hour or more and may be 30 hours or less.
  • the atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
  • a batch type furnace and a continuous type furnace can be used.
  • Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like.
  • continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces.
  • a nitride sintered body or a nitride sintered plate can be obtained.
  • the nitride sintered body may be block-shaped.
  • a cutting step may be performed to process it so that it has a thickness of less than 2 mm.
  • the nitride sintered body is cut using, for example, a wire saw.
  • the wire saw may be, for example, a multi-cut wire saw or the like.
  • a sheet-like nitride sintered plate having a thickness of less than 2 mm, for example, can be obtained by such a cutting process. Thereby, the nitride sintered plate can be smoothly impregnated with the resin composition in the next impregnation step.
  • the pores of the nitride sintered body are impregnated with a resin composition having a viscosity of 10 to 500 mPa ⁇ s to obtain a resin-impregnated body.
  • a resin composition having a viscosity of 10 to 500 mPa ⁇ s By reducing the thickness of the nitride sintered body, impregnation of the resin composition can be facilitated. Also, by setting the viscosity of the resin composition to a range suitable for impregnation, the filling rate of the resin in the resin-impregnated body can be sufficiently increased.
  • the viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be, for example, 440 mPa ⁇ s or less, 390 mPa ⁇ s or less, or 340 mPa ⁇ s or less. By lowering the viscosity of the resin composition in this way, the impregnation of the resin composition can be sufficiently promoted.
  • the viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be, for example, 15 mPa ⁇ s or more, or 20 mPa ⁇ s or more.
  • the viscosity of the resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent.
  • the viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be adjusted within the above range, and may be, for example, 15 to 440 mPa ⁇ s or 20 to 340 mPa ⁇ s.
  • the above viscosity of the resin composition is the viscosity at the temperature (T1) of the resin composition when the nitride sintered plate is impregnated with the resin composition.
  • This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity at which the nitride sintered plate is impregnated with the resin composition may be adjusted.
  • the temperature (T2) may be, for example, 80-140°C.
  • Impregnation of the nitride sintered plate with the resin composition may be performed under pressure or under reduced pressure.
  • the impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the resin composition, or the surface of the nitride sintered plate may be coated with the resin composition.
  • the impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure.
  • the pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
  • the pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
  • the impregnation of the resin composition by capillary action may be promoted, and the resin filling rate in the resin-impregnated body may be adjusted.
  • the median pore diameter of the nitride sintered plate may be, for example, 0.3-6.0 ⁇ m, 0.5-5.0 ⁇ m, or 1.0-4.0 ⁇ m.
  • the resin composition it is possible to use, for example, one that becomes the resin mentioned in the explanation of the above composite by curing or semi-curing reaction.
  • the resin composition may contain a solvent.
  • Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
  • solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol
  • the resin composition is thermosetting and comprises, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent. may contain.
  • Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane.
  • Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
  • Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc.
  • N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
  • Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins.
  • it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
  • the curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent.
  • a phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin.
  • Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
  • the imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin.
  • imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole.
  • 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
  • the content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to parts by mass.
  • the content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more or 0.5 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part.
  • the content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
  • the content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less or 0.03 parts by mass or less.
  • the content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part.
  • the content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
  • the resin composition may contain other components apart from the main agent and curing agent.
  • Other components include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay.
  • the content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the resin composition.
  • the resin composition in the resin-impregnated body obtained by the impregnation step is semi-cured.
  • the resin composition is semi-cured by heating and/or light irradiation to prepare a resin-impregnated sheet. .
  • the heating temperature for semi-curing the resin composition by heating may be, for example, 80 to 130°C.
  • the semi-cured resin obtained by semi-curing the resin composition may contain, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins.
  • the semi-cured resin may also contain a curing agent.
  • semi-cured resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
  • the resin composition is cured, semi-cured, or semi-cured by irradiating a region including the outer periphery of the resin-impregnated sheet obtained through the first curing step with heat or laser light.
  • a composite sheet as described above is prepared by curing the resin. The region irradiated with heat or laser light is exposed to multiple curing treatments, and the curing rate of the resin is higher than that of other regions.
  • the method of heating or irradiating the predetermined region of the resin-impregnated sheet with laser is not particularly limited. For example, laser light may be partially irradiated using a mask.
  • the second curing step when curing or semi-curing the resin composition and curing the semi-cured resin by heat, for example, a method of partially heat-treating at a temperature higher than that in the first curing step, or A method of performing heat treatment at the same heating temperature as in the first curing step can be used only for the predetermined region described above.
  • the resin composition when the resin composition is cured or semi-cured and the semi-cured resin is cured by laser light, for example, a method of irradiating only the predetermined region with ultraviolet light or the like can be used. .
  • the semi-cured resin obtained by semi-curing the resin composition and the resin obtained by curing the semi-cured resin are heated by at least one selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins as a resin component. It may contain a curable resin.
  • the semi-cured resin and resin may also contain a curing agent.
  • semi-cured resins and resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
  • the first curing step and the second curing step are preferably carried out in a situation where the resin composition exists around the resin-impregnated body.
  • the resin composition is supplied from the periphery of the resin-impregnated body, and it is possible to further suppress the formation of voids.
  • the existence of the similar resin in the surroundings can also suppress the generation of voids.
  • the above-described manufacturing method may have other steps such as the sintering step, the impregnation step, the first hardening step and the second hardening step.
  • Other steps include, for example, a step of removing impurities from the sintered body by drawing a vacuum before the impregnation step.
  • One embodiment of the composite sheet manufacturing method is a first impregnation step of impregnating a region including the outer periphery of a porous nitride sintered plate with a first resin composition to obtain a first resin-impregnated sheet. and a first curing step of heating the first resin-impregnated sheet and curing or semi-curing the first resin composition filled in the pores to obtain a first resin-filled sheet containing a resin in a region including the outer peripheral edge. a second impregnation step of impregnating the first resin-filled sheet with the second resin composition to obtain a second resin-impregnated sheet; and heating the second resin-impregnated sheet to cure the second resin composition.
  • the region including the outer edge of the nitride sintered plate is impregnated with the first resin composition.
  • adjustment is made so that other regions of the nitride sintered plate are not impregnated with the first resin composition.
  • only the region including the outer periphery of the nitride sintered plate may be immersed in the melt or solution of the first resin composition to impregnate the first resin composition, and the nitride sintered plate
  • the first resin composition may be impregnated by applying the melt or solution of the first resin composition only to the region including the outer periphery.
  • the first curing step by semi-curing or curing the first resin composition impregnated in the first impregnation step, only the region including the outer periphery of the nitride sintered plate is filled with the semi-cured resin or resin. 1 Prepare a resin-filled sheet.
  • the method for semi-curing or curing the first resin composition may be heating and/or light irradiation, and may be the same as those described in the above manufacturing method.
  • the first resin-filled sheet obtained through the first impregnation step and the first curing step is impregnated with the second resin composition.
  • the first resin-filled sheet may be immersed in a melt or solution of the second resin composition to be impregnated with the second resin composition, and the first resin-filled sheet may be impregnated with the second resin composition. may be applied as a melt or solution of
  • the second resin-impregnated sheet obtained in the second impregnation step is cured or semi-cured.
  • the region where the resin composition has been cured or semi-cured in the first curing step is also heated and/or irradiated with light again.
  • the hardening rate of the resin in the containing region is higher than in other regions.
  • the viscosities at which the first resin composition and the second resin composition are impregnated may be the same or different, and both may be the same as those described in the manufacturing method above.
  • One embodiment of the composite sheet manufacturing method includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to form pores.
  • the curing rate of the third resin is higher than the curing rate of the first resin.
  • the steps up to the impregnation step are the same as those of the manufacturing method A. Differences from the above manufacturing method (manufacturing method A) will be described below.
  • the resin-filled sheet is obtained by heating the entire resin-impregnated sheet and curing or semi-curing the resin composition. At this time, it is not necessary to specify the heating region as in the above manufacturing method (manufacturing method A). Since the resin composition and the like exemplified in the production method (production method A) described above can be used, the curing conditions shown in production method A can be applied accordingly.
  • a resin-filled sheet that has been prepared in advance may be used, and in this case, the sintering process, the impregnation process, and the curing process may be omitted.
  • a resin layer containing the third resin is provided on the side surface of the resin-filled sheet to suppress the outflow of the first resin. It is desirable that the third resin be provided continuously over the entire side surface of the resin-filled sheet, but from the viewpoint of suppressing the outflow of the first resin, it may be provided on at least a part of the side surface of the filled resin sheet. , may be discontinuously formed.
  • the third resin may be a semi-cured resin obtained by semi-curing the resin composition and a resin obtained by curing the semi-cured resin.
  • a resin component of the third resin at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins may be contained.
  • the semi-cured resin and resin may also contain a curing agent.
  • semi-cured resins and resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
  • the constituent components of the first resin and the third resin may be the same or different.
  • An embodiment of a method for manufacturing a laminate has a lamination step of laminating the composite sheet and the metal sheet described above, and heating and pressurizing them.
  • the composite sheet a composite sheet obtained by any of the manufacturing methods described above can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above.
  • the metal sheet may be a metal plate or a metal foil.
  • a metal sheet is placed on the main surface of the composite sheet. With the main surfaces of the composite sheet and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is performed. Note that the pressurization and heating need not necessarily be performed at the same time, and the heating may be performed after pressurization and crimping.
  • the laminate thus obtained can be used for manufacturing semiconductor devices and the like.
  • a semiconductor element may be provided on one of the metal sheets.
  • the other metal sheet may be joined with cooling fins.
  • Example 1 [Production of nitride sintered plate] 100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls ( ⁇ 10 mm) to obtain pulverized powder.
  • HS100 acetylene black
  • the prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
  • a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
  • the compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered body was taken out from the boron nitride container. Thus, a sheet-like (square prism-like) boron nitride sintered body was obtained. The thickness of the boron nitride sintered plate was 0.36 mm.
  • the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
  • the cure rate of the resin impregnated into the composite sheet was determined by measurement using a differential scanning calorimeter.
  • the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured.
  • a 10 mg sample taken from the semi-cured material of the composite was heated in the same manner, and the amount of heat generated per unit mass R generated when completely cured was determined.
  • the mass of the sample used for the measurement with the differential scanning calorimeter was the same as that of the resin composition used for the measurement of the calorific value Q.
  • the curing rate of the resin composition impregnated in the composite was determined by the following formula (A).
  • the curing rate of the resin in the cured region was 85%, and the curing rate of the resin in the other regions was 32%.
  • the sample collection site from the cured region is 15 mm in the direction perpendicular to the direction of the total length L of the composite sheet 10 in the cured region 14 of the composite sheet 10, and the direction of the total length L is 15 mm.
  • a region of 1 mm in the horizontal direction was cut out and used. For other regions, samples of the same size as above were cut out from the central portion of the composite sheet and used.
  • the bulk density of the boron nitride sintered plate and composite sheet conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and the length of each side of the boron nitride sintered plate or composite sheet (measured with vernier calipers) and the mass of the boron nitride sintered plate or composite sheet measured with an electronic balance (see JIS Z 8807:2012, Item 9).
  • the theoretical density of the composite sheet was determined by the following formula (4).
  • Theoretical density of composite sheet bulk density of boron nitride sintered plate + true density of resin ⁇ (1 - bulk density of boron nitride sintered plate / true density of boron nitride) (4)
  • the true density of the boron nitride sintered plate and resin is measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method". It was determined from the volume and mass of (see JIS Z 8807:2012, item 11, formulas (14) to (17)).
  • etching resist agent was screen-printed on one surface of the obtained laminate so as to form a circular shape with a diameter of 20 mm, and an etching resist agent was screen-printed on the entire surface of the laminate structure on the other surface. After printing, the etching resist agent was irradiated with ultraviolet rays to be cured to form a resist.
  • the copper plate on which the circular resist was formed was etched with a cupric chloride solution to form a circular copper circuit with a diameter of 20 mm on one surface of the laminate.
  • the laminated structure having a circular copper circuit formed thereon was obtained, which was the object to be measured.
  • the dielectric breakdown voltage of the obtained laminated structure was measured according to JIS C2110-1:2016 using a withstand voltage tester (manufactured by Kikusui Denshi Kogyo Co., Ltd., device name: TOS-8700). Table 1 shows the results.
  • Example 2 [Preparation of resin-impregnated body] 80 parts by mass of a compound having a cyanate group, 20 parts by mass of a compound having a bismaleimide group, and 50 parts by mass of a compound having an epoxy group were weighed into a container, and the total amount of the above three compounds was 100 parts by mass. 1 part by mass of a phosphine-based curing agent and 0.01 part by mass of an imidazole-based curing agent were added and mixed. Since the epoxy resin was in a solid state at room temperature, it was mixed while being heated to about 80°C. The resulting thermosetting composition had a viscosity of 10 mPa ⁇ sec at 100°C.
  • the prepared resin composition was heated to 100° C., it was dropped onto the upper main surface of the boron nitride sintered body using a dispenser while maintaining the temperature to impregnate the resin composition.
  • the amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body. Part of the resin composition remained on the main surface without impregnating the boron nitride sintered body.
  • thermosetting composition The following compounds were used to prepare the thermosetting composition.
  • Phosphine-based curing agent tetraphenylphosphonium tetra-p-tolylborate (manufactured by Chemical Co., Ltd., trade name: TPP-MK)
  • Imidazole-based curing agent 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 2E4MZ-CN)
  • the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
  • Example 2 A composite and a laminate were prepared by the same procedure as in Example 2, except that the region including the peripheral edge of the resin-impregnated body was not subjected to additional heat treatment.
  • Example 2 and Comparative Examples 1 and 2 For the composite sheets and laminates prepared in Example 2 and Comparative Examples 1 and 2, the width of the cured region, the curing rate of the resin in the cured region and other regions, and the resin filling rate were measured in the same manner as in Example 1. did.
  • the laminates prepared in Example 2 and Comparative Examples 1 and 2 were evaluated for adhesive strength and dielectric breakdown voltage. Table 1 shows the results.
  • the present disclosure it is possible to provide a composite sheet that has excellent adhesion to an adherend and can exhibit excellent insulating properties after being adhered to an adherend. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

An aspect of the present disclosure provides a composite sheet comprising: a porous nitride sintered plate; and a resin filled in air holes of the nitride sintered plate. The composite sheet has a curing region including an outer peripheral edge thereof, and a curing ratio of the resin in the curing region is higher than that of the resin in other regions.

Description

複合シート及びその製造方法、並びに、積層体及びその製造方法Composite sheet and its manufacturing method, and laminate and its manufacturing method
 本開示は、複合シート及びその製造方法、並びに、積層体及びその製造方法に関する。 The present disclosure relates to a composite sheet and its manufacturing method, and a laminate and its manufacturing method.
 パワーデバイス、トランジスタ、サイリスタ、及びCPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、放熱部材として、樹脂と窒化ホウ素等のセラミックスとで構成される複合体が用いられる。 Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use. In response to such demands, it has been conventional practice to increase the thermal conductivity of the insulating layer of the printed wiring board on which electronic components are mounted, or to place the electronic components or the printed wiring board through a thermal interface material having electrical insulation. It has been practiced to attach it to a heat sink. For such an insulating layer and thermal interface material, a composite composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member.
 このような複合体として、多孔性のセラミックス焼結体(例えば、窒化ホウ素焼結体)に樹脂を含浸させた複合体が検討されている(例えば、特許文献1参照)。また、回路基板と樹脂含浸窒化ホウ素焼結体とを有する積層体において、窒化ホウ素焼結体を構成する一次粒子と回路基板とを直接接触させて、積層体の熱抵抗を低減し、放熱性を改善することも検討されている(例えば、特許文献2参照)。 As such a composite, a composite obtained by impregnating a porous ceramic sintered body (for example, a boron nitride sintered body) with a resin has been studied (see, for example, Patent Document 1). In addition, in a laminate having a circuit board and a resin-impregnated boron nitride sintered body, the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
国際公開第2014/196496号WO2014/196496 特開2016-103611号公報JP 2016-103611 A
 高電圧下で使用される回路基板等と共に使用される複合体にはより絶縁性に優れることが求められる。 Composites that are used together with circuit boards used under high voltage are required to have better insulation.
 本開示は、被着体への接着性に優れ、且つ被着体への接着後に優れた絶縁性を発揮し得る複合シート及びその製造方法を提供することを目的とする。本開示はまた、優れた絶縁性を有する積層体及びその製造方法を提供することを目的とする。 An object of the present disclosure is to provide a composite sheet that has excellent adhesion to an adherend and that can exhibit excellent insulating properties after being adhered to the adherend, and a method for producing the same. Another object of the present disclosure is to provide a laminate having excellent insulating properties and a method for manufacturing the same.
 上述のような複合体では樹脂部が半硬化状態に維持されており、金属シート等の被着体との接続時に樹脂を更に硬化させることによって接着性の向上を図っている。本発明者らは検討によって、樹脂が半硬化状態であり接続時の加熱によって流動的となることで、複合体の側面から樹脂の一部が流れ出し、複合体中の樹脂量の低下、ボイド等の発生を招き、期待し得るほどの絶縁性が発揮されない場合があることを見出した。本開示は、当該知見に基づいてなされたものである。 In the composite as described above, the resin part is maintained in a semi-cured state, and the adhesion is improved by further curing the resin when connecting to an adherend such as a metal sheet. The inventors of the present invention have found that the resin is in a semi-cured state and becomes fluid due to heating at the time of connection, so that part of the resin flows out from the side of the composite, reducing the amount of resin in the composite, voids, etc. It has been found that the insulation may not be exhibited to the extent expected. The present disclosure is made based on this finding.
 本開示の一側面は、多孔質の窒化物焼結板と、上記窒化物焼結板の気孔に充填された樹脂と、を含む複合シートであって、シートの外周縁を含む硬化領域を有し、上記硬化領域における樹脂の硬化率が、その他の領域における樹脂の硬化率よりも高い、複合シートを提供する。 One aspect of the present disclosure is a composite sheet including a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate, the composite sheet having a hardened region including the outer periphery of the sheet. and a composite sheet in which the curing rate of the resin in the cured region is higher than the curing rate of the resin in the other regions.
 上記複合シートは、外周縁を含む領域に、その他の領域よりも硬化率の高い硬化領域を有することによって、被着体への接続時に樹脂が流れ出すことを抑制し、得られる被着体は優れた絶縁性を発揮し得る。上記複合シートは上記硬化領域以外の領域における樹脂の硬化率が硬化領域よりも低いことによって、被着体との接着性も確保し得る。 The above-mentioned composite sheet has a cured region having a higher curing rate than other regions in the region including the outer periphery, thereby suppressing the resin from flowing out when connecting to the adherend, and the obtained adherend is excellent. Insulating properties can be exhibited. In the composite sheet, since the curing rate of the resin in the region other than the cured region is lower than that in the cured region, the adhesiveness to the adherend can also be ensured.
 上記硬化領域はシートの外周縁の全周に亘って設けられていてよい。硬化領域がシートの外周縁の全周に亘って設けられることによって、被着体への接続時における樹脂の流れ出しをより一層抑制することが可能であり、得られる積層体の絶縁性をより向上し得る。 The hardened region may be provided over the entire outer periphery of the sheet. By providing the hardening region over the entire circumference of the outer periphery of the sheet, it is possible to further suppress the outflow of the resin when connecting to the adherend, and further improve the insulation properties of the obtained laminate. can.
 上記硬化領域はシートの厚さ方向に沿って延在してよい。硬化領域がこのように設けられることによって、シートの側面からの樹脂の流れ出しをより一層抑制することができる。 The hardened region may extend along the thickness direction of the sheet. By providing the cured region in this way, the outflow of the resin from the side surface of the sheet can be further suppressed.
 上記硬化領域のシートの厚さ方向に沿った断面における幅が、シートの全長の1~20%であってよい。硬化領域の幅が上記範囲内であることによって、被着体への接着性と、被着体との接続によって得られる積層体の絶縁性とをより高水準で両立することができる。 The width of the cured region in a cross section along the thickness direction of the sheet may be 1 to 20% of the total length of the sheet. When the width of the cured region is within the above range, both adhesion to the adherend and insulating properties of the laminate obtained by connection to the adherend can be achieved at a higher level.
 上記硬化領域が上記窒化物焼結板の側面に設けられた樹脂層であってよい。 The cured region may be a resin layer provided on the side surface of the nitride sintered plate.
 上記樹脂が熱硬化性樹脂を含有してよい。上記樹脂が熱硬化性樹脂を含有することで、被着体との接続時に硬化を促進させ、複合シートの硬化樹脂以外の領域からの樹脂の流れ出しをより抑制することができる。 The above resin may contain a thermosetting resin. By including a thermosetting resin in the resin, curing can be accelerated when connecting to an adherend, and the outflow of the resin from areas other than the cured resin of the composite sheet can be further suppressed.
 上記樹脂の硬化率の最大値と最小値との差が30%以上であってよい。例えば、硬化領域における樹脂の硬化率(最大値に相当)とその他領域における樹脂の硬化率(最小値に相当)との差が30%以上であることによって、被着体への接続時における樹脂の流れ出しをより低減し、接着性も十分に確保することができる。 The difference between the maximum value and the minimum value of the curing rate of the resin may be 30% or more. For example, if the difference between the curing rate of the resin in the cured region (corresponding to the maximum value) and the curing rate of the resin in the other regions (corresponding to the minimum value) is 30% or more, the resin outflow can be further reduced, and sufficient adhesiveness can be ensured.
 上記硬化領域における樹脂の硬化率が60%以上であってよい。 The curing rate of the resin in the curing region may be 60% or more.
 本開示の一側面は、上述の複合シートと、上記複合シート上に設けられた金属シートと、を備える、積層体を提供する。 One aspect of the present disclosure provides a laminate comprising the composite sheet described above and a metal sheet provided on the composite sheet.
 上記積層体は、上述の複合シートを備えることから、優れた絶縁性を発揮し得る。 Since the laminate includes the above-described composite sheet, it can exhibit excellent insulating properties.
 本開示の一側面は、多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、上記樹脂含浸シートを加熱して機構に充填された上記樹脂組成物を半硬化する第一硬化工程と、上記樹脂含浸シートの外周縁を含む領域に対して熱又はレーザー光を照射することによって、上記樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する、複合シートの製造方法を提供する。 One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to heat the resin composition filled in the mechanism. A first curing step of semi-curing, and a second curing step of curing or semi-curing the resin composition by irradiating a region including the outer periphery of the resin-impregnated sheet with heat or laser light. , provides a method of manufacturing a composite sheet.
 上記製造方法は、外周縁を含む領域に対して硬化反応を促進する複数の処理を行うことによって、シートの外周縁を含む領域に硬化領域を形成することができる。これによって、上述の複合シートを製造できる。 In the manufacturing method described above, a hardened region can be formed in the region including the outer peripheral edge of the sheet by performing a plurality of treatments for promoting the hardening reaction on the region including the outer peripheral edge. Thereby, the composite sheet described above can be manufactured.
 本開示の一側面は、多孔質の窒化物焼結板の外周縁を含む領域に第1樹脂組成物を含浸して第1樹脂含浸シートを得る第一含浸工程と、上記第1樹脂含浸シートを加熱して気孔に充填された前記第1樹脂組成物を硬化又は半硬化して外周縁を含む領域に樹脂を含む第1樹脂充填シートを得る第一硬化工程と、上記第1樹脂充填シートに第2樹脂組成物を含浸して第2樹脂含浸シートを得る第二含浸工程と、上記第2樹脂含浸シートを加熱して、上記第2樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する、複合シートの製造方法を提供する。 One aspect of the present disclosure is a first impregnation step of obtaining a first resin-impregnated sheet by impregnating a region including the outer periphery of a porous nitride sintered plate with a first resin composition, and the first resin-impregnated sheet. a first curing step of curing or semi-curing the first resin composition filled in the pores by heating to obtain a first resin-filled sheet containing a resin in a region including the outer peripheral edge; and the first resin-filled sheet A second impregnation step of obtaining a second resin-impregnated sheet by impregnating the second resin composition into the and a method for manufacturing a composite sheet.
 上記製造方法は、窒化物焼結板の外周縁を含む領域に予め第1樹脂組成物を含浸し、硬化又は半硬化させた後に、窒化物焼結板の全面に第2樹脂組成物を含浸し、硬化又は半硬化させる工程を有する。このような工程を経ることによって、シートの外周縁を含む領域については、硬化反応を促進する複数の処理を行うことになり、当該領域の硬化がその他の領域よりも進行する。そのため、上述の複合シートを製造できる。 In the above manufacturing method, the region including the outer periphery of the nitride sintered plate is preliminarily impregnated with the first resin composition, cured or semi-cured, and then the entire surface of the nitride sintered plate is impregnated with the second resin composition. and hardening or semi-hardening. Through such steps, the area including the outer edge of the sheet is subjected to a plurality of treatments for accelerating the curing reaction, and the curing of this area progresses more than the other areas. Therefore, the composite sheet described above can be manufactured.
 本開示の一側面は、多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、上記樹脂含浸シートを加熱して気孔に充填された上記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填シートを得る硬化工程と、上記樹脂充填シートの側面を第3樹脂で被覆する被覆工程と、を有し、上記第3樹脂の硬化率は、上記第1樹脂の硬化率よりも高い、複合シートの製造方法を提供する。 One aspect of the present disclosure includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to obtain the resin composition filled in the pores. A curing step of curing or semi-curing to obtain a resin-filled sheet containing the first resin, and a coating step of coating the side surface of the resin-filled sheet with a third resin, wherein the curing rate of the third resin is Provided is a method for producing a composite sheet having a curing rate higher than that of the first resin.
 上記製造方法は、従前と類似の方法によって樹脂充填シートを調整したうえで、当該樹脂充填シートの側面に、上記樹脂充填シートを構成する樹脂の硬化率よりも硬化率が高い第3樹脂で被覆することによって、上述の複合シートを製造できる。 In the above manufacturing method, after preparing a resin-filled sheet by a method similar to the conventional method, the side surface of the resin-filled sheet is coated with a third resin having a higher curing rate than the resin constituting the resin-filled sheet. By doing so, the composite sheet described above can be produced.
 本開示の一側面は、上述の製造方法で得られた複合シートと、金属シートと、を積層し、加熱及び加圧する積層工程を有する、積層体の製造方法を提供する。 One aspect of the present disclosure provides a method for manufacturing a laminate, which includes a lamination step of laminating the composite sheet obtained by the above-described manufacturing method and a metal sheet, and heating and pressurizing them.
 上記製造法は、上述の複合シートを用いることから、優れた絶縁性を発揮し得る積層体を提供できる。 Because the above manufacturing method uses the above composite sheet, it is possible to provide a laminate capable of exhibiting excellent insulation.
 本開示によれば、被着体への接着性に優れ、且つ被着体への接着後に優れた絶縁性を発揮し得る複合シートを提供できる。本開示によればまた、優れた絶縁性を有する積層体及びその製造方法を提供できる。 According to the present disclosure, it is possible to provide a composite sheet that has excellent adhesion to an adherend and can exhibit excellent insulating properties after being adhered to an adherend. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.
図1は、複合シートの一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a composite sheet. 図2は、図1のII-II線に沿った断面を示す模式図である。FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG. 図3は、複合シートの別の例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the composite sheet. 図4は、積層体の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a laminate.
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same functions, and duplicate descriptions are omitted depending on the case. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
 複合シートの一実施形態は、多孔質の窒化物焼結板と、上記窒化物焼結板の気孔に充填された樹脂と、を含む。複合シートは、シートの外周縁を含む硬化領域を有し、上記硬化領域における樹脂の硬化率が、その他の領域における樹脂の硬化率よりも高い。シートの形状は特に限定されるものではないが、一般に直方体形状である。 One embodiment of the composite sheet includes a porous nitride sintered plate and resin filled in the pores of the nitride sintered plate. The composite sheet has a hardening region including the outer periphery of the sheet, and the hardening rate of the resin in the hardening region is higher than the hardening rate of the resin in the other regions. Although the shape of the sheet is not particularly limited, it is generally rectangular parallelepiped.
 図1は、複合シートの一例を示す斜視図である。図2は図1のII-II線に沿った断面を示す模式図である。複合シート10は、シートの外周縁の全周に設けられた硬化領域14と、硬化領域14に囲まれる領域(その他の領域12)とを有する。図1において複合シート10は、硬化領域14がシートの外周縁の全周に亘るように連続的に設けられた例で示したが、不連続に設けられてもよい。複合シート10を加熱処理した際の樹脂の流れ出しを抑制する観点からは、外周縁の全周に亘るように連続的に硬化領域14が設けられるのがより望ましい。なお、硬化領域14であるか否かは、複合シート10の主面の中央領域における樹脂の硬化率を基準として、シートの外周縁における樹脂の硬化率が大きいことを調べることによって、確認できる。簡易には、該当箇所(例えば、外周縁を含み、外周縁から中央に向かって1mm程度の領域)から採取した樹脂のサンプルについて示差走査熱量測定によって発熱量を調べることによって行うことができる。 FIG. 1 is a perspective view showing an example of a composite sheet. FIG. 2 is a schematic diagram showing a cross section along line II-II of FIG. The composite sheet 10 has a hardened region 14 provided around the outer periphery of the sheet and a region surrounded by the hardened region 14 (another region 12). In FIG. 1, the composite sheet 10 is shown as an example in which the cured region 14 is provided continuously over the entire outer periphery of the sheet, but it may be provided discontinuously. From the viewpoint of suppressing outflow of the resin when the composite sheet 10 is heat-treated, it is more desirable that the cured region 14 is continuously provided over the entire circumference of the outer peripheral edge. Whether or not it is the cured area 14 can be confirmed by checking whether the resin hardening rate is large at the outer peripheral edge of the sheet with reference to the hardening rate of the resin in the central region of the main surface of the composite sheet 10 . Simply, it can be done by examining the calorific value by differential scanning calorimetry of a resin sample collected from the relevant location (for example, an area of about 1 mm from the outer peripheral edge toward the center including the outer peripheral edge).
 複合シート10の断面において、硬化領域14はシートの厚さ方向に沿って延在し、且つ一様の幅で連続的に形成された例で示した。硬化領域14の幅t1及びt2のシート厚さ方向に沿った断面における幅は、複合シート10に求める性能によって調整することができる。硬化領域14の幅は、例えば、複合シート10の全長Lを基準として、20%以下、15%以下、又は10%以下であってよい。硬化領域14の幅は、例えば、同じ断面における複合シート10の全長Lを基準として、1%以上、3%以上、又は5%以上であってよい。硬化領域14の幅は上述の範囲内で調整してよく、複合シート10の全長Lを基準として、例えば、1~20%、又は5~10%であってよい。硬化領域の幅t1及びt2は互いに同じであってよく、異なってもよいが、両者が異なる場合であっても、硬化領域の幅t1及びt2の両方が上述の範囲内であることが望ましい。 In the cross-section of the composite sheet 10, the cured region 14 extends along the thickness direction of the sheet and is shown as an example formed continuously with a uniform width. The widths t<b>1 and t<b>2 of the cured regions 14 in the cross section along the sheet thickness direction can be adjusted according to the performance required of the composite sheet 10 . The width of the cured region 14 may be, for example, 20% or less, 15% or less, or 10% or less based on the total length L of the composite sheet 10 . The width of the hardened region 14 may be, for example, 1% or more, 3% or more, or 5% or more based on the total length L of the composite sheet 10 in the same cross section. The width of the cured region 14 may be adjusted within the above range, and may be, for example, 1-20% or 5-10% of the total length L of the composite sheet 10 . The widths t1 and t2 of the hardened region may be the same or different, but even if they are different, it is desirable that both the widths t1 and t2 of the hardened region are within the above range.
 複合シート10の厚さは、例えば、10.0mm未満、5.0mm以下、又は2.0mm以下であってもよい。複合シート10の厚さの下限は、例えば、0.1mm以上、0.2mm以上、又は0.3mm以上であってよい。これによって、複合シート10を十分に小型化することができる。このような複合シート10は、例えば半導体装置の部品として好適に用いられる。複合シート10の厚さは上述の範囲内で調整してよく、例えば、0.1~10.0mm、又は0.2~2.0mmであってよい。 The thickness of the composite sheet 10 may be, for example, less than 10.0 mm, 5.0 mm or less, or 2.0 mm or less. The lower limit of the thickness of the composite sheet 10 may be, for example, 0.1 mm or more, 0.2 mm or more, or 0.3 mm or more. This allows the composite sheet 10 to be sufficiently miniaturized. Such a composite sheet 10 is suitably used as a part of a semiconductor device, for example. The thickness of the composite sheet 10 may be adjusted within the ranges described above, and may be, for example, 0.1-10.0 mm, or 0.2-2.0 mm.
 複合シート10の厚さは、主面に直交する方向に沿って測定される。複合シート10の厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その算術平均値が上述の範囲であればよい。 The thickness of the composite sheet 10 is measured along the direction perpendicular to the main surface. When the thickness of the composite sheet 10 is not constant, the thickness is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
 複合シート10のサイズは特に限定はなく、例えば、50mm以上、200mm以上、500mm以上、800mm以上、又は1000mm以上であってもよい。 The size of the composite sheet 10 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
 多孔質の窒化物焼結板としては、例えば、窒化ホウ素焼結板等が挙げられる。窒化物焼結板は、窒化物の一次粒子同士が焼結して構成される窒化物粒子と気孔とを含有する。窒化物焼結板の気孔のメジアン細孔径は、例えば、6.0μm以下、5.0μm以下、4.0μm以下、又は3.5μm以下であってよい。このような窒化物焼結板は、気孔のサイズが小さいことから、窒化物粒子の粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を高くすることができる。窒化物焼結板の気孔のメジアン細孔径は、例えば、0.3μm以上、0.5μm以上、1.0μm以上、又は1.5μm以上であってよい。このような窒化物焼結板は、接着する際に加圧すると十分に変形できるため、他部材(被着体)との密着性に優れる。窒化物焼結板の気孔のメジアン細孔径は上述の範囲内で調整してよく、例えば、0.3~6.0μmであってよい。 Examples of porous nitride sintered plates include boron nitride sintered plates. The nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles. The median pore size of the pores of the nitride sintered plate may be, for example, 6.0 μm or less, 5.0 μm or less, 4.0 μm or less, or 3.5 μm or less. Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased. The median pore diameter of the pores of the nitride sintered plate may be, for example, 0.3 μm or more, 0.5 μm or more, 1.0 μm or more, or 1.5 μm or more. Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it has excellent adhesion to other members (adherends). The median pore size of the pores of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.3-6.0 μm.
 窒化物焼結板の気孔のメジアン細孔径は、以下の手順で測定することができる。まず、複合体を加熱して半硬化樹脂層及び第1樹脂を除去する。そして、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながら窒化物焼結板を加圧したときの細孔径分布を求める。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径がメジアン細孔径である。水銀ポロシメーターとしては、例えば、株式会社島津製作所製のものを用いることができる。 The median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite is heated to remove the semi-cured resin layer and the first resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
 窒化物焼結板の気孔率、すなわち、窒化物焼結板における気孔の体積(V1)の比率は、30~65体積%であってよく、40~60体積%であってよい。気孔率が大きくなり過ぎると窒化物焼結板の強度が低下する傾向にある。一方、気孔率が小さくなり過ぎると複合体が他部材と接着される際にしみ出す樹脂が少なくなる傾向にある。 The porosity of the nitride sintered plate, that is, the ratio of the pore volume (V1) in the nitride sintered plate may be 30 to 65% by volume, and may be 40 to 60% by volume. If the porosity becomes too large, the strength of the nitride sintered plate tends to decrease. On the other hand, if the porosity is too small, less resin tends to ooze out when the composite is adhered to another member.
 気孔率は、窒化物焼結板の体積及び質量から、かさ密度[B(kg/m)]を算出し、このかさ密度と窒化物の理論密度[A(kg/m)]とから、下記式(1)によって求めることができる。窒化物焼結板は、窒化ホウ素、窒化アルミニウム、又は窒化ケイ素からなる群から選択される少なくとも一種を含んでよい。窒化ホウ素の場合、理論密度Aは2280kg/mである。窒化アルミニウムの場合、理論密度Aは3260kg/mである。窒化ケイ素の場合、理論密度Aは3170kg/mである。
  気孔率(体積%)=[1-(B/A)]×100   (1)
The porosity is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the nitride sintered plate, and using this bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1). The nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. For boron nitride, the theoretical density A is 2280 kg/m 3 . For aluminum nitride, the theoretical density A is 3260 kg/m 3 . For silicon nitride, the theoretical density A is 3170 kg/m 3 .
Porosity (volume%) = [1-(B/A)] x 100 (1)
 窒化物焼結板が窒化ホウ素焼結体である場合、かさ密度Bは、800~1500kg/mであってよく、1000~1400kg/mであってもよい。かさ密度Bが小さくなり過ぎると窒化物焼結板の強度が低下する傾向にある。一方、かさ密度Bが大きくなり過ぎると樹脂の充填量が減少して複合体の良好な接着性が損なわれる場合がある。 When the nitride sintered plate is a boron nitride sintered body, the bulk density B may be 800 to 1500 kg/m 3 or 1000 to 1400 kg/m 3 . If the bulk density B becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density B is too high, the amount of resin filled in the composite may decrease, resulting in a loss of good adhesion of the composite.
 窒化物焼結板の厚さは、例えば、10.0mm以下、5.0mm以下、又は2.0mm以下であってもよい。窒化物焼結板の厚さの下限は、例えば、0.1mm以上、0.2mm以上、0.3mm以上、又は0.5mm以上であってよい。窒化物焼結板の厚さは上述の範囲内で調整してよく、例えば、0.1~10.0mm、又は0.3~2.0mmであってよい。窒化物焼結板の厚さは、主面に直交する方向に沿って測定され、厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その算術平均値が上述の範囲であればよい。 The thickness of the nitride sintered plate may be, for example, 10.0 mm or less, 5.0 mm or less, or 2.0 mm or less. The lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more. The thickness of the nitride sintered plate may be adjusted within the above range, and may be, for example, 0.1-10.0 mm, or 0.3-2.0 mm. The thickness of the nitride sintered plate is measured along the direction orthogonal to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the arithmetic average value is It is sufficient if it is in the range described above.
 複合シート10に含まれる樹脂は、主剤及び硬化剤を含む樹脂組成物の硬化物(Cステージ)又は半硬化物(Bステージ)である。硬化物は、樹脂組成物の硬化反応が完全に進行したものである。半硬化物は、樹脂組成物の硬化反応が一部進行したものである。半硬化物は、その後の硬化処理によって、更に硬化させることができる。 The resin contained in the composite sheet 10 is a cured product (C stage) or semi-cured product (B stage) of a resin composition containing a main agent and a curing agent. The cured product is obtained by completing the curing reaction of the resin composition. The semi-cured product is obtained by partially progressing the curing reaction of the resin composition. The semi-cured product can be further cured by a subsequent curing treatment.
 樹脂は、樹脂組成物中の主剤及び硬化剤が反応して生成する熱硬化性樹脂等を含んでもよい。上記半硬化物は、樹脂成分として、熱硬化性樹脂に加えて主剤及び硬化剤等のモノマーを含んでもよい。複合シート10に含まれる樹脂が硬化物(Cステージ)となる前の半硬化物(Bステージ)であることは、例えば、示差走査熱量計によって確認することができる。 The resin may contain a thermosetting resin or the like that is generated by the reaction of the main agent and curing agent in the resin composition. The semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by a differential scanning calorimeter, for example, that the resin contained in the composite sheet 10 is a semi-cured product (B stage) before becoming a cured product (C stage).
 複合シート10の硬化領域14における樹脂の硬化率が、その他の領域における樹脂の硬化率よりも進行した状態にある。硬化領域14における樹脂の硬化率は、例えば、40%以上、50%以上、60%以上、65%以上、70%以上、75%以上、又は80%以上であってよい。硬化領域14における樹脂の硬化率が上記範囲内であると、被着体との接着時におけるその他の領域から樹脂が複合シート10の外部に流れ出すことをさらに抑制し、得られる積層体の絶縁性を更に向上させることができる。硬化領域14における樹脂の硬化率の上限値は、特に限定されるものではないが、例えば、90%以下、88%以下、又は86%以下であってよい。硬化領域14における樹脂の硬化率の上限値が上記範囲内であることによって、柔軟性を適度に確保することができ、流通時、被着体への加圧接着時などにおいて複合体が破損等することをより抑制できる。硬化領域14における樹脂の硬化率は上述の範囲内で調整してよく、例えば、20~90%、50~86%、又は60~86%であってよい。 The curing rate of the resin in the cured region 14 of the composite sheet 10 is in a state of being more advanced than the curing rate of the resin in the other regions. The curing rate of the resin in the cured region 14 may be, for example, 40% or more, 50% or more, 60% or more, 65% or more, 70% or more, 75% or more, or 80% or more. When the curing rate of the resin in the cured region 14 is within the above range, it is possible to further suppress the resin from flowing out of the composite sheet 10 from other regions during adhesion to the adherend, and the insulating property of the obtained laminate is improved. can be further improved. The upper limit of the curing rate of the resin in the curing region 14 is not particularly limited, but may be, for example, 90% or less, 88% or less, or 86% or less. When the upper limit of the curing rate of the resin in the curing region 14 is within the above range, the flexibility can be appropriately secured, and the composite will not be damaged during distribution, pressure bonding to the adherend, etc. can be more restrained. The cure rate of the resin in the cure zone 14 may be adjusted within the ranges described above, and may be, for example, 20-90%, 50-86%, or 60-86%.
 複合シート10における樹脂の硬化率の最大値と最小値との差は、望ましくは10%以上、20%以上、又は30%以上である。上記差は、例えば、硬化領域における樹脂の硬化率(最大値に相当)とその他領域における樹脂の硬化率(最小値に相当)との差であってよい。上記差は、例えば、35%以上、40%以上、45%以上、又は50%以上であってよい。上記差が上述の範囲内であると、被着体への接続時における樹脂の流れ出しをより低減し、接着性も十分に確保することができる。なお、上記差は80%以下であってよく、70%以下であってよく、60%以下であってよい。複合シート10における樹脂の硬化率の最大値と最小値との差は上述の範囲内で調整してよく、例えば、10~80%、又は30~60%であってよい。 The difference between the maximum value and the minimum value of the curing rate of the resin in the composite sheet 10 is desirably 10% or more, 20% or more, or 30% or more. The difference may be, for example, the difference between the curing rate of the resin in the cured region (corresponding to the maximum value) and the curing rate of the resin in the other region (corresponding to the minimum value). The difference may be, for example, 35% or more, 40% or more, 45% or more, or 50% or more. When the difference is within the above range, the outflow of the resin during connection to the adherend can be further reduced, and sufficient adhesiveness can be ensured. The difference may be 80% or less, 70% or less, or 60% or less. The difference between the maximum value and the minimum value of the curing rate of the resin in the composite sheet 10 may be adjusted within the range described above, and may be, for example, 10-80% or 30-60%.
 本明細書における樹脂の硬化率は、示差走査熱量計を用いた測定によって決定することができる。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定する。そして、複合シートが備える樹脂から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求める。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とする。樹脂中に熱硬化性を有する成分がc(質量%)含有されているとすると、下記式(A)によって複合シートに含浸している樹脂組成物の硬化率が求められる。なお、樹脂が完全に硬化したか否かは、示差走査熱量測定によって得られる発熱曲線において、発熱が終了することで確認することができる。
  含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A)
The cure rate of the resin herein can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (A). Whether or not the resin is completely cured can be confirmed by the end of heat generation in the heat generation curve obtained by differential scanning calorimetry.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
 樹脂は、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、及びポリアセタールからなる群より選ばれる少なくとも一種を含んでいてよい。 Resins include, for example, epoxy resins, silicone resins, cyanate resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, bismaleimide resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
 複合シートの変形例では、例えば、窒化物焼結板の外周側面に樹脂層を設けた物であってよい。この場合、複合シートの硬化領域は上記樹脂層によって構成され、その他の領域は樹脂が含浸された窒化物焼結板(樹脂含浸体)であってよい。 A modification of the composite sheet may be, for example, a sintered nitride plate with a resin layer on the outer peripheral side surface. In this case, the cured region of the composite sheet may be composed of the resin layer, and the other region may be a nitride sintered plate (resin-impregnated body) impregnated with resin.
 図3は、複合シートの別の例を示す模式断面図である。図3において複合シート10は、樹脂含浸体13と、樹脂含浸体13の外周側面に設けられた樹脂層15とを有する。当該複合シート10において、樹脂層15が硬化領域に相当し、樹脂含浸体13がその他の領域に相当する。 FIG. 3 is a schematic cross-sectional view showing another example of the composite sheet. In FIG. 3 , the composite sheet 10 has a resin-impregnated body 13 and a resin layer 15 provided on the outer peripheral side surface of the resin-impregnated body 13 . In the composite sheet 10, the resin layer 15 corresponds to the cured region, and the resin-impregnated body 13 corresponds to other regions.
 上記樹脂層15の成分は樹脂含浸体13を構成する樹脂と同一であっても、異なってもよいが、樹脂含浸体13と樹脂層15との接着性を向上させ、複合シート10と被着体とを接着した後の絶縁性を向上させる観点からは、同一の樹脂で構成されることが望ましい。 The component of the resin layer 15 may be the same as or different from the resin constituting the resin-impregnated body 13, but it improves the adhesiveness between the resin-impregnated body 13 and the resin layer 15, From the viewpoint of improving the insulation after adhering to the body, it is desirable to be composed of the same resin.
 上述の複合シート10は、加熱時の樹脂の流れ出しが抑制されていることから、金属シート等と積層する積層体等、高度な絶縁性を要求される積層体を形成するために有用である。積層体の一実施形態は、上記複合シートと、上記複合シート上に設けられた金属シートと、を有する。上記複合シートと、金属シートとは複合シートの有する樹脂の硬化物によって接合されていてもよい。つまり、積層体の一態様では、複合シートと金属シートとは硬化樹脂を介して接合されている。 The composite sheet 10 described above is useful for forming a laminate that requires a high degree of insulation, such as a laminate that is laminated with a metal sheet or the like, because the outflow of the resin during heating is suppressed. One embodiment of a laminate includes the composite sheet and a metal sheet provided on the composite sheet. The composite sheet and the metal sheet may be joined by a cured resin of the composite sheet. In other words, in one aspect of the laminate, the composite sheet and the metal sheet are joined via a cured resin.
 金属シートは、シート形状を有する金属製のものであれば特に制限されない。上述の複合体の説明で挙げた被着体(他部材)が金属シートであってよい。金属シートは、金属板であってよく、金属箔であってもよい。金属シートの材質は、例えば、アルミニウム、及び銅等が挙げられる。 The metal sheet is not particularly limited as long as it is made of metal and has a sheet shape. The adherend (another member) mentioned in the description of the composite above may be a metal sheet. The metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
 図4は、積層体の一例を示す断面図である。図4は、積層体20を積層方向に沿って切断したときの断面を示している。積層体20は、上述の複合シート10と、複合シート10の一対の主面(2つの主面)上に積層された金属シート22とを備える。複数ある金属シート22の材質及び厚さは互いに同じであってよく、異なっていてもよい。また、複合シート10の両方の主面に金属シート22を備えることは必須ではない。変形例では、複合シート10の一方の主面のみに金属シート22を備えていてもよい。 FIG. 4 is a cross-sectional view showing an example of a laminate. FIG. 4 shows a cross section of the laminate 20 cut along the lamination direction. The laminate 20 includes the composite sheet 10 described above and metal sheets 22 laminated on a pair of main surfaces (two main surfaces) of the composite sheet 10 . The material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both major surfaces of the composite sheet 10 . In a variant, only one major surface of composite sheet 10 may be provided with metal sheet 22 .
 積層体20における金属シート22は、複合シート10に接している。これによって、金属シート22と複合シート10とが高い密着性で接着している。この状態を固定するために、複合シート10を硬化させ、硬化樹脂によって両者を接合してもよい。積層体20は、このように金属シート22と複合シート10とが高い密着性で接着しているため、例えば放熱部材として、半導体装置等に好適に用いることができる。 The metal sheet 22 in the laminate 20 is in contact with the composite sheet 10. Thereby, the metal sheet 22 and the composite sheet 10 are adhered with high adhesion. In order to fix this state, the composite sheet 10 may be cured and the two may be joined together with a cured resin. Since the metal sheet 22 and the composite sheet 10 are adhered to each other with high adhesion, the laminated body 20 can be suitably used as a heat dissipation member, for example, in a semiconductor device or the like.
 積層体20の厚さは、例えば、12.0mm未満、6.0mm未満、又は3.0mm未満であってよい。積層体20の厚さの下限は、例えば、0.6mm以上であってよい。これによって、積層体20を十分に小型化することができる。このような積層体20は、例えば半導体装置の部品として好適に用いられる。積層体20の厚さは上述の範囲内で調整してよく、例えば、0.6~12.0mm、又は0.6~6.0mmであってよい。 The thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm. The lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more. As a result, the laminated body 20 can be sufficiently miniaturized. Such a laminate 20 is suitably used as a component of a semiconductor device, for example. The thickness of the laminate 20 may be adjusted within the ranges described above, and may be, for example, 0.6-12.0 mm, or 0.6-6.0 mm.
 積層体20は、複合シート10を備えるため、熱伝導性と絶縁信頼性を高水準に両立することができる。例えば、硬化領域における樹脂の硬化率を予め高めておくことによって、積層体を形成する際の樹脂の流れ出しを十分に抑制されており、複合シート10に期待される絶縁性を十分に発揮させ得る。 Since the laminate 20 includes the composite sheet 10, it is possible to achieve both high levels of thermal conductivity and insulation reliability. For example, by increasing the curing rate of the resin in the cured region in advance, the outflow of the resin when forming the laminate is sufficiently suppressed, and the expected insulation properties of the composite sheet 10 can be sufficiently exhibited. .
 上述の複合シートは、例えば、窒化物焼結板に樹脂を含浸させた後、外周縁を含む領域に対して複数回の硬化処理を行う方法(製法A)、窒化物焼結板の外周部のみ樹脂を含浸し、硬化又は半硬化させた後に、更に樹脂を含浸させて全体に対して同様の硬化又は半硬化させることによって、外周縁を含む領域における樹脂の硬化率をその他の領域よりも進行させる方法(製法B)、又は予め調製した樹脂含浸体の側面部に対して、樹脂含浸体における樹脂よりも硬化率の高い樹脂で構成される樹脂層を設ける方法(製法C)等によって調製することができる。硬化領域の範囲の調整を容易とする観点からは製法Aが望ましい。 The above-mentioned composite sheet can be produced, for example, by impregnating the nitride sintered plate with a resin and then subjecting the region including the outer periphery to multiple hardening treatments (manufacturing method A), the outer periphery of the nitride sintered plate Only the resin is impregnated and cured or semi-cured, and then the resin is further impregnated and the whole is cured or semi-cured in the same manner. Prepared by a method of advancing (manufacturing method B), or a method of providing a resin layer composed of a resin having a higher curing rate than the resin in the resin-impregnated body on the side surface of the resin-impregnated body prepared in advance (manufacturing method C). can do. Production method A is desirable from the viewpoint of facilitating adjustment of the range of the cured region.
 複合シートの製造方法(製法A)の一実施形態は、多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、上記樹脂含浸シートを加熱して機構に充填された上記樹脂組成物を半硬化する第一硬化工程と、上記樹脂含浸シートの外周縁を含む領域に対して熱又はレーザー光を照射することによって、上記樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する。 One embodiment of the method for producing a composite sheet (manufacturing method A) includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to a mechanism. A first curing step of semi-curing the filled resin composition, and curing or semi-curing the resin composition by irradiating a region including the outer periphery of the resin-impregnated sheet with heat or laser light. and a second curing step.
 多孔質の窒化物焼結板は、予め調製された窒化物焼結板を使用してもよく、また、次のような焼結工程によって調製した窒化物焼結板を用いてもよい。多孔質の窒化物焼結板として、予め調製された窒化物焼結板を使用する場合には、後述する焼結工程は省略することができる。 A nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used. When a previously prepared nitride sintered plate is used as the porous nitride sintered plate, the sintering step described later can be omitted.
 焼結工程によって窒化物焼結板を調製する場合には、まず、窒化物を含む原料粉末を準備する。原料粉末に含まれる窒化物は、例えば、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも一種の窒化物を含有してよい。窒化ホウ素を含有する場合、窒化ホウ素は、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよい。窒化物焼結板として窒化ホウ素焼結板を調製する場合、原料粉末として、例えば、平均粒径が0.5~10μmであるアモルファス窒化ホウ素粉末、又は、平均粒径が3.0~40μmである六方晶窒化ホウ素粉末を用いることができる。 When preparing a nitride sintered plate by a sintering process, first, a raw material powder containing nitride is prepared. The nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. When boron nitride is contained, the boron nitride may be amorphous boron nitride or hexagonal boron nitride. When preparing a boron nitride sintered plate as a nitride sintered plate, the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10 μm, or an average particle size of 3.0 to 40 μm. Certain hexagonal boron nitride powders can be used.
 焼結工程では、窒化物粉末を含む配合物を成形して焼結し窒化物焼結体を得てもよい。成形は、例えば、一軸加圧で行ってよく、冷間等方加圧(CIP)法で行ってもよい。成形の前に、焼結助剤を配合して配合物を得てもよい。焼結助剤としては、例えば、酸化イットリウム、酸化アルミニウム及び酸化マグネシウム等の金属酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等が挙げられる。焼結助剤を配合する場合は、焼結助剤の配合量は、例えば、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01質量部以上、又は0.1質量部以上であってよい。焼結助剤の配合量は、窒化物及び焼結助剤の合計100質量部に対して、例えば、20質量部以下、15質量部以下又は10質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、窒化物焼結体のメジアン細孔径を後述の範囲に調整し易くなる。焼結助剤の配合量は上述の範囲内で調整してよく、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01~20質量部、又は0.01~10質量部であってよい。 In the sintering step, a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body. The molding may be carried out, for example, by uniaxial pressing or cold isostatic pressing (CIP). A sintering aid may be blended into the formulation prior to molding. Examples of sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid. When a sintering aid is blended, the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.1 parts per 100 parts by mass of the total of the nitride and the sintering aid. It may be at least parts by mass. The compounding amount of the sintering aid may be, for example, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid. By setting the amount of the sintering aid to be added within the above range, it becomes easier to adjust the median pore diameter of the nitride sintered body within the range described below. The amount of the sintering aid may be adjusted within the above range, for example, 0.01 to 20 parts by mass, or 0.01 to 10 parts by mass, relative to the total 100 parts by mass of the nitride and the sintering aid. It may be parts by mass.
 配合物は、例えば、ドクターブレード法によってシート状の成形体としてよい。成形方法は特に限定されず、金型を用いてプレス成形を行って成形体としてもよい。成形圧力は、例えば、5~350MPaであってよい。成形体の形状は、厚さが2mm未満のシート状であってよい。このようなシート状の成形体を用いて窒化物焼結板を製造すれば、窒化物焼結板を切断することなく、厚さが2mm未満のシート状の複合体を製造することができる。また、ブロック状の窒化物焼結体を切断してシート状とする場合に比べて、成形体の段階からシート状にすることによって、加工による材料ロスを低減することができる。したがって、高い歩留まりで複合体を製造することができる。 The compound may be formed into a sheet-like molded body by, for example, a doctor blade method. The molding method is not particularly limited, and press molding may be performed using a mold to form a molded body. The molding pressure may be, for example, 5-350 MPa. The shape of the compact may be a sheet with a thickness of less than 2 mm. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite having a thickness of less than 2 mm can be produced without cutting the nitride sintered plate. In addition, compared to the case where a block-shaped nitride sintered body is cut to form a sheet, the material loss due to processing can be reduced by forming the block into a sheet from the compact stage. Therefore, the composite can be manufactured with high yield.
 焼結工程の焼結温度は、例えば、1600℃以上であってよく、1700℃以上であってもよい。焼結温度は、例えば、2200℃以下であってよく、2000℃以下であってもよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってもよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。 The sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher. The sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower. The sintering time may be, for example, 1 hour or more and may be 30 hours or less. The atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
 焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び大形連続炉等を挙げることができる。このようにして、窒化物焼結体又は窒化物焼結板を得ることができる。窒化物焼結体はブロック状であってよい。 For sintering, for example, a batch type furnace and a continuous type furnace can be used. Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like. Examples of continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces. Thus, a nitride sintered body or a nitride sintered plate can be obtained. The nitride sintered body may be block-shaped.
 窒化物焼結体がブロック状である場合、2mm未満の厚さとなるように加工する切断工程を行ってもよい。切断工程では、窒化物焼結体を、例えば、ワイヤーソーを用いて切断する。ワイヤーソーは、例えば、マルチカットワイヤーソー等であってよい。このような切断工程によって、例えば、厚さが2mm未満のシート状の窒化物焼結板を得ることができる。これによって、次の含浸工程において、窒化物焼結板に樹脂組成物を円滑に含浸することができる。 When the nitride sintered body is block-shaped, a cutting step may be performed to process it so that it has a thickness of less than 2 mm. In the cutting step, the nitride sintered body is cut using, for example, a wire saw. The wire saw may be, for example, a multi-cut wire saw or the like. A sheet-like nitride sintered plate having a thickness of less than 2 mm, for example, can be obtained by such a cutting process. Thereby, the nitride sintered plate can be smoothly impregnated with the resin composition in the next impregnation step.
 含浸工程では、窒化物焼結体の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る。窒化物焼結体の厚さを小さくすることで、樹脂組成物の含浸を円滑にすることができる。また、樹脂組成物の粘度を含浸に適した範囲にすることによって、樹脂含浸体における樹脂の充填率を十分に高くすることができる。 In the impregnation step, the pores of the nitride sintered body are impregnated with a resin composition having a viscosity of 10 to 500 mPa·s to obtain a resin-impregnated body. By reducing the thickness of the nitride sintered body, impregnation of the resin composition can be facilitated. Also, by setting the viscosity of the resin composition to a range suitable for impregnation, the filling rate of the resin in the resin-impregnated body can be sufficiently increased.
 窒化物焼結板に樹脂組成物を含浸する際の樹脂組成物の粘度は、例えば、440mPa・s以下、390mPa・s以下、又は340mPa・s以下であってよい。このように樹脂組成物の粘度を低くすることによって、樹脂組成物の含浸を十分に促進することができる。窒化物焼結板に樹脂組成物を含浸する際の樹脂組成物の粘度は、例えば、15mPa・s以上、又は20mPa・s以上であってよい。このように樹脂組成物の粘度に下限を設けることによって、一旦気孔内に含浸した樹脂組成物が気孔から流出することをより抑制することができる。樹脂組成物の粘度は、モノマー成分を一部重合して調整してもよく、溶剤を加えて調整してもよい。窒化物焼結板に樹脂組成物を含浸する際の樹脂組成物の粘度は上述の範囲内で調整してよく、例えば、15~440mPa・s、又は20~340mPa・sであってよい。 The viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be, for example, 440 mPa·s or less, 390 mPa·s or less, or 340 mPa·s or less. By lowering the viscosity of the resin composition in this way, the impregnation of the resin composition can be sufficiently promoted. The viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be, for example, 15 mPa·s or more, or 20 mPa·s or more. By setting the lower limit of the viscosity of the resin composition in this manner, it is possible to further suppress the resin composition once impregnated in the pores from flowing out from the pores. The viscosity of the resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent. The viscosity of the resin composition when the nitride sintered plate is impregnated with the resin composition may be adjusted within the above range, and may be, for example, 15 to 440 mPa·s or 20 to 340 mPa·s.
 樹脂組成物の上記粘度は、窒化物焼結板に樹脂組成物を含浸する際の樹脂組成物の温度(T1)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)、温度(T1)の下で測定される値である。したがって、温度T1を変えることによって、窒化物焼結板に樹脂組成物を含浸する際の粘度を調節してもよい。 The above viscosity of the resin composition is the viscosity at the temperature (T1) of the resin composition when the nitride sintered plate is impregnated with the resin composition. This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity at which the nitride sintered plate is impregnated with the resin composition may be adjusted.
 窒化物焼結板に樹脂組成物を含浸する際の温度(T1)は、例えば樹脂組成物を半硬化する温度(T2)以上、且つ温度T3(=T2+20℃)未満であってよい。温度(T2)は、例えば、80~140℃であってよい。窒化物焼結板への樹脂組成物の含浸は、加圧下で行ってよく、減圧下で行ってもよい。含浸する方法は特に限定されず、樹脂組成物中に窒化物焼結板を浸漬してもよいし、窒化物焼結板の表面に樹脂組成物を塗布することで行ってもよい。 The temperature (T1) at which the nitride sintered plate is impregnated with the resin composition may be, for example, the temperature (T2) at which the resin composition is semi-cured or higher and lower than the temperature T3 (=T2+20°C). The temperature (T2) may be, for example, 80-140°C. Impregnation of the nitride sintered plate with the resin composition may be performed under pressure or under reduced pressure. The impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the resin composition, or the surface of the nitride sintered plate may be coated with the resin composition.
 含浸工程は、減圧条件下及び加圧条件下のどちらで行ってもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。 The impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure. The pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less. The pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
 窒化物焼結板における気孔の細孔径を調整することによって、毛細管現象による樹脂組成物の含浸を促進し、樹脂含浸体における樹脂の充填率を調整してもよい。このような観点から、窒化物焼結板のメジアン細孔径は、例えば、0.3~6.0μm、0.5~5.0μm、又は1.0~4.0μmであってもよい。 By adjusting the pore diameter of the pores in the nitride sintered plate, the impregnation of the resin composition by capillary action may be promoted, and the resin filling rate in the resin-impregnated body may be adjusted. From this point of view, the median pore diameter of the nitride sintered plate may be, for example, 0.3-6.0 μm, 0.5-5.0 μm, or 1.0-4.0 μm.
 樹脂組成物は、例えば、硬化又は半硬化反応によって上述の複合体の説明で挙げた樹脂となるものを用いることができる。 For the resin composition, it is possible to use, for example, one that becomes the resin mentioned in the explanation of the above composite by curing or semi-curing reaction.
 樹脂組成物は溶剤を含んでいてもよい。溶剤としては、例えば、エタノール、及びイソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、及び2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、及びエチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びジイソブチルケトン等のケトン、並びに、トルエン、及びキシレン等の芳香族炭化水素などが挙げられる。 The resin composition may contain a solvent. Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
 樹脂組成物は、熱硬化性であり、例えば、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種の化合物と、硬化剤と、を含有してよい。 The resin composition is thermosetting and comprises, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent. may contain.
 シアネート基を有する化合物としては、例えば、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、及びビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TACN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。 Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane. Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
 ビスマレイミド基を有する化合物としては、例えば、N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド、及び4,4’-ジフェニルメタンビスマレイミド等が挙げられる。N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミドは、例えば、BMI-80(ケイ・アイ化成株式会社製、商品名)として商業的に入手可能である。 Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc. N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
 エポキシ基を有する化合物としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び多官能エポキシ樹脂等が挙げられる。例えば、HP-4032D(DIC株式会社製、商品名)として商業的に入手可能である1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等であってもよい。 Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins. For example, it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
 硬化剤は、ホスフィン系硬化剤及びイミダゾール系硬化剤を含有してもよい。ホスフィン系硬化剤はシアネート基を有する化合物又はシアネート樹脂の三量化によるトリアジン生成反応を促進し得る。ホスフィン系硬化剤としては、例えば、テトラフェニルホスホニウムテトラ-p-トリルボレート、及びテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。テトラフェニルホスホニウムテトラ-p-トリルボレートは、例えば、TPP-MK(北興化学工業株式会社製、商品名)として商業的に入手可能である。 The curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent. A phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin. Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
 イミダゾール系硬化剤はオキサゾリンを生成し、エポキシ基を有する化合物又はエポキシ樹脂の硬化反応を促進する。イミダゾール系硬化剤としては、例えば、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、及び2-エチル-4-メチルイミダゾール等が挙げられる。1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾールは、例えば、2E4MZ-CN(四国化成工業株式会社製、商品名)として商業的に入手可能である。 The imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin. Examples of imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole. 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
 ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、5質量部以下、4質量部以下又は3質量部以下であってよい。ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以上又は0.5質量部以上であってよい。ホスフィン系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。ホスフィン系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1~5質量部であってよい。 The content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to parts by mass. The content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more or 0.5 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part. When the content of the phosphine-based curing agent is within the above range, it is easy to prepare the resin-impregnated body. The content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
 イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以下、0.05質量部以下又は0.03質量部以下であってよい。イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001質量部以上又は0.005質量部以上であってよい。イミダゾール系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。イミダゾール系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001~0.1質量部であってよい。 The content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less or 0.03 parts by mass or less. The content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part. When the content of the imidazole-based curing agent is within the above range, preparation of the resin-impregnated body is easy. The content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
 樹脂組成物は、主剤及び硬化剤とは別の他の成分を含んでよい。他の成分としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、並びに湿潤分散剤等を更に含んでもよい。これらのその他の成分の含有量は、樹脂組成物全量を基準として、例えば、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。 The resin composition may contain other components apart from the main agent and curing agent. Other components include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay. The content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the resin composition.
 第一硬化工程では、含浸工程によって得られた樹脂含浸体における樹脂組成物を半硬化させる。第一硬化工程では、樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射によって、樹脂組成物を半硬化させ、樹脂含浸シートを調製する。 In the first curing step, the resin composition in the resin-impregnated body obtained by the impregnation step is semi-cured. In the first curing step, depending on the type of resin composition (or curing agent added as necessary), the resin composition is semi-cured by heating and/or light irradiation to prepare a resin-impregnated sheet. .
 第一硬化工程において、加熱によって樹脂組成物を半硬化させる場合の加熱温度は、例えば、80~130℃であってよい。樹脂組成物の半硬化によって得られる半硬化樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含有してよい。また半硬化樹脂は、硬化剤を含有してもよい。半硬化樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。 In the first curing step, the heating temperature for semi-curing the resin composition by heating may be, for example, 80 to 130°C. The semi-cured resin obtained by semi-curing the resin composition may contain, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins. The semi-cured resin may also contain a curing agent. In addition to these components, semi-cured resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, surface control agents, and components derived from wetting and dispersing agents.
 第二硬化工程では、第一硬化工程を経て得られる樹脂含浸シートの外周縁を含む領域に対して熱又はレーザー光を照射することによって、上記樹脂組成物を硬化又は半硬化する、若しくは半硬化樹脂を硬化することによって、上述の複合シートを調製する。熱又はレーザー光を照射された領域は、複数回の硬化処理に曝されることによって、その他の領域に比べて樹脂の硬化率が高まる。当該工程において樹脂含浸シートの上述の所定の領域を加熱又はレーザー照射する手法は特に限定されるものではない。例えば、マスクを用いて、部分的にレーザー光を照射してよい。 In the second curing step, the resin composition is cured, semi-cured, or semi-cured by irradiating a region including the outer periphery of the resin-impregnated sheet obtained through the first curing step with heat or laser light. A composite sheet as described above is prepared by curing the resin. The region irradiated with heat or laser light is exposed to multiple curing treatments, and the curing rate of the resin is higher than that of other regions. In this step, the method of heating or irradiating the predetermined region of the resin-impregnated sheet with laser is not particularly limited. For example, laser light may be partially irradiated using a mask.
 第二硬化工程において、熱によって樹脂組成物の硬化又は半硬化、並びに半硬化樹脂の硬化を行う場合には、例えば、第一硬化工程よりも高い温度で部分的に加熱処理を行う方法、又は上述の所定領域のみ第一硬化工程と同等の加熱温度で加熱処理を行う方法を用いることができる。 In the second curing step, when curing or semi-curing the resin composition and curing the semi-cured resin by heat, for example, a method of partially heat-treating at a temperature higher than that in the first curing step, or A method of performing heat treatment at the same heating temperature as in the first curing step can be used only for the predetermined region described above.
 第二硬化工程において、レーザー光によって樹脂組成物の硬化又は半硬化、並びに半硬化樹脂の硬化を行う場合には、例えば、紫外光等を上述の所定領域のみに照射する方法を用いることができる。 In the second curing step, when the resin composition is cured or semi-cured and the semi-cured resin is cured by laser light, for example, a method of irradiating only the predetermined region with ultraviolet light or the like can be used. .
 樹脂組成物の半硬化によって得られる半硬化樹脂及び半硬化樹脂の硬化によって得られる樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含有してよい。また半硬化樹脂及び樹脂は、硬化剤を含有してもよい。半硬化樹脂及び樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。 The semi-cured resin obtained by semi-curing the resin composition and the resin obtained by curing the semi-cured resin are heated by at least one selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins as a resin component. It may contain a curable resin. The semi-cured resin and resin may also contain a curing agent. In addition to these components, semi-cured resins and resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
 第一硬化工程及び第二硬化工程は樹脂含浸体の周囲に樹脂組成物が存在する状況で行うことが好ましい。このようにすることによって、樹脂組成物の硬化収縮によって体積が減じる場合にも樹脂含浸体の周囲から樹脂組成物が供給され、空隙が生じることを更に抑制することができる。また硬化反応を停止させ、冷却する際に生じる樹脂の固化収縮によって体積が減じる場合にも周囲に同様の樹脂が存在することによって、やはり空隙の発生を抑制し得る。 The first curing step and the second curing step are preferably carried out in a situation where the resin composition exists around the resin-impregnated body. By doing so, even when the volume is reduced due to curing shrinkage of the resin composition, the resin composition is supplied from the periphery of the resin-impregnated body, and it is possible to further suppress the formation of voids. Moreover, even when the volume is reduced due to solidification shrinkage of the resin that occurs when the curing reaction is stopped and the resin is cooled, the existence of the similar resin in the surroundings can also suppress the generation of voids.
 上述の製造方法は、焼結工程、含浸工程、第一硬化工程及び第二硬化工程の他の工程を有してもよい。他の工程としては、例えば、含浸工程の前に真空引きを行うことによって、焼結体の不純物を除去する工程等が挙げられる。 The above-described manufacturing method may have other steps such as the sintering step, the impregnation step, the first hardening step and the second hardening step. Other steps include, for example, a step of removing impurities from the sintered body by drawing a vacuum before the impregnation step.
 複合シートの製造方法(製法B)の一実施形態は、多孔質の窒化物焼結板の外周縁を含む領域に第1樹脂組成物を含浸して第1樹脂含浸シートを得る第一含浸工程と、上記第1樹脂含浸シートを加熱して気孔に充填された前記第1樹脂組成物を硬化又は半硬化して外周縁を含む領域に樹脂を含む第1樹脂充填シートを得る第一硬化工程と、上記第1樹脂充填シートに第2樹脂組成物を含浸して第2樹脂含浸シートを得る第二含浸工程と、上記第2樹脂含浸シートを加熱して、上記第2樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する。第1樹脂組成物及び第2樹脂組成物は、いずれも上述の製造方法(製法A)に用いる樹脂組成物として例示したものを使用できる。以下、上述の製造方法(製法A)と異なる点について説明する。 One embodiment of the composite sheet manufacturing method (manufacturing method B) is a first impregnation step of impregnating a region including the outer periphery of a porous nitride sintered plate with a first resin composition to obtain a first resin-impregnated sheet. and a first curing step of heating the first resin-impregnated sheet and curing or semi-curing the first resin composition filled in the pores to obtain a first resin-filled sheet containing a resin in a region including the outer peripheral edge. a second impregnation step of impregnating the first resin-filled sheet with the second resin composition to obtain a second resin-impregnated sheet; and heating the second resin-impregnated sheet to cure the second resin composition. or a second curing step of semi-curing. For both the first resin composition and the second resin composition, those exemplified as the resin composition used in the above-described manufacturing method (manufacturing method A) can be used. Differences from the above manufacturing method (manufacturing method A) will be described below.
 第一含浸工程では、窒化物焼結板の外周縁を含む領域に第1樹脂組成物を含浸させる。この際、窒化物焼結板のその他の領域には第1樹脂組成物を含浸させないように調整する。例えば、第1樹脂組成物の溶融物又は溶液に対して、窒化物焼結板の外周縁を含む領域のみ浸漬させて、第1樹脂組成物を含浸させてもよく、窒化物焼結板の外周縁を含む領域のみに第1樹脂組成物の溶融物又は溶液を塗布することで第1樹脂組成物を含浸させてもよい。 In the first impregnation step, the region including the outer edge of the nitride sintered plate is impregnated with the first resin composition. At this time, adjustment is made so that other regions of the nitride sintered plate are not impregnated with the first resin composition. For example, only the region including the outer periphery of the nitride sintered plate may be immersed in the melt or solution of the first resin composition to impregnate the first resin composition, and the nitride sintered plate The first resin composition may be impregnated by applying the melt or solution of the first resin composition only to the region including the outer periphery.
 第一硬化工程では、第一含浸工程で含浸された第1樹脂組成物を半硬化又は硬化させることで窒化物焼結板の外周縁を含む領域のみに半硬化樹脂又は樹脂が充填された第1樹脂充填シートを調製する。この際、第1樹脂組成物を半硬化又は硬化させる方法は、加熱及び/又は光照射であってよく、上述の製造方法で説明したものと同じであってよい。 In the first curing step, by semi-curing or curing the first resin composition impregnated in the first impregnation step, only the region including the outer periphery of the nitride sintered plate is filled with the semi-cured resin or resin. 1 Prepare a resin-filled sheet. At this time, the method for semi-curing or curing the first resin composition may be heating and/or light irradiation, and may be the same as those described in the above manufacturing method.
 第二含浸工程は、第一含浸工程及び第一硬化工程を経て得られた第1樹脂充填シートに第2樹脂組成物を含浸させる。第二含浸工程では、第1樹脂充填シートを第2樹脂組成物の溶融物又は溶液に浸漬させて、第2樹脂組成物を含浸させてもよく、第1樹脂充填シートに第2樹脂組成物の溶融物又は溶液を塗布してもよい。 In the second impregnation step, the first resin-filled sheet obtained through the first impregnation step and the first curing step is impregnated with the second resin composition. In the second impregnation step, the first resin-filled sheet may be immersed in a melt or solution of the second resin composition to be impregnated with the second resin composition, and the first resin-filled sheet may be impregnated with the second resin composition. may be applied as a melt or solution of
 第二硬化工程では、第二含浸工程で得られた第2樹脂含浸シートを硬化又は半硬化させる。第二硬化工程では、第一硬化工程において樹脂組成物が硬化又は半硬化された領域についても再度、加熱及び/又は光照射が行われることになるため、得られる複合シートはシートの外周縁を含む領域における樹脂の硬化率がその他の領域に比べて高くなる。 In the second curing step, the second resin-impregnated sheet obtained in the second impregnation step is cured or semi-cured. In the second curing step, the region where the resin composition has been cured or semi-cured in the first curing step is also heated and/or irradiated with light again. The hardening rate of the resin in the containing region is higher than in other regions.
 第1樹脂組成物及び第2樹脂組成物を含浸させる際の粘度は、同一であっても、異なってもよく、いずれも上述の製造方法で説明したものと同じであってよい。 The viscosities at which the first resin composition and the second resin composition are impregnated may be the same or different, and both may be the same as those described in the manufacturing method above.
 複合シートの製造方法(製法C)の一実施形態は、多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、上記樹脂含浸シートを加熱して気孔に充填された上記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填シートを得る硬化工程と、上記樹脂充填シートの側面を第3樹脂で被覆する被覆工程と、を有する。上記第3樹脂の硬化率は、上記第1樹脂の硬化率よりも高い。含浸工程までは製法Aと同様である。以下、上述の製造方法(製法A)と異なる点について説明する。 One embodiment of the composite sheet manufacturing method (manufacturing method C) includes an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet, and heating the resin-impregnated sheet to form pores. A curing step of curing or semi-curing the filled resin composition to obtain a resin-filled sheet containing the first resin, and a coating step of coating the side surface of the resin-filled sheet with a third resin. The curing rate of the third resin is higher than the curing rate of the first resin. The steps up to the impregnation step are the same as those of the manufacturing method A. Differences from the above manufacturing method (manufacturing method A) will be described below.
 硬化工程では、樹脂含浸シート全体を加熱して、樹脂組成物を硬化又は半硬化することで樹脂充填シートを得る。この際、上述の製造方法(製法A)のように加熱の領域を特定する必要はない。樹脂組成物等は上述の製造方法(製法A)で例示したものを使用できることから、これに合わせて、硬化条件も製法Aで示したものを適用できる。 In the curing step, the resin-filled sheet is obtained by heating the entire resin-impregnated sheet and curing or semi-curing the resin composition. At this time, it is not necessary to specify the heating region as in the above manufacturing method (manufacturing method A). Since the resin composition and the like exemplified in the production method (production method A) described above can be used, the curing conditions shown in production method A can be applied accordingly.
 樹脂充填シートは、予め調製されたものを用いてもよく、この場合、焼結工程、含浸工程、及び硬化工程は省略してもよい。 A resin-filled sheet that has been prepared in advance may be used, and in this case, the sintering process, the impregnation process, and the curing process may be omitted.
 被覆工程では、樹脂充填シートの側面に第1樹脂の流れ出しを抑制するための第3樹脂を含む樹脂層を設ける。第3樹脂は樹脂充填シートの側面全周に亘って、連続的に設けることが望ましいが、第1樹脂の流れ出しを抑制する観点からは、充填樹脂シートの側面の少なくとも一部に設けられてよく、不連続に形成されていてもよい。 In the coating step, a resin layer containing the third resin is provided on the side surface of the resin-filled sheet to suppress the outflow of the first resin. It is desirable that the third resin be provided continuously over the entire side surface of the resin-filled sheet, but from the viewpoint of suppressing the outflow of the first resin, it may be provided on at least a part of the side surface of the filled resin sheet. , may be discontinuously formed.
 第3樹脂は、樹脂組成物の半硬化によって得られる半硬化樹脂及び半硬化樹脂の硬化によって得られる樹脂であってよい。第3樹脂の樹脂成分として、シアネート樹脂、ビスマレイミド樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含有してよい。また半硬化樹脂及び樹脂は、硬化剤を含有してもよい。半硬化樹脂及び樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。第1樹脂と第3樹脂の構成成分は、同一であっても、異なってもよい。 The third resin may be a semi-cured resin obtained by semi-curing the resin composition and a resin obtained by curing the semi-cured resin. As a resin component of the third resin, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins may be contained. The semi-cured resin and resin may also contain a curing agent. In addition to these components, semi-cured resins and resins include other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like. The constituent components of the first resin and the third resin may be the same or different.
 積層体の製造方法の一実施形態は、上述の複合シートと、金属シートと、を積層し、加熱及び加圧する積層工程を有する。上記複合シートとしては、上述のいずれかの製造方法で得られた複合シートを用いることができる。すなわち、積層体の製造方法は、上述の製造方法に加えて、上記積層工程を有する製造方法であってよい。金属シートは、金属板であってよく、金属箔であってもよい。 An embodiment of a method for manufacturing a laminate has a lamination step of laminating the composite sheet and the metal sheet described above, and heating and pressurizing them. As the composite sheet, a composite sheet obtained by any of the manufacturing methods described above can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above. The metal sheet may be a metal plate or a metal foil.
 積層工程では、複合シートの主面上に金属シートを配置する。複合シートと金属シートの主面同士を接触させた状態で、主面同士が対向する方向に加圧するとともに、加熱する。なお、加圧と加熱は必ずしも同時に行う必要はなく、加圧して圧着した後に加熱してもよい。 In the lamination process, a metal sheet is placed on the main surface of the composite sheet. With the main surfaces of the composite sheet and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is performed. Note that the pressurization and heating need not necessarily be performed at the same time, and the heating may be performed after pressurization and crimping.
 このようにして得られた積層体は、半導体装置等の製造に用いることができる。一方の金属シート上に半導体素子を設けてもよい。他方の金属シートは冷却フィンと接合されてもよい。 The laminate thus obtained can be used for manufacturing semiconductor devices and the like. A semiconductor element may be provided on one of the metal sheets. The other metal sheet may be joined with cooling fins.
 以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Also, the descriptions of the above-described embodiments can be applied to each other.
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail using examples and comparative examples. It should be noted that the present disclosure is not limited to the following examples.
(実施例1)
[窒化物焼結板の作製]
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。
(Example 1)
[Production of nitride sintered plate]
100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls (φ10 mm) to obtain pulverized powder.
 調製した粉砕粉を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。 The prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを50.0質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが17.5原子%であった。焼成物100質量部に対して焼結助剤を20質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の配合物を調製した。 A sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
 配合物を、粉末プレス機を用いて、150MPaで30秒間加圧して、シート状(縦×横×厚さ=50mm×50mm×0.36mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素製容器から窒化ホウ素焼結体を取り出した。このようにして、シート状(四角柱状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結板の厚さは0.36mmであった。 The compound was pressed at 150 MPa for 30 seconds using a powder press to obtain a sheet-like (length x width x thickness = 50 mm x 50 mm x 0.36 mm) compact. The compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered body was taken out from the boron nitride container. Thus, a sheet-like (square prism-like) boron nitride sintered body was obtained. The thickness of the boron nitride sintered plate was 0.36 mm.
<メジアン細孔径の測定>
 得られた窒化ホウ素焼結板について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積が全細孔容積の50%に達する細孔径を、「メジアン細孔径」とした。上記窒化ホウ素焼結板のメジアン細孔径は、2.6μmであった。
<Measurement of median pore size>
The pore volume distribution of the obtained boron nitride sintered plate was measured using a mercury porosimeter (device name: Autopore IV9500) manufactured by Shimadzu Corporation while increasing the pressure from 0.0042 MPa to 206.8 MPa. The pore diameter at which the accumulated pore volume reached 50% of the total pore volume was defined as the "median pore diameter". The median pore size of the boron nitride sintered plate was 2.6 μm.
[複合シートの作製]
 市販のエポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)100質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-8を10質量部配合して、樹脂組成物を調製した。調製した樹脂組成物を120℃で15分間加熱した後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。
[Production of composite sheet]
10 parts by mass of a commercially available curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name: Akmex H-8) was blended with 100 parts by mass of a commercially available epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: Epicoat 807). After heating the prepared resin composition at 120 ° C. for 15 minutes, using a dispenser while maintaining the temperature, drop it onto the upper main surface of the boron nitride sintered body. It was impregnated with a resin composition.The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body.A part of the resin composition was not impregnated into the boron nitride sintered body. , remained on the main surface.
 大気圧下、窒化ホウ素焼結体の上側の主面上に残存する樹脂組成物を、ステンレス製のスクレーパー(株式会社ナルビー製)を用いて平滑化した。余剰分の樹脂組成物を除去し、主面が平滑である樹脂含浸体を得た。 Under atmospheric pressure, the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
 樹脂組成物含浸体を、大気圧下、160℃で30分間加熱して樹脂組成物を半硬化させた。次に、樹脂含浸体の周端部から2.0mmの幅の領域(全周)に対して、160℃で30分間、更に加熱処理を行うことによって、樹脂含浸体の外周縁を含む領域に硬化領域を設けることによって、四角柱状の複合シート(縦×横×厚さ=50mm×50mm×0.36mm)を調製した。 The resin composition-impregnated body was heated at 160°C for 30 minutes under atmospheric pressure to semi-cure the resin composition. Next, a region (entire circumference) with a width of 2.0 mm from the peripheral end of the resin-impregnated body is further heat-treated at 160 ° C. for 30 minutes, so that the region including the outer peripheral edge of the resin-impregnated body is A square prism-shaped composite sheet (length x width x thickness = 50 mm x 50 mm x 0.36 mm) was prepared by providing a cured region.
<樹脂の硬化率の測定>
 複合シートに含浸された樹脂(硬化領域、及びその他の領域における樹脂)の硬化率は、示差走査熱量計を用いた測定によって決定した。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定した。そして、複合体が備える半硬化物から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求めた。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とした。半硬化物中に熱硬化性を有する成分がc(質量%)含有されているとして、下記式(A)によって複合体に含浸している樹脂組成物の硬化率が求めた。硬化領域における樹脂の硬化率は85%であり、その他の領域における樹脂の硬化率は32%であった。なお、硬化領域からのサンプルの採取部位を図2の例を参考にすると、複合シート10の硬化領域14の内、複合シート10の全長Lの方向に対して垂直方向に15mm、全長Lの方向と水平方向に1mm分となるように領域を切り出して使用した。その他の領域は複合シートの中央部から上記同様のサイズでサンプルを切り出し使用した。
  含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A)
<Measurement of curing rate of resin>
The cure rate of the resin impregnated into the composite sheet (resin in the cured area and other areas) was determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured. Then, a 10 mg sample taken from the semi-cured material of the composite was heated in the same manner, and the amount of heat generated per unit mass R generated when completely cured was determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter was the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the semi-cured product, the curing rate of the resin composition impregnated in the composite was determined by the following formula (A). The curing rate of the resin in the cured region was 85%, and the curing rate of the resin in the other regions was 32%. In addition, referring to the example of FIG. 2, the sample collection site from the cured region is 15 mm in the direction perpendicular to the direction of the total length L of the composite sheet 10 in the cured region 14 of the composite sheet 10, and the direction of the total length L is 15 mm. A region of 1 mm in the horizontal direction was cut out and used. For other regions, samples of the same size as above were cut out from the central portion of the composite sheet and used.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
<樹脂の充填率の測定>
 複合シートに含まれる樹脂の充填率を、以下の式(3)によって求めた。結果は表1に示すとおりであった。
  複合シートにおける樹脂の充填率(体積%)={(複合シートのかさ密度-窒化ホウ素焼結板のかさ密度)/(複合シートの理論密度-窒化ホウ素焼結板のかさ密度)}×100 …(3)
<Measurement of resin filling rate>
The filling rate of the resin contained in the composite sheet was obtained by the following formula (3). The results were as shown in Table 1.
Filling rate of resin in composite sheet (volume %) = {(bulk density of composite sheet - bulk density of boron nitride sintered plate) / (theoretical density of composite sheet - bulk density of boron nitride sintered plate)} x 100 ... (3)
 窒化ホウ素焼結板及び複合シートのかさ密度は、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、窒化ホウ素焼結板又は複合シートの各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤によって測定した窒化ホウ素焼結板又は複合シートの質量に基づいて求めた(JIS Z 8807:2012の9項参照)。複合シートの理論密度は、下記式(4)によって求めた。
  複合シートの理論密度=窒化ホウ素焼結板のかさ密度+樹脂の真密度×(1-窒化ホウ素焼結板のかさ密度/窒化ホウ素の真密度) … (4)
The bulk density of the boron nitride sintered plate and composite sheet conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and the length of each side of the boron nitride sintered plate or composite sheet (measured with vernier calipers) and the mass of the boron nitride sintered plate or composite sheet measured with an electronic balance (see JIS Z 8807:2012, Item 9). The theoretical density of the composite sheet was determined by the following formula (4).
Theoretical density of composite sheet = bulk density of boron nitride sintered plate + true density of resin × (1 - bulk density of boron nitride sintered plate / true density of boron nitride) (4)
 窒化ホウ素焼結板及び樹脂の真密度は、JIS Z 8807:2012の「気体置換法による密度及び比重の測定方法」に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結板及び樹脂の体積及び質量から求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)。 The true density of the boron nitride sintered plate and resin is measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method". It was determined from the volume and mass of (see JIS Z 8807:2012, item 11, formulas (14) to (17)).
<積層体の接着強度>
 シート状の銅箔(縦×横×厚さ=100mm×20mm×0.035mm)と、シート状の銅板(縦×横×厚さ=100mm×20mm×1mm)との間に、上述の複合シート(縦×横×厚さ=50mm×20mm×0.36mm)を配置して、銅箔、複合シート及び銅板をこの順に備える積層体を作製した。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。これによって積層体を得た。この積層体に対し、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用い、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に準拠して実施例1、実施例2及び比較例1の積層体の90°はく離試験を実施した。なお、90°はく離試験剥離はシート状の銅箔と複合体の接着界面において行った。測定は、試験速度:50mm/min、ロードセル:5kN、測定温度:室温(20℃)の条件で行った。
<Adhesive Strength of Laminate>
Between a sheet-like copper foil (length x width x thickness = 100 mm x 20 mm x 0.035 mm) and a sheet-like copper plate (length x width x thickness = 100 mm x 20 mm x 1 mm), the above composite sheet (Length x width x thickness = 50 mm x 20 mm x 0.36 mm) was arranged to produce a laminate comprising a copper foil, a composite sheet and a copper plate in this order. The laminate was heated and pressurized under conditions of 200° C. and 5 MPa for 5 minutes, and then heat-treated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate was thus obtained. For this laminate, using a universal testing machine (manufactured by A&D Co., Ltd., trade name: RTG-1310), JIS K 6854-1: 1999 "Adhesive-Peeling adhesive strength test method" Conducted in accordance with. A 90° peel test of the laminates of Example 1, Example 2 and Comparative Example 1 was performed. The 90° peel test was performed at the adhesive interface between the sheet-like copper foil and the composite. The measurement was performed under the conditions of test speed: 50 mm/min, load cell: 5 kN, and measurement temperature: room temperature (20°C).
<積層体の絶縁破壊電圧の測定>
 得られた複合シートを、2枚の銅板間に上記複合体を配置し、200℃及び5MPaの条件下で5分間加熱及び加圧して、更に200℃及び大気圧の条件下で2時間加熱して得られる積層体を調製した。得られた積層体の一方の面に、直径が20mmの円形状となるようにエッチングレジスト剤をスクリーン印刷し、上記積層構造体の他方の面には、全面にエッチングレジスト剤をスクリーン印刷した。印刷後、エッチングレジスト剤に紫外線を照射して硬化させレジストを形成した。次に、円形状のレジストが形成された側の銅板を塩化第二銅液でエッチングし、積層体の一方の面に直径が20mmの円形状の銅回路を形成した。このようにして、測定対象である、円形状の銅回路が形成された上記積層構造体を得た。得られた積層構造体を対象として、JIS C2110-1:2016にしたがって、耐圧試験器(菊水電子工業株式会社製、装置名:TOS-8700)を用い、絶縁破壊電圧を測定した。結果を表1に示す。
<Measurement of Dielectric Breakdown Voltage of Laminate>
The resulting composite sheet was placed between two copper plates, heated and pressed under conditions of 200° C. and 5 MPa for 5 minutes, and further heated under conditions of 200° C. and atmospheric pressure for 2 hours. A laminate obtained by the above was prepared. An etching resist agent was screen-printed on one surface of the obtained laminate so as to form a circular shape with a diameter of 20 mm, and an etching resist agent was screen-printed on the entire surface of the laminate structure on the other surface. After printing, the etching resist agent was irradiated with ultraviolet rays to be cured to form a resist. Next, the copper plate on which the circular resist was formed was etched with a cupric chloride solution to form a circular copper circuit with a diameter of 20 mm on one surface of the laminate. In this way, the laminated structure having a circular copper circuit formed thereon was obtained, which was the object to be measured. The dielectric breakdown voltage of the obtained laminated structure was measured according to JIS C2110-1:2016 using a withstand voltage tester (manufactured by Kikusui Denshi Kogyo Co., Ltd., device name: TOS-8700). Table 1 shows the results.
(実施例2)
[樹脂含浸体の作製]
 容器に、シアネート基を有する化合物が80質量部、ビスマレイミド基を有する化合物が20質量部、エポキシ基を有する化合物が50質量部となるように測り取り、上記3種の化合物合計量100質量部に対して、ホスフィン系硬化剤を1質量部及びイミダゾール系硬化剤を0.01質量部加えて混合した。なお、エポキシ樹脂が室温で固体状態であったため、80℃程度に加熱した状態で混合した。得られた熱硬化性組成物の100℃における粘度は、10mPa・秒であった。調製した樹脂組成物を100℃にした後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結体の上側の主面上に滴下して樹脂組成物を含浸した。樹脂組成物の滴下量は、窒化ホウ素焼結体の気孔の総体積の1.5倍とした。樹脂組成物の一部は、窒化ホウ素焼結体に含浸せず、主面上に残存した。
(Example 2)
[Preparation of resin-impregnated body]
80 parts by mass of a compound having a cyanate group, 20 parts by mass of a compound having a bismaleimide group, and 50 parts by mass of a compound having an epoxy group were weighed into a container, and the total amount of the above three compounds was 100 parts by mass. 1 part by mass of a phosphine-based curing agent and 0.01 part by mass of an imidazole-based curing agent were added and mixed. Since the epoxy resin was in a solid state at room temperature, it was mixed while being heated to about 80°C. The resulting thermosetting composition had a viscosity of 10 mPa·sec at 100°C. After the prepared resin composition was heated to 100° C., it was dropped onto the upper main surface of the boron nitride sintered body using a dispenser while maintaining the temperature to impregnate the resin composition. The amount of the resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered body. Part of the resin composition remained on the main surface without impregnating the boron nitride sintered body.
 熱硬化性組成物の調製には、以下の化合物を用いた。 The following compounds were used to prepare the thermosetting composition.
シアネート基を有する化合物:ジメチルメチレンビス(1,4-フェニレン)ビスシアナート(三菱ガス化学株式会社製、商品名:TA-CN)
ビスマレイミド基を有する化合物:N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド(ケイ・アイ化成株式会社製、商品名:BMI-80)
エポキシ基を有する化合物:1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン(DIC株式会社製、商品名:HP-4032D)
Compound having a cyanate group: dimethylmethylenebis(1,4-phenylene)biscyanate (Mitsubishi Gas Chemical Company, Inc., trade name: TA-CN)
Compound having a bismaleimide group: N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide (manufactured by K.I. Kasei Co., Ltd., trade name: BMI- 80)
Compound having an epoxy group: 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene (manufactured by DIC Corporation, trade name: HP-4032D)
ホスフィン系硬化剤:テトラフェニルホスホニウムテトラ-p-トリルボレート(化学株式会社製、商品名:TPP-MK)
イミダゾール系硬化剤:1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール(四国化成工業株式会社製、商品名:2E4MZ-CN)
Phosphine-based curing agent: tetraphenylphosphonium tetra-p-tolylborate (manufactured by Chemical Co., Ltd., trade name: TPP-MK)
Imidazole-based curing agent: 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name: 2E4MZ-CN)
 次に、大気圧下、窒化ホウ素焼結体の上側の主面上に残存する樹脂組成物を、ステンレス製のスクレーパー(株式会社ナルビー製)を用いて平滑化した。余剰分の樹脂組成物を除去し、主面が平滑である樹脂含浸体を得た。 Next, under atmospheric pressure, the resin composition remaining on the upper main surface of the boron nitride sintered body was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
 樹脂含浸体を、大気圧下、80℃で35時間加熱して樹脂組成物を半硬化させた。次に、樹脂含浸体の周端部から0.5mmの幅の領域(全周)に対して、120℃で60分間、更に加熱処理を行うことによって、樹脂含浸体の外周縁を含む領域に硬化領域を設けることによって、四角柱状の複合シート(縦×横×厚さ=50mm×50mm×0.36mm)を調製した。 The resin-impregnated body was heated at 80°C under atmospheric pressure for 35 hours to semi-cure the resin composition. Next, a region (entire circumference) with a width of 0.5 mm from the peripheral end of the resin-impregnated body is further heat-treated at 120 ° C. for 60 minutes, so that the region including the outer peripheral edge of the resin-impregnated body is A square prism-shaped composite sheet (length x width x thickness = 50 mm x 50 mm x 0.36 mm) was prepared by providing a cured region.
(比較例1)
 樹脂含浸体の周端部を含む領域に対する追加加熱処理をおこなうことに代えて、樹脂含浸体の全体を160℃で60分間、更に加熱処理したこと以外は、実施例1と同様の手順によって、複合体及び積層体を調製した。
(Comparative example 1)
By the same procedure as in Example 1, except that the entire resin-impregnated body was further heat-treated at 160 ° C. for 60 minutes instead of performing additional heat treatment on the region including the peripheral edge of the resin-impregnated body. Composites and laminates were prepared.
(比較例2)
 樹脂含浸体の周端部を含む領域に対する追加加熱処理を行わなかったこと以外は、実施例2と同様の手順によって、複合体及び積層体を調製した。
(Comparative example 2)
A composite and a laminate were prepared by the same procedure as in Example 2, except that the region including the peripheral edge of the resin-impregnated body was not subjected to additional heat treatment.
 実施例2、及び比較例1,2で調製した複合シート及び積層体について、硬化領域の幅、硬化領域及びその他の領域における樹脂の硬化率、並びに樹脂の充填率を実施例1と同様に測定した。実施例2、及び比較例1,2で調製した積層体について、接着強度及び絶縁破壊電圧の評価を行った。結果を表1に示す。 For the composite sheets and laminates prepared in Example 2 and Comparative Examples 1 and 2, the width of the cured region, the curing rate of the resin in the cured region and other regions, and the resin filling rate were measured in the same manner as in Example 1. did. The laminates prepared in Example 2 and Comparative Examples 1 and 2 were evaluated for adhesive strength and dielectric breakdown voltage. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、被着体への接着性に優れ、且つ被着体への接着後に優れた絶縁性を発揮し得る複合シートを提供できる。本開示によればまた、優れた絶縁性を有する積層体及びその製造方法を提供できる。 According to the present disclosure, it is possible to provide a composite sheet that has excellent adhesion to an adherend and can exhibit excellent insulating properties after being adhered to an adherend. According to the present disclosure, it is also possible to provide a laminate having excellent insulating properties and a method for manufacturing the same.
 10…複合シート、12…その他の領域、13…樹脂含浸体、14…硬化領域、15…樹脂層、20…積層体、22…金属シート。 10... Composite sheet, 12... Other area, 13... Resin-impregnated body, 14... Cured area, 15... Resin layer, 20... Laminated body, 22... Metal sheet.

Claims (13)

  1.  多孔質の窒化物焼結板と、前記窒化物焼結板の気孔に充填された樹脂と、を含む複合シートであって、
     シートの外周縁を含む硬化領域を有し、
     前記硬化領域における樹脂の硬化率が、その他の領域における樹脂の硬化率よりも高い、複合シート。
    A composite sheet comprising a porous nitride sintered plate and a resin filled in the pores of the nitride sintered plate,
    having a hardening region including the outer periphery of the sheet;
    The composite sheet, wherein the curing rate of the resin in the cured region is higher than the curing rate of the resin in other regions.
  2.  前記硬化領域はシートの外周縁の全周に亘って設けられる、請求項1に記載の複合シート。 The composite sheet according to claim 1, wherein the hardening region is provided along the entire circumference of the outer peripheral edge of the sheet.
  3.  前記硬化領域はシートの厚さ方向に沿って延在する、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the hardened region extends along the thickness direction of the sheet.
  4.  前記硬化領域のシートの厚さ方向に沿った断面における幅が、シートの全長の1~20%である、請求項1~3のいずれか一項に記載の複合シート。 The composite sheet according to any one of claims 1 to 3, wherein the width of the cured region in a cross section along the thickness direction of the sheet is 1 to 20% of the total length of the sheet.
  5.  前記硬化領域が前記窒化物焼結板の側面に設けられた樹脂層である、請求項1~4のいずれか一項に記載の複合シート。 The composite sheet according to any one of claims 1 to 4, wherein the hardened region is a resin layer provided on the side surface of the nitride sintered plate.
  6.  前記樹脂が熱硬化性樹脂を含有する、請求項1~5のいずれか一項に記載の複合シート。 The composite sheet according to any one of claims 1 to 5, wherein the resin contains a thermosetting resin.
  7.  前記樹脂の硬化率の最大値と最小値との差が30%以上である、請求項1~6のいずれか一項に記載の複合シート。 The composite sheet according to any one of claims 1 to 6, wherein the difference between the maximum value and the minimum value of the curing rate of the resin is 30% or more.
  8.  前記硬化領域における樹脂の硬化率が60%以上である、請求項1~7のいずれか一項に記載の複合シート。 The composite sheet according to any one of claims 1 to 7, wherein the curing rate of the resin in the cured region is 60% or more.
  9.  請求項1~8のいずれか一項に記載の複合シートと、前記複合シート上に設けられた金属シートと、を備える、積層体。 A laminate comprising the composite sheet according to any one of claims 1 to 8 and a metal sheet provided on the composite sheet.
  10.  多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、
     前記樹脂含浸シートを加熱して機構に充填された前記樹脂組成物を半硬化する第一硬化工程と、
     前記樹脂含浸シートの外周縁を含む領域に対して熱又はレーザー光を照射することによって、前記樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する、複合シートの製造方法。
    an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet;
    a first curing step of heating the resin-impregnated sheet to semi-cure the resin composition filled in the mechanism;
    and a second curing step of curing or semi-curing the resin composition by irradiating a region including the outer periphery of the resin-impregnated sheet with heat or laser light.
  11.  多孔質の窒化物焼結板の外周縁を含む領域に第1樹脂組成物を含浸して第1樹脂含浸シートを得る第一含浸工程と、
     前記第1樹脂含浸シートを加熱して気孔に充填された前記第1樹脂組成物を硬化又は半硬化して外周縁を含む領域に樹脂を含む第1樹脂充填シートを得る第一硬化工程と、
     前記第1樹脂充填シートに第2樹脂組成物を含浸して第2樹脂含浸シートを得る第二含浸工程と、
     前記第2樹脂含浸シートを加熱して、前記第2樹脂組成物を硬化又は半硬化する第二硬化工程と、を有する、複合シートの製造方法。
    A first impregnation step of impregnating a region including the outer periphery of a porous nitride sintered plate with a first resin composition to obtain a first resin-impregnated sheet;
    a first curing step of heating the first resin-impregnated sheet to harden or semi-harden the first resin composition filled in the pores to obtain a first resin-filled sheet containing a resin in a region including an outer peripheral edge;
    a second impregnation step of impregnating the first resin-filled sheet with a second resin composition to obtain a second resin-impregnated sheet;
    and a second curing step of heating the second resin-impregnated sheet to cure or semi-cure the second resin composition.
  12.  多孔質の窒化物焼結板に樹脂組成物を含浸して樹脂含浸シートを得る含浸工程と、
     前記樹脂含浸シートを加熱して気孔に充填された前記樹脂組成物を硬化又は半硬化して第1樹脂を含む樹脂充填シートを得る硬化工程と、
     前記樹脂充填シートの側面を第3樹脂で被覆する被覆工程と、を有し、
     前記第3樹脂の硬化率は、前記第1樹脂の硬化率よりも高い、複合シートの製造方法。
    an impregnation step of impregnating a porous nitride sintered plate with a resin composition to obtain a resin-impregnated sheet;
    a curing step of heating the resin-impregnated sheet to cure or semi-cure the resin composition filled in the pores to obtain a resin-filled sheet containing a first resin;
    a coating step of coating the side surface of the resin-filled sheet with a third resin;
    The method for producing a composite sheet, wherein the hardening rate of the third resin is higher than the hardening rate of the first resin.
  13.  請求項10~12のいずれか一項に記載の製造方法で得られた複合シートと、金属シートと、を積層し、加熱及び加圧する積層工程を有する、積層体の製造方法。 A method for producing a laminate, comprising a lamination step of laminating the composite sheet obtained by the production method according to any one of claims 10 to 12 and a metal sheet, followed by heating and pressing.
PCT/JP2022/005177 2021-03-31 2022-02-09 Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof WO2022209335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528624A JP7148758B1 (en) 2021-03-31 2022-02-09 Composite sheet and its manufacturing method, and laminate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059683 2021-03-31
JP2021059683 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209335A1 true WO2022209335A1 (en) 2022-10-06

Family

ID=83455929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005177 WO2022209335A1 (en) 2021-03-31 2022-02-09 Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7148758B1 (en)
WO (1) WO2022209335A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073875A (en) * 2006-09-19 2008-04-03 Toray Ind Inc Frp molded object and its manufacturing method
WO2015022956A1 (en) * 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
WO2017155110A1 (en) * 2016-03-10 2017-09-14 デンカ株式会社 Ceramic resin composite body
WO2019111978A1 (en) * 2017-12-05 2019-06-13 デンカ株式会社 Nitride ceramic resin composite body
WO2019172345A1 (en) * 2018-03-07 2019-09-12 デンカ株式会社 Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same
WO2020203586A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Composite, method for producing composite, laminate, and method for producing laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073875A (en) * 2006-09-19 2008-04-03 Toray Ind Inc Frp molded object and its manufacturing method
WO2015022956A1 (en) * 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
WO2017155110A1 (en) * 2016-03-10 2017-09-14 デンカ株式会社 Ceramic resin composite body
WO2019111978A1 (en) * 2017-12-05 2019-06-13 デンカ株式会社 Nitride ceramic resin composite body
WO2019172345A1 (en) * 2018-03-07 2019-09-12 デンカ株式会社 Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same
WO2020203586A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Composite, method for producing composite, laminate, and method for producing laminate

Also Published As

Publication number Publication date
JP7148758B1 (en) 2022-10-05
JPWO2022209335A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2022209325A1 (en) Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same
EP3940768A1 (en) Composite, method for producing composite, laminate, and method for producing laminate
WO2022209971A1 (en) Composite body and method for manufacturing same, and laminated body and method for manufacturing same
JP7148758B1 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7248867B2 (en) Composite sheet and laminate
JP7458479B2 (en) Composite and method for producing the composite
WO2021200965A1 (en) Composite sheet
JP7176159B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7196367B2 (en) Composite sheet and its manufacturing method, laminate and its manufacturing method, and power device
JP7165844B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7381806B2 (en) Laminated parts and methods for manufacturing the same, laminates and methods for manufacturing the same
WO2023162705A1 (en) Composite sheet and laminate
WO2023027123A1 (en) Composite sheet and composite sheet manufacturing method, and laminated substrate
JP7080427B1 (en) Evaluation method for estimating the adhesiveness of composite sheets, laminated bodies, and composite sheets
WO2023190236A1 (en) Composite and production method therefor, and assembly, circuit substrate, and power module
WO2022071294A1 (en) Method for evaluating adhesion reliability and heat radiation performance of composite, and composite
JP7319482B2 (en) Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate
JP2024055999A (en) Circuit board manufacturing method and circuit board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528624

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779564

Country of ref document: EP

Kind code of ref document: A1