WO2022209190A1 - フィルム、フィルムの製造方法、およびプロピレン系重合体組成物 - Google Patents

フィルム、フィルムの製造方法、およびプロピレン系重合体組成物 Download PDF

Info

Publication number
WO2022209190A1
WO2022209190A1 PCT/JP2022/002029 JP2022002029W WO2022209190A1 WO 2022209190 A1 WO2022209190 A1 WO 2022209190A1 JP 2022002029 W JP2022002029 W JP 2022002029W WO 2022209190 A1 WO2022209190 A1 WO 2022209190A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
based polymer
film
measured
mass
Prior art date
Application number
PCT/JP2022/002029
Other languages
English (en)
French (fr)
Inventor
直 井上
将 金坂
直人 桑▲崎▼
真幸 高野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280025592.5A priority Critical patent/CN117120523A/zh
Priority to EP22779420.3A priority patent/EP4317269A1/en
Priority to JP2022511094A priority patent/JPWO2022209190A1/ja
Publication of WO2022209190A1 publication Critical patent/WO2022209190A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to a film containing a propylene-based polymer, a method for producing the film, and a propylene-based polymer composition.
  • a film used for various packaging materials for example, a polyethylene terephthalate (PET)-based biaxially stretched film is used as a base film, and the base film is a polypropylene (PP)-based non-stretched film or a polyethylene (PE)-based non-stretched film.
  • PET polyethylene terephthalate
  • PE polyethylene
  • a configuration in which a stretched film is laminated as a sealant film is known.
  • a film having such a structure can exhibit excellent functions as various packaging bags because the base film has high rigidity and high heat resistance, and the sealant film has heat-sealing properties at low temperatures. It's becoming
  • a polypropylene-based biaxially stretched film which is the same type of olefin-based resin as the sealant film composed of an olefin-based resin such as polypropylene or polyethylene.
  • polypropylene-based biaxially stretched films have a lower tensile modulus (Young's modulus) than polyethylene terephthalate-based biaxially stretched films. Therefore, a film using a biaxially stretched polypropylene film as a base film has a problem that its applications are limited.
  • Patent Document 1 discloses two films formed using a propylene-based polymer composition containing a propylene-based polymer and a ⁇ crystal nucleating agent. Axially oriented films have been proposed.
  • the biaxially stretched film described in Patent Document 1 has a high temperature in a direction (hereinafter also referred to as "TD direction”) crossing the production direction (hereinafter also referred to as "MD direction"). It cannot be said that the dimensional stability under the conditions is good.
  • the biaxially stretched film described in Patent Document 1 is difficult to be stretched uniformly in the TD direction during production, so that thickness unevenness and tearing may occur, resulting in poor stretching processability.
  • the present invention has relatively high tensile elastic modulus (Young's modulus) in both the MD direction and the TD direction, and relatively excellent dimensional stability at high temperatures in the TD direction.
  • An object of the present invention is to provide a film relatively excellent in uniform stretchability in a direction.
  • Another object of the present invention is to provide a method for producing such a film and a propylene-based polymer composition used for producing such a film.
  • the film according to the present invention is It contains a propylene-based polymer or a propylene-based polymer composition and satisfies the following requirements (1) to (3).
  • (1) The following formula (I) is satisfied. ⁇ 0.35 ⁇ BO MD ⁇ BO TD ⁇ 1.00 (I) (In the formula, BO MD indicates the degree of orientation of the film in the MD direction measured using the birefringence method. BO TD indicates the degree of orientation of the film in the TD direction measured using the birefringence method. ) (2) The following formula (II) is satisfied.
  • I 0.2 MD /I 0.6 TD ⁇ 1.5 (II) (In the formula, I 0.2 MD indicates the intensity at the position where the scattering vector q is 0.2 nm ⁇ 1 in the Kratky plot in the MD direction of the film measured using the small-angle X-ray scattering method. I 0.6 TD indicates the intensity at the position where the scattering vector q is 0.6 nm ⁇ 1 in the Kratky plot in the TD direction of the film measured using the small-angle X-ray scattering method. ) (3) Satisfies the following formula (III).
  • I 0.2 TD indicates the intensity at the position where the scattering vector q is 0.2 nm ⁇ 1 in the Kratky plot in the TD direction of the film measured using the small-angle X-ray scattering method.
  • I 0.6 MD indicates the intensity at the position where the scattering vector q is 0.6 nm ⁇ 1 in the Kratky plot in the MD direction of the film measured using the small-angle X-ray scattering method.
  • the method for producing a film according to the present invention comprises: A propylene-based polymer composition containing a propylene-based polymer and at least one stretchability modifier selected from the group consisting of a ⁇ crystal nucleating agent and a hydrocarbon resin is heated and melted using an extruder, followed by cooling rolls. an extrusion step to obtain an unstretched sheet by extruding upward; An MD stretching step of obtaining a uniaxially stretched sheet by stretching the obtained unstretched sheet 6 to 10 times in the MD direction using stretching rolls; The obtained uniaxially stretched sheet is stretched 4 to 20 times in the TD direction in a heating furnace using two rows of chucks arranged along the MD direction to obtain a biaxially stretched film. a stretching step; A relaxation step in which the obtained biaxially stretched film is stretched in the TD direction by 16% to 30% in the TD direction using two rows of chucks arranged along the MD direction in a heating furnace. .
  • the propylene-based polymer composition according to the present invention is containing a propylene-based polymer and a stretchability improver, It satisfies the following requirements (11) to (16).
  • (11) The melt flow rate measured at a temperature of 230° C. and a load of 2.16 kg is 1 g/10 minutes to 10 g/10 minutes.
  • (12) The die swell ratio measured at a temperature of 230° C. and a load of 2.16 kg is 1.23 to 1.45.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography is 4.0 to 7.0.
  • the ratio (Mz/Mn) of the Z-average molecular weight (Mz) to the number-average molecular weight (Mn) measured by gel permeation chromatography is 10.0 to 25.0.
  • the amount of components having a molecular weight of 100,000 or less as measured by gel permeation chromatography is 30% by mass to 50% by mass.
  • the amount of components having a molecular weight of 1,500,000 or more as measured by gel permeation chromatography is 2.3% by mass to 5.0% by mass.
  • the present invention has a relatively high tensile modulus (Young's modulus) in both the MD direction and the TD direction, and has relatively excellent dimensional stability at high temperatures in the TD direction. It is possible to provide a film with relatively excellent uniform stretchability in the direction. Also, a method for producing such a film and a propylene-based polymer composition used for producing such a film can be provided.
  • a film (specifically, a biaxially stretched film) according to this embodiment contains a propylene-based polymer or a propylene-based polymer composition.
  • a propylene-based polymer is a polymer containing more than 50% by mass of monomer units derived from propylene.
  • the propylene-based polymer may be a propylene homopolymer or a propylene-based copolymer.
  • the propylene-based polymer is preferably a propylene homopolymer from the viewpoint of heat shrinkage and rigidity of the biaxially stretched film.
  • Propylene-based copolymers include those obtained by copolymerizing propylene with at least one comonomer selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms.
  • Examples of ⁇ -olefins having 4 to 20 carbon atoms include 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene and 1-hexene. , 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1 -butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1-octene, methyl-1-pentene, ethyl- 1-hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl
  • propylene-based copolymers examples include propylene-ethylene copolymers and propylene- ⁇ -olefin copolymers.
  • Propylene- ⁇ -olefin copolymers include, for example, propylene-1-butene copolymers, propylene-1-hexene copolymers, propylene-1-octene copolymers, and propylene-ethylene-1-butene copolymers.
  • propylene-ethylene-1-hexene copolymer propylene-ethylene-1-octene copolymer, etc., preferably propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-ethylene-1 - is a butene copolymer.
  • the ethylene content is preferably 2.0% by mass or less, more preferably 1% by mass, from the viewpoint of heat shrinkage and rigidity of the biaxially stretched film. 0% by mass or less, more preferably 0.4% by mass or less.
  • the ⁇ -olefin content is preferably 8.0% by mass or less from the viewpoint of heat shrinkage and rigidity of the biaxially stretched film, It is more preferably 3.0% by mass or less, and still more preferably 1.0% by mass or less.
  • the propylene-based copolymer is a propylene-ethylene- ⁇ -olefin copolymer
  • the total content of ethylene and ⁇ -olefin is preferably 8.0 from the viewpoint of heat shrinkage and rigidity of the biaxially stretched film. It is 0% by mass or less, more preferably 3.0% by mass or less, and still more preferably 1.0% by mass or less.
  • the amount of the cold xylene soluble portion (hereinafter abbreviated as CXS) of the propylene-based polymer is preferably 2.0% by mass or less, more preferably 0.1% by mass to 1.0% by mass, and further It is preferably 0.3% by mass to 1.0% by mass.
  • CXS cold xylene soluble portion
  • the CXS of the propylene-based polymer can be adjusted within the above range, for example, by selecting the type of external donor used during propylene polymerization.
  • CXS can be determined by the method described in [Examples] below.
  • the melt flow rate (hereinafter abbreviated as MFR) of the propylene-based polymer is preferably 1 g/10 min to 50 g/10 min, more preferably 1 g/10 min to 20 g/10 min, still more preferably 2 g/10 minutes to 15 g/10 minutes.
  • MFR melt flow rate
  • the MFR of the propylene-based polymer can be changed, for example, by adjusting the concentration of hydrogen used during the polymerization of propylene.
  • the MFR can be determined by the method described in [Examples] below.
  • the propylene-based polymer composition may contain one type of propylene-based polymer and components other than the propylene-based polymer, and may contain at least two types of propylene-based polymers.
  • the content of the propylene-based polymer in the propylene-based polymer composition is preferably 80% by mass to 99.9% by mass, more preferably 90% by mass to 99.9% by mass, and still more preferably 99% by mass to 99.9% by mass.
  • the propylene-based polymer composition may contain, for example, multiple types of propylene-based polymers having different MFRs.
  • a preferred example is a propylene polymer containing a propylene polymer (a) having an MFR of 4 g/10 min or less and a propylene polymer (b) having an MFR of 20 g/10 min to 500 g/10 min. composition.
  • the content of the propylene-based polymer (a) and the propylene-based polymer (b) in the propylene-based polymer composition is, with respect to the total content of the propylene-based polymer (a) and the propylene-based polymer (b), It is preferable that the propylene polymer (a) is 50% by mass to 90% by mass, the propylene polymer (b) is 10% by mass to 50% by mass, and the propylene polymer (a) is 50% by mass to 85% by mass. More preferably, the content of the propylene-based polymer (b) is 15% by mass to 50% by mass.
  • the cold xylene solubles (CXS) of the propylene-based polymer composition is preferably 2.0% by mass or less, more preferably 0.1% by mass to 1.0% by mass, and still more preferably 0. .3 mass % to 1.0 mass %.
  • CXS can be determined by the method described in [Examples] below.
  • a method for producing a propylene-based polymer composition containing at least two kinds of propylene-based polymers at least two kinds of propylene-based polymers are individually produced, and the obtained propylene-based polymers are mixed to produce propylene and a method of forming a system polymer composition.
  • methods for separately producing at least two types of propylene-based polymers include known polymerization methods. Examples thereof include a solvent polymerization method performed in the presence of an inert solvent, a bulk polymerization method performed in the presence of a liquid monomer, and a gas phase polymerization method performed in the absence of a substantially liquid medium. Gas phase polymerization is preferred.
  • Methods for producing a propylene-based polymer composition containing at least two types of propylene-based polymers include a polymerization method in which two or more of the above polymerization methods are combined, and a method in which a plurality of polymerization steps are performed in multiple stages (multi-stage polymerization method). polymerization method) and the like.
  • any method for mixing at least two types of propylene-based polymers that are individually produced any method may be used as long as these polymers are uniformly dispersed.
  • at least two types of propylene-based polymers are mixed with a ribbon blender, Henschel mixer, tumbler mixer, etc., and the mixture is melt-kneaded with an extruder or the like, or at least two types of propylene-based polymers are individually melt-kneaded. and pelletizing, mixing the pelletized materials by the same method as above, and further melt-kneading, at least two types of propylene-based polymers are separately melt-kneaded, pelletized, pelletized, dry blending, etc. and then mixed directly in a film processing machine.
  • At least two types of propylene-based polymers are individually melt-kneaded and pelletized, and the pelletized products are individually fed to the extruder of the film processing machine and mixed. and the like.
  • a method of preparing a masterbatch containing 1 to 99 parts by mass of the other propylene-based polymer with respect to 100 parts by mass of one propylene-based polymer in advance and appropriately mixing them so as to obtain a predetermined concentration may be used. .
  • a catalyst for stereoregular polymerization of propylene is used as the catalyst used for the polymerization of each of at least two propylene-based polymers, whether they are polymerized individually or by a multistage polymerization method.
  • catalysts for stereoregular polymerization of propylene include solid catalyst components such as titanium trichloride catalyst, titanium, magnesium, halogen, and Ti—Mg-based catalysts containing electron donors as essential components.
  • solid catalyst components such as titanium trichloride catalyst, titanium, magnesium, halogen, and Ti—Mg-based catalysts containing electron donors as essential components.
  • Catalyst systems in which a third component such as an electron-donating compound is combined depending on the type, metallocene-based catalysts, and the like can be mentioned.
  • a preferred catalyst system is a combination of a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, an organoaluminum compound and an electron donating compound.
  • Catalyst systems described in publications, JP-A-61-287904, JP-A-7-216017, JP-A-2004-182876 and the like can be mentioned.
  • the propylene-based polymer composition according to the present embodiment contains a stretchability improver in addition to the propylene-based polymer as described above.
  • stretchability improvers include at least one selected from the group consisting of ⁇ crystal nucleating agents and hydrocarbon resins.
  • a ⁇ -crystal nucleating agent is a compound that can form ⁇ -crystals with a hexagonal crystal structure in a propylene-based polymer.
  • the ⁇ -crystal nucleating agent is not particularly limited, and conventionally known various ⁇ -crystal nucleating agents can be used.
  • alkali or alkaline earth metal salts aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate, di- or tribasic carboxylic acid diesters or triesters, phthalocyanine blue, etc.
  • amide compounds of N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide, N,N-dicyclohexylterephthalamide, and N,N'-diphenylhexanediamide are preferred.
  • '-Dicyclohexyl-2,6-naphthalene dicarboxamide is more preferred.
  • hydrocarbon resins examples include cyclopentadiene-based resins made from petroleum-based unsaturated hydrocarbons and resins made mainly from higher olefin-based hydrocarbons.
  • the propylene-based polymer composition satisfies the following requirements (11) to (16).
  • MFR measured at a temperature of 230° C. and a load of 2.16 kg is 1 g/10 min to 10 g/10 min, preferably 2 g/10 min to 6 g/10 min, more preferably 2 g/10 min to 4 g/10 min.
  • the MFR can be changed, for example, by adjusting the concentration of hydrogen used during the polymerization of propylene. Also, the MFR can be determined by the method described in [Examples] below.
  • the die swell ratio measured at a temperature of 230° C. and a load of 2.16 kg is 1.23 to 1.45, preferably 1.23 to 1.40, more preferably 1.28 to 1. .38.
  • the value of the die swell ratio can be changed by, for example, mixing multiple types of propylene-based polymers with different MFRs and adjusting the molecular weight and molecular weight distribution of the propylene-based polymer composition. Also, the die swell ratio can be determined by the method described in [Examples] below. (13)
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (hereinafter referred to as GPC) is 4.0 to 7.0. , preferably 4.0 to 6.0, more preferably 4.0 to 5.5.
  • Mw/Mn The value of Mw/Mn can be changed by, for example, mixing a plurality of types of propylene-based polymers with different MFRs and adjusting the molecular weight distribution of the propylene-based polymer composition. Also, Mw/Mn can be determined by the method described in [Examples] below. (14) The ratio (Mz/Mn) of the Z-average molecular weight (Mz) to the number-average molecular weight (Mn) measured by GPC is 10.0 to 25.0, preferably 10.0 to 20.0 and more preferably 11.0 to 18.5.
  • Mz/Mn can be changed by, for example, mixing multiple types of propylene-based polymers with different MFRs and adjusting the molecular weight distribution of the propylene-based polymer composition. Also, Mz/Mn can be obtained by the method described in [Examples] below. (15) The amount of components having a molecular weight of 100,000 or less measured by GPC is 30% by mass to 50% by mass, preferably 30% by mass to 45% by mass, more preferably 30% by mass to 40% by mass. to be.
  • the amount of the component with a molecular weight of 100,000 or less can be changed by, for example, mixing a plurality of types of propylene-based polymers with different MFRs to adjust the molecular weight and molecular weight distribution of the propylene-based polymer composition. can. Also, the amount of the component having a molecular weight of 100,000 or less can be obtained by the method described in [Examples] below. (16)
  • the amount of components having a molecular weight of 1,500,000 or more measured by GPC is 2.3% by mass to 5.0% by mass, preferably 2.6% by mass to 5.0% by mass, more preferably 2.6% by mass to 4.0% by mass.
  • the amount of the component having a molecular weight of 1,500,000 or more can be changed by, for example, mixing a plurality of types of propylene-based polymers with different MFRs to adjust the molecular weight and molecular weight distribution of the propylene-based polymer composition. can. Also, the amount of the component having a molecular weight of 1,500,000 or more can be determined by the method described in [Examples] below.
  • the film (specifically, biaxially stretched film) according to the present embodiment can be obtained by biaxially stretching the propylene-based polymer or the propylene-based polymer composition. A specific method of biaxial stretching will be described later.
  • a film (specifically, a biaxially stretched film) according to this embodiment satisfies the following formula (I) as requirement (1). ⁇ 0.35 ⁇ BO MD ⁇ BO TD ⁇ 1.00 (I) (In the formula, BO MD indicates the degree of orientation of the film in the MD direction measured using the birefringence method. BO TD indicates the degree of orientation of the film in the TD direction measured using the birefringence method. )
  • a biaxially stretched film containing a propylene-based polymer or a propylene-based polymer composition has a high Young's modulus because the molecular chains of the propylene-based polymer contained in the film before stretching are oriented by stretching the film before stretching. indicates In order to obtain a biaxially stretched film exhibiting a high Young's modulus, it is necessary to strongly stretch the film before stretching to orient the molecular chains of the propylene-based polymer. Stretching tends to lower the orientation of the molecular chains of the propylene-based polymer in the orthogonal TD direction.
  • BO MD -BO TD When BO MD -BO TD is less than -0.35, it indicates that there are many molecular chains of the propylene-based polymer oriented in the TD direction, and the film has an excellent Young's modulus in the TD direction but an inferior Young's modulus in the MD direction. Become. When BO MD -BO TD is greater than 1, it indicates that there are many molecular chains of the propylene-based polymer oriented in the MD direction, resulting in a film having an excellent Young's modulus in the MD direction but inferior in Young's modulus in the TD direction.
  • BO MD -BO TD is preferably greater than -0.35 and less than 0.35, and greater than -0.25 and less than 0.25. is more preferred.
  • BO MD and BO TD can be changed by controlling the orientation of the molecular chains of the propylene-based polymer, for example, by adjusting the stretching ratio and stretching temperature in the MD and TD directions. Also, BO MD and BO TD can be determined by the method described in [Examples] below.
  • the film (specifically, biaxially stretched film) according to the present embodiment satisfies the following formula (II) as requirement (2).
  • I 0.2 MD /I 0.6 TD ⁇ 1.5 (II) (In the formula, I 0.2 MD indicates the intensity at the position where the scattering vector q is 0.2 nm ⁇ 1 in the Kratky plot in the MD direction of the film measured using the small-angle X-ray scattering method.
  • I 0.6 TD indicates the intensity at the position where the scattering vector q is 0.6 nm ⁇ 1 in the Kratky plot in the TD direction of the film measured using the small-angle X-ray scattering method.
  • the I 0.2 MD reflects the lamellar structure of the propylene-based polymer oriented in the MD direction.
  • I 0.6 TD reflects the fibril structure of the propylene-based polymer, which is formed by the collapse of the lamellar structure of the propylene-based polymer oriented in the MD direction due to strong stretching.
  • I 0.2 MD /I 0.6 TD means that the film contains less lamellar structures of the propylene-based polymer and more fibril structures of the propylene-based polymer. And such films exhibit a high Young's modulus in the MD direction.
  • I 0.2 MD /I 0.6 TD is preferably less than 1.3, more preferably greater than 0.1 and less than 1.2.
  • I 0.2 MD and I 0.6 TD can be changed by controlling the orientation structure of the molecular chains of the propylene-based polymer, for example, by adjusting the stretching ratio and stretching temperature in the MD direction. can.
  • I 0.2 MD and I 0.6 TD can be determined by the method described in [Examples] below.
  • the film (specifically, biaxially stretched film) according to the present embodiment satisfies the following formula (III) as requirement (3).
  • I 0.2 TD /I 0.6 MD ⁇ 1.5 (III) (In the formula, I 0.2 TD indicates the intensity at the position where the scattering vector q is 0.2 nm ⁇ 1 in the Kratky plot in the TD direction of the film measured using the small-angle X-ray scattering method. I 0.6 MD indicates the intensity at the position where the scattering vector q is 0.6 nm ⁇ 1 in the Kratky plot in the MD direction of the film measured using the small-angle X-ray scattering method. )
  • I 0.2 TD reflects the lamellar structure of the propylene-based polymer oriented in the TD direction.
  • the I 0.6 MD reflects the fibril structure of the propylene-based polymer, which is formed by the collapse of the lamellar structure of the propylene-based polymer oriented in the MD direction due to strong stretching.
  • I 0.2 TD /I 0.6 MD means that the film contains less lamellar structures of the propylene-based polymer and more fibril structures of the propylene-based polymer. And such films exhibit high Young's modulus in the TD direction.
  • I 0.2 TD /I 0.6 MD is preferably less than 1.3, more preferably less than 1.2.
  • I 0.2 TD and I 0.6 MD can be changed by controlling the orientation structure of the propylene-based polymer, for example, by adjusting the stretching ratio and stretching temperature in the TD direction. Also, I 0.2 TD and I 0.6 MD can be obtained by the method described in [Examples] below.
  • the film (specifically, biaxially stretched film) according to the present embodiment preferably satisfies the following formula (IV) as requirement (4).
  • Int_1/Int_2>1.1 (IV) In the formula, Int_1 indicates the peak top intensity in the TD direction of the 110 face of the ⁇ -type crystal of the propylene-based polymer in the two-dimensional scattering image of the film measured using the wide-angle X-ray scattering method.
  • Int_2 indicates the peak top intensity at 45° from the TD direction of the 110 plane of the ⁇ -type crystal of the propylene-based polymer in the two-dimensional scattering image of the film measured using the wide-angle X-ray scattering method.
  • Int_1 indicates ⁇ -type crystals of a propylene-based polymer oriented in the TD direction
  • Int_2 indicates ⁇ -type crystals of a propylene-based polymer oriented in an intermediate direction between the TD and MD directions.
  • Int_1 is preferably observed in a scattering angle 2 ⁇ range of 10° to 16°, more preferably in a range of 10° to 13°.
  • Int_2 is observed in a scattering angle 2 ⁇ range of 10° to 16°. , and more preferably in the range of 10 to 13°.
  • Int_1/Int_2 is more preferably greater than 1.1 and less than 4.0, and more preferably greater than 1.1 and less than 2.5.
  • Int_1 and Int_2 are used to orient the molecular chains of the propylene-based polymer by adjusting the stretching ratio and the stretching temperature in the MD and TD directions when the propylene-based polymer composition is stretched by the sequential biaxial stretching method. Numerical values can be changed by controlling. Also, Int_1 and Int_2 can be obtained by the method described in [Example] below.
  • the film (specifically, biaxially stretched film) according to this embodiment preferably satisfies requirement (5).
  • the diffraction peak of the 040 plane of the ⁇ -type crystal of the propylene-based polymer measured using a wide-angle X-ray diffraction method is 16.81° or more.
  • the position of the diffraction peak of the 040 plane of the ⁇ -type crystal of the propylene-based polymer measured using a wide-angle X-ray diffraction method is more preferably 16.85° or more, more preferably 16.90° or more. More preferred.
  • diffraction peaks can be changed, for example, by controlling the orientation of the molecular chains of the propylene-based polymer by adjusting the relaxation rate and temperature in the relaxation step in the TD direction. Moreover, such a diffraction peak can be determined by the method described in [Examples] below.
  • the film (specifically, the biaxially stretched film) according to this embodiment preferably satisfies the following formula (V) as requirement (6).
  • V 0.5 ⁇ (Int_A+Int_B)/Int_C>1.1 (V)
  • Int_A indicates the peak top intensity in the TD direction of the 110 face of the ⁇ -type crystal of the propylene-based polymer in the two-dimensional scattering image of the film measured using the wide-angle X-ray scattering method.
  • Int_B indicates the peak top intensity in the MD direction of the 110 plane of the ⁇ -type crystal of the propylene-based polymer in the two-dimensional scattering image of the film measured using the wide-angle X-ray scattering method.
  • Int_C indicates the peak top intensity at 45° from the TD direction of the 110 plane of the ⁇ -type crystal of the propylene-based polymer in the two-dimensional scattering image of the film measured using the wide-angle X-ray scattering method.
  • Int_A indicates ⁇ -type crystals of a propylene-based polymer oriented in the TD direction
  • Int_B indicates ⁇ -type crystals of a propylene-based polymer oriented in the MD direction
  • Int_C indicates an intermediate direction between the TD direction and the MD direction. shows an ⁇ -type crystal of a propylene-based polymer oriented to When 0.5 ⁇ (Int_A+Int_B)/Int_C is greater than 1.1, it means that the ⁇ -type crystals of the propylene-based polymer are appropriately oriented in the TD or MD direction, and the width of the film varies in the TD direction. It becomes a film excellent in (uniform stretchability).
  • 0.5 ⁇ (Int_A+Int_B)/Int_C is more preferably greater than 1.1 and less than 3.0, and even more preferably greater than 1.1 and less than 2.0.
  • Int_A, Int_B, and Int_C are the molecular chains of the propylene-based polymer obtained by adjusting the stretching ratio and the stretching temperature in the MD and TD directions when the propylene-based polymer composition is stretched by the sequential biaxial stretching method. Numerical values can be changed by controlling the orientation. Also, Int_A, Int_B, and Int_C can be obtained by the method described in [Example] below.
  • the thickness of the film (specifically, biaxially stretched film) according to this embodiment is preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the manufacturing method of the film (specifically, the biaxially stretched film) according to the present embodiment is based on the sequential biaxial stretching method.
  • a propylene-based polymer composition containing a propylene-based polymer and at least one stretchability improver selected from the group consisting of a ⁇ crystal nucleating agent and a hydrocarbon resin is used.
  • a propylene-based polymer composition is heated and melted using an extruder and extruded onto a cooling roll to form an unstretched sheet. and an extrusion process to obtain.
  • the propylene-based polymer composition is heated and melted using an extruder, extruded onto a cooling roll through a T-die, and cooled and fixed into a sheet to obtain an unstretched sheet.
  • the unstretched sheet obtained in the extrusion process is stretched 6 to 10 times in the MD direction using a stretching roll, preferably An MD stretching step is provided to obtain a uniaxially stretched sheet by stretching 8 to 10 times.
  • the uniaxially stretched sheet obtained in the MD stretching process is lined up along the MD direction using two rows of chucks,
  • a TD stretching step for obtaining a biaxially stretched film is provided by stretching in a heating furnace 4 to 20 times, preferably 4 to 10 times, in the TD direction.
  • both ends of the uniaxially stretched sheet in the TD direction are gripped by two rows of chucks arranged along the MD direction, and uniaxially stretched in a heating furnace equipped with a preheating section, a stretching section, and a heat treatment section.
  • a biaxially stretched film can be obtained by stretching the stretched sheet in the TD direction at the above ratio.
  • the biaxially stretched film obtained in the TD stretching step is stretched in the TD direction in two rows aligned along the MD direction. using a chuck of 16% to 30%, preferably 18% to 25% in the TD direction in a heating furnace.
  • the stretching in the TD direction is relaxed (relaxed) at the above ratio by narrowing the interval in the TD direction between two rows of chucks that hold both ends in the TD direction of the biaxially stretched film obtained in the TD stretching step. ). If the relaxation rate is less than 16%, the shrinkage rate upon heating becomes high, and a biaxially stretched film having excellent heat resistance cannot be obtained.
  • the method for producing a film may include a step of performing corona treatment or the like as necessary.
  • the melting temperature when heating and melting the propylene-based polymer composition with an extruder is preferably 230 to 290°C.
  • the temperature of the cooling roll when cooling and fixing the propylene-based polymer composition extruded from the T-die into a sheet is preferably 10°C to 60°C.
  • the temperature of the stretching rolls when stretching the unstretched sheet in the MD direction is preferably 110 to 165°C.
  • the heating temperature for stretching the uniaxially stretched sheet in the TD direction is preferably 150 to 200°C, and the heating temperature for relaxing in the TD direction is preferably 150 to 200°C.
  • the film (specifically, biaxially stretched film) according to this embodiment can be used as one layer of a multilayer film.
  • a multilayer film laminates
  • a multilayer film can be constructed by laminating arbitrary layers such as a sealant layer, a gas barrier layer, an adhesive layer, and a printed layer on the film according to the present embodiment (specifically, a biaxially stretched film).
  • a method for producing a multilayer film using the film (specifically, biaxially stretched film) according to the present embodiment commonly used extrusion lamination method, heat lamination method, dry lamination method, and the like can be mentioned.
  • the film (specifically, biaxially stretched film) according to this embodiment can be used as various packaging materials.
  • a packaging bag formed of the above-described multilayer film can be used for packaging any packaging object such as food, clothing, miscellaneous goods, and the like.
  • the film according to the present embodiment has a relatively high tensile modulus (Young's modulus) in both the MD direction and the TD direction by satisfying the above requirements (1) to (3),
  • the dimensional stability in the TD direction at high temperatures is relatively excellent, and the uniform stretchability in the TD direction during production is relatively excellent.
  • the film according to the present embodiment has excellent uniform stretchability by satisfying the above requirement (4).
  • the film according to the present embodiment has excellent dimensional stability at high temperatures in the TD direction by satisfying the above requirement (5).
  • the MD stretching step, the TD stretching step, and the relaxation step are performed at the above ratios, so that a relatively high tensile modulus (Young ratio), relatively excellent dimensional stability at high temperature in the TD direction, and relatively excellent uniform stretchability in the TD direction during production can be obtained.
  • the propylene-based polymer composition according to the present embodiment has MFR, die swell ratio, Mw/Mn, and Mz/Mn within the above ranges, and has a molecular weight of 100,000 or less and a molecular weight of 1,500,000.
  • the amount of the above components is in the above range, it has a relatively high tensile elastic modulus (Young's modulus) in both the MD direction and the TD direction, and has relatively high dimensional stability at high temperatures in the TD direction.
  • Young's modulus tensile elastic modulus
  • it is possible to obtain a film having relatively excellent uniform stretchability in the TD direction during production.
  • the film, film production method, and propylene-based polymer composition according to the present invention are not limited to the above embodiments, and various modifications are possible without departing from the scope of the present invention.
  • the configurations, methods, etc., of the multiple embodiments described above and below may be arbitrarily adopted and combined (the configurations, methods, etc., according to one embodiment may be applied to the configurations, methods, etc., according to other embodiments). of course).
  • MFR Melt flow rate
  • the die swell ratio of the propylene-based polymer composition is the propylene obtained when the MFR of the propylene-based polymer composition is measured at a temperature of 230° C. and a load of 2.16 kg according to Method A specified in JIS K7210-1:2014.
  • the cross-sectional diameter of the extrudate of the system polymer composition was measured and calculated by the following formula.
  • the cross section of the extrudate of the propylene-based polymer composition means a cross section perpendicular to the direction of extrusion. means.
  • SR Dp/Dh (In the formula, SR indicates the die swell ratio of the propylene-based polymer composition.
  • Dh indicates the orifice diameter of the cross-section of the extrudate of the propylene-based polymer composition.
  • Dp indicates the cross-sectional diameter of the extrudate of the propylene-based polymer composition.
  • the molecular weight of the propylene-based polymer composition was calculated by multiplying the obtained measured value by the Q factor value of 26.4 to calculate the molecular weight in terms of polypropylene.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) As indices of the molecular weight distribution, the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the ratio (Mz/Mn) of the Z average molecular weight (Mz) and the number average molecular weight (Mn) ), and the amount of components having a polypropylene equivalent molecular weight of 100,000 or less and a component amount of 1,500,000 or more.
  • Intrinsic viscosity [ ⁇ ], unit: dL/g) The intrinsic viscosity of the propylene-based polymer was measured in tetralin at 135° C. using an Ubbelohde viscometer.
  • the sample was rotated from ⁇ 40° to 40° in increments of 10° with the MD direction of the sample as the rotation axis, and the retardation at each wavelength and each rotation angle was measured. .
  • the refractive index in the MD direction (N MD ), the refractive index in the TD direction (N TD ), and the refractive index in the ND direction (N ND ) were calculated.
  • N ave (N MD + N TD + N ND )/3 (A)
  • the orientation degree BOMD in the MD direction of the biaxially stretched film and the orientation degree BOTD in the TD direction of the biaxially stretched film were calculated by the following formulas.
  • the intrinsic birefringence ( ⁇ n0) of the propylene homopolymer was set to 0.04.
  • I 0.2 TD indicates the intensity at the position where the scattering vector q is 0.2 nm ⁇ 1 in the Kratky plot in the TD direction of the film measured using the small-angle X-ray scattering method.
  • I 0.6 MD indicates the intensity at the position where the scattering vector q is 0.6 nm ⁇ 1 in the Kratky plot in the MD direction of the film measured using the small-angle X-ray scattering method.
  • a test piece for measurement was prepared by stacking 25 films in the ND direction so that the TD direction of the biaxially stretched film was the same. Specifically, X-rays were incident parallel to the ND direction to obtain a two-dimensional scattering image. The obtained two-dimensional scattering image was corrected using a two-dimensional scattering image (air blank) obtained without placing a test piece for measurement. Kratky plots in the MD direction and the TD direction were obtained from the scattering intensity profile in the MD direction and the scattering intensity profile in the TD direction of the corrected two-dimensional scattering image, respectively.
  • I 0.2 MD /I 0.6 TD and I 0.2 TD /I 0.6 MD were calculated from the measured Kratky plots.
  • a test piece for measurement was prepared by stacking 25 films in the ND direction so that the TD direction of the biaxially stretched film was the same. Specifically, X-rays were incident parallel to the ND direction to obtain a two-dimensional scattering image. The obtained two-dimensional scattering image was corrected using a two-dimensional scattering image (air blank) obtained without setting the measurement sample. From the corrected two-dimensional scattering image, the azimuth angle profile was obtained by plotting the peak top intensity of the 110-plane scattering of the ⁇ -type crystal of the propylene homopolymer against the azimuth angle. From the obtained azimuth angle profile, the scattering intensity ratio (Int_1/Int_2) between the scattering intensity in the TD direction (Int_1) and the scattering intensity in the TD ⁇ 45° direction (Int_2) was calculated.
  • the scattering intensity in the TD direction (Int_A), the scattering intensity in the MD direction (Int_B), and the scattering intensity in the TD ⁇ 45 ° direction (Int_C) are obtained, and the average scattering intensity ratio is 0. .5 ⁇ (Int_A+Int_B)/Int_C was calculated.
  • Density (10) Density (D, unit: g/cm 3 ) The density of the biaxially stretched film was measured by the density gradient tube method according to D method (water/ethanol) described in JIS K7112-1999.
  • Both ends in the TD direction of the uniaxially stretched sheet on which the reference line is printed are gripped by two rows of chucks arranged along the MD direction, and the uniaxially stretched sheet is placed in a heating furnace equipped with a preheating section, a stretching section, and a heat treatment section. was stretched in the TD direction. After that, a biaxially stretched film was obtained by narrowing the space between the two rows of chucks and relaxing the stretching in the TD direction. The distance between the marked lines in the TD direction was read from the obtained biaxially stretched film, and the relative standard deviation of the distance between the marked lines was obtained as a measure of stretchability. The smaller the relative standard deviation, the more uniformly the film was stretched, and the better the stretchability (uniform stretchability).
  • a propylene-based polymer composition was heated and melted using an extruder, extruded onto a cooling roll through a T-die, and cooled and fixed into a sheet to obtain an unstretched sheet.
  • Marked lines were printed on the obtained unstretched sheet using a stamp having 10 marked lines every 9 mm in the TD direction.
  • Four sides of the unstretched sheet on which the marked lines were printed were gripped with a chuck, preheated in a heating furnace for a predetermined time, and then the unstretched sheet was stretched in both the MD and TD directions to obtain a biaxially stretched film.
  • the distance between the marked lines in the TD direction was read from the obtained biaxially stretched film, and the relative standard deviation of the distance between the marked lines was obtained as a measure of stretchability.
  • Heat shrinkage rate (unit: %)
  • A4 size (length 297 mm ⁇ width 210 mm) films were collected so that the long axis was parallel to the MD direction, and the MD direction and TD Marked lines of 200 mm were drawn in each direction and suspended in an oven at 150° C. for 30 minutes. After that, the film was taken out and cooled at room temperature for 30 minutes, and each marked line length was measured.
  • the heat shrinkage rate in each direction was calculated from the following formula. Small heat shrinkage indicates excellent dimensional stability at high temperatures.
  • Heat shrinkage rate (%) ⁇ (200-marked line length after heating (mm)) / 200 ⁇ x 100
  • a film of 100 mm square size 100 mm long x 100 mm wide
  • the temperature 150 ° C. and held in the oven for 30 minutes.
  • the film was taken out and cooled at room temperature for 30 minutes, and each marked line length was measured.
  • ⁇ Propylene Polymer Intermediate Composition 1> Using a Ziegler-Natta type catalyst, triethylaluminum as a cocatalyst, and cyclohexylethyldimethoxysilane as an external donor, propylene is polymerized by a vapor phase polymerization method in an environment with a hydrogen concentration of 0.14 mol% to obtain a propylene-based polymer. A1 was obtained.
  • the physical properties of the obtained propylene-based polymer 1 are shown in Table 1 below.
  • ⁇ Propylene Polymer Intermediate Composition 2> A bulk polymerization tank and a gas phase polymerization tank were connected in series, and polymerization was carried out according to the following procedure. Specifically, propylene was polymerized by a bulk polymerization method using a Ziegler-Natta catalyst, triethylaluminum as a cocatalyst, and cyclohexylethyldimethoxysilane as an external donor to obtain a propylene-based polymer A2. A part of the propylene-based polymer A2 was sampled and analyzed to find that the intrinsic viscosity was 7 dl/g.
  • the propylene-based polymer A2 is continuously transferred to a gas-phase polymerization tank without being deactivated, and the propylene-based polymer B2 is polymerized by a gas-phase polymerization method in an environment with a hydrogen concentration of 4.4 mol%. , a propylene-based polymer composition (containing propylene-based polymer A2 and propylene-based polymer B2) was obtained.
  • the content of the propylene-based polymer A2 in the propylene-based polymer composition was 19 parts by mass.
  • ⁇ Propylene Polymer Intermediate Composition 3> A bulk polymerization tank and a gas phase polymerization tank were connected in series, and polymerization was carried out according to the following procedure. Propylene was polymerized by a bulk polymerization method using a Ziegler-Natta type catalyst, triethylaluminum as a cocatalyst, and cyclohexylethyldimethoxysilane as an external donor to obtain a propylene-based polymer A3. A part of the propylene-based polymer A3 was sampled and analyzed to find that the intrinsic viscosity was 7 dl/g.
  • the propylene-based polymer A3 is continuously transferred to a gas-phase polymerization tank without being deactivated, and the propylene-based polymer B3 is polymerized by a gas-phase polymerization method in an environment with a hydrogen concentration of 5.7 mol%. , a propylene-based polymer composition (containing propylene-based polymer A3 and propylene-based polymer B3) was obtained.
  • the content of the propylene-based polymer A3 in 100 parts by mass of the propylene-based polymer composition was 19 parts by mass.
  • propylene is polymerized by a vapor phase polymerization method in an environment with a hydrogen concentration of 0.95 mol% to form a propylene-based polymer. Obtained.
  • propylene is polymerized by a vapor phase polymerization method in an environment with a hydrogen concentration of 0.95 mol% to form a propylene-based polymer. Obtained.
  • ⁇ Propylene polymer composition 11 Propylene-based polymer intermediate composition 1 (69 parts by mass), propylene-based polymer intermediate composition 2 (30 parts by mass), and ⁇ crystal nucleating agent masterbatch (1 part by mass) were mixed using a Henschel mixer to obtain propylene. A system polymer composition 11 was prepared. Table 1 below shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 11.
  • ⁇ Propylene polymer composition 12 Propylene-based polymer intermediate composition 1 (79 parts by mass), propylene-based polymer intermediate composition 3 (20 parts by mass), and ⁇ crystal nucleating agent masterbatch (1 part by mass) were mixed using a Henschel mixer to obtain propylene. A system polymer composition 12 was prepared. Table 1 below shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 12.
  • ⁇ Propylene polymer composition 13 Propylene-based polymer intermediate composition 1 (89 parts by mass), propylene-based polymer intermediate composition 3 (10 parts by mass), and ⁇ crystal nucleating agent masterbatch (1 part by mass) were mixed using a Henschel mixer to obtain propylene. A system polymer composition 13 was prepared. Table 1 below shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 13.
  • ⁇ Propylene polymer composition 14 A propylene-based polymer intermediate composition 1 (99 parts by mass) and a ⁇ crystal nucleating agent masterbatch (1 part by mass) were mixed using a Henschel mixer to prepare a propylene-based polymer composition 14 .
  • Table 1 shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 14.
  • ⁇ Propylene Polymer Composition C11 Propylene-based polymer intermediate composition 1 (99 parts by mass) and ⁇ -crystal nucleating agent masterbatch (1 part by mass) were mixed using a Henschel mixer to prepare propylene-based polymer composition C11.
  • Table 1 below shows physical properties of pellets obtained by melt-extruding the propylene-based polymer composition C11.
  • ⁇ Propylene Polymer Composition C12> A propylene-based polymer intermediate composition 1 (98 parts by mass) and a ⁇ crystal nucleating agent masterbatch (2 parts by mass) were mixed using a Henschel mixer to prepare a propylene-based polymer composition C12.
  • Table 1 below shows physical properties of pellets obtained by melt-extruding the propylene-based polymer composition C12.
  • Example 1 The propylene-based polymer composition 11 is heated and melted at a resin temperature of 260° C. using a T-die film forming machine equipped with an extruder with a screw diameter of 65 mm ⁇ , and extruded onto a cooling roll at 30° C. to form an unstretched sheet. got The obtained unstretched sheet was stretched 8 times in the MD direction using a stretching roll heated to 142° C. (roll temperature) to obtain a uniaxially stretched sheet. Both ends in the TD direction of the obtained uniaxially stretched sheet were gripped by two rows of chucks arranged along the MD direction, and the chuck interval between the two rows was adjusted in a heating furnace heated to 170°C (furnace temperature 1).
  • Example 2 A biaxially stretched film was obtained under the same conditions as in Example 1, except that the propylene-based polymer composition 11 in Example 1 was changed to the propylene-based polymer composition 12.
  • Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 3 A biaxially stretched film was obtained under the same conditions as in Example 1, except that the propylene-based polymer composition 11 in Example 1 was changed to the propylene-based polymer composition 13.
  • Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 4 A biaxially stretched film was obtained under the same conditions as in Example 1, except that the propylene-based polymer composition 11 in Example 1 was changed to the propylene-based polymer composition 14. Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 1 The conditions were all the same as in Example 1, except that the propylene-based polymer composition 11 of Example 1 was changed to the propylene-based polymer composition C11, the roll temperature was 152°C, and the relaxation rate in the TD direction was changed to 0%. to obtain a biaxially stretched film.
  • Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 2 The propylene-based polymer composition 11 of Example 1 was changed to the propylene-based polymer composition C11, the roll temperature was set to 152°C, and the relaxation rate in the TD direction was changed to 6.5%. A biaxially stretched film was obtained under the same conditions. Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 3 A biaxially stretched film was obtained under the same conditions as in Example 1, except that the propylene polymer composition C11 in Example 1 was changed to the propylene polymer composition C11 and the roll temperature was 152°C.
  • Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 4 The propylene-based polymer composition 11 of Example 1 was changed to the propylene-based polymer intermediate composition 1, the roll temperature was set to 152°C, the draw ratio in the MD direction was changed to 5 times, and the relaxation rate in the TD direction was changed to 13 times.
  • a biaxially stretched film was obtained under the same conditions as in Example 1, except for this. Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 6 The conditions were all the same as in Example 1 except that the propylene-based polymer composition 11 of Example 1 was changed to the propylene-based polymer composition C11, the roll temperature was changed to 152° C., and the draw ratio in the MD direction was changed to 5 times. A biaxially stretched film was obtained. Tables 2 to 4 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • the biaxially stretched film of each example has a higher Young's modulus in both the MD direction and the TD direction than the biaxially stretched film of the comparative example, and the test result of uniform stretchability is good. It is recognized that the heat shrinkage rate in the TD direction is small. In other words, it can be seen that the biaxially stretched film of each example is excellent in rigidity, stretchability, and dimensional stability at high temperatures.
  • ⁇ Hydrocarbon resin masterbatch 50 parts by weight of propylene-based polymer intermediate composition 3, 50 parts by weight of Oppera PR100A (cyclopentadiene-based hydrocarbon resin, manufactured by ExxonMobil), DHT-4C (neutralizer, manufactured by Kyowa Chemical Industry Co., Ltd.) 0 .01 parts by mass, IRGANOX1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) 0.09 parts by mass, Sumilizer GP (antioxidant, manufactured by Sumitomo Chemical Co., Ltd.) 0.05 parts by mass After blending, melt extrusion was performed. Thus, a pellet-shaped hydrocarbon resin masterbatch was obtained.
  • Oppera PR100A cyclopentadiene-based hydrocarbon resin, manufactured by ExxonMobil
  • DHT-4C neutralizer, manufactured by Kyowa Chemical Industry Co., Ltd.
  • IRGANOX1010 antioxidant, manufactured by BASF Japan Co., Ltd.
  • Sumilizer GP
  • ⁇ Propylene polymer composition 15> A propylene-based polymer intermediate composition 1 (70 parts by mass), a propylene-based polymer intermediate composition 3 (10 parts by mass), and a hydrocarbon resin masterbatch (20 parts by mass) were mixed to prepare a propylene-based polymer composition 15. made.
  • Table 5 below shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 15.
  • ⁇ Propylene polymer composition 16> A propylene-based polymer intermediate composition 1 (60 parts by mass), a propylene-based polymer intermediate composition 3 (20 parts by mass), and a hydrocarbon resin masterbatch (20 parts by mass) were mixed to prepare a propylene-based polymer composition 16. made. Table 5 below shows the physical properties of the pellets obtained by melt-extruding the propylene-based polymer composition 16.
  • Propylene-based polymer intermediate composition 1 90 parts by mass
  • Oppera PR100A 10 parts by weight
  • Table 5 shows the physical properties of pellets obtained by melt-extruding the propylene-based polymer composition C13.
  • Example 5 The propylene-based polymer composition 15 was heated and melted at a resin temperature of 250°C using a T-die film forming machine equipped with an extruder with a screw diameter of 20 mm ⁇ , and extruded onto a cooling roll at 40°C to obtain a thickness of 0. An unstretched sheet of 0.5 mm was obtained. Four sides of the obtained unstretched sheet were gripped with a chuck, preheated for 3 minutes in a heating furnace heated to 155 ° C., stretched 7 times in the MD direction, stretched 8 times in the TD direction, and An axially stretched film was obtained. Tables 6 and 7 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • Example 6 A biaxially stretched film was obtained under the same conditions as in Example 5, except that the propylene-based polymer composition 15 in Example 5 was changed to the propylene-based polymer composition 16. Tables 6 and 7 below show the production conditions and measured physical properties of the obtained biaxially stretched film.
  • the biaxially stretched film of each example has the same Young's modulus in both the MD direction and the TD direction as the biaxially stretched film of the comparative example, and the uniform stretchability test results are good. It is recognized that the heat shrinkage rate in the TD direction is small. In other words, it can be seen that the biaxially stretched film of each example is excellent in rigidity, stretchability, and dimensional stability at high temperatures.
  • the present invention has a relatively high tensile modulus (Young's modulus) in both the MD direction and the TD direction, and has relatively excellent dimensional stability at high temperatures in the TD direction. It is possible to provide a film with relatively excellent uniform stretchability in the direction. Also, a method for producing such a film and a propylene-based polymer composition used for producing such a film can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向で比較的低い加熱収縮率を有すると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを提供することを課題とする。 プロピレン系重合体またはプロピレン系重合体組成物を含有し、下記式(I)等を満たす。-0.35<BOMD-BOTD<1.00・・・(I) -0.35<BOMD-BOTD<1.00・・・(I) (式中、BOMDは、複屈折法を用いて測定されるフィルムのMD方向の配向度を示す。BOTDは、複屈折法を用いて測定されるフィルムのTD方向の配向度を示す。)

Description

フィルム、フィルムの製造方法、およびプロピレン系重合体組成物
 本発明は、プロピレン系重合体を含むフィルム、フィルムの製造方法、およびプロピレン系重合体組成物に関する。
 従来、例えば各種包装材料に用いられるフィルムとしては、ポリエチレンテレフタレート(PET)系二軸延伸フィルムを基材フィルムとし、該基材フィルムに、ポリプロピレン(PP)系無延伸フィルムやポリエチレン(PE)系無延伸フィルムをシーラントフィルムとして積層した構成のものが知られている。かかる構成のフィルムは、基材フィルムが高剛性および高耐熱性を有し、シーラントフィルムが低温でのヒートシール性を有していることで、各種包装袋として優れた機能を発揮しうるものとなっている。
 近年、この種のフィルムに対してもリサイクルの要望が高まっており、モノマテリアル化が求められている。具体的には、ポリプロピレンやポリエチレンといったオレフィン系樹脂で構成されるシーラントフィルムと同種のオレフィン系樹脂であるポリプロピレン系二軸延伸フィルムを基材フィルムとして採用することが好適とされる。
 しかしながら、ポリプロピレン系二軸延伸フィルムは、ポリエチレンテレフタレート系二軸延伸フィルム等と比較して、引張弾性率(ヤング率)が低い。このため、ポリプロピレン系二軸延伸フィルムを基材フィルムとして用いたフィルムは、その用途が制限されるという問題があった。
 そこで、引張弾性率(ヤング率)を改善したポリプロピレン系二軸延伸フィルムとして、特許文献1には、プロピレン系重合体とβ晶核剤とを含むプロピレン系重合体組成物を用いて形成した二軸延伸フィルムが提案されている。
特開2016-199686号公報
 しかしながら、特許文献1記載の二軸延伸フィルムは、製造時の流れ方向(以下では、「MD方向」とも記す。)に対して交差する方向(以下では、「TD方向」とも記す。)における高温下での寸法安定性が良好なものとはいえない。また、特許文献1記載の二軸延伸フィルムは、製造時に、TD方向へ均一に延伸し難いため、厚みムラや破れが生じることがあり、延伸加工性が悪いという問題がある。
 そこで、本発明は、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを提供することを課題とする。また、斯かるフィルムの製造方法、および斯かるフィルムの製造に用いるプロピレン系重合体組成物を提供することを課題とする。
 本発明に係るフィルムは、
 プロピレン系重合体またはプロピレン系重合体組成物を含有し、下記要件(1)~(3)を満たす。
 
(1)下記式(I)を満たす。
 -0.35<BOMD-BOTD<1.00・・・(I)
(式中、
 BOMDは、複屈折法を用いて測定されるフィルムのMD方向の配向度を示す。
 BOTDは、複屈折法を用いて測定されるフィルムのTD方向の配向度を示す。)
 
(2)下記式(II)を満たす。
 I0.2 MD/I0.6 TD<1.5・・・(II)
(式中、
 I0.2 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
 I0.6 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
 
(3)下記式(III)を満たす。
 I0.2 TD/I0.6 MD<1.5・・・(III)
(式中、
 I0.2 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
 I0.6 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
 
 本発明に係るフィルムの製造方法は、
 プロピレン系重合体と、β晶核剤および炭化水素樹脂からなる群より選ばれる少なくとも1種の延伸性改良剤とを含むプロピレン系重合体組成物を、押出機を用いて加熱溶融し、冷却ロール上に押し出すことにより未延伸シートを得る押出工程と、
 得られた未延伸シートを、延伸ロールを用いてMD方向に6倍~10倍に延伸することにより、一軸延伸シートを得るMD延伸工程と、
 得られた一軸延伸シートを、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に4倍~20倍に延伸することにより、二軸延伸フィルムを得るTD延伸工程と、
 得られた二軸延伸フィルムのTD方向の延伸を、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に16%~30%緩和させる緩和工程とを含む。
 本発明に係るプロピレン系重合体組成物は、
 プロピレン系重合体と、延伸性改良剤とを含有し、
 下記要件(11)~(16)を満たす。
(11)温度230℃、荷重2.16kgで測定されるメルトフローレートが1g/10分~10g/10分である。
(12)温度230℃、荷重2.16kgで測定されるダイスウェル比が1.23~1.45である。
(13)ゲルパーミエーションクロマトグラフィーで測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0~7.0である。
(14)ゲルパーミエーションクロマトグラフィーで測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が10.0~25.0である。
(15)ゲルパーミエーションクロマトグラフィーで測定される分子量10万以下の成分量が30質量%~50質量%である。
(16)ゲルパーミエーションクロマトグラフィーで測定される分子量150万以上の成分量が2.3質量%~5.0質量%である。
 
 本発明によれば、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを提供することができる。また、斯かるフィルムの製造方法、および斯かるフィルムの製造に用いるプロピレン系重合体組成物を提供することができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、プロピレン系重合体またはプロピレン系重合体組成物を含有する。
 プロピレン系重合体は、プロピレンに由来する単量体単位を50質量%超含む重合体である。例えば、プロピレン系重合体は、プロピレン単独重合体であってもよく、プロピレン系共重合体であってもよい。二軸延伸フィルムの加熱収縮率および剛性の観点から、プロピレン系重合体は、好ましくはプロピレン単独重合体である。プロピレン系共重合体としては、プロピレンと、エチレンおよび炭素原子数4~20のα-オレフィンから選択された少なくとも1種のコモノマーと、を共重合して得られるものが挙げられる。
 炭素原子数4~20のα-オレフィンとしては、例えば、1-ブテン、2-メチル-1-プロペン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等が挙げられ、好ましくは、1-ブテン、1-ペンテン、1-ヘキセン、または1-オクテンであり、より好ましくは1-ブテンである。
 プロピレン系共重合体としては、例えば、プロピレン-エチレン共重合体、プロピレン-α-オレフィン共重合体等が挙げられる。プロピレン-α-オレフィン共重合体としては、例えば、プロピレン-1-ブテン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-1-オクテン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体、プロピレン-エチレン-1-オクテン共重合体等が挙げられ、好ましくはプロピレン-エチレン共重合体、プロピレン-1-ブテン共重合体、プロピレン-エチレン-1-ブテン共重合体である。
 プロピレン系共重合体がプロピレン-エチレン共重合体である場合、エチレン含有量は、二軸延伸フィルムの加熱収縮率および剛性の観点から、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下であり、さらに好ましくは0.4質量%以下である。
 プロピレン系共重合体がプロピレン-α-オレフィン共重合体である場合、α-オレフィン含有量は、二軸延伸フィルムの加熱収縮率および剛性の観点から、好ましくは8.0質量%以下であり、より好ましくは3.0質量%以下であり、さらに好ましくは1.0質量%以下である。
 プロピレン系共重合体がプロピレン-エチレン-α-オレフィン共重合体である場合、エチレンとα-オレフィンの含有量の合計は、二軸延伸フィルムの加熱収縮率および剛性の観点から、好ましくは8.0質量%以下であり、より好ましくは3.0質量%以下であり、さらに好ましくは1.0質量%以下である。
 プロピレン系重合体の冷キシレン可溶部量(以下、CXSと略す。)は、好ましくは2.0質量%以下であり、より好ましくは0.1質量%~1.0質量%であり、さらに好ましくは0.3質量%~1.0質量%である。CXSを上記範囲とすることにより、二軸延伸フィルムの製造時に、良好な延伸加工性を呈するとともに、二軸延伸フィルムにおいて、高い剛性および高温下での優れた収縮率を発現させうるという効果がある。プロピレン系重合体のCXSは、例えば、プロピレンの重合時に使用する外部ドナーの種類を選定することによって、上記の範囲に調整することができる。外部ドナーの具体例としては、シクロヘキシルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジ-tert-ブチルジメトキシシラン等を例示することができる。なお、CXSは、後述の[実施例]に記載の方法によって求めることができる。
 プロピレン系重合体のメルトフローレート(以下、MFRと略す。)は、好ましくは1g/10分~50g/10分であり、より好ましくは1g/10分~20g/10分であり、さらに好ましくは2g/10分~15g/10分である。MFRが上記範囲にあるプロピレン系重合体を用いることにより、溶融状態のポリプロピレンが適度な粘度を有し、二軸延伸フィルムの製造時に、良好な延伸加工性を呈するとともに、二軸延伸フィルムにおいて、高い剛性および高温下での優れた収縮率を発現させうるという効果がある。プロピレン系重合体のMFRは、例えば、プロピレンの重合時に使用する水素濃度を調整することによって変化させることができる。なお、MFRは、後述の[実施例]に記載の方法によって求めることができる。
 プロピレン系重合体組成物は、1種のプロピレン系重合体と、該プロピレン系重合体以外の他の成分とを含むものであってもよく、少なくとも2種のプロピレン系重合体を含むものであってもよい。プロピレン系重合体組成物中のプロピレン系重合体の含有量としては、好ましくは80質量%~99.9質量%であり、より好ましくは90質量%~99.9質量%であり、さらに好ましくは99質量%~99.9質量%である。プロピレン系重合体組成物としては、例えば、MFRの異なる複数種類のプロピレン系重合体を含むものであってもよい。好ましい例としては、MFRが4g/10分以下であるプロピレン系重合体(a)と、MFRが20g/10分~500g/10分であるプロピレン系重合体(b)とを含むプロピレン系重合体組成物である。
 プロピレン系重合体組成物におけるプロピレン系重合体(a)およびプロピレン系重合体(b)の含有量は、プロピレン系重合体(a)およびプロピレン系重合体(b)の合計含有量に対して、プロピレン系重合体(a)が50質量%~90質量%、プロピレン系重合体(b)が10質量%~50質量%であることが好ましく、プロピレン系重合体(a)が50質量%~85質量%、プロピレン系重合体(b)が15質量%~50質量%であることがより好ましい。MFRの異なる複数種類のプロピレン系重合体を含むプロピレン系重合体組成物を用いることにより、二軸延伸フィルムの製造における延伸加工時の厚みムラが低減され、良好な延伸加工性を呈するとともに、二軸延伸フィルムにおいて、高い剛性および高温下での優れた収縮率を発現させうるという効果がある。
 プロピレン系重合体組成物の冷キシレン可溶部量(CXS)は、好ましくは2.0質量%以下であり、より好ましくは0.1質量%~1.0質量%であり、さらに好ましくは0.3質量%~1.0質量%である。CXSを上記範囲とすることにより、二軸延伸フィルムの製造時に、良好な延伸加工性を呈するとともに、二軸延伸フィルムにおいて、高い剛性および高温下での優れた収縮率を発現させうるという効果がある。なお、CXSは、後述の[実施例]に記載の方法によって求めることができる。
 少なくとも2種のプロピレン系重合体を含むプロピレン系重合体組成物を製造する方法としては、少なくとも2種のプロピレン系重合体をそれぞれ個別に製造し、得られたプロピレン系重合体を混合してプロピレン系重合体組成物とする方法が挙げられる。少なくとも2種のプロピレン系重合体をそれぞれ個別に製造する方法としては、公知の重合方法が挙げられる。例えば、不活性溶媒の存在下で行われる溶媒重合法、液状のモノマーの存在下で行われる塊状重合法、実質上液状の媒体の不存在下で行われる気相重合法等が挙げられる。好ましくは気相重合法である。また、少なくとも2種のプロピレン系重合体を含むプロピレン系重合体組成物を製造する方法としては、上記の重合方法を2種類以上組み合わせる重合方法や、複数の重合工程を多段的に行う方法(多段重合法)等も挙げられる。
 個別に製造された少なくとも2種のプロピレン系重合体を混合する方法としては、これら重合体が均一に分散する方法であればよい。例えば、少なくとも2種のプロピレン系重合体をリボンブレンダー、ヘンシェルミキサー、タンブラーミキサー等で混合し、その混合物を押出し機等で溶融混練する方法、少なくとも2種のプロピレン系重合体をそれぞれ個別に溶融混練しペレット化し、ペレット化したものを上記と同様の方法で混合し、さらに溶融混練する方法、少なくとも2種のプロピレン系重合体をそれぞれ個別に溶融混練しペレット化し、ペレット化したものをドライブレンド等でブレンドした後、直接フィルム加工機で混合する方法、少なくとも2種のプロピレン系重合体をそれぞれ個別に溶融混練しペレット化し、ペレット化したものを個別にフィルム加工機の押出機にフィードして混合する方法等が挙げられる。また、一方のプロピレン系重合体100質量部に対して、他方のプロピレン系重合体を1~99質量部含むマスターバッチをあらかじめ作製し、所定の濃度となるように適宜混合する方法等も挙げられる。
 また、個別に製造された少なくとも2種のプロピレン系重合体を混合する際には、必要に応じて、安定剤、滑剤、帯電防止剤、および抗ブロッキング剤、無機または有機の各種フィラー等を添加してもよい。
 少なくとも2種のプロピレン系重合体のそれぞれの重合に用いられる触媒としては、これらを個別に重合する場合においても多段重合法を用いる場合においても、プロピレンの立体規則性重合用触媒が用いられる。
 プロピレンの立体規則性重合用触媒としては、例えば、三塩化チタン触媒、チタン、マグネシウム、ハロゲン、および電子供与体を必須成分とするTi-Mg系触媒等の固体触媒成分に、有機アルミニウム化合物や必要に応じて電子供与性化合物等の第3成分を組み合わせた触媒系、メタロセン系触媒等が挙げられる。
 好ましくは、マグネシウム、チタン、ハロゲンおよび電子供与体を必須成分とする固体触媒成分、有機アルミニウム化合物および電子供与性化合物を組み合わせた触媒系であり、その具体例としては、特開昭61-218606号公報、特開昭61-287904号公報、特開平7-216017号公報、特開2004-182876等に記載された触媒系が挙げられる。
 本実施形態に係るプロピレン系重合体組成物は、上記のようなプロピレン系重合体に加え、延伸性改良剤を含有する。延伸性改良剤としては、例えば、β晶核剤および炭化水素樹脂からなる群より選ばれる少なくとも1種が挙げられる。
 β晶核剤とは、プロピレン系重合体に六方晶構造であるβ晶を形成させることができる化合物をいう。β晶核剤としては、特に限定されず、従来公知の種々のβ晶核剤を利用することができる。例えば、N,N’―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミド、N,N’―ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミド等に代表されるアミド化合物、テトラオキサスピロ化合物、キナクリドン、キナクリドンキノン等に代表されるキナクリドン類、ナノスケールのサイズを有する酸化鉄、ピメリン酸カルシウム、1,2―ヒドロキシステアリン酸カリウム、安息香酸マグネシウム若しくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリ若しくはアルカリ土類金属塩、ベンゼンスルホン酸ナトリウム若しくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物、二若しくは三塩基カルボン酸のジエステル類若しくはトリエステル類、フタロシアニンブルーなどに代表されるフタロシアニン系顔料、有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物若しくは塩である成分Bとからなる二成分系化合物、環状リン化合物とマグネシウム化合物からなる組成物などが挙げられ、これらのうちの1種類または2種類以上を混合して用いても良い。上記のβ晶核剤の中でも、アミド化合物のN,N’―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミド、N,N―ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミドが好ましく、N,N’―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミドがより好ましい。
 炭化水素樹脂としては、石油系不飽和炭化水素を原料とするシクロペンタジエン系樹脂、および、高級オレフィン系炭化水素を主原料とする樹脂等が挙げられる。
 プロピレン系重合体組成物は、下記要件(11)~(16)を満たす。
 
(11)温度230℃、荷重2.16kgで測定されるMFRが、1g/10分~10g/10分であり、好ましくは2g/10分~6g/10分であり、より好ましくは2g/10分~4g/10分であること。
 なお、MFRは、例えば、プロピレンの重合時に使用する水素濃度を調整することによって変化させることができる。また、MFRは、後述の[実施例]に記載の方法で求めることができる。
 
(12)温度230℃、荷重2.16kgで測定されるダイスウェル比が、1.23~1.45であり、好ましくは1.23~1.40であり、より好ましくは1.28~1.38であること。
 なお、ダイスウェル比は、例えば、MFRの異なる複数種類のプロピレン系重合体を混合して、プロピレン系重合体組成物の分子量および分子量分布を調整することによって数値を変化させることができる。また、ダイスウェル比は、後述の[実施例]に記載の方法で求めることができる。
 
(13)ゲルパーミエーションクロマトグラフィー(以下では、GPCと記す)で測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、4.0~7.0であり、好ましくは4.0~6.0であり、より好ましくは4.0~5.5であること。
 なお、Mw/Mnは、例えば、MFRの異なる複数種類のプロピレン系重合体を混合して、プロピレン系重合体組成物の分子量分布を調整することによって数値を変化させることができる。また、Mw/Mnは、後述の[実施例]に記載の方法で求めることができる。
 
(14)GPCで測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が、10.0~25.0であり、好ましくは10.0~20.0であり、より好ましくは11.0~18.5であること。
 なお、Mz/Mnは、例えば、MFRの異なる複数種類のプロピレン系重合体を混合して、プロピレン系重合体組成物の分子量分布を調整することすることによって数値を変化させることができる。また、Mz/Mnは、後述の[実施例]に記載の方法で求めることができる。
 
(15)GPCで測定される分子量10万以下の成分量が、30質量%~50質量%であり、好ましくは30質量%~45質量%であり、より好ましくは30質量%~40質量%であること。
 なお、分子量10万以下の成分量は、例えば、MFRの異なる複数種類のプロピレン系重合体を混合して、プロピレン系重合体組成物の分子量および分子量分布を調整することによって数値を変化させることができる。また、分子量10万以下の成分量は、後述の[実施例]に記載の方法で求めることができる。
 
(16)GPCで測定される分子量150万以上の成分量が、2.3質量%~5.0質量%であり、好ましくは2.6質量%~5.0質量%であり、より好ましくは2.6質量%~4.0質量%であること。
 なお、分子量150万以上の成分量は、例えば、MFRの異なる複数種類のプロピレン系重合体を混合して、プロピレン系重合体組成物の分子量および分子量分布を調整することによって数値を変化させることができる。また、分子量150万以上の成分量は、後述の[実施例]に記載の方法で求めることができる。
 
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、上記のプロピレン系重合体またはプロピレン系重合体組成物を用いて二軸延伸することによって得ることができる。二軸延伸の具体的な方法については、後述する。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(1)として下記式(I)を満たす。
 
 -0.35<BOMD-BOTD<1.00・・・(I)
(式中、
 BOMDは、複屈折法を用いて測定されるフィルムのMD方向の配向度を示す。
 BOTDは、複屈折法を用いて測定されるフィルムのTD方向の配向度を示す。)
 
 プロピレン系重合体またはプロピレン系重合体組成物を含む二軸延伸フィルムは、延伸前のフィルムを延伸することにより延伸前のフィルム中に含まれるプロピレン系重合体の分子鎖が配向し、高いヤング率を示す。高いヤング率を示す二軸延伸フィルムを得るためには、延伸前のフィルムを強く延伸し、プロピレン系重合体の分子鎖を配向させる必要があるが、例えば、MD方向に延伸前のフィルムを強く延伸すると直交するTD方向のプロピレン系重合体の分子鎖の配向が低下する傾向がある。そのため、MD方向およびTD方向のいずれも高いヤング率を示す二軸延伸フィルムを得るためには、MD方向およびTD方向のプロピレン系重合体の分子鎖をバランスよく配向させる必要がある。「BOMD-BOTD」が上記の範囲であることで、MD方向およびTD方向のプロピレン系重合体の分子鎖がバランスよく配向したフィルムとなるため、MD方向およびTD方向のいずれでも高いヤング率を示すものとなる。
 BOMD-BOTDが-0.35より小さいと、TD方向に配向したプロピレン系重合体の分子鎖が多いことを示し、TD方向のヤング率に優れるがMD方向のヤング率に劣ったフィルムとなる。
 BOMD-BOTDが1より大きいと、MD方向に配向したプロピレン系重合体の分子鎖が多いことを示し、MD方向のヤング率に優れるがTD方向のヤング率に劣ったフィルムとなる。
 MD方向およびTD方向のヤング率により優れるフィルムを得るためには、BOMD-BOTDが-0.35より大きく0.35より小さいことが好ましく、-0.25より大きく0.25より小さいことがより好ましい。
 なお、BOMDおよびBOTDは、例えば、MD方向およびTD方向への延伸倍率および延伸温度の調整によりプロピレン系重合体の分子鎖の配向を制御することによって数値を変化させることができる。また、BOMDおよびBOTDは、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(2)として下記式(II)を満たす。
 
 I0.2 MD/I0.6 TD<1.5・・・(II)
(式中、
 I0.2 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
 I0.6 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
 
 I0.2 MDは、MD方向に配向したプロピレン系重合体のラメラ構造を反映する。I0.6 TDは、MD方向に配向したプロピレン系重合体のラメラ構造が強い延伸により崩壊し生成したプロピレン系重合体のフィブリル構造を反映する。
 I0.2 MD/I0.6 TDが小さいことは、フィルム中に、プロピレン系重合体のラメラ構造が少なく、プロピレン系重合体のフィブリル構造が多いことを意味する。そして、そのようなフィルムは、MD方向の高いヤング率を示す。I0.2 MD/I0.6 TDは、1.3より小さいことが好ましく、0.1より大きく1.2より小さいことがより好ましい。
 なお、I0.2 MDおよびI0.6 TDは、例えば、MD方向への延伸倍率および延伸温度の調整によりプロピレン系重合体の分子鎖の配向構造を制御することによって数値を変化させることができる。また、I0.2 MDおよびI0.6 TDは、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(3)として下記式(III)を満たす。
 
 I0.2 TD/I0.6 MD<1.5・・・(III)
(式中、
 I0.2 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
 I0.6 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
 
 I0.2 TDは、TD方向に配向したプロピレン系重合体のラメラ構造を反映する。I0.6 MDは、MD方向に配向したプロピレン系重合体のラメラ構造が強い延伸により崩壊し生成したプロピレン系重合体のフィブリル構造を反映する。
 I0.2 TD/I0.6 MDが小さいことは、フィルム中に、プロピレン系重合体のラメラ構造が少なく、プロピレン系重合体のフィブリル構造が多いことを意味する。そして、そのようなフィルムは、TD方向の高いヤング率を示す。I0.2 TD/I0.6 MDは、1.3より小さいことが好ましく、1.2より小さいことがより好ましい。
 なお、I0.2 TDおよびI0.6 MDは、例えば、TD方向への延伸倍率および延伸温度の調整によりプロピレン系重合体の配向構造を制御することによって数値を変化させることができる。また、I0.2 TDおよびI0.6 MDは、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(4)として下記式(IV)を満たすことが好ましい。
 
 Int_1/Int_2>1.1・・・(IV)
(式中、
 Int_1は、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向におけるピークトップ強度を示す。
 Int_2は、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向から45°におけるピークトップ強度を示す。)
 
 Int_1は、TD方向に配向したプロピレン系重合体のα型結晶を示し、Int_2は、TD方向とMD方向との中間方向に配向したプロピレン系重合体のα型結晶を示す。Int_1は、散乱角2θが10°~16°の範囲に観測されることが好ましく、10~13°の範囲に観測されることがより好ましい、Int_2は散乱角2θが10°~16°の範囲に観測されることが好ましく、10~13°の範囲に観測されることがよりに好ましい。プロピレン系重合体のα型結晶がTD方向に適度に配向するとフィルムのTD方向の幅のバラツキ(均一延伸性)に優れたフィルムとなる。Int_1/Int_2は、1.1より大きく4.0より小さいことがより好ましく、1.1より大きく2.5より小さいことがさらに好ましい。
 なお、Int_1およびInt_2は、逐次二軸延伸方式によってプロピレン系重合体組成物を延伸する際に、MD方向およびTD方向への延伸倍率および延伸温度の調整によりプロピレン系重合体の分子鎖の配向を制御することによって数値を変化させることができる。また、Int_1およびInt_2は、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(5)を満たすことが好ましい。
 
(5)広角X線回折法を用いて測定されるプロピレン系重合体のα型結晶の040面の回折ピークが16.81°以上である。
 
 高いヤング率を示す二軸延伸フィルムを得るために、高い延伸倍率で延伸前のフィルムを延伸すると、フィルム中に格子間隔の広い不安定な結晶が形成され、熱による収縮が起きやすくなる傾向がある。広角X線回折法を用いて測定されるプロピレン系重合体のα型結晶の040面の回折ピークの位置が16.81°以上であることは、フィルム中に含まれる不安定な結晶の量が少ないことを意味するため、加熱収縮性に優れたフィルムとなる。広角X線回折法を用いて測定されるプロピレン系重合体のα型結晶の040面の回折ピークの位置は、16.85°以上であることがより好ましく、16.90°以上であることがさらに好ましい。
 なお、斯かる回折ピークは、例えば、TD方向への緩和工程における緩和率および温度の調整によりプロピレン系重合体の分子鎖の配向を制御することによって数値を変化させることができる。また、斯かる回折ピークは、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、要件(6)として下記式(V)を満たすことが好ましい。
 
 0.5×(Int_A+Int_B)/Int_C>1.1・・・(V)
(式中、
 Int_Aは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向におけるピークトップ強度を示す。
 Int_Bは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のMD方向におけるピークトップ強度を示す。
 Int_Cは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向から45°におけるピークトップ強度を示す。)
 Int_Aは、TD方向に配向したプロピレン系重合体のα型結晶を示し、Int_Bは、MD方向に配向したプロピレン系重合体のα型結晶を示し、Int_Cは、TD方向とMD方向との中間方向に配向したプロピレン系重合体のα型結晶を示す。0.5×(Int_A+Int_B)/Int_Cが1.1より大きいことはプロピレン系重合体のα型結晶がTD方向またはMD方向に適度に配向していることを表し、フィルムのTD方向の幅のバラツキ(均一延伸性)に優れたフィルムとなる。0.5×(Int_A+Int_B)/Int_Cは、1.1より大きく3.0より小さいことがより好ましく、1.1より大きく2.0より小さいことがさらに好ましい。
 なお、Int_A、Int_BおよびInt_Cは、逐次二軸延伸方式によってプロピレン系重合体組成物を延伸する際に、MD方向およびTD方向への延伸倍率および延伸温度の調整によりプロピレン系重合体の分子鎖の配向を制御することによって数値を変化させることができる。また、Int_A、Int_BおよびInt_Cは、後述の[実施例]に記載の方法で求めることができる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の厚みとしては、好ましくは10μm~70μmであり、より好ましくは10μm~30μmである。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、逐次二軸延伸方式によるものである。斯かる製造方法では、プロピレン系重合体と、β晶核剤および炭化水素樹脂からなる群より選ばれる少なくとも1種の延伸性改良剤とを含むプロピレン系重合体組成物を用いる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、冷却ロール上に押し出すことにより未延伸シートを得る押出工程を備える。押出工程では、例えば、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、Tダイより冷却ロール上に押し出すことによってシート状に冷却固定し、未延伸シートを得ることができる。
 また、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、押出工程で得られる未延伸シートを、延伸ロールを用いてMD方向に6倍~10倍、好ましくは8倍~10倍に延伸することにより、一軸延伸シートを得るMD延伸工程を備える。
 また、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、MD延伸工程で得られる一軸延伸シートを、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に4倍~20倍、好ましくは4倍~10倍に延伸することにより、二軸延伸フィルムを得るTD延伸工程を備える。TD延伸工程では、例えば、一軸延伸シートのTD方向の両側端を、MD方向に沿って並んだ2列のチャックで掴み、予熱部、延伸部、熱処理部を備えた加熱炉内にて、一軸延伸シートをTD方向に上記の倍率で延伸することによって二軸延伸フィルムを得ることができる。
 また、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、TD延伸工程で得られる二軸延伸フィルムのTD方向の延伸を、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に16%~30%、好ましくは18%~25%緩和させる緩和工程を備える。該緩和工程では、TD延伸工程で得られる二軸延伸フィルムのTD方向の両端部を把持した2列のチャックのTD方向の間隔を狭めることにより該TD方向の延伸を上記の割合で緩和(リラックス)させる。緩和率が16%未満では、加熱時の収縮率が高くなり、耐熱性に優れた二軸延伸フィルムが得られない。また、緩和率が30%を超えると、フィルムの厚みムラが大きくなりやすい。緩和率は、下記式(X)により求めることができる。
 
 緩和率=(L1-L2)/L1×100・・・(X)
(式中、
L1はフィルムを緩和する前のTD方向におけるチャック間の距離、L2はフィルムを緩和した後のTD方向におけるチャック間の距離を示す。)
 
 また、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)の製造方法は、必要に応じてコロナ処理等を行う工程を含んでもよい。
 上記の製造方法では、プロピレン系重合体組成物を押出機で加熱溶融する際の溶融温度は、230~290℃が好ましい。Tダイより押出されたプロピレン系重合体組成物をシート状に冷却固定する際の冷却ロールの温度は、10℃~60℃が好ましい。未延伸シートをMD方向に延伸する際の延伸ロールの温度は、110~165℃が好ましい。一軸延伸シートをTD方向に延伸する際の加熱温度は、150~200℃が好ましく、TD方向に緩和する際の加熱温度は、150~200℃が好ましい。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、多層フィルムの一層として用いることができる。多層フィルムは、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)からなる層に任意の層を積層したものである。例えば、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)に、シーラント層、ガスバリア層、接着層、印刷層等の任意の層を積層して多層フィルムを構成することができる。中でも、本実施形態に係るフィルム(具体的には、二軸延伸フィルム)からなる層にオレフィン系のフィルムを用いたシーラント層を積層することが好ましく、得られた多層フィルムは、リサイクルしやすいという効果がある。本実施形態に係るフィルム(具体的には、二軸延伸フィルム)を用いた多層フィルムを作製する方法としては、通常用いられる押出ラミネート法、熱ラミネート法、ドライラミネート法等が挙げられる。
 本実施形態に係るフィルム(具体的には、二軸延伸フィルム)は、各種包装材料として用いることできる。例えば、上記の多層フィルムで形成した包装袋は、食品、衣料品、雑貨等の任意の包装対象物を包装する用途で使用し得る。
 以上のように、本実施形態に係るフィルムは、上記の要件(1)~(3)を満たすことで、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたものとなる。
 また、本実施形態に係るフィルムは、上記の要件(4)を満たすことで、より均一延伸性に優れたものとなる。
 また、本実施形態に係るフィルムは、上記の要件(5)を満たすことで、TD方向における高温下での寸法安定性により優れたものとなる。
 また、本実施形態に係るフィルムの製造方法は、MD延伸工程、TD延伸工程および緩和工程が、上記の割合で行われることで、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを得ることができる。
 また、本実施形態に係るプロピレン系重合体組成物は、MFR、ダイスウェル比、Mw/Mn、および、Mz/Mnが上記の範囲であり、且つ、分子量10万以下の成分量および分子量150万以上の成分量が上記の範囲であることで、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを得ることができる。
 なお、本発明に係るフィルム、フィルムの製造方法、および、プロピレン系重合体組成は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記および下記の複数の実施形態の構成や方法等を任意に採用して組み合わせてもよい(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよい)ことは勿論である。
 実施例および比較例における各項目の測定値は、下記の方法で測定した。
(1)メルトフローレート(MFR、単位:g/10分)
 プロピレン系重合体またはプロピレン系重合体組成物のMFRは、JIS K7210-1:2014に規定されたA法に従って、温度230℃、荷重2.16kgで測定した。
(2)ダイスウェル比(SR、単位:-)
 プロピレン系重合体組成物のダイスウェル比は、JIS K7210-1:2014に規定されたA法に従って、温度230℃、荷重2.16kgでプロピレン系重合体組成物のMFRを測定する時に得られるプロピレン系重合体組成物の押出物の断面の直径を測定し、下記式により算出した。なお、プロピレン系重合体組成物の押出物の断面とは、押出方向に垂直な断面を意味し、該断面が真円形でない場合には、該断面の直径の最大値と最小値の平均値を意味する。
 
 SR=Dp/Dh
(式中、
 SRは、プロピレン系重合体組成物のダイスウェル比を示す。
 Dhは、プロピレン系重合体組成物の押出物の断面のオリフィスの直径を示す。
 Dpは、プロピレン系重合体組成物の押出物の断面の直径を示す。)
 
(3)冷キシレン可溶部量(CXS、単位:質量%)
 プロピレン系重合体またはプロピレン系重合体組成物1gを、沸騰キシレン100mlに完全に溶解させた後、20℃に降温し、1時間攪拌した。得られた混合物を析出物と溶液とに濾別した後、溶液中に溶解している成分量を、下記の条件下にて液体クロマトグラフィーにより定量し、CXSを求めた。
 
 カラム:SHODEX GPC KF-801
 溶離液:テトラヒドロフラン
 カラムオーブン温度:40℃
 試料注入量:130μL
 流量:1mL/分
 検出器:示差屈折計
 
(4)分子量分布
 ゲルパーミエーションクロマトグラフィ(GPC)を用い、以下の条件にて、プロピレン系重合体組成物の分子量分布を測定した。具体的には、JIS K7252-1:2016 8.3.2に規定された方法に従って、プロピレン系重合体組成物の分子量分布を測定する際、炭化水素樹脂、酸化防止剤などの添加剤由来と識別できるピークを除外した。
 
 機種:HLC-8121GPC/HT(東ソー社製)
 カラム:TSKgel GMHHR-H(S)HT 7.5mm I.D.×300mm(東ソー社製)を3本連結
 測定温度:140℃
 検出器:示差屈折率検出器
 溶媒:オルトジクロロベンゼン
 サンプル濃度:0.7mg/mL
 
 検量線の作成には、標準ポリスチレンを用いることで、ポリスチレン換算の測定結果を得た。プロピレン系重合体組成物の分子量は、得られた測定値にQファクター値26.4を乗算し、ポリプロピレン換算分子量として算出した。分子量分布の指標として、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、および、Z平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)、並びに、ポリプロピレン換算分子量が10万以下の成分量および150万以上の成分量を求めた。
(5)極限粘度([η]、単位:dL/g)
 プロピレン系重合体の極限粘度を、ウベローデ型粘度計を用いて135℃テトラリン中で測定を行った。
(6)広角X線回折
 得られた二軸延伸フィルムについて、以下の条件で反射法広角X線回折測定を行った。
 
・機種:株式会社リガク製 RINT2500
・管球:Cu-Kα
・検出器:シンチレーションカウンター
・走査範囲:2θ=10~20°(0.02°刻み)
 
 二軸延伸フィルムの表面(MD-TD平面)が2θ=0°と平行となり、かつ、検出器とX線源とを結んだ直線と二軸延伸フィルムのTD方向とが平行になるように試料を設置して、測定を実施した。得られた2θプロファイルからプロピレン系重合体のα型結晶の040面の回折ピークの位置を測定した。
(7)複屈折
 得られた二軸延伸フィルムについて、MD方向、TD方向、ND方向(MD-TD平面の法線方向)の配向関数を、「プラスチック成型品の高次構造解析入門、72~74ページ、プラスチック成型加工学会編、日刊工業新聞社(2006年)」に記載の方法に従って測定した。
 具体的には、レーザーの光軸とND方向とが平行となり、かつ、地面と水平方向にTD方向、地面と鉛直方向にMD方向がくるように、光軸上に試料を設置した。試料のリタデーションの測定は、セナルモン法を用いて行った。波長632.8nmのレーザー光を用いて、試料のMD方向を回転軸として、試料を-40°~40°まで10°刻みで回転させる条件で、各波長、各回転角でのリタデーションを測定した。得られたリタデーションの値からMD方向の屈折率(NMD)、TD方向の屈折率(NTD)、ND方向の屈折率(NND)を算出した。ここで、下記式(A)であらわされる平均の屈折率(Nave=)は1.48とした。
 
 Nave=(NMD+NTD+NND)/3・・・(A)
 
 算出されたNMD、NTDおよびNNDから、次の計算式により、二軸延伸フィルムのMD方向の配向度BOMDと、二軸延伸フィルムのTD方向の配向度BOTDとを算出した。ここでプロピレン単独重合体の固有複屈折(Δn0)は0.04とした。
Figure JPOXMLDOC01-appb-M000001
(8)小角X線散乱
 得られた二軸延伸フィルムについて、以下の条件で小角X線散乱測定を行い、I0.2 MD、I0.6 MD、I0.2 TD、I0.6 TDを測定した。なお、I0.2 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。I0.6 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)I0.2 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。I0.6 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。
 
・機種:株式会社リガク製 Nano Viewer
・管球:Cu-Kα
・電圧:40kV
・電流:20mA
・ビーム径:0.25mmφ
・検出器:PILATUS 100k
 
 二軸延伸フィルムのTD方向が一致するようにND方向にフィルムを25枚重ねて測定用試験片を作製した。具体的には、ND方向と平行になるようにX線を入射して、2次元散乱像を得た。得られた2次元散乱像を、測定用試験片を設置せずに取得した2次元散乱像(エアブランク)を用いて、補正した。補正された2次元散乱像のMD方向の散乱強度プロファイルおよびTD方向の散乱強度プロファイルから、MD方向およびTD方向のKratkyプロットをそれぞれ得た。
 測定されたKratkyプロットから、I0.2 MD/I0.6 TD、I0.2 TD/I0.6 MDを計算した。
(9)広角X線散乱
 得られた二軸延伸フィルムについて、以下の条件で広角X線散乱測定を行った。
 
・機種:株式会社リガク製 Nano Viewer
・管球:Cu―Kα
・電圧:40kV
・電流:20mA
・ビーム径:0.25mmφ
・検出器:PILATUS 100k
 
 二軸延伸フィルムのTD方向が一致するようにND方向にフィルムを25枚重ねて測定用試験片を作製した。具体的には、ND方向と平行になるようにX線を入射して、2次元散乱像を得た。得られた2次元散乱像を、測定試料を設置せずに取得した2次元散乱像(エアブランク)を用いて、補正した。補正された2次元散乱像から、プロピレン単独重合体のα型結晶の110面の散乱のピークトップの強度を、方位角に対してプロットして、方位角プロファイルを得た。得られた方位角プロファイルから、TD方向の散乱強度(Int_1)とTD±45°方向の散乱強度(Int_2)の散乱強度比(Int_1/Int_2)を算出した。
 上記で得られた方位角プロファイルから、TD方向の散乱強度(Int_A)とMD方向の散乱強度(Int_B)とTD±45°方向の散乱強度(Int_C)の値を得て、平均散乱強度比0.5×(Int_A+Int_B)/Int_Cを算出した。
(10)密度(D、単位:g/cm
 二軸延伸フィルムの密度は、JIS K7112-1999に記載のD法(水/エタノール)に従って、密度勾配管法により測定した。
(11)フィルム厚み(単位:μm)
 二軸延伸フィルムの厚みは、JIS K7130-1999に記載のA法に従って、接触式のフィルム厚み計で測定した。
(12)ヤング率(単位:GPa)
 120mm×20mmの二軸延伸フィルムを、長辺方向(120mm)が測定方向(MD方向、TD方向)と一致するように採取し、23℃、湿度50%の雰囲気下において、(株)エー・アンド・デイUNIVERSAL TESTING MACHINE STB-1225を用いて、つかみ間隔60mm、引張速度5mm/分で引張り試験を行い、引張-応力カーブのゼロ点での接線からヤング率(MD方向、TD方向)を測定した。
(13)均一延伸性(相対標準偏差、単位:%)
 逐次二軸延伸方式において、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、Tダイより冷却ロール上に押し出すことによってシート状に冷却固定し、未延伸シートを得た。得られた未延伸シートを、加熱した延伸ロールを用いてMD方向に延伸することにより、一軸延伸シートを得た。得られた一軸延伸シートに対し、TD方向に9mm毎の10本の標線を備えたスタンプを用いて標線を印字した。標線を印字した一軸延伸シートのTD方向の両側端を、MD方向に沿って並んだ2列のチャックで掴み、予熱部、延伸部、熱処理部を備えた加熱炉内にて、一軸延伸シートをTD方向に延伸した。その後、該2列のチャックの間隔を狭めてTD方向の延伸を緩和させることにより二軸延伸フィルムを得た。得られた二軸延伸フィルムに対し、TD方向の標線間隔を読み取り、標線間隔の相対標準偏差を求めて延伸加工性の尺度とした。相対標準偏差が小さい程均一に延伸加工できたことを示し、延伸加工性(均一延伸性)が良好であることを示す。
 同時二軸延伸方式において、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、Tダイより冷却ロール上に押し出すことによってシート状に冷却固定し、未延伸シートを得た。得られた未延伸シートに対し、TD方向に9mm毎の10本の標線を備えたスタンプを用いて標線を印字した。標線を印字した未延伸シートの四辺をチャックで掴み、加熱炉内にて、所定の時間予熱した後、未延伸シートをMD/TD両方向に延伸することにより二軸延伸フィルムを得た。得られた二軸延伸フィルムに対し、TD方向の標線間隔を読み取り、標線間隔の相対標準偏差を求めて延伸加工性の尺度とした。相対標準偏差が小さい程均一に延伸加工できたことを示し、延伸加工性(均一延伸性)が良好であることを示す。
(14)加熱収縮率(単位:%)
 実施例5、実施例6および比較例8以外の二軸延伸フィルムは、長軸がMD方向と平行になるように、A4サイズ(縦297mm×横210mm)のフィルムを採取し、MD方向およびTD方向にそれぞれ200mmの標線を引き、150℃のオーブン中に吊るして30分間保持した。その後、フィルムを取り出し、室温にて30分間冷却した後に、各標線長さを測定した。各方向に対する加熱収縮率を、次の計算式から算出した。加熱収縮率が小さいことは、高温下での寸法安定性に優れることを示す。
 
 加熱収縮率(%)={(200-加熱後の標線長さ(mm))/200}×100
 
 実施例5、実施例6および比較例8の二軸延伸フィルムは、100mm角サイズ(縦100mm×横100mm)のフィルムを採取し、MD方向およびTD方向にそれぞれ80mmの標線を引き、150℃のオーブン中に吊るして30分間保持した。その後、フィルムを取り出し、室温にて30分間冷却した後に、各標線長さを測定した。各方向に対する加熱収縮率を、次の計算式から算出した。
 
 加熱収縮率(%)={80-加熱後の標線長さ(mm))/80}×100
 実施例および比較例で用いた各成分は、以下のとおりである。
<プロピレン系重合体中間組成物1>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.14mol%の環境下で、プロピレンを重合し、プロピレン系重合体A1を得た。得られたプロピレン系重合体A1の100質量部に対して、ステアリン酸カルシウム(堺化学工業株式会社製)0.10質量部、IRGANOX1010(BASFジャパン株式会社製)0.15質量部、IRGAFOS168(BASFジャパン株式会社製)0.15質量部を配合した後、溶融押出を行って、ペレット状のプロピレン系重合体1を得た。得られたプロピレン系重合体1の物性値を下記表1に示す。
<プロピレン系重合体中間組成物2>
 塊状重合槽と気相重合槽を直列に接続して、以下の手順で重合を行った。具体的には、チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、塊状重合法により、プロピレンを重合し、プロピレン系重合体A2を得た。プロピレン系重合体A2の一部をサンプリングして分析した結果、極限粘度は7dl/gであった。前記プロピレン系重合体A2を、失活させることなく気相重合槽に連続的に移送し、気相重合法により、水素濃度4.4mol%の環境下で、プロピレン系重合体B2を重合して、プロピレン系重合体組成物(プロピレン系重合体A2およびプロピレン系重合体B2を含むもの)を得た。プロピレン系重合体組成物中のプロピレン系重合体A2の含有量は19質量部であった。得られたプロピレン系重合体組成物85質量部に対して、MFR=60g/10分のプロピレン単独重合体15質量部、ステアリン酸カルシウム(堺化学工業株式会社製)0.04質量部、IRGANOX1010(BASFジャパン株式会社製)0.18質量部、IRGAFOS168(BASFジャパン株式会社製)0.25質量部を配合した後、溶融押出を行って、ペレット状のプロピレン系重合体中間組成物2を得た。得られたプロピレン系重合体中間組成物2の物性値を下記表1に示す。
<プロピレン系重合体中間組成物3>
 塊状重合槽と気相重合槽を直列に接続して、以下の手順で重合を行った。チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、塊状重合法により、プロピレンを重合し、プロピレン系重合体A3を得た。プロピレン系重合体A3の一部をサンプリングして分析した結果、極限粘度は7dl/gであった。前記プロピレン系重合体A3を、失活させることなく気相重合槽に連続的に移送し、気相重合法により、水素濃度5.7mol%の環境下で、プロピレン系重合体B3を重合して、プロピレン系重合体組成物(プロピレン系重合体A3およびプロピレン系重合体B3を含むもの)を得た。プロピレン系重合体組成物100質量部中のプロピレン系重合体A3の含有量は19質量部であった。得られたプロピレン系重合体組成物100質量部に対して、ステアリン酸カルシウム(堺化学工業株式会社製)0.05質量部、IRGANOX1010(BASFジャパン株式会社製)0.10質量部、IRGAFOS168(BASFジャパン株式会社製)0.15質量部を配合した後、溶融押出を行って、ペレット状のプロピレン系重合体中間組成物3を得た。得られたプロピレン系重合体中間組成物3の物性値を下記表1に示す。
<β晶核剤マスターバッチ>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.95mol%の環境下でプロピレンを重合し、プロピレン系重合体を得た。得られたプロピレン系重合体の95質量部に対して、NU-100(β晶核剤、新日本理化株式会社製)5質量部、DHT-4C(中和剤、協和化学工業株式会社製)0.005質量部、IRGANOX1010(酸化防止剤、BASFジャパン株式会社製)0.09質量部、スミライザーGP(酸化防止剤、住友化学株式会社製)0.05質量部を配合した後、溶融押出を行って、ペレット状のβ晶核剤マスターバッチを得た。
<α晶核剤マスターバッチ>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.95mol%の環境下でプロピレンを重合し、プロピレン系重合体を得た。得られたプロピレン系重合体の87質量部に対して、G-DXR(α晶核剤、新日本理化株式会社製)10質量部、アデカスタブPEP-36(酸化防止剤、株式会社ADEKA製)3質量部、ステアリン酸カルシウム(中和剤、堺化学工業株式会社製)0.05質量部、スミライザーGP(酸化防止剤、住友化学株式会社製)0.05質量部、IRGAFOS168(酸化防止剤、BASFジャパン株式会社製)0.05質量部、カルテックLT(中和剤、鈴木工業株式会社製)0.05質量部を配合した後、溶融押出を行って、ペレット状のα晶核剤マスターバッチを得た。
<プロピレン系重合体組成物11>
 プロピレン系重合体中間組成物1(69質量部)、プロピレン系重合体中間組成物2(30質量部)、β晶核剤マスターバッチ(1質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物11を作製した。プロピレン系重合体組成物11を溶融押出して得られたペレットの物性値を下記表1に示す。
<プロピレン系重合体組成物12>
 プロピレン系重合体中間組成物1(79質量部)、プロピレン系重合体中間組成物3(20質量部)、β晶核剤マスターバッチ(1質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物12を作製した。プロピレン系重合体組成物12を溶融押出して得られたペレットの物性値を下記表1に示す。
<プロピレン系重合体組成物13>
 プロピレン系重合体中間組成物1(89質量部)、プロピレン系重合体中間組成物3(10質量部)、β晶核剤マスターバッチ(1質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物13を作製した。プロピレン系重合体組成物13を溶融押出して得られたペレットの物性値を下記表1に示す。
<プロピレン系重合体組成物14>
 プロピレン系重合体中間組成物1(99質量部)、β晶核剤マスターバッチ(1質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物14を作製した。
プロピレン系重合体組成物14を溶融押出して得られたペレットの物性値を下記表1に示す。
<プロピレン系重合体組成物C11>
 プロピレン系重合体中間組成物1(99質量部)、α晶核剤マスターバッチ(1質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物C11を作製した。プロピレン系重合体組成物C11を溶融押出して得られたペレットの物性値を下記表1に示す。
<プロピレン系重合体組成物C12>
 プロピレン系重合体中間組成物1(98質量部)、β晶核剤マスターバッチ(2質量部)を、ヘンシェルミキサーを用いて混合してプロピレン系重合体組成物C12を作製した。プロピレン系重合体組成物C12を溶融押出して得られたペレットの物性値を下記表1に示す。
Figure JPOXMLDOC01-appb-T000002

<実施例1>
 プロピレン系重合体組成物11を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、142℃(ロール温度)に加熱した延伸ロールを用いて、MD方向に8倍に延伸することにより、一軸延伸シートを得た。
得られた一軸延伸シートのTD方向の両側端をMD方向に沿って並んだ2列のチャックで掴み、170℃(炉内温度1)に加熱した加熱炉内にて、上記2列のチャック間隔をTD方向に広げることにより、一軸延伸シートをTD方向に8倍に延伸して二軸延伸フィルムを得た。得られた二軸延伸フィルムのTD方向の両側端をMD方向に沿って並んだ2列のチャックで掴んだ状態で、165℃(炉内温度2)に加熱した加熱炉内にて、上記2列のチャック間隔を狭めて、該TD方向の延伸を19.5%緩和した。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<実施例2>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物12に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<実施例3>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物13に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<実施例4>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物14に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例1>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物C11に変え、ロール温度を152℃とし、TD方向の緩和率を0%に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例2>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物C11に変え、ロール温度を152℃とし、TD方向の緩和率を6.5%に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例3>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物C11に変え、ロール温度を152℃とした以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例4>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体中間組成物1に変え、ロール温度を152℃とし、MD方向の延伸倍率を5倍、TD方向の緩和率を13倍に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例5>
 プロピレン系重合体中間組成物1を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、152℃(ロール温度)に加熱した延伸ロールを用いて、MD方向に9倍に延伸することにより、一軸延伸フィルムを得た。得られた一軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例6>
 実施例1のプロピレン系重合体組成物11をプロピレン系重合体組成物C11に変え、ロール温度を152℃、MD方向の延伸倍率を5倍に変えた以外は、実施例1とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
<比較例7>
 プロピレン系重合体組成物C12を、スクリュー径20mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度250℃で加熱溶融し、90℃の冷却ロール上に押し出すことにより、厚さ1.0mmの未延伸シートを得た。得られた未延伸シートの四辺をチャックで掴み、140℃に加熱した加熱炉内にて3分間予熱した後、MD方向およびTD方向を同時に2倍に延伸した。その後、加熱炉内を160℃に昇温して3分予熱した後、トータル延伸倍率が、MD方向およびTD方向を同時に6.5倍となるよう、さらに延伸することにより、同時二軸延伸フィルムを得た。得られた同時二軸延伸フィルムの製造条件および物性の測定値を下記表2~4に示す。
 下記表4から、各実施例の二軸延伸フィルムは、比較例の二軸延伸フィルムに対して、MD方向およびTD方向の両方でヤング率が高く、均一延伸性の試験結果が良好であり、TD方向の加熱収縮率が小さいことが認められる。つまり、各実施例の二軸延伸フィルムは、剛性、延伸性、高温下での寸法安定性に優れることがわかる。
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

<炭化水素樹脂マスターバッチ>
 プロピレン系重合体中間組成物3の50重量部に対して、Oppera PR100A(シクロペンタジエン系炭化水素樹脂、ExxonMobil社製)50重量部、DHT-4C(中和剤、協和化学工業株式会社製)0.01質量部、IRGANOX1010(酸化防止剤、BASFジャパン株式会社製)0.09質量部、スミライザーGP(酸化防止剤、住友化学株式会社製)0.05質量部を配合した後、溶融押し出しを行って、ペレット状の炭化水素樹脂マスターバッチを得た。
<プロピレン系重合体組成物15>
 プロピレン系重合体中間組成物1(70質量部)、プロピレン系重合体中間組成物3(10重量部)、炭化水素樹脂マスターバッチ(20質量部)を混合してプロピレン系重合体組成物15を作製した。プロピレン系重合体組成物15を溶融押出して得られたペレットの物性値を下記表5に示す。
<プロピレン系重合体組成物16>
 プロピレン系重合体中間組成物1(60質量部)、プロピレン系重合体中間組成物3(20重量部)、炭化水素樹脂マスターバッチ(20質量部)を混合してプロピレン系重合体組成物16を作製した。プロピレン系重合体組成物16を溶融押出して得られたペレットの物性値を下記表5に示す。
<プロピレン系重合体組成物C13>
 プロピレン系重合体中間組成物1(90質量部)、Oppera PR100A(10重量部)を混合してプロピレン系重合体組成物C13を作製した。プロピレン系重合体組成物C13を溶融押出して得られたペレットの物性値を下記表5に示す。
Figure JPOXMLDOC01-appb-T000006

<実施例5>
 プロピレン系重合体組成物15を、スクリュー径20mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度250℃で加熱溶融し、40℃の冷却ロール上に押し出すことにより、厚さ0.5mmの未延伸シートを得た。得られた未延伸シートの四辺をチャックで掴み、155℃に加熱した加熱炉内にて3分間予熱した後に、MD方向に7倍に延伸した後、TD方向にに8倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表6および7に示す。
<実施例6>
 実施例5のプロピレン系重合体組成物15をプロピレン系重合体組成物16に変えた以外は、実施例5とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表6および7に示す。
<比較例8>
 実施例5のプロピレン系重合体組成物15をプロピレン系重合体組成物C13に変えた以外は、実施例5とすべて同じ条件で二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を下記表6および7に示す。
 下記表7から、各実施例の二軸延伸フィルムは、比較例の二軸延伸フィルムに対して、MD方向およびTD方向の両方でヤング率が同等であり、均一延伸性の試験結果が良好であり、TD方向の加熱収縮率が小さいことが認められる。つまり、各実施例の二軸延伸フィルムは、剛性、延伸性、高温下での寸法安定性に優れることがわかる。
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008

 本発明によれば、MD方向およびTD方向の両方で比較的高い引張弾性率(ヤング率)を有し、且つ、TD方向における高温下での寸法安定性に比較的優れると共に、製造時のTD方向への均一延伸性に比較的優れたフィルムを提供することができる。また、斯かるフィルムの製造方法、および斯かるフィルムの製造に用いるプロピレン系重合体組成物を提供することができる。

Claims (7)

  1.  プロピレン系重合体またはプロピレン系重合体組成物を含有し、下記要件(1)~(3)を満たす、フィルム。
     
    (1)下記式(I)を満たす。
     -0.35<BOMD-BOTD<1.00・・・(I)
    (式中、
     BOMDは、複屈折法を用いて測定されるフィルムのMD方向の配向度を示す。
     BOTDは、複屈折法を用いて測定されるフィルムのTD方向の配向度を示す。)
     
    (2)下記式(II)を満たす。
     I0.2 MD/I0.6 TD<1.5・・・(II)
    (式中、
     I0.2 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
     I0.6 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
     
    (3)下記式(III)を満たす。
     I0.2 TD/I0.6 MD<1.5・・・(III)
    (式中、
     I0.2 TDは、小角X線散乱法を用いて測定されるフィルムのTD方向のKratkyプロットにおける散乱ベクトルqが0.2nm-1の位置の強度を示す。
     I0.6 MDは、小角X線散乱法を用いて測定されるフィルムのMD方向のKratkyプロットにおける散乱ベクトルqが0.6nm-1の位置の強度を示す。)
     
  2.  さらに下記要件(4)を満たす、請求項1に記載のフィルム。
     
    (4)下記式(IV)を満たす。
     Int_1/Int_2>1.1・・・(IV)
    (式中、
     Int_1は、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向におけるピークトップ強度を示す。
     Int_2は、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向から45°におけるピークトップ強度を示す。)
     
  3.  さらに下記要件(5)を満たす、請求項1または2に記載のフィルム。
     
    (5)広角X線回折法を用いて測定されるプロピレン系重合体のα型結晶の040面の回折ピークが16.81°以上である。
     
  4.  さらに下記要件(6)を満たす、請求項1~3のいずれか一項に記載のフィルム。
     
    (6)下記式(V)を満たす。
     0.5×(Int_A+Int_B)/Int_C>1.1・・・(V)
    (式中、
     Int_Aは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向におけるピークトップ強度を示す。
     Int_Bは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のMD方向におけるピークトップ強度を示す。
     Int_Cは、広角X線散乱法を用いて測定されるフィルムの2次元散乱像において、プロピレン系重合体のα型結晶の110面のTD方向から45°におけるピークトップ強度を示す。)
  5.  プロピレン系重合体と、β晶核剤および炭化水素樹脂からなる群より選ばれる少なくとも1種の延伸性改良剤とを含むプロピレン系重合体組成物を、押出機を用いて加熱溶融し、冷却ロール上に押し出すことにより未延伸シートを得る押出工程と、
     得られた未延伸シートを、延伸ロールを用いてMD方向に6倍~10倍に延伸することにより、一軸延伸シートを得るMD延伸工程と、
     得られた一軸延伸シートを、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に4倍~20倍に延伸することにより、二軸延伸フィルムを得るTD延伸工程と、
     得られた二軸延伸フィルムのTD方向の延伸を、MD方向に沿って並んだ2列のチャックを用いて、加熱炉内にて、TD方向に16%~30%緩和させる緩和工程とを含む、フィルムの製造方法。
  6.  プロピレン系重合体と、延伸性改良剤とを含有し、
     下記要件(11)~(16)を満たす、プロピレン系重合体組成物。
     
    (11)温度230℃、荷重2.16kgで測定されるメルトフローレートが1g/10分~10g/10分である。
    (12)温度230℃、荷重2.16kgで測定されるダイスウェル比が1.23~1.45である。
    (13)ゲルパーミエーションクロマトグラフィーで測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0~7.0である。
    (14)ゲルパーミエーションクロマトグラフィーで測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が10.0~25.0である。
    (15)ゲルパーミエーションクロマトグラフィーで測定される分子量10万以下の成分量が30質量%~50質量%である。
    (16)ゲルパーミエーションクロマトグラフィーで測定される分子量150万以上の成分量が2.3質量%~5.0質量%である。
     
  7.  前記延伸性改良剤が、β晶核剤および炭化水素樹脂からなる群より選ばれる少なくとも1種である、請求項6に記載のプロピレン系重合体組成物。
PCT/JP2022/002029 2021-03-30 2022-01-20 フィルム、フィルムの製造方法、およびプロピレン系重合体組成物 WO2022209190A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025592.5A CN117120523A (zh) 2021-03-30 2022-01-20 膜、膜的制造方法以及丙烯系聚合物组合物
EP22779420.3A EP4317269A1 (en) 2021-03-30 2022-01-20 Film, method for producing film, and propylene-based polymer composition
JP2022511094A JPWO2022209190A1 (ja) 2021-03-30 2022-01-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057873 2021-03-30
JP2021057873 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209190A1 true WO2022209190A1 (ja) 2022-10-06

Family

ID=83458565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002029 WO2022209190A1 (ja) 2021-03-30 2022-01-20 フィルム、フィルムの製造方法、およびプロピレン系重合体組成物

Country Status (4)

Country Link
EP (1) EP4317269A1 (ja)
JP (1) JPWO2022209190A1 (ja)
CN (1) CN117120523A (ja)
WO (1) WO2022209190A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218606A (ja) 1985-03-25 1986-09-29 Sumitomo Chem Co Ltd α−オレフイン重合体の製造法
JPS61287904A (ja) 1985-06-14 1986-12-18 Sumitomo Chem Co Ltd α−オレフイン重合体の製造方法
JPH07216017A (ja) 1993-12-08 1995-08-15 Sumitomo Chem Co Ltd α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法
JP2003105102A (ja) * 2001-09-28 2003-04-09 Toray Ind Inc 二軸延伸ポリプロピレンフィルム
JP2004160689A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 白色二軸延伸ポリプロピレンフィルムおよびそれからなる包装体、表示物、感熱転写記録用受容シート
JP2004182876A (ja) 2002-12-04 2004-07-02 Sumitomo Chem Co Ltd α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JP2006095954A (ja) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd ポリプロピレン系延伸フィルム
JP2006143995A (ja) * 2004-10-19 2006-06-08 Toray Ind Inc 改ざん防止ラベル用シートおよび改ざん防止ラベル
WO2015012324A1 (ja) * 2013-07-23 2015-01-29 東洋紡株式会社 延伸ポリプロピレンフィルム
JP2016102203A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム、および透湿防水シート
JP2016195250A (ja) * 2015-03-31 2016-11-17 王子ホールディングス株式会社 フィルムコンデンサ用二軸延伸ポリプロピレンフィルム
JP2016199686A (ja) 2015-04-10 2016-12-01 三井化学東セロ株式会社 二軸延伸ポリプロピレンフィルムおよびその製造方法
JP2021161381A (ja) * 2020-03-30 2021-10-11 住友化学株式会社 二軸延伸フィルム、多層フィルム、包装袋、および二軸延伸フィルムの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218606A (ja) 1985-03-25 1986-09-29 Sumitomo Chem Co Ltd α−オレフイン重合体の製造法
JPS61287904A (ja) 1985-06-14 1986-12-18 Sumitomo Chem Co Ltd α−オレフイン重合体の製造方法
JPH07216017A (ja) 1993-12-08 1995-08-15 Sumitomo Chem Co Ltd α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法
JP2003105102A (ja) * 2001-09-28 2003-04-09 Toray Ind Inc 二軸延伸ポリプロピレンフィルム
JP2004160689A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 白色二軸延伸ポリプロピレンフィルムおよびそれからなる包装体、表示物、感熱転写記録用受容シート
JP2004182876A (ja) 2002-12-04 2004-07-02 Sumitomo Chem Co Ltd α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JP2006095954A (ja) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd ポリプロピレン系延伸フィルム
JP2006143995A (ja) * 2004-10-19 2006-06-08 Toray Ind Inc 改ざん防止ラベル用シートおよび改ざん防止ラベル
WO2015012324A1 (ja) * 2013-07-23 2015-01-29 東洋紡株式会社 延伸ポリプロピレンフィルム
JP2016102203A (ja) * 2014-11-12 2016-06-02 東レ株式会社 多孔性フィルム、および透湿防水シート
JP2016195250A (ja) * 2015-03-31 2016-11-17 王子ホールディングス株式会社 フィルムコンデンサ用二軸延伸ポリプロピレンフィルム
JP2016199686A (ja) 2015-04-10 2016-12-01 三井化学東セロ株式会社 二軸延伸ポリプロピレンフィルムおよびその製造方法
JP2021161381A (ja) * 2020-03-30 2021-10-11 住友化学株式会社 二軸延伸フィルム、多層フィルム、包装袋、および二軸延伸フィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Introduction to higher-order structural analysis of plastic molded article", 2006, THE NIKKAN KOGYO SHIMBUN, pages: 72 - 74

Also Published As

Publication number Publication date
JPWO2022209190A1 (ja) 2022-10-06
CN117120523A (zh) 2023-11-24
EP4317269A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP6241039B2 (ja) 延伸ポリプロピレンフィルム
US8759446B2 (en) Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US10184043B2 (en) Polypropylene film with improved balance of mechanical properties
JP6349636B2 (ja) 延伸ポリプロピレンフィルム
US20130197161A1 (en) Injection Molded Article Comprising Polypropylene and Polylactic Acid
EP2794689A1 (en) Propylene copolymer for injection molded articles or films
JPWO2009063819A1 (ja) 延伸シート用プロピレン系樹脂組成物、並びに該組成物を含む延伸シートおよび熱成形体
WO2013144061A1 (en) Unoriented film based on soft polypropylene
EP2557118B1 (en) Preparation of a soft heterophasic propylene copolymer
WO2014024970A1 (ja) ポリプロピレンフィルム
US6699574B2 (en) Polypropylene-based resin composition for stretched film, process for producing the same and stretched film
US20020198318A1 (en) Polypropylene-based resin composition, process for producing the same and stretched film containing the same
WO2022091549A1 (ja) プロピレン系重合体組成物、二軸延伸フィルム、および包装袋
JP2021161381A (ja) 二軸延伸フィルム、多層フィルム、包装袋、および二軸延伸フィルムの製造方法
JP7064355B2 (ja) ポリオレフィン多層シートまたはフィルムの製造方法
WO2022209190A1 (ja) フィルム、フィルムの製造方法、およびプロピレン系重合体組成物
JP2002348423A (ja) 延伸フィルム用ポリプロピレン系樹脂組成物、その樹脂組成物の製造方法および延伸フィルム
JP6942530B2 (ja) 多層二軸延伸フィルムおよび転写フィルム
WO2023139993A1 (ja) プロピレン系重合体組成物、二軸延伸フィルムおよび包装袋
WO2022091548A1 (ja) プロピレン系重合体組成物、二軸延伸フィルム、二軸延伸フィルムの製造方法、および包装袋
JP6477471B2 (ja) 空洞含有ポリプロピレンフィルム
WO2023079785A1 (ja) プロピレン系重合体組成物、プロピレン系重合体組成物の製造方法、および、二軸延伸フィルム
US20100081755A1 (en) Method for preparing a random copolymer with enhanced ethylene content
CN110234686A (zh) 用于生产具有改善的氧气阻隔性能的非取向膜的方法
JP6671162B2 (ja) ポリプロピレン組成物を含む多層フィルムまたはシート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022511094

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022779420

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306560R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2022779420

Country of ref document: EP

Effective date: 20231030