WO2022208768A1 - Speed-changing device - Google Patents

Speed-changing device Download PDF

Info

Publication number
WO2022208768A1
WO2022208768A1 PCT/JP2021/013922 JP2021013922W WO2022208768A1 WO 2022208768 A1 WO2022208768 A1 WO 2022208768A1 JP 2021013922 W JP2021013922 W JP 2021013922W WO 2022208768 A1 WO2022208768 A1 WO 2022208768A1
Authority
WO
WIPO (PCT)
Prior art keywords
canopy
movable
driven
pulley
fixed
Prior art date
Application number
PCT/JP2021/013922
Other languages
French (fr)
Japanese (ja)
Inventor
康平 松浦
達也 竜▲崎▼
功祐 綱島
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/013922 priority Critical patent/WO2022208768A1/en
Priority to JP2023510057A priority patent/JP7439343B2/en
Publication of WO2022208768A1 publication Critical patent/WO2022208768A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention relates to a transmission.
  • the present invention has been made in view of the above circumstances, and provides a transmission capable of improving the controllability of the entire device while reducing costs.
  • a first aspect of the invention consists of a stationary canopy (13, 17) fixed axially and a movable canopy (14, 18) axially movable relative to said stationary canopy (13, 17). ) and a canopy pair (11, 15), which is wound around the canopy pair (11, 15), and between the fixed canopy (13, 17) and the movable canopy (14, 18)
  • a transmission (10A) comprising an endless member (19) sandwiched therebetween and a power device (31, 41) for axially moving the movable canopy (14, 18)
  • the power device (31 , 41) exert a force in a direction to push the movable canopy (14, 18) toward the fixed canopy (13, 17) and push the movable canopy (14, 18) toward the fixed canopy (13, 17).
  • , 17) alternately in a predetermined cycle.
  • the force in the return direction is periodically applied to the movable canopy by the push-back control, thereby reducing the friction.
  • the movable canopy is moved in the axial direction. It is possible to change the winding diameter by moving. Therefore, a normal screw (trapezoidal screw, square screw, etc.) other than a ball screw is used for the feed screw mechanism that moves the movable canopy in the axial direction, and the capacity of the actuator is reduced to reduce the cost. can be performed smoothly, and the controllability of the entire device including the actuator can be improved.
  • the push-back control is such that the time (t1) for pushing the movable canopy (14, 18) toward the fixed canopy (13, 17) is set to the It is characterized by being longer than the time (t2) for returning the movable canopy (14, 18) to the side opposite to the fixed canopy (13, 17).
  • the movable canopy is urged away from the fixed canopy (return side) by the tension of the endless member. can be suppressed from returning too much, and the influence on shifting can be suppressed.
  • the power device (31, 41) and the movable canopy (14, 18) are connected to each other via threaded portions (39, 49).
  • the threaded portions (39, 49) are characterized by using any one of a trapezoidal thread, a square thread and a triangular thread. According to this configuration, by removing the friction of the feed screw mechanism by the push-back control, even when a normal screw such as a trapezoidal screw is used in place of the ball screw, the problem of screw locking can be suppressed. Therefore, it is possible to reduce costs by adopting a normal screw, and to smoothly perform a gear shifting operation.
  • the force in the direction of returning the movable canopy (14, 18) in the push-back control is the friction of the threaded portions (39, 49) by a prescribed amount. and the specified amount is set constant.
  • the movable canopy is urged to the side (return side) away from the fixed canopy by the tension of the endless member, but the force to return the movable canopy is such that it exceeds the friction of the threaded portion by a specified amount.
  • the force in the direction of pushing the movable canopy (14, 18) is applied to the canopy pair (11, 15). is variable according to the required load.
  • the force for pushing the movable canopy can be varied according to the required load (thrust force) based on the degree of opening of the accelerator, and the speed change operation can be performed smoothly and quickly.
  • the endless member (19) is wound over the pair of canopy body pairs (11, 15) to form a non-endless structure.
  • a stepped transmission (10) is configured, and one of the pair of canopy bodies (11, 15) receives power from an input device (3) and controls the ratio of the continuously variable transmission (10).
  • the other of the pair of canopy bodies (11, 15) outputs power to an output device (25) and controls the load of the continuously variable transmission (10), and the push-back control is performed by the load It is characterized in that it is performed by the canopy pair (15) on the control side.
  • the controllability of the entire device can be improved while keeping costs down.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1 and is a cross-sectional view along the main axis of the power unit.
  • 1 is a configuration diagram of a transmission according to an embodiment;
  • FIG. 4 is a time chart showing changes in control parameters of the transmission; It is a graph which shows the effect
  • 4 is a flow chart showing a main part of control of the transmission. 4 is a flow chart showing an application example of control of the transmission.
  • ⁇ Power unit> 1 and 2 show a swing-type power unit 1 mounted on, for example, a scooter-type motorcycle.
  • the power unit 1 has a front portion supported by a body frame (not shown) so as to be able to swing vertically, and a rear portion supported by the body frame via a rear cushion (not shown).
  • a rear wheel 2, which is a drive wheel, is supported at the rear portion of the power unit 1 so as to be able to swing integrally therewith.
  • an arrow FR indicates the front of the vehicle
  • an arrow UP indicates the upper side of the vehicle
  • an arrow LH indicates the left side of the vehicle.
  • the power unit 1 uses an engine 3, which is an internal combustion engine, as a drive source.
  • a transmission case 7 that accommodates a V-belt type continuously variable transmission 10 is integrally provided on the rear left side of the engine 3 .
  • the V-belt type continuously variable transmission 10 may be simply referred to as the transmission 10 .
  • the engine 3 is a single-cylinder engine in which the crankshaft 4 extends in the left-right direction (vehicle width direction).
  • the engine 3 includes a crankcase 5 that houses the crankshaft 4, and a cylinder 6 that protrudes forward and upward from a front end portion of the crankcase 5.
  • a transmission case 7 is provided rearward from the left side of the crankcase 5 .
  • a reduction gear mechanism 8 is integrally attached to the inner side of the rear portion of the transmission case 7 in the vehicle width direction.
  • the reduction gear mechanism 8 includes a reduction gear group 8a and a gear case 8b that houses the reduction gear group 8a.
  • a rear wheel axle 2a protrudes to the right (inward in the vehicle width direction) of the gear case 8b, and the rear wheel 2 is supported by the rear wheel axle 2a so as to rotate integrally therewith.
  • the rotational power of the crankshaft 4 of the engine 3 is input to the V-belt type continuously variable transmission 10, and the V-belt type continuously variable transmission 10 changes gears. After the V-belt type continuously variable transmission 10 has changed speed, the rotational power is output to the rear wheel axle 2a and the rear wheels 2 via the centrifugal clutch 23 and the reduction gear mechanism 8 .
  • the centrifugal clutch 23 and the reduction gear mechanism 8 may be collectively referred to as the output device 25 of the V-belt type continuously variable transmission 10 .
  • An input device of the V-belt type continuously variable transmission 10 is the engine 3 .
  • the V-belt type continuously variable transmission 10 performs speed change while transmitting driving force.
  • the V-belt type continuously variable transmission 10 includes an endless V-belt (endless member ) 19.
  • a centrifugal clutch 23 is connected to the driven pulley 15 . When the rotational speed of the driven pulley 15 increases, the centrifugal clutch 23 is engaged, enabling transmission of driving force to the rear wheel 2 side. The centrifugal clutch 23 is disengaged when the engine 3 is idling at a low speed, and the transmission of the driving force to the rear wheels 2 is interrupted.
  • the V-belt 19 is sandwiched between the V-groove 11a between the pair of pulley halves 13 and 14 of the drive pulley 11 and the V-groove 15a between the pair of pulley halves 17 and 18 of the driven pulley 15. .
  • the V-belt 19 has a trapezoidal cross-section (see FIG. 2). , 14a, 17a, 18a. Thereby, the driving force can be transmitted between the driving pulley 11 and the driven pulley 15 without the V-belt 19 slipping.
  • the V-belt type continuously variable transmission 10 is arranged coaxially with the left end of the crankshaft 4, and includes a drive pulley (primary pulley) 11 supported by a drive shaft 12 integrally connected to the left of the crankshaft 4, and a drive shaft.
  • a driven pulley (secondary pulley) 15 that is arranged coaxially with a driven shaft 16 that is parallel to 12 and spaced behind the drive shaft 12 and that is supported by the driven shaft 16 , and is wrapped around the drive pulley 11 and the driven pulley 15 . and an endless V-belt 19.
  • the output shaft 21 of the V-belt type continuously variable transmission 10 is integrally connected to the inner side of the driven shaft 16 in the vehicle width direction.
  • the drive pulley 11 includes a fixed pulley half (fixed canopy) 13 located on the outside in the vehicle width direction and a movable pulley half (movable canopy) 13 located on the inside in the vehicle width direction.
  • the fixed pulley half 13 is supported axially immovably with respect to the drive shaft 12 .
  • the movable pulley half 14 is supported axially movably with respect to the drive shaft 12 .
  • the fixed pulley half 13 has a fixed pulley conical surface 13a on a side surface facing the movable pulley half 14 in the axial direction, the fixed pulley conical surface 13a being inclined away from the movable pulley half 14 toward the outer peripheral side.
  • the movable pulley half 14 has a movable pulley conical surface 14a on a side surface facing the fixed pulley half 13 in the axial direction, which is inclined away from the fixed pulley half 13 toward the outer circumference.
  • the driven pulley 15 includes a fixed pulley half (fixed canopy) 17 located inside in the vehicle width direction, and a movable pulley half (movable canopy) 18 located outside in the vehicle width direction.
  • the fixed pulley half 17 is supported axially immovably with respect to the driven shaft 16 .
  • the movable pulley half 18 is supported axially movably with respect to the driven shaft 16 .
  • the fixed pulley half 17 has a fixed pulley conical surface 17a on the side facing the movable pulley half 18 in the axial direction, which is inclined away from the movable pulley half 18 toward the outer circumference.
  • the movable pulley half 18 has a movable pulley conical surface 18a on a side surface facing the fixed pulley half 17 in the axial direction, which is inclined away from the fixed pulley half 17 toward the outer circumference.
  • the V-belt type continuously variable transmission 10 of the embodiment is configured as an electronically controlled CVT (Continuously Variable Transmission).
  • the electronically controlled CVT has a degree of freedom such as arbitrarily determining the ratio (gear ratio) to the accelerator opening. be able to.
  • the transmission 10A of the embodiment includes a V-belt type continuously variable transmission 10, a primary side actuator (power unit) 31 that drives a driving pulley 11, and a secondary side that drives a driven pulley 15.
  • the primary side actuator 31 includes an electric motor 32 that serves as a drive source, and a reduction gear mechanism 33 that reduces the rotation power output by the electric motor 32 .
  • the reduction gear mechanism 33 includes a drive gear 33a provided integrally with a drive shaft 32a of the electric motor 32, a first idle gear 33b with which the drive gear 33a meshes, a first small diameter gear 33c coaxial with the first idle gear 33b, It has a second idle gear 33d with which the first small diameter gear 33c meshes, a second small diameter gear 33e coaxial with the second idle gear 33d, and a gear case 33f that houses the gears 33a to 33e.
  • an angle sensor 53 which will be described later, is attached to the end of the relay shaft 33e1 that supports the second idle gear 33d and the second small diameter gear 33e.
  • a second small diameter gear 33e which is the final gear (output gear) of the reduction gear mechanism 33, meshes with a relatively large diameter driven gear 34 arranged coaxially with the drive pulley 11.
  • the driven gear 34 is spaced apart inside the drive pulley 11 in the vehicle width direction.
  • the movable pulley half 14 is integrally provided with a cylindrical hub portion 14b through which the drive shaft 12 is inserted.
  • the driven gear 34 is also integrally provided with a cylindrical support wall 34a through which the drive shaft 12 is inserted.
  • the support wall 34a of the driven gear 34 and the hub portion 14b of the movable pulley half 14 are radially offset from each other and overlap each other in axial position.
  • the support wall 34a and the hub portion 14b are connected to each other via a radial ball bearing 35 so as to be relatively rotatable.
  • the radial ball bearing 35 can support an axial load in the direction in which the movable pulley half 14 is pushed toward the side of widening the V-groove 11a (inward in the vehicle width direction). Conversely, the radial ball bearing 35 can transmit an axial load to the movable pulley half 14 due to the driven gear 34 moving outward in the vehicle width direction.
  • the driven gear 34 is integrally provided with a cylindrical collar wall 36 through which the drive shaft 12 is inserted.
  • a similarly cylindrical inner peripheral collar wall 37 is arranged on the inner peripheral side of the collar wall 36 .
  • the inner collar wall 37 is supported by the transmission case 7, for example.
  • the inner collar wall 37 passes through the drive shaft 12 and supports the drive shaft 12 via radial ball bearings 38 .
  • a male thread (not shown) is formed on the outer periphery of the inner peripheral collar wall 37 .
  • a female thread (not shown) that is screwed into the male thread is formed on the inner periphery of the collar wall 36 of the driven gear 34 .
  • Each screw thread of the primary side feed screw mechanism 39 is a normal screw other than a ball screw. For example, a single or multiple trapezoidal screw is preferable, but a square screw and a triangular screw may be used instead of the trapezoidal screw.
  • a male thread may be formed on the driven gear 34 side, and a female thread may be formed on the movable pulley half body 14 side.
  • the output gear (second small-diameter gear 33e) of the reduction gear mechanism 33 can move the meshing position of the driven gear 34 in the axial direction.
  • the driven gear 34 constitutes a moving body 34b that can move in the axial direction by the action of the feed screw mechanism 39. As shown in FIG.
  • the moving body 34b is urged toward the narrowing side of the V-groove 11a (outward in the vehicle width direction) by a coil spring 34c wound around the outer periphery of the collar wall 36.
  • a coil spring 34c wound around the outer periphery of the collar wall 36.
  • a configuration may be adopted in which a moving body 34b separate from the driven gear 34 is provided, and the moving body 34b is moved in the axial direction by the action of the feed screw mechanism 39.
  • a support wall 34a and a collar wall 36 are integrally provided on the moving body 34b.
  • the driven gear 34 is axially immovable, and the driven gear 34 is integrally provided with an inner peripheral collar wall 37 .
  • a feed screw mechanism 39 is configured between both collar walls 36 and 37 .
  • the movable body 34b is urged toward the driven gear 34 by a coil spring 34c to narrow the V-groove 11a (outward in the vehicle width direction).
  • the secondary side actuator 41 includes an electric motor 42 that serves as a drive source, and a reduction gear mechanism 43 that reduces the rotation power output by the electric motor 42 .
  • the reduction gear mechanism 43 includes a drive gear 43a provided integrally with the drive shaft 42a of the electric motor 42, a first idle gear 43b with which the drive gear 43a meshes, a first small diameter gear 43c coaxial with the first idle gear 43b, It has a second idle gear 43d with which the first small diameter gear 43c meshes, a second small diameter gear 43e coaxial with the second idle gear 43d, and a gear case 43f that houses the gears 43a to 43e.
  • an angle sensor 55 which will be described later, is attached to the end of the relay shaft 43e1 that supports the second idle gear 43d and the second small diameter gear 43e.
  • the driven gear 44 is spaced apart from the driven pulley 15 in the vehicle width direction.
  • the movable pulley half 18 is integrally provided with a cylindrical hub portion 18b through which the driven shaft 16 is inserted.
  • the driven gear 44 is also integrally provided with a cylindrical support wall 44a through which the driven shaft 16 is inserted.
  • the support wall 44a of the driven gear 44 and the hub portion 18b of the movable pulley half 18 are radially offset from each other and axially overlap each other.
  • the support wall 44a and the hub portion 18b are connected to each other via a radial ball bearing 45 so as to be relatively rotatable.
  • the radial ball bearing 45 can support an axial load in the direction in which the movable pulley half 18 is pushed to the side (outer in the vehicle width direction) that widens the V-groove 15a. Conversely, the radial ball bearing 45 can transmit an axial load to the movable pulley half 18 due to the driven gear 44 moving inward in the vehicle width direction.
  • the driven gear 44 is integrally provided with a cylindrical collar wall 46 through which the driven shaft 16 is inserted.
  • a similarly cylindrical inner peripheral collar wall 47 is arranged on the inner peripheral side of the collar wall 46 .
  • the inner collar wall 47 is supported by the transmission case 7, for example.
  • the driven shaft 16 is passed through the inner collar wall 47 and supported by the driven shaft 16 via radial ball bearings 48 .
  • a male thread (not shown) is formed on the outer periphery of the inner peripheral collar wall 47 .
  • a female thread (not shown) that is screwed into the male thread is formed on the inner periphery of the collar wall 46 of the driven gear 44 .
  • a secondary side feed screw mechanism 49 is configured between these collar walls 46 and 47 to convert the rotational movement of the driven gear 44 into the axial movement of the movable pulley half 18 .
  • Each screw thread of the secondary side feed screw mechanism 49 is a normal screw other than a ball screw.
  • a single or multiple trapezoidal screw is preferable, but a square screw and a triangular screw may be used instead of the trapezoidal screw.
  • a configuration in which a male thread is formed on the driven gear 44 side and a female thread is formed on the movable pulley half body 18 side may be employed.
  • the output gear (second small-diameter gear 43e) of the reduction gear mechanism 43 can move the meshing position of the driven gear 44 in the axial direction.
  • the driven gear 44 constitutes a moving body 44b that is axially movable by the action of the feed screw mechanism 49.
  • a coil spring 44c wound around the outer periphery of the collar wall 46 urges the movable body 44b toward the narrower side (inward in the vehicle width direction) of the V-groove 15a.
  • a configuration may be adopted in which a moving body 44b separate from the driven gear 44 is provided, and the moving body 44b is moved in the axial direction by the action of the feed screw mechanism 49.
  • a support wall 44a and a collar wall 46 are integrally provided on the moving body 44b.
  • the driven gear 44 is axially immovable, and the driven gear 44 is integrally provided with an inner peripheral collar wall 47 .
  • a feed screw mechanism 49 is constructed between both collar walls 46 and 47 .
  • the movable body 44b is urged toward the driven gear 44 by a coil spring 44c toward the side of narrowing the V-groove 15a (inward in the vehicle width direction).
  • sensors 51 include, for example, a first rotation speed sensor 52 (also an engine rotation speed sensor in this embodiment) that detects the rotation speed of the drive pulley 11, and an axial position of the movable pulley half 14.
  • a first pulley position sensor 53 (in the embodiment, an angle sensor that detects the rotation angle of the intermediate gear), a second rotation speed sensor 54 that detects the rotation speed of the driven pulley 15, and an axial position of the movable pulley half 18 is detected.
  • a second pulley position sensor 55 (in the embodiment, an angle sensor that detects the rotation angle of the intermediate gear), a vehicle speed sensor that detects the vehicle speed - 56 (a rotation speed sensor that detects the rotation speed of the output shaft 21 may be used), accelerator open An accelerator opening sensor 57 (throttle opening sensor if the engine 3 is an internal combustion engine) for detecting the degree of acceleration is provided.
  • the sensors 51 include switches 58 such as a driving mode switch and a manual shift switch.
  • the information detected by the sensors 51 is input to a shift control section 61, which is an ECU (Electronic Control Unit).
  • the shift control unit 61 determines control items to drive the electric motors 32, 42 of the actuators 31, 41, and controls the axial positions of the movable pulley halves 14, 18 of the drive pulley 11 and the driven pulley 15 and their changes. Control speed.
  • a control current flows through the electric motors 32 and 42 of the primary side actuator 31 and the secondary side actuator 41 under the control of the shift control section 61, and the electric motors 32 and 42 are rotationally driven.
  • the torque of each electric motor 32,42 is transmitted via a reduction gear mechanism 33,43 respectively to a driven gear 34,44 coaxial with the corresponding movable pulley half 14,18.
  • This torque is converted into an axial load via a feed screw mechanism 39,49 constructed between the driven gears 34,44 and the movable pulley halves 14,18.
  • This axial load causes the movable pulley halves 14, 18 to move in the axial direction to implement the speed change.
  • V-belt type continuously variable transmission 10 is not lubricated by oil, reducing the friction of the feed screw mechanism 49 is highly effective in improving the operability of the V-belt type continuously variable transmission 10 .
  • a ball screw is used to reduce friction, there is a problem of increased cost.
  • trapezoidal screws are used for the feed screw mechanisms 39 and 49 to suppress cost increases, while the secondary side actuators 31 and 41 are driven by speed change control, which will be described later.
  • Uniqueness is given to the correlation with the motor current. This is intended to maintain the running performance and fuel efficiency of the vehicle in which the power unit 1 is mounted.
  • Trapezoidal threads have a clearance between the male and female threads, and an external force can tilt the axes of both threads. If the feed screw mechanisms 39 and 49 are rotated in this state, there is a risk that both screw threads will be caught and locked (fixed). In the embodiment, it is possible to rotate the feed screw mechanisms 39 and 49 while removing friction by speed change control, which will be described later, thereby suppressing the concern that the feed screw mechanisms 39 and 49 may be locked.
  • the target drive rotation speed is calculated based on the accelerator opening, its displacement speed, and the driven rotation speed (and thus the vehicle speed).
  • the difference between the target drive rotation speed and the current drive rotation speed is obtained, and the motor control command value (DUTY) for the primary side actuator 31 is determined.
  • the drive pulley 11 for ratio control is actuated to control the acceleration and deceleration of the vehicle.
  • the drive pulley 11 is provided with a pulley position sensor 53 that detects the axial position of the movable pulley half 14 .
  • the driven pulley 15 is provided with a pulley position sensor 55 that detects the axial position of the movable pulley half 18 .
  • the shift control section 61 may notify an engine control section (not shown) of the current shift mode.
  • the centrifugal clutch 23 on the driven pulley 15 side changes to the connected state, and the driving force is transmitted to the rear wheels 2 .
  • the centrifugal clutch 23 is half-clutched, thereby smoothly starting the vehicle.
  • the V-belt 19 is wound on the innermost side of the drive pulley 11 and on the outermost side of the driven pulley 15 .
  • the movable pulley half 14 is separated from the fixed pulley half 13 to widen the width of the V-groove 11a and reduce the winding diameter of the belt.
  • the movable pulley half 18 approaches the fixed pulley half 17 to narrow the width of the V groove 15a and increase the belt winding diameter.
  • the speed reduction ratio of the V-belt type continuously variable transmission 10 becomes the largest (low speed side).
  • the primary side actuator 31 operates to move the movable pulley half 14 of the drive pulley 11 in the axial direction, bringing the movable pulley half 14 and the fixed pulley half 13 closer together, thereby causing the V
  • the winding position of the belt 19 is changed to the outer peripheral side. Since the length of the V-belt 19 is constant, when the belt winding diameter on the drive pulley 11 side increases, the belt winding diameter on the driven pulley 15 side decreases.
  • the movable pulley half 18 is axially moved by the operation of the secondary side actuator 41, the movable pulley half 18 and the fixed pulley half 17 are separated from each other, and the winding position of the V-belt 19 is adjusted. Change to the inner circumference side. As a result, the speed reduction ratio of the V-belt type continuously variable transmission 10 becomes smaller than that when the vehicle starts (becomes on the high speed side).
  • the movable pulley half 14 of the drive pulley 11 moves further in the axial direction due to the operation of the primary side actuator 31, and the movable pulley half 14 and the fixed pulley half 13 are further brought closer to each other.
  • the winding position of the belt 19 is changed toward the outermost side.
  • the movable pulley half 18 is moved further in the axial direction by the operation of the secondary side actuator 41, and the movable pulley half 18 and the fixed pulley half 17 are further brought closer to the winding position of the V-belt 19. toward the innermost circumference.
  • the speed reduction ratio of the V-belt type continuously variable transmission 10 is further reduced (on the high speed side).
  • the V-belt type continuously variable transmission 10 has a duct for taking in outside air, for example, in the front portion of the transmission case 7 to cool the V-belt 19. It has Further, for example, a cooling fan 13b is provided on the side surface of the drive pulley 11, so that outside air can be circulated inside the case as the drive pulley 11 rotates. Outside air taken into the case circulates in the case to cool the V-belt 19 and the like. The outside air heated inside the case is discharged to the outside of the case, for example, through an exhaust port provided at the rear portion of the transmission case 7 .
  • the pair of belt side surfaces 19a and the respective pulley conical surfaces 13a, 14a, 17a, 18a are in frictional contact with each other, thereby enabling power transmission between the drive pulley 11 and the driven pulley 15. do.
  • there is frictional resistance due to sliding between the V-belt 19 and the pulleys 11 and 15 at the winding position and the unwinding position of the V-belt 19. occur. Frictional resistance also occurs due to sliding between the V-belt 19 and the pulleys 11 and 15 when the belt winding diameter changes during shifting. Therefore, appropriately adjusting the thrust of each pulley 11, 15 (pressing force to the V-belt 19) has a great influence on maintaining good running performance and good fuel economy.
  • the driven pulley 15 mainly controls the axial load (thrust force, pressing force) on the V-belt 19 with respect to the drive pulley 11 for ratio control. Through this control, the tension and friction of the V-belt 19 are adjusted, and slippage of the V-belt 19 is suppressed.
  • the time chart of FIG. 4 shows the operation state of each part in the shift control of the embodiment.
  • the line Bdr indicates the thrust of the driving pulley 11
  • the line Bdn indicates the thrust of the driven pulley 15, respectively.
  • the respective thrusts of the drive pulley 11 and the driven pulley 15 change in substantially the same way, although there are some deviations in the fine undulations of the lines Bdr and Bdn. Relatively gentle undulations of the lines Bdr and Bdn are undulations associated with the push-back control.
  • line C is the shaft rotation ratio (rotation speed of driven pulley 15/rotation speed of driving pulley 11)
  • line Edr is the belt winding diameter of driving pulley 11
  • line Edn is driven pulley 15.
  • the belt winding diameter may be referred to as "PCD”.
  • the belt winding diameter of the drive pulley 11 remains substantially constant, but the belt winding diameter of the driven pulley 15 repeats gentle undulations as the thrust of the driven pulley 15 undulates.
  • the upward-sloping portion e1 of the line Edn corresponds to the push operation of the push-back control (movement to the LOW side (low speed side)).
  • a lower right portion e2 of the line Edn corresponds to the return operation of the push-back control (operation to the TOP side (high speed side)).
  • the shaft rotation ratio repeats similar undulations with the undulations of the thrust of the driven pulley 15 .
  • the line Gdr indicates the motor current of the primary side actuator 31
  • the line Gdn indicates the motor current of the secondary side actuator 41, respectively.
  • the motor current of the primary side actuator 31 repeats gentle undulations as the thrust of the drive pulley 11 undulates.
  • a push-side current g1 and a return-side current g2 are alternately applied to the electric motor 42 of the secondary side actuator 41 .
  • the push-side current g1 is a current that generates thrust in a direction (LOW direction) that pushes the movable pulley half 18 closer to the fixed pulley half 17 .
  • the return-side current g2 is a current that generates thrust in the direction (TOP direction) to return the movable pulley half 18 away from the fixed pulley half 17 .
  • the push-side current g1 and the return-side current g2 are alternately applied for predetermined times t1 and t2.
  • the push-side time t1 is set longer than the return-side time t2.
  • the line Hdr indicates the motor DUTY of the drive pulley 11
  • the line Hdn indicates the motor DUTY of the driven pulley 15, respectively.
  • the motor DUTY of the drive pulley 11 repeats gentle undulations as the thrust of the drive pulley 11 undulates.
  • the motor DUTY of the driven pulley 15 has a push-side pulse (a signal for outputting a push-side current g1) p1, a return-side pulse (a signal for outputting a return-side current g2) p2, are output alternately.
  • the push-side pulse p1 and the return-side pulse p2 are cyclically repeated while being alternately output for the times t1 and t2.
  • fixed DUTY control (15% on the pushing side, 12% on the returning side) is performed.
  • the amount of push and the amount of return are not the same as each other, they may be the same as each other.
  • the graph of FIG. 5 shows the correlation between the motor current and the thrust of the driven pulley 15 (driven thrust) in the speed change control described above.
  • the vertical axis indicates the motor current
  • the horizontal axis indicates the driven thrust.
  • the values in FIG. 5 show the actual values measured when the above-described speed change control was tested. In the above-described speed change control, there is almost no hysteresis between when the driven pulley 15 is driven (during push side operation) and when it is driven (during return side operation), and the driven thrust can be detected by the motor current.
  • the hysteresis of the driven pulley 15 can be substantially eliminated by periodically unloading the portion of the driven pulley 15 that receives the thrust force (the weighted portion).
  • the correlation lines between the motor current and the driven thrust substantially overlap during driving and during driven. Therefore, it is possible to detect the driven thrust force both during driving and during driven by the motor current. For example, the motor current that produces the driven thrust in the direction pushing the movable pulley half 18 is detected and averaged. Based on this motor current, it is possible to derive the driven thrust in the direction of returning the movable pulley half 18 .
  • the friction of the feed screw mechanism 49 can be uniquely determined from the driven thrust and the motor current.
  • step S11 the required driven thrust is calculated (step S11), and the calculated driven thrust is output to the secondary side actuator 41 (step S12).
  • step S11 the required driven thrust is calculated (step S11)
  • step S12 the calculated driven thrust is output to the secondary side actuator 41 (step S12).
  • step S11 the required driven thrust is calculated (step S11)
  • step S12 the calculated driven thrust is output to the secondary side actuator 41 (step S12).
  • step S11 the required driven thrust is calculated
  • step S12 the calculated driven thrust is output to the secondary side actuator 41 (step S12).
  • step S12 A motor current corresponding to the driven thrust calculated in step S11 is supplied to the secondary side actuator 41 .
  • the slip ratio of transmission 10 is calculated (step S21).
  • This slip ratio is calculated, for example, by Equation 1 below.
  • Slip ratio (%) (1-(PCD ratio)/(shaft speed ratio)) x 100 ⁇ Formula 1
  • PCD indicates the belt winding diameter on the driven pulley 15.
  • the rotational speed of the driven pulley 15 lags behind the rotational speed of the V-belt 19 on the shaft of the driven pulley 15 . That is, the ratio of the number of rotations of the V-belt 19 becomes high with respect to the ratio of the number of rotations of the driven pulley 15 transmitting power (the ratio of the number of rotations of the shaft).
  • the PCD (belt winding diameter) of the driven pulley 15 changes (decreases) toward the inner circumference. Therefore, the slip ratio of the transmission 10 can be detected by detecting the shaft rotation speed ratio of the driven pulley 15 and the PCD ratio of the V-belt 19 and comparing them. Since the relationship between the slip ratio and the driven thrust is uniquely determined, feedback control of the driven thrust using the slip ratio becomes possible.
  • step S22 in FIG. 7 it is determined whether or not the slip ratio exceeds the target slip ratio. If NO in step S22 (the slip ratio does not exceed the target value), the process proceeds to step S23 to perform control to add the driven thrust (DUTY). If YES in step S22 (the slip ratio exceeds the target value), the process proceeds to step S24 to perform control for subtracting the driven thrust (DUTY).
  • step S24 the process proceeds to step S24 to perform control for subtracting the driven thrust (DUTY).
  • the transmission 10A in the embodiment includes the fixed pulley half 17 fixed in the axial direction and the movable pulley half 18 axially movable with respect to the fixed pulley half 17.
  • a push-back control is performed to alternately apply a force in the direction of returning to the direction to return to and at a predetermined cycle.
  • a force in the returning direction is periodically applied to the movable pulley half 18 by the push-back control.
  • the movable pulley The winding diameter can be changed by moving the half body 18 in the axial direction.
  • the feed screw mechanism 49 for moving the movable pulley half 18 in the axial direction uses a normal screw (trapezoidal screw, square screw, etc.) other than the ball screw, and the capacity of the actuator is reduced to reduce the cost. , the shift operation can be performed smoothly, and the controllability of the entire device including the actuator can be enhanced.
  • push-back control is performed on the driven pulley 15 , but push-back control may be performed on the drive pulley 11 .
  • the time t1 for pushing the movable pulley half 18 toward the fixed pulley half 17 is longer than the time t2 for returning the movable pulley half 18 to the side opposite to the fixed pulley half 17.
  • the movable pulley half 18 is urged away from the fixed pulley half 17 (return side) by the tension of the V-belt 19, but the return time of the movable pulley half 18 is longer than the push time.
  • the secondary side actuator 41 and the movable pulley half 18 are connected via a feed screw mechanism 49, and the feed screw mechanism 49 uses any one of a trapezoidal screw, a square screw and a triangular screw. be done. According to this configuration, by removing the friction of the feed screw mechanism 49 by the push-back control, even when a normal screw such as a trapezoidal screw is used in place of the ball screw, the problem of screw lock can be suppressed. Therefore, it is possible to reduce costs by adopting a normal screw, and to smoothly perform a gear shifting operation.
  • the force in the direction of returning the movable pulley half 18 in the push-back control is set to a value exceeding the friction of the feed screw mechanism 49 by a specified amount, and the specified amount is set constant.
  • the movable pulley half 18 is urged to the side (return side) away from the fixed pulley half 17 by the tension of the V-belt 19, but the force to return the movable pulley half 18 is applied to the threaded portion.
  • the force in the direction of pushing the movable pulley half 18 is variable according to the required load on the driven pulley 15. As shown in FIG. According to this configuration, the force that pushes the movable pulley half 18 can be varied according to the required load (thrust force) based on the degree of opening of the accelerator, and the speed change operation can be performed smoothly and quickly.
  • the belt-type continuously variable transmission 10 is constructed by winding the V-belt 19 over the drive pulley 11 and the driven pulley 15.
  • the drive pulley 11 receives power from the input device (engine 3). While being input, ratio control of the V-belt type continuously variable transmission 10 is performed, and the driven pulley 15 outputs power to the output device 25, performs load control of the V-belt type continuously variable transmission 10, and pushes back. Control is performed by the driven pulley 15 on the side that performs load control.
  • the feed screw mechanism 49 of the movable pulley half 18 is not a ball screw by incorporating the push-back control for the load control side where the required load (thrust force) frequently changes based on the accelerator opening and the like. Even when a normal screw is used, the occurrence of screw locking can be suppressed.
  • the present invention is not limited to the above embodiment, and for example, the power unit 1 of the embodiment can be mounted on general straddle-type vehicles in addition to scooter-type motorcycles.
  • the saddle type vehicle includes all types of vehicles in which the driver straddles the vehicle body, not only motorcycles (including motorized bicycles and scooter type vehicles), but also three-wheeled vehicles (one front wheel and two rear wheels). , including vehicles with two front wheels and one rear wheel) or vehicles with four wheels (such as four-wheel buggies). Also included are vehicles whose prime mover includes an electric motor.
  • the configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

This speed-changing device (10A) is provided with: an umbrella-shaped body pair (11, 15) provided with a fixed umbrella-shaped body (13, 17) that is fixed in the axial direction and a movable umbrella-shaped body (14, 18) that is movable in the axial direction relative to the fixed umbrella-shaped body (13, 17); an endless member (19) that is wound on the umbrella-shaped body pair (11, 15) and is sandwiched between the fixed umbrella-shaped body (13, 17) and the movable umbrella-shaped body (14, 18); and a power device (31, 41) that moves the movable umbrella-shaped body (14, 18) in the axial direction. The power device (31, 41) performs pushing/pulling control in which a force in a pushing direction for making the movable umbrella-shaped body (14, 18) approach the fixed umbrella-shaped body (13, 17) and a force in a pulling direction for moving the movable umbrella-shaped body (14, 18) away from the fixed umbrella-shaped body (13, 17), are alternately applied at a predetermined interval.

Description

変速装置transmission
 本発明は、変速装置に関する。 The present invention relates to a transmission.
 スクータ等のスイングユニットに用いられるVベルト式無段変速機において、駆動プーリをアクチュエータで駆動する電子制御式CVT(Continuously Variable Transmission)とした変速装置が知られている(例えば特許文献1参照)。 In a V-belt type continuously variable transmission used in a swing unit such as a scooter, there is known a transmission that uses an electronically controlled CVT (Continuously Variable Transmission) in which a drive pulley is driven by an actuator (see, for example, Patent Document 1).
特開2019-27513号公報JP 2019-27513 A
 ところで、上記従来のVベルト式無段変速機では、プーリの可動傘体を軸方向移動させるための送りねじ機構として、ボールねじを用いることが一般的であった。しかし、ボールねじはコストが高く、ボールねじに代わり台形ねじや角ねじといった通常ねじを用いることが検討されている。この場合、単にボールねじを通常ねじに置換するのみでは、可動傘体の軸方向の推力が高まった際に送りねじ機構のフリクションが増大してしまう。このため、プーリをアクチュエータで駆動する場合、アクチュエータの出力にフリクション分を上乗せする必要が生じ、変速装置の制御性(荷重コントロール性)に影響を与えるという課題がある。 By the way, in the conventional V-belt type continuously variable transmission, it was common to use a ball screw as a feed screw mechanism for moving the movable canopy of the pulley in the axial direction. However, ball screws are expensive, and the use of normal screws such as trapezoidal screws and square screws instead of ball screws is under study. In this case, simply replacing the ball screw with the normal screw increases the friction of the feed screw mechanism when the axial thrust of the movable canopy increases. Therefore, when the pulley is driven by the actuator, it is necessary to add friction to the output of the actuator.
 本発明は上記事情に鑑みてなされたもので、コストを抑えた上で装置全体の制御性を高めることができる変速装置を提供する。 The present invention has been made in view of the above circumstances, and provides a transmission capable of improving the controllability of the entire device while reducing costs.
 本発明の第一の態様は、軸方向に固定された固定傘体(13,17)と、前記固定傘体(13,17)に対して軸方向に移動可能な可動傘体(14,18)と、を備える傘体対(11,15)と、前記傘体対(11,15)に巻き掛けられ、前記固定傘体(13,17)と前記可動傘体(14,18)との間に挟持される無端部材(19)と、前記可動傘体(14,18)を軸方向に移動させる動力装置(31,41)と、を備える変速装置(10A)において、前記動力装置(31,41)は、前記可動傘体(14,18)を前記固定傘体(13,17)に近付く側に押す方向の力と、前記可動傘体(14,18)を前記固定傘体(13,17)から離れる側に戻す方向の力と、を予め定めた周期で交互に付与する押し戻し制御を実施することを特徴とする。 A first aspect of the invention consists of a stationary canopy (13, 17) fixed axially and a movable canopy (14, 18) axially movable relative to said stationary canopy (13, 17). ) and a canopy pair (11, 15), which is wound around the canopy pair (11, 15), and between the fixed canopy (13, 17) and the movable canopy (14, 18) In a transmission (10A) comprising an endless member (19) sandwiched therebetween and a power device (31, 41) for axially moving the movable canopy (14, 18), the power device (31 , 41) exert a force in a direction to push the movable canopy (14, 18) toward the fixed canopy (13, 17) and push the movable canopy (14, 18) toward the fixed canopy (13, 17). , 17) alternately in a predetermined cycle.
 この構成によれば、可動傘体を軸方向に移動させて無端部材の巻き掛け径を変化させる変速制御において、押し戻し制御によって戻し方向の力を可動傘体に周期的に付与することで、フリクションを抜くことが可能となる。すなわち、無端部材および傘体対の間のフリクションを周期的に除去しつつ、かつ可動傘体を軸方向移動させるための送りねじ機構のフリクションも周期的に除去しつつ、可動傘体を軸方向移動させて巻き掛け径を変化させることが可能となる。したがって、可動傘体を軸方向移動させる送りねじ機構にボールねじ以外の通常ねじ(台形ねじ、角ねじ等)を用いた上、アクチュエータの容量を削減してコストダウンを図った上で、変速動作をスムーズに行うことができ、アクチュエータを含む装置全体の制御性を高めることができる。 According to this configuration, in the speed change control for moving the movable canopy in the axial direction to change the winding diameter of the endless member, the force in the return direction is periodically applied to the movable canopy by the push-back control, thereby reducing the friction. can be removed. That is, while periodically removing the friction between the endless member and the canopy pair, and also periodically removing the friction of the feed screw mechanism for moving the movable canopy in the axial direction, the movable canopy is moved in the axial direction. It is possible to change the winding diameter by moving. Therefore, a normal screw (trapezoidal screw, square screw, etc.) other than a ball screw is used for the feed screw mechanism that moves the movable canopy in the axial direction, and the capacity of the actuator is reduced to reduce the cost. can be performed smoothly, and the controllability of the entire device including the actuator can be improved.
 本発明の第二の態様は、上記第一の態様において、前記押し戻し制御は、前記可動傘体(14,18)を前記固定傘体(13,17)側に押す時間(t1)が、前記可動傘体(14,18)を前記固定傘体(13,17)と反対側に戻す時間(t2)よりも長いことを特徴とする。
 この構成によれば、可動傘体は無端部材の張力により固定傘体から離れる側(戻し側)に付勢されるが、可動傘体の戻し時間を押し時間よりも短く抑えることで、可動部材が戻り過ぎることを抑制し、変速への影響を抑えることができる。
According to a second aspect of the present invention, in the first aspect, the push-back control is such that the time (t1) for pushing the movable canopy (14, 18) toward the fixed canopy (13, 17) is set to the It is characterized by being longer than the time (t2) for returning the movable canopy (14, 18) to the side opposite to the fixed canopy (13, 17).
According to this configuration, the movable canopy is urged away from the fixed canopy (return side) by the tension of the endless member. can be suppressed from returning too much, and the influence on shifting can be suppressed.
 本発明の第三の態様は、上記第一又は第二の態様において、前記動力装置(31,41)と前記可動傘体(14,18)とは、螺合部(39,49)を介して接続され、前記螺合部(39,49)には、台形ねじ、角ねじおよび三角ねじの何れかが用いられることを特徴とする。
 この構成によれば、押し戻し制御により送りねじ機構のフリクションを抜くことで、ボールねじに代わり台形ねじ等の通常ねじを用いた場合にも、ねじロックの懸案を抑えることができる。このため、通常ねじの採用によるコストダウンを図った上で、変速動作をスムーズに行うことができる。
According to a third aspect of the present invention, in the first or second aspect, the power device (31, 41) and the movable canopy (14, 18) are connected to each other via threaded portions (39, 49). The threaded portions (39, 49) are characterized by using any one of a trapezoidal thread, a square thread and a triangular thread.
According to this configuration, by removing the friction of the feed screw mechanism by the push-back control, even when a normal screw such as a trapezoidal screw is used in place of the ball screw, the problem of screw locking can be suppressed. Therefore, it is possible to reduce costs by adopting a normal screw, and to smoothly perform a gear shifting operation.
 本発明の第四の態様は、上記第三の態様において、前記押し戻し制御における前記可動傘体(14,18)を戻す方向の力は、前記螺合部(39,49)のフリクションを規定量だけ越える値に設定され、かつ前記規定量は一定に設定されることを特徴とする。
 この構成によれば、可動傘体は無端部材の張力により固定傘体から離れる側(戻し側)に付勢されるが、可動傘体を戻す力を螺合部のフリクションを規定量越える程度で一定に保つことで、可動傘体が戻り過ぎることを抑制し、変速への影響を抑えることができる。
According to a fourth aspect of the present invention, in the third aspect, the force in the direction of returning the movable canopy (14, 18) in the push-back control is the friction of the threaded portions (39, 49) by a prescribed amount. and the specified amount is set constant.
According to this configuration, the movable canopy is urged to the side (return side) away from the fixed canopy by the tension of the endless member, but the force to return the movable canopy is such that it exceeds the friction of the threaded portion by a specified amount. By keeping it constant, it is possible to prevent the movable canopy body from returning too much, thereby suppressing the influence on the speed change.
 本発明の第五の態様は、上記第一から第四の態様の何れか一つにおいて、前記可動傘体(14,18)を押す方向の力は、前記傘体対(11,15)への要求負荷に応じて可変であることを特徴とする。
 この構成によれば、アクセル開度等に基づく要求負荷(推力)に応じて、可動傘体を押す力を可変とし、変速動作をスムーズかつ迅速に行うことができる。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the force in the direction of pushing the movable canopy (14, 18) is applied to the canopy pair (11, 15). is variable according to the required load.
According to this configuration, the force for pushing the movable canopy can be varied according to the required load (thrust force) based on the degree of opening of the accelerator, and the speed change operation can be performed smoothly and quickly.
 本発明の第六の態様は、上記第一から第五の態様の何れか一つにおいて、一対の前記傘体対(11,15)に渡って前記無端部材(19)が巻き掛けられて無段変速機(10)が構成され、一対の前記傘体対(11,15)の一方は、入力装置(3)から動力が入力されるとともに、前記無段変速機(10)のレシオ制御を行い、一対の前記傘体対(11,15)の他方は、出力装置(25)に動力を出力するとともに、前記無段変速機(10)の荷重制御を行い、前記押し戻し制御は、前記荷重制御を行う側の前記傘体対(15)で行うことを特徴とする。
 この構成によれば、アクセル開度等に基づき要求負荷(推力)が頻繁に変化する荷重制御側に対し、押し戻し制御を組み込むことで、可動傘体の送りねじ機構にボールねじではない通常ねじを用いた場合にも、ねじロックの発生を抑制することができる。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the endless member (19) is wound over the pair of canopy body pairs (11, 15) to form a non-endless structure. A stepped transmission (10) is configured, and one of the pair of canopy bodies (11, 15) receives power from an input device (3) and controls the ratio of the continuously variable transmission (10). The other of the pair of canopy bodies (11, 15) outputs power to an output device (25) and controls the load of the continuously variable transmission (10), and the push-back control is performed by the load It is characterized in that it is performed by the canopy pair (15) on the control side.
According to this configuration, by incorporating push-back control on the load control side in which the required load (thrust force) frequently changes based on the accelerator opening, etc., a normal screw instead of a ball screw is used in the feed screw mechanism of the movable canopy. Even when it is used, the occurrence of screw locking can be suppressed.
 本発明の変速装置によれば、コストを抑えた上で装置全体の制御性を高めることができる。 According to the transmission of the present invention, the controllability of the entire device can be improved while keeping costs down.
実施形態のパワーユニットの側面図である。It is a side view of the power unit of the embodiment. 図1のII-II断面図であり、上記パワーユニットの主要軸に沿う断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1 and is a cross-sectional view along the main axis of the power unit. 実施形態の変速装置の構成図である。1 is a configuration diagram of a transmission according to an embodiment; FIG. 上記変速装置の制御パラメータの変化を示すタイムチャートである。4 is a time chart showing changes in control parameters of the transmission; 上記変速装置の作用を示すグラフである。It is a graph which shows the effect|action of the said transmission. 上記変速装置の制御の要部を示すフローチャートである。4 is a flow chart showing a main part of control of the transmission. 上記変速装置の制御の応用例を示すフローチャートである。4 is a flow chart showing an application example of control of the transmission.
<パワーユニット>
 図1、図2は、例えばスクータ型の自動二輪車に搭載されるスイング式のパワーユニット1を示している。パワーユニット1は、前部が車体フレーム(不図示)に上下揺動可能に支持され、後部がリアクッション(不図示)を介して車体フレームに支持される。パワーユニット1の後部には、駆動輪である後輪2が一体揺動可能に支持される。なお、以下の説明に用いる図面において、矢印FRは車両前方、矢印UPは車両上方、矢印LHは車両左方をそれぞれ示している。
<Power unit>
1 and 2 show a swing-type power unit 1 mounted on, for example, a scooter-type motorcycle. The power unit 1 has a front portion supported by a body frame (not shown) so as to be able to swing vertically, and a rear portion supported by the body frame via a rear cushion (not shown). A rear wheel 2, which is a drive wheel, is supported at the rear portion of the power unit 1 so as to be able to swing integrally therewith. In the drawings used for the following description, an arrow FR indicates the front of the vehicle, an arrow UP indicates the upper side of the vehicle, and an arrow LH indicates the left side of the vehicle.
 パワーユニット1は、内燃機関であるエンジン3を駆動源とする。エンジン3の後部左側には、Vベルト式無段変速機10を収容する伝動ケース7が一体に設けられている。以下、Vベルト式無段変速機10を単に変速機10ということがある。 The power unit 1 uses an engine 3, which is an internal combustion engine, as a drive source. A transmission case 7 that accommodates a V-belt type continuously variable transmission 10 is integrally provided on the rear left side of the engine 3 . Hereinafter, the V-belt type continuously variable transmission 10 may be simply referred to as the transmission 10 .
 エンジン3は、クランク軸4を左右方向(車幅方向)に沿わせた単気筒エンジンである。エンジン3は、クランク軸4を収容するクランクケース5と、クランクケース5の前端部から前方に向けて前上がりに突出するシリンダ6と、を備えている。クランクケース5の左側部から後方に向けて、伝動ケース7が設けられている。 The engine 3 is a single-cylinder engine in which the crankshaft 4 extends in the left-right direction (vehicle width direction). The engine 3 includes a crankcase 5 that houses the crankshaft 4, and a cylinder 6 that protrudes forward and upward from a front end portion of the crankcase 5. As shown in FIG. A transmission case 7 is provided rearward from the left side of the crankcase 5 .
 伝動ケース7の後部の車幅方向内側には、減速ギア機構8が一体的に取り付けられている。減速ギア機構8は、減速ギア群8aと、減速ギア群8aを収容するギアケース8bと、を備えている。ギアケース8bの右方(車幅方向内側)には後輪車軸2aが突出し、この後輪車軸2aに後輪2が一体回転可能に支持されている。 A reduction gear mechanism 8 is integrally attached to the inner side of the rear portion of the transmission case 7 in the vehicle width direction. The reduction gear mechanism 8 includes a reduction gear group 8a and a gear case 8b that houses the reduction gear group 8a. A rear wheel axle 2a protrudes to the right (inward in the vehicle width direction) of the gear case 8b, and the rear wheel 2 is supported by the rear wheel axle 2a so as to rotate integrally therewith.
 エンジン3のクランク軸4の回転動力は、Vベルト式無段変速機10に入力され、Vベルト式無段変速機10で変速がなされる。Vベルト式無段変速機10で変速後の回転動力は、遠心クラッチ23および減速ギア機構8を介して、後輪車軸2aひいては後輪2に出力される。以下、遠心クラッチ23および減速ギア機構8をVベルト式無段変速機10の出力装置25と総称することがある。Vベルト式無段変速機10の入力装置はエンジン3である。 The rotational power of the crankshaft 4 of the engine 3 is input to the V-belt type continuously variable transmission 10, and the V-belt type continuously variable transmission 10 changes gears. After the V-belt type continuously variable transmission 10 has changed speed, the rotational power is output to the rear wheel axle 2a and the rear wheels 2 via the centrifugal clutch 23 and the reduction gear mechanism 8 . Hereinafter, the centrifugal clutch 23 and the reduction gear mechanism 8 may be collectively referred to as the output device 25 of the V-belt type continuously variable transmission 10 . An input device of the V-belt type continuously variable transmission 10 is the engine 3 .
<Vベルト式無段変速機>
 Vベルト式無段変速機10は、駆動力伝達とともに変速を行う。Vベルト式無段変速機10は、変速を制御する駆動プーリ(傘体対)11と、ベルト推力を制御する従動プーリ(傘体対)15と、に渡って無端状のVベルト(無端部材)19を巻き掛ける。従動プーリ15には、遠心クラッチ23が連結されている。従動プーリ15の回転数が上昇すると、遠心クラッチ23が接続状態となり、後輪2側に駆動力を伝達可能とする。エンジン3のアイドリング時等の低回転時には、遠心クラッチ23が切断状態となり、後輪2側への駆動力の伝達を遮断する。
<V-belt type continuously variable transmission>
The V-belt type continuously variable transmission 10 performs speed change while transmitting driving force. The V-belt type continuously variable transmission 10 includes an endless V-belt (endless member ) 19. A centrifugal clutch 23 is connected to the driven pulley 15 . When the rotational speed of the driven pulley 15 increases, the centrifugal clutch 23 is engaged, enabling transmission of driving force to the rear wheel 2 side. The centrifugal clutch 23 is disengaged when the engine 3 is idling at a low speed, and the transmission of the driving force to the rear wheels 2 is interrupted.
 Vベルト19は、駆動プーリ11の一対のプーリ半体13,14の間のV溝11aと、従動プーリ15の一対のプーリ半体17,18の間のV溝15aと、のそれぞれに挟み込まれる。Vベルト19は、断面台形状をなし(図2参照)、Vベルト19両側の傾斜した一対のベルト側面19aを、駆動プーリ11および従動プーリ15の各V溝11a,15aに臨むプーリ円錐面13a,14a,17a,18aに摩擦接触させる。これにより、Vベルト19が空滑りすることなく、駆動プーリ11および従動プーリ15の間で駆動力を伝達可能とする。 The V-belt 19 is sandwiched between the V-groove 11a between the pair of pulley halves 13 and 14 of the drive pulley 11 and the V-groove 15a between the pair of pulley halves 17 and 18 of the driven pulley 15. . The V-belt 19 has a trapezoidal cross-section (see FIG. 2). , 14a, 17a, 18a. Thereby, the driving force can be transmitted between the driving pulley 11 and the driven pulley 15 without the V-belt 19 slipping.
 Vベルト式無段変速機10は、クランク軸4の左端部と同軸に配置され、クランク軸4の左方に一体に連なる駆動軸12に支持される駆動プーリ(一次プーリ)11と、駆動軸12と平行かつ駆動軸12の後方に離間した従動軸16と同軸に配置され、従動軸16に支持される従動プーリ(二次プーリ)15と、駆動プーリ11および従動プーリ15に渡って巻き掛けられる無端状のVベルト19と、を備えている。従動軸16の車幅方向内側には、Vベルト式無段変速機10の出力軸21が一体に連なっている。 The V-belt type continuously variable transmission 10 is arranged coaxially with the left end of the crankshaft 4, and includes a drive pulley (primary pulley) 11 supported by a drive shaft 12 integrally connected to the left of the crankshaft 4, and a drive shaft. A driven pulley (secondary pulley) 15 that is arranged coaxially with a driven shaft 16 that is parallel to 12 and spaced behind the drive shaft 12 and that is supported by the driven shaft 16 , and is wrapped around the drive pulley 11 and the driven pulley 15 . and an endless V-belt 19. The output shaft 21 of the V-belt type continuously variable transmission 10 is integrally connected to the inner side of the driven shaft 16 in the vehicle width direction.
 駆動プーリ11は、車幅方向外側に位置する固定プーリ半体(固定傘体)13と、車幅方向内側に位置する可動プーリ半体(可動傘体)13と、を備えている。固定プーリ半体13は、駆動軸12に対して軸方向移動不能に支持されている。可動プーリ半体14は、駆動軸12に対して軸方向移動可能に支持されている。 The drive pulley 11 includes a fixed pulley half (fixed canopy) 13 located on the outside in the vehicle width direction and a movable pulley half (movable canopy) 13 located on the inside in the vehicle width direction. The fixed pulley half 13 is supported axially immovably with respect to the drive shaft 12 . The movable pulley half 14 is supported axially movably with respect to the drive shaft 12 .
 固定プーリ半体13は、軸方向で可動プーリ半体14側を向く側面に、外周側ほど可動プーリ半体14から離間するように傾斜した固定プーリ円錐面13aを有している。
 可動プーリ半体14は、軸方向で固定プーリ半体13側を向く側面に、外周側ほど固定プーリ半体13から離間するように傾斜した可動プーリ円錐面14aを有している。
The fixed pulley half 13 has a fixed pulley conical surface 13a on a side surface facing the movable pulley half 14 in the axial direction, the fixed pulley conical surface 13a being inclined away from the movable pulley half 14 toward the outer peripheral side.
The movable pulley half 14 has a movable pulley conical surface 14a on a side surface facing the fixed pulley half 13 in the axial direction, which is inclined away from the fixed pulley half 13 toward the outer circumference.
 従動プーリ15は、車幅方向内側に位置する固定プーリ半体(固定傘体)17と、車幅方向外側に位置する可動プーリ半体(可動傘体)18と、を備えている。固定プーリ半体17は、従動軸16に対して軸方向移動不能に支持されている。可動プーリ半体18は、従動軸16に対して軸方向移動可能に支持されている。 The driven pulley 15 includes a fixed pulley half (fixed canopy) 17 located inside in the vehicle width direction, and a movable pulley half (movable canopy) 18 located outside in the vehicle width direction. The fixed pulley half 17 is supported axially immovably with respect to the driven shaft 16 . The movable pulley half 18 is supported axially movably with respect to the driven shaft 16 .
 固定プーリ半体17は、軸方向で可動プーリ半体18側を向く側面に、外周側ほど可動プーリ半体18から離間するように傾斜した固定プーリ円錐面17aを有している。
 可動プーリ半体18は、軸方向で固定プーリ半体17側を向く側面に、外周側ほど固定プーリ半体17から離間するように傾斜した可動プーリ円錐面18aを有している。
The fixed pulley half 17 has a fixed pulley conical surface 17a on the side facing the movable pulley half 18 in the axial direction, which is inclined away from the movable pulley half 18 toward the outer circumference.
The movable pulley half 18 has a movable pulley conical surface 18a on a side surface facing the fixed pulley half 17 in the axial direction, which is inclined away from the fixed pulley half 17 toward the outer circumference.
 実施形態のVベルト式無段変速機10は、電子制御式CVT(Continuously Variable Transmission)として構成されている。電子制御式CVTは、アクセル開度に対するレシオ(変速比)を任意に決定する等の自由度があり、例えば走行モードを切り替え可能としたり、マニュアルモードによる疑似的な有段変速を可能としたりすることができる。 The V-belt type continuously variable transmission 10 of the embodiment is configured as an electronically controlled CVT (Continuously Variable Transmission). The electronically controlled CVT has a degree of freedom such as arbitrarily determining the ratio (gear ratio) to the accelerator opening. be able to.
<変速装置>
 図2、図3を参照し、実施形態の変速装置10Aは、Vベルト式無段変速機10と、駆動プーリ11を駆動する一次側アクチュエータ(動力装置)31と、従動プーリ15を駆動する二次側アクチュエータ(動力装置)41と、各アクチュエータ31,41の駆動に係る各種情報を検出するセンサー類51と、センサー類51の検出情報に基づき各アクチュエータ31,41を駆動制御する変速制御部61と、を備えている。
<Transmission device>
2 and 3, the transmission 10A of the embodiment includes a V-belt type continuously variable transmission 10, a primary side actuator (power unit) 31 that drives a driving pulley 11, and a secondary side that drives a driven pulley 15. A secondary actuator (power unit) 41, sensors 51 for detecting various information related to the driving of the actuators 31, 41, and a shift control unit 61 for driving and controlling the actuators 31, 41 based on the information detected by the sensors 51. and have.
 図2を参照し、一次側アクチュエータ31は、駆動源となる電気モータ32と、電気モータ32が出力する回転動力を減速する減速ギア機構33と、を備えている。減速ギア機構33は、電気モータ32の駆動軸32aに一体に設けられる駆動ギア33aと、駆動ギア33aが噛み合う第一アイドルギア33bと、第一アイドルギア33bと同軸の第一小径ギア33cと、第一小径ギア33cが噛み合う第二アイドルギア33dと、第二アイドルギア33dと同軸の第二小径ギア33eと、各ギア33a~33eを収容するギアケース33fと、を備えている。例えば、第二アイドルギア33dおよび第二小径ギア33eを支持する中継軸33e1の端部に、後述する角度センサー53が取り付けられている。 With reference to FIG. 2, the primary side actuator 31 includes an electric motor 32 that serves as a drive source, and a reduction gear mechanism 33 that reduces the rotation power output by the electric motor 32 . The reduction gear mechanism 33 includes a drive gear 33a provided integrally with a drive shaft 32a of the electric motor 32, a first idle gear 33b with which the drive gear 33a meshes, a first small diameter gear 33c coaxial with the first idle gear 33b, It has a second idle gear 33d with which the first small diameter gear 33c meshes, a second small diameter gear 33e coaxial with the second idle gear 33d, and a gear case 33f that houses the gears 33a to 33e. For example, an angle sensor 53, which will be described later, is attached to the end of the relay shaft 33e1 that supports the second idle gear 33d and the second small diameter gear 33e.
 減速ギア機構33の最終ギア(出力ギア)である第二小径ギア33eには、駆動プーリ11と同軸に配置された比較的大径の被動ギア34が噛み合う。被動ギア34は、駆動プーリ11の車幅方向内側に離間して配置されている。可動プーリ半体14には、駆動軸12を挿通する円筒状のハブ部14bが一体に備えられている。被動ギア34には、同じく駆動軸12を挿通する円筒状の支持壁34aが一体に備えられている。被動ギア34の支持壁34aと可動プーリ半体14のハブ部14bとは、互いに径方向でオフセットし、かつ互いに軸方向位置をラップさせている。支持壁34aとハブ部14bとは、ラジアルボールベアリング35を介して互いに相対回転可能に連結されている。 A second small diameter gear 33e, which is the final gear (output gear) of the reduction gear mechanism 33, meshes with a relatively large diameter driven gear 34 arranged coaxially with the drive pulley 11. The driven gear 34 is spaced apart inside the drive pulley 11 in the vehicle width direction. The movable pulley half 14 is integrally provided with a cylindrical hub portion 14b through which the drive shaft 12 is inserted. The driven gear 34 is also integrally provided with a cylindrical support wall 34a through which the drive shaft 12 is inserted. The support wall 34a of the driven gear 34 and the hub portion 14b of the movable pulley half 14 are radially offset from each other and overlap each other in axial position. The support wall 34a and the hub portion 14b are connected to each other via a radial ball bearing 35 so as to be relatively rotatable.
 ラジアルボールベアリング35は、可動プーリ半体14がV溝11aを広げる側(車幅方向内側)に押される方向の軸方向荷重を支持可能である。逆に、ラジアルボールベアリング35は、被動ギア34が車幅方向外側に移動することによる軸方向荷重を可動プーリ半体14に伝達可能である。被動ギア34には、駆動軸12を挿通する円筒状のカラー壁36が一体に備えられている。カラー壁36の内周側には、同じく円筒状の内周側カラー壁37が配置されている。内周側カラー壁37は、例えば伝動ケース7に支持されている。内周側カラー壁37は、駆動軸12を挿通し、ラジアルボールベアリング38を介して駆動軸12を支持している。 The radial ball bearing 35 can support an axial load in the direction in which the movable pulley half 14 is pushed toward the side of widening the V-groove 11a (inward in the vehicle width direction). Conversely, the radial ball bearing 35 can transmit an axial load to the movable pulley half 14 due to the driven gear 34 moving outward in the vehicle width direction. The driven gear 34 is integrally provided with a cylindrical collar wall 36 through which the drive shaft 12 is inserted. A similarly cylindrical inner peripheral collar wall 37 is arranged on the inner peripheral side of the collar wall 36 . The inner collar wall 37 is supported by the transmission case 7, for example. The inner collar wall 37 passes through the drive shaft 12 and supports the drive shaft 12 via radial ball bearings 38 .
 内周側カラー壁37の外周には、雄ねじ山(不図示)が形成されている。この雄ねじ山に螺合する雌ねじ山(不図示)が、被動ギア34のカラー壁36の内周に形成されている。これら両カラー壁36,37の間に、被動ギア34の回転動を可動プーリ半体14の軸方向移動に変換する一次側送りねじ機構39が構成されている。一次側送りねじ機構39の各ねじ山は、ボールねじ以外の通常ねじであり、例えば一条または複数条の台形ねじが好適であるが、台形ねじに代わり角ねじおよび三角ねじでもよい。被動ギア34側に雄ねじ山が形成され、可動プーリ半体14側に雌ねじ山が形成されてもよい。 A male thread (not shown) is formed on the outer periphery of the inner peripheral collar wall 37 . A female thread (not shown) that is screwed into the male thread is formed on the inner periphery of the collar wall 36 of the driven gear 34 . A primary side feed screw mechanism 39 for converting the rotational movement of the driven gear 34 into the axial movement of the movable pulley half 14 is formed between the collar walls 36 and 37 . Each screw thread of the primary side feed screw mechanism 39 is a normal screw other than a ball screw. For example, a single or multiple trapezoidal screw is preferable, but a square screw and a triangular screw may be used instead of the trapezoidal screw. A male thread may be formed on the driven gear 34 side, and a female thread may be formed on the movable pulley half body 14 side.
 なお、図2では、減速ギア機構33の出力ギア(第二小径ギア33e)が被動ギア34の噛み合い位置を軸方向で移動可能としている。被動ギア34は、送りねじ機構39の作用により軸方向移動可能な移動体34bを構成している。移動体34bは、カラー壁36の外周を巻回するコイルバネ34cによって、V溝11aを狭める側(車幅方向外側)に付勢されている。 In FIG. 2, the output gear (second small-diameter gear 33e) of the reduction gear mechanism 33 can move the meshing position of the driven gear 34 in the axial direction. The driven gear 34 constitutes a moving body 34b that can move in the axial direction by the action of the feed screw mechanism 39. As shown in FIG. The moving body 34b is urged toward the narrowing side of the V-groove 11a (outward in the vehicle width direction) by a coil spring 34c wound around the outer periphery of the collar wall 36. As shown in FIG.
 一方、図3に模式的に示すように、被動ギア34と別体の移動体34bを備え、この移動体34bが送りねじ機構39の作用により軸方向移動する構成でもよい。移動体34bには、支持壁34aと、カラー壁36と、が一体に備えられている。被動ギア34は軸方向で不動であり、この被動ギア34に内周側カラー壁37が一体に備えられている。両カラー壁36,37の間に、送りねじ機構39が構成されている。移動体34bは、被動ギア34に対し、コイルバネ34cによってV溝11aを狭める側(車幅方向外側)に付勢されている。 On the other hand, as schematically shown in FIG. 3, a configuration may be adopted in which a moving body 34b separate from the driven gear 34 is provided, and the moving body 34b is moved in the axial direction by the action of the feed screw mechanism 39. A support wall 34a and a collar wall 36 are integrally provided on the moving body 34b. The driven gear 34 is axially immovable, and the driven gear 34 is integrally provided with an inner peripheral collar wall 37 . A feed screw mechanism 39 is configured between both collar walls 36 and 37 . The movable body 34b is urged toward the driven gear 34 by a coil spring 34c to narrow the V-groove 11a (outward in the vehicle width direction).
 図2に戻り、二次側アクチュエータ41は、駆動源となる電気モータ42と、電気モータ42が出力する回転動力を減速する減速ギア機構43と、を備えている。減速ギア機構43は、電気モータ42の駆動軸42aに一体に設けられる駆動ギア43aと、駆動ギア43aが噛み合う第一アイドルギア43bと、第一アイドルギア43bと同軸の第一小径ギア43cと、第一小径ギア43cが噛み合う第二アイドルギア43dと、第二アイドルギア43dと同軸の第二小径ギア43eと、各ギア43a~43eを収容するギアケース43fと、を備えている。例えば、第二アイドルギア43dおよび第二小径ギア43eを支持する中継軸43e1の端部に、後述する角度センサー55が取り付けられている。 Returning to FIG. 2, the secondary side actuator 41 includes an electric motor 42 that serves as a drive source, and a reduction gear mechanism 43 that reduces the rotation power output by the electric motor 42 . The reduction gear mechanism 43 includes a drive gear 43a provided integrally with the drive shaft 42a of the electric motor 42, a first idle gear 43b with which the drive gear 43a meshes, a first small diameter gear 43c coaxial with the first idle gear 43b, It has a second idle gear 43d with which the first small diameter gear 43c meshes, a second small diameter gear 43e coaxial with the second idle gear 43d, and a gear case 43f that houses the gears 43a to 43e. For example, an angle sensor 55, which will be described later, is attached to the end of the relay shaft 43e1 that supports the second idle gear 43d and the second small diameter gear 43e.
 減速ギア機構43の最終ギア(出力ギア)である第二小径ギア43eには、従動プーリ15と同軸に配置された比較的大径の被動ギア44が噛み合う。被動ギア44は、従動プーリ15の車幅方向外側に離間して配置されている。可動プーリ半体18には、従動軸16を挿通する円筒状のハブ部18bが一体に備えられている。被動ギア44には、同じく従動軸16を挿通する円筒状の支持壁44aが一体に備えられている。被動ギア44の支持壁44aと可動プーリ半体18のハブ部18bとは、互いに径方向でオフセットし、かつ互いに軸方向位置をラップさせている。支持壁44aとハブ部18bとは、ラジアルボールベアリング45を介して互いに相対回転可能に連結されている。 A relatively large-diameter driven gear 44 arranged coaxially with the driven pulley 15 meshes with the second small-diameter gear 43 e that is the final gear (output gear) of the reduction gear mechanism 43 . The driven gear 44 is spaced apart from the driven pulley 15 in the vehicle width direction. The movable pulley half 18 is integrally provided with a cylindrical hub portion 18b through which the driven shaft 16 is inserted. The driven gear 44 is also integrally provided with a cylindrical support wall 44a through which the driven shaft 16 is inserted. The support wall 44a of the driven gear 44 and the hub portion 18b of the movable pulley half 18 are radially offset from each other and axially overlap each other. The support wall 44a and the hub portion 18b are connected to each other via a radial ball bearing 45 so as to be relatively rotatable.
 ラジアルボールベアリング45は、可動プーリ半体18がV溝15aを広げる側(車幅方向外側)に押される方向の軸方向荷重を支持可能である。逆に、ラジアルボールベアリング45は、被動ギア44が車幅方向内側に移動することによる軸方向荷重を可動プーリ半体18に伝達可能である。被動ギア44には、従動軸16を挿通する円筒状のカラー壁46が一体に備えられている。カラー壁46の内周側には、同じく円筒状の内周側カラー壁47が配置されている。内周側カラー壁47は、例えば伝動ケース7に支持されている。内周側カラー壁47は、従動軸16を挿通し、ラジアルボールベアリング48を介して従動軸16に支持されている。 The radial ball bearing 45 can support an axial load in the direction in which the movable pulley half 18 is pushed to the side (outer in the vehicle width direction) that widens the V-groove 15a. Conversely, the radial ball bearing 45 can transmit an axial load to the movable pulley half 18 due to the driven gear 44 moving inward in the vehicle width direction. The driven gear 44 is integrally provided with a cylindrical collar wall 46 through which the driven shaft 16 is inserted. A similarly cylindrical inner peripheral collar wall 47 is arranged on the inner peripheral side of the collar wall 46 . The inner collar wall 47 is supported by the transmission case 7, for example. The driven shaft 16 is passed through the inner collar wall 47 and supported by the driven shaft 16 via radial ball bearings 48 .
 内周側カラー壁47の外周には、雄ねじ山(不図示)が形成されている。この雄ねじ山に螺合する雌ねじ山(不図示)が、被動ギア44のカラー壁46の内周に形成されている。これら両カラー壁46,47の間に、被動ギア44の回転動を可動プーリ半体18の軸方向移動に変換する二次側送りねじ機構49が構成されている。二次側送りねじ機構49の各ねじ山は、ボールねじ以外の通常ねじであり、例えば一条または複数条の台形ねじが好適であるが、台形ねじに代わり角ねじおよび三角ねじでもよい。被動ギア44側に雄ねじ山が形成され、可動プーリ半体18側に雌ねじ山が形成される構成でもよい。 A male thread (not shown) is formed on the outer periphery of the inner peripheral collar wall 47 . A female thread (not shown) that is screwed into the male thread is formed on the inner periphery of the collar wall 46 of the driven gear 44 . A secondary side feed screw mechanism 49 is configured between these collar walls 46 and 47 to convert the rotational movement of the driven gear 44 into the axial movement of the movable pulley half 18 . Each screw thread of the secondary side feed screw mechanism 49 is a normal screw other than a ball screw. For example, a single or multiple trapezoidal screw is preferable, but a square screw and a triangular screw may be used instead of the trapezoidal screw. A configuration in which a male thread is formed on the driven gear 44 side and a female thread is formed on the movable pulley half body 18 side may be employed.
 なお、図2では、減速ギア機構43の出力ギア(第二小径ギア43e)が被動ギア44の噛み合い位置を軸方向で移動可能としている。被動ギア44は、送りねじ機構49の作用により軸方向移動可能な移動体44bを構成している。移動体44bは、カラー壁46の外周を巻回するコイルバネ44cによって、V溝15aを狭める側(車幅方向内側)に付勢されている。 In FIG. 2, the output gear (second small-diameter gear 43e) of the reduction gear mechanism 43 can move the meshing position of the driven gear 44 in the axial direction. The driven gear 44 constitutes a moving body 44b that is axially movable by the action of the feed screw mechanism 49. As shown in FIG. A coil spring 44c wound around the outer periphery of the collar wall 46 urges the movable body 44b toward the narrower side (inward in the vehicle width direction) of the V-groove 15a.
 一方、図3に模式的に示すように、被動ギア44と別体の移動体44bを備え、この移動体44bが送りねじ機構49の作用により軸方向移動する構成でもよい。移動体44bには、支持壁44aと、カラー壁46と、が一体に備えられている。被動ギア44は軸方向で不動であり、この被動ギア44に内周側カラー壁47が一体に備えられている。両カラー壁46,47の間に、送りねじ機構49が構成されている。移動体44bは、被動ギア44に対し、コイルバネ44cによってV溝15aを狭める側(車幅方向内側)に付勢されている。 On the other hand, as schematically shown in FIG. 3, a configuration may be adopted in which a moving body 44b separate from the driven gear 44 is provided, and the moving body 44b is moved in the axial direction by the action of the feed screw mechanism 49. A support wall 44a and a collar wall 46 are integrally provided on the moving body 44b. The driven gear 44 is axially immovable, and the driven gear 44 is integrally provided with an inner peripheral collar wall 47 . A feed screw mechanism 49 is constructed between both collar walls 46 and 47 . The movable body 44b is urged toward the driven gear 44 by a coil spring 44c toward the side of narrowing the V-groove 15a (inward in the vehicle width direction).
 図3を参照し、センサー類51は、例えば駆動プーリ11の回転数を検出する第一回転数センサー52(実施形態ではエンジン回転数センサーでもある)、可動プーリ半体14の軸方向位置を検出する第一プーリ位置センサー53(実施形態では中継ギアの回転角度を検出する角度センサー)、従動プーリ15の回転数を検出する第二回転数センサー54、可動プーリ半体18の軸方向位置を検出する第二プーリ位置センサー55(実施形態では中継ギアの回転角度を検出する角度センサー)、車速を検出する車速センサ―56(出力軸21の回転数を検出する回転数センサーでもよい)、アクセル開度を検出するアクセル開度センサー57(エンジン3が内燃機関の場合はスロットル開度センサー)、等を備えている。なお、センサー類51には、走行モードスイッチおよびマニュアル変速スイッチ等のスイッチ類58を含む。 Referring to FIG. 3 , sensors 51 include, for example, a first rotation speed sensor 52 (also an engine rotation speed sensor in this embodiment) that detects the rotation speed of the drive pulley 11, and an axial position of the movable pulley half 14. A first pulley position sensor 53 (in the embodiment, an angle sensor that detects the rotation angle of the intermediate gear), a second rotation speed sensor 54 that detects the rotation speed of the driven pulley 15, and an axial position of the movable pulley half 18 is detected. A second pulley position sensor 55 (in the embodiment, an angle sensor that detects the rotation angle of the intermediate gear), a vehicle speed sensor that detects the vehicle speed - 56 (a rotation speed sensor that detects the rotation speed of the output shaft 21 may be used), accelerator open An accelerator opening sensor 57 (throttle opening sensor if the engine 3 is an internal combustion engine) for detecting the degree of acceleration is provided. The sensors 51 include switches 58 such as a driving mode switch and a manual shift switch.
 センサー類51の検出情報は、ECU(Electronic Control Unit)である変速制御部61に入力される。変速制御部61は、制御項目を決定して各アクチュエータ31,41の電気モータ32,42を駆動させ、駆動プーリ11および従動プーリ15の各可動プーリ半体14,18の軸方向位置とその変化速度を制御する。 The information detected by the sensors 51 is input to a shift control section 61, which is an ECU (Electronic Control Unit). The shift control unit 61 determines control items to drive the electric motors 32, 42 of the actuators 31, 41, and controls the axial positions of the movable pulley halves 14, 18 of the drive pulley 11 and the driven pulley 15 and their changes. Control speed.
 変速制御部61の制御により、一次側アクチュエータ31および二次側アクチュエータ41の各電気モータ32,42に制御電流が流れ、各電気モータ32,42が回転駆動する。各電気モータ32,42のトルクは、それぞれ減速ギア機構33,43を介して、対応する可動プーリ半体14,18と同軸の被動ギア34,44まで伝達される。このトルクは、被動ギア34,44と可動プーリ半体14,18との間に構成された送りねじ機構39,49を介して、軸方向荷重に変換される。この軸方向荷重により、可動プーリ半体14,18が軸方向移動して変速を実施する。 A control current flows through the electric motors 32 and 42 of the primary side actuator 31 and the secondary side actuator 41 under the control of the shift control section 61, and the electric motors 32 and 42 are rotationally driven. The torque of each electric motor 32,42 is transmitted via a reduction gear mechanism 33,43 respectively to a driven gear 34,44 coaxial with the corresponding movable pulley half 14,18. This torque is converted into an axial load via a feed screw mechanism 39,49 constructed between the driven gears 34,44 and the movable pulley halves 14,18. This axial load causes the movable pulley halves 14, 18 to move in the axial direction to implement the speed change.
 Vベルト式無段変速機10は油脂による潤滑がないため、送りねじ機構49のフリクションを低下させることは、Vベルト式無段変速機10の作動性を向上させる点で効果が高い。一方、フリクション低下のためにボールねじを用いると、コストアップになるという課題がある。 Since the V-belt type continuously variable transmission 10 is not lubricated by oil, reducing the friction of the feed screw mechanism 49 is highly effective in improving the operability of the V-belt type continuously variable transmission 10 . On the other hand, if a ball screw is used to reduce friction, there is a problem of increased cost.
 実施形態では、送りねじ機構39,49に台形ねじを用いてコストアップを抑える一方、後述する変速制御により二次側アクチュエータ31,41を駆動させることで、可動プーリ半体14,18の推力とモータ電流との相関に一意性を持たせている。これにより、パワーユニット1を搭載する車両の走行性能および燃費の維持を図っている。 In the embodiment, trapezoidal screws are used for the feed screw mechanisms 39 and 49 to suppress cost increases, while the secondary side actuators 31 and 41 are driven by speed change control, which will be described later. Uniqueness is given to the correlation with the motor current. This is intended to maintain the running performance and fuel efficiency of the vehicle in which the power unit 1 is mounted.
 台形ねじは、雄ねじ山と雌ねじ山との間にクリアランスがあり、外力によって両ねじ山の軸心に傾きが生じることがある。この状態で送りねじ機構39,49を回転させると、両ねじ山同士が噛み込んでロック(固着)する虞がある。実施形態では、後述する変速制御により送りねじ機構39,49のフリクションを抜きながら回転させることが可能であり、送りねじ機構39,49のロックの懸念を抑えている。 Trapezoidal threads have a clearance between the male and female threads, and an external force can tilt the axes of both threads. If the feed screw mechanisms 39 and 49 are rotated in this state, there is a risk that both screw threads will be caught and locked (fixed). In the embodiment, it is possible to rotate the feed screw mechanisms 39 and 49 while removing friction by speed change control, which will be described later, thereby suppressing the concern that the feed screw mechanisms 39 and 49 may be locked.
 以下、変速装置10Aの基本的な制御について説明する。
 まず、アクセル開度およびその変位速度と、ドリブン回転数(ひいては車速)と、に基づき、目標ドライブ回転数を算出する。次に、目標ドライブ回転数と現在のドライブ回転数との差分を求め、一次側アクチュエータ31のモータ制御指令値(DUTY)を決定する。これにより、レシオ制御用である駆動プーリ11を作動させて、車両の加減速を制御する。
Basic control of the transmission 10A will be described below.
First, the target drive rotation speed is calculated based on the accelerator opening, its displacement speed, and the driven rotation speed (and thus the vehicle speed). Next, the difference between the target drive rotation speed and the current drive rotation speed is obtained, and the motor control command value (DUTY) for the primary side actuator 31 is determined. As a result, the drive pulley 11 for ratio control is actuated to control the acceleration and deceleration of the vehicle.
 駆動プーリ11の可動範囲を判定するため、駆動プーリ11には、可動プーリ半体14の軸方向位置を検出するプーリ位置センサー53が設けられている。同様に、従動プーリ15には、可動プーリ半体18の軸方向位置を検出するプーリ位置センサー55が設けられている。
 なお、選択された変速モードに最適化した燃料噴射および点火制御を行うため、変速制御部61から不図示のエンジンコントロール部に対して現在の変速モードを通知してもよい。
In order to determine the movable range of the drive pulley 11 , the drive pulley 11 is provided with a pulley position sensor 53 that detects the axial position of the movable pulley half 14 . Similarly, the driven pulley 15 is provided with a pulley position sensor 55 that detects the axial position of the movable pulley half 18 .
In order to perform fuel injection and ignition control optimized for the selected shift mode, the shift control section 61 may notify an engine control section (not shown) of the current shift mode.
 車両の発進時にエンジン回転数を上昇させると、従動プーリ15側の遠心クラッチ23が接続状態に変化し、後輪2に駆動力が伝達される。このとき、遠心クラッチ23が半クラッチを経ることで、車両をスムーズに発進させる。遠心クラッチ23が接続し始める回転数では、Vベルト19は、駆動プーリ11の最も内周側に巻き掛けられ、かつ従動プーリ15の最も外周側に巻き掛けられた状態にある。駆動プーリ11は、可動プーリ半体14が固定プーリ半体13から離れてV溝11a幅を広げ、ベルト巻き掛け径を小さくしている。従動プーリ15は、可動プーリ半体18が固定プーリ半体17に近付いてV溝15a幅を狭め、ベルト巻き掛け径を大きくしている。以上により、Vベルト式無段変速機10の減速比は最も大きく(低速側)となる。 When the engine speed is increased when the vehicle starts moving, the centrifugal clutch 23 on the driven pulley 15 side changes to the connected state, and the driving force is transmitted to the rear wheels 2 . At this time, the centrifugal clutch 23 is half-clutched, thereby smoothly starting the vehicle. At the rotational speed at which the centrifugal clutch 23 begins to engage, the V-belt 19 is wound on the innermost side of the drive pulley 11 and on the outermost side of the driven pulley 15 . In the drive pulley 11, the movable pulley half 14 is separated from the fixed pulley half 13 to widen the width of the V-groove 11a and reduce the winding diameter of the belt. In the driven pulley 15, the movable pulley half 18 approaches the fixed pulley half 17 to narrow the width of the V groove 15a and increase the belt winding diameter. As described above, the speed reduction ratio of the V-belt type continuously variable transmission 10 becomes the largest (low speed side).
 エンジン回転数が上昇を続けると、一次側アクチュエータ31の作動により駆動プーリ11の可動プーリ半体14が軸方向移動し、可動プーリ半体14と固定プーリ半体13とを互いに接近させて、Vベルト19の巻き掛け位置を外周側に変化させる。Vベルト19の長さは一定のため、駆動プーリ11側のベルト巻き掛け径が大きくなると、従動プーリ15側のベルト巻き掛け径が小さくなる。従動プーリ15では、二次側アクチュエータ41の作動により可動プーリ半体18が軸方向移動し、可動プーリ半体18と固定プーリ半体17とを互いに離間させて、Vベルト19の巻き掛け位置を内周側に変化させる。以上により、Vベルト式無段変速機10の減速比は車両発進時よりも小さくなる(高速側となる)。 As the engine speed continues to rise, the primary side actuator 31 operates to move the movable pulley half 14 of the drive pulley 11 in the axial direction, bringing the movable pulley half 14 and the fixed pulley half 13 closer together, thereby causing the V The winding position of the belt 19 is changed to the outer peripheral side. Since the length of the V-belt 19 is constant, when the belt winding diameter on the drive pulley 11 side increases, the belt winding diameter on the driven pulley 15 side decreases. In the driven pulley 15, the movable pulley half 18 is axially moved by the operation of the secondary side actuator 41, the movable pulley half 18 and the fixed pulley half 17 are separated from each other, and the winding position of the V-belt 19 is adjusted. Change to the inner circumference side. As a result, the speed reduction ratio of the V-belt type continuously variable transmission 10 becomes smaller than that when the vehicle starts (becomes on the high speed side).
 エンジン回転数がさらに上昇すると、一次側アクチュエータ31の作動により駆動プーリ11の可動プーリ半体14がさらに軸方向移動し、可動プーリ半体14と固定プーリ半体13とをさらに接近させて、Vベルト19の巻き掛け位置を最も外周側に向けて変化させる。従動プーリ15では、二次側アクチュエータ41の作動により可動プーリ半体18がさらに軸方向移動し、可動プーリ半体18と固定プーリ半体17とをさらに接近させて、Vベルト19の巻き掛け位置を最も内周側に向けて変化させる。以上により、Vベルト式無段変速機10の減速比はより一層小さくなる(高速側となる)。 When the engine speed further increases, the movable pulley half 14 of the drive pulley 11 moves further in the axial direction due to the operation of the primary side actuator 31, and the movable pulley half 14 and the fixed pulley half 13 are further brought closer to each other. The winding position of the belt 19 is changed toward the outermost side. In the driven pulley 15, the movable pulley half 18 is moved further in the axial direction by the operation of the secondary side actuator 41, and the movable pulley half 18 and the fixed pulley half 17 are further brought closer to the winding position of the V-belt 19. toward the innermost circumference. As a result, the speed reduction ratio of the V-belt type continuously variable transmission 10 is further reduced (on the high speed side).
 なお、Vベルト19は、高温時には低温時よりも摩耗しやすくなるので、Vベルト式無段変速機10では、Vベルト19を冷却するために、例えば伝動ケース7の前部に外気を取り入れるダクトを備えている。また、例えば駆動プーリ11の側面部に冷却ファン13bを備え、駆動プーリ11の回転に伴いケース内で外気を循環可能としている。ケース内に取り入れた外気は、ケース内を循環してVベルト19等を冷却する。ケース内で熱を帯びた外気は、例えば伝動ケース7の後部に備えた排気口よりケース外に排出される。 Since the V-belt 19 is more likely to wear at high temperatures than at low temperatures, the V-belt type continuously variable transmission 10 has a duct for taking in outside air, for example, in the front portion of the transmission case 7 to cool the V-belt 19. It has Further, for example, a cooling fan 13b is provided on the side surface of the drive pulley 11, so that outside air can be circulated inside the case as the drive pulley 11 rotates. Outside air taken into the case circulates in the case to cool the V-belt 19 and the like. The outside air heated inside the case is discharged to the outside of the case, for example, through an exhaust port provided at the rear portion of the transmission case 7 .
 Vベルト式無段変速機10では、一対のベルト側面19aと各プーリ円錐面13a,14a,17a,18aとが互いに摩擦接触することで、駆動プーリ11および従動プーリ15間の動力伝達を可能とする。一方、Vベルト19と各プーリ11,15との間には、Vベルト19の巻き取り位置および繰り出し位置の各々で、Vベルト19と各プーリ11,15とが摺動することによる摩擦抵抗が生じる。また、変速時にベルト巻き掛け径が変化する際にも、Vベルト19と各プーリ11,15とが摺動することによる摩擦抵抗が生じる。したがって、各プーリ11,15の推力(Vベルト19への押し付け力)を適切に調整することは、走行性能を良好に維持し、かつ燃費を良好に維持することへの影響が大きい。 In the V-belt type continuously variable transmission 10, the pair of belt side surfaces 19a and the respective pulley conical surfaces 13a, 14a, 17a, 18a are in frictional contact with each other, thereby enabling power transmission between the drive pulley 11 and the driven pulley 15. do. On the other hand, between the V-belt 19 and the pulleys 11 and 15, there is frictional resistance due to sliding between the V-belt 19 and the pulleys 11 and 15 at the winding position and the unwinding position of the V-belt 19. occur. Frictional resistance also occurs due to sliding between the V-belt 19 and the pulleys 11 and 15 when the belt winding diameter changes during shifting. Therefore, appropriately adjusting the thrust of each pulley 11, 15 (pressing force to the V-belt 19) has a great influence on maintaining good running performance and good fuel economy.
 次に、実施形態の変速制御の要部について説明する。この制御は従動プーリ15において行うが、駆動プーリ11において行うことも可能である。
 従動プーリ15は、主にレシオ制御用の駆動プーリ11に対し、Vベルト19に対する軸方向荷重(推力、押し付け力)を制御する。この制御により、Vベルト19の張力およびフリクションが調整されるとともに、Vベルト19のスリップが抑制される。
Next, the main part of the shift control of the embodiment will be described. Although this control is performed in the driven pulley 15, it can also be performed in the driving pulley 11. FIG.
The driven pulley 15 mainly controls the axial load (thrust force, pressing force) on the V-belt 19 with respect to the drive pulley 11 for ratio control. Through this control, the tension and friction of the V-belt 19 are adjusted, and slippage of the V-belt 19 is suppressed.
 実施形態では、従動プーリ15の推力調整時に、正逆方向の動作を交互にかつ周期的に実行させる(以下、押し戻し制御という)。これにより、従動プーリ15のVベルト19の巻き掛け位置を変化させる際、得に被動時(プーリ戻し時)におけるヒステリシスを除去し、従動プーリ15の推力をモータ電流で制御しやすくする。 In the embodiment, when the thrust force of the driven pulley 15 is adjusted, forward and reverse operations are performed alternately and periodically (hereinafter referred to as push-back control). As a result, when changing the winding position of the V-belt 19 on the driven pulley 15, the hysteresis is removed especially when the driven pulley 15 is driven (when the pulley is returned), and the thrust of the driven pulley 15 can be easily controlled by the motor current.
 図4のタイムチャートは、実施形態の変速制御における各部の動作状態等を示す。
 図中上段のタイムチャートにおいて、線Bdrは駆動プーリ11の推力、線Bdnは従動プーリ15の推力をそれぞれ示す。駆動プーリ11および従動プーリ15の各推力は、線Bdr,Bdnの細かな起伏に多少のズレはあるものの、概ね同様に変化している。線Bdr,Bdnの比較的緩やかな起伏は、前記押し戻し制御に伴う起伏である。
The time chart of FIG. 4 shows the operation state of each part in the shift control of the embodiment.
In the upper time chart of the figure, the line Bdr indicates the thrust of the driving pulley 11, and the line Bdn indicates the thrust of the driven pulley 15, respectively. The respective thrusts of the drive pulley 11 and the driven pulley 15 change in substantially the same way, although there are some deviations in the fine undulations of the lines Bdr and Bdn. Relatively gentle undulations of the lines Bdr and Bdn are undulations associated with the push-back control.
 図中二段目のタイムチャートにおいて、線Cは軸回転レシオ(従動プーリ15の回転数/駆動プーリ11の回転数)、線Edrは駆動プーリ11のベルト巻き掛け径、線Ednは従動プーリ15のベルト巻き掛け径をそれぞれ示す。実施形態において、ベルト巻き掛け径を「PCD」と称することがある。駆動プーリ11のベルト巻き掛け径は、概ね一定に推移するが、従動プーリ15のベルト巻き掛け径は、従動プーリ15の推力の起伏に伴い、緩やかな起伏を繰り返す。線Ednの右上がり部分e1は、押し戻し制御の押し動作(LOW側(低速側)への動作)に対応する。線Ednの右下がり部分e2は、押し戻し制御の戻し動作(TOP側(高速側)への動作)に対応する。軸回転レシオも同様に、従動プーリ15の推力の起伏に伴い、同様の起伏を繰り返す。 In the second time chart in the figure, line C is the shaft rotation ratio (rotation speed of driven pulley 15/rotation speed of driving pulley 11), line Edr is the belt winding diameter of driving pulley 11, and line Edn is driven pulley 15. , respectively. In the embodiments, the belt winding diameter may be referred to as "PCD". The belt winding diameter of the drive pulley 11 remains substantially constant, but the belt winding diameter of the driven pulley 15 repeats gentle undulations as the thrust of the driven pulley 15 undulates. The upward-sloping portion e1 of the line Edn corresponds to the push operation of the push-back control (movement to the LOW side (low speed side)). A lower right portion e2 of the line Edn corresponds to the return operation of the push-back control (operation to the TOP side (high speed side)). Similarly, the shaft rotation ratio repeats similar undulations with the undulations of the thrust of the driven pulley 15 .
 図中三段目のタイムチャートにおいて、線Gdrは一次側アクチュエータ31のモータ電流、線Gdnは二次側アクチュエータ41のモータ電流をそれぞれ示す。一次側アクチュエータ31のモータ電流は、駆動プーリ11の推力の起伏に伴い、緩やかな起伏を繰り返す。二次側アクチュエータ41の電気モータ42には、押し側電流g1と戻し側電流g2とが交互に付与される。押し側電流g1とは、可動プーリ半体18を固定プーリ半体17に近付ける側に押す方向(LOW方向)の推力を発生させる電流である。戻し側電流g2とは、可動プーリ半体18を固定プーリ半体17から離す側に戻す方向(TOP方向)の推力を発生させる電流である。 In the time chart on the third stage in the figure, the line Gdr indicates the motor current of the primary side actuator 31, and the line Gdn indicates the motor current of the secondary side actuator 41, respectively. The motor current of the primary side actuator 31 repeats gentle undulations as the thrust of the drive pulley 11 undulates. A push-side current g1 and a return-side current g2 are alternately applied to the electric motor 42 of the secondary side actuator 41 . The push-side current g1 is a current that generates thrust in a direction (LOW direction) that pushes the movable pulley half 18 closer to the fixed pulley half 17 . The return-side current g2 is a current that generates thrust in the direction (TOP direction) to return the movable pulley half 18 away from the fixed pulley half 17 .
 押し側電流g1と戻し側電流g2とは、予め定めた時間t1,t2ずつ交互に付与される。押し側の時間t1は、戻し側の時間t2よりも長く設定されている。押し側電流g1と戻し側電流g2との切り替え時には、モータ電流を目標値に対してオーバーシュートさせている。 The push-side current g1 and the return-side current g2 are alternately applied for predetermined times t1 and t2. The push-side time t1 is set longer than the return-side time t2. When switching between the push-side current g1 and the return-side current g2, the motor current overshoots the target value.
 図中四段目のタイムチャートにおいて、線Hdrは駆動プーリ11のモータDUTY、線Hdnは従動プーリ15のモータDUTYをそれぞれ示す。駆動プーリ11のモータDUTYは、駆動プーリ11の推力の起伏に伴い、緩やかな起伏を繰り返す。従動プーリ15のモータDUTYは、二次側アクチュエータ41のモータ電流と同様、押し側パルス(押し側電流g1を出力させる信号)p1と戻し側パルス(戻し側電流g2を出力させる信号)p2と、が交互に出力される。押し側パルスp1と戻し側パルスp2とは、前記時間t1,t2ずつ交互に出力されながら周期的に繰り返す。実施形態の従動プーリ15では、固定DUTY制御(押し側15%、戻し側12%)がなされる。押し量および戻し量は互いに同一ではないが、これらが互いに同一であってもよい。 In the time chart on the fourth tier in the figure, the line Hdr indicates the motor DUTY of the drive pulley 11, and the line Hdn indicates the motor DUTY of the driven pulley 15, respectively. The motor DUTY of the drive pulley 11 repeats gentle undulations as the thrust of the drive pulley 11 undulates. Similar to the motor current of the secondary actuator 41, the motor DUTY of the driven pulley 15 has a push-side pulse (a signal for outputting a push-side current g1) p1, a return-side pulse (a signal for outputting a return-side current g2) p2, are output alternately. The push-side pulse p1 and the return-side pulse p2 are cyclically repeated while being alternately output for the times t1 and t2. In the driven pulley 15 of the embodiment, fixed DUTY control (15% on the pushing side, 12% on the returning side) is performed. Although the amount of push and the amount of return are not the same as each other, they may be the same as each other.
 図5のグラフは、前述の変速制御におけるモータ電流と従動プーリ15の推力(ドリブン推力)との相関を示す。図中縦軸はモータ電流、横軸はドリブン推力をそれぞれ示す。図5の値は前述の変速制御をテストした際の実測値を示す。
 前述の変速制御では、従動プーリ15の駆動時(押し側作動時)と被動時(戻し側作動時)との間でヒステリシスはほぼ無くなり、ドリブン推力をモータ電流で検知することが可能となる。
The graph of FIG. 5 shows the correlation between the motor current and the thrust of the driven pulley 15 (driven thrust) in the speed change control described above. In the figure, the vertical axis indicates the motor current, and the horizontal axis indicates the driven thrust. The values in FIG. 5 show the actual values measured when the above-described speed change control was tested.
In the above-described speed change control, there is almost no hysteresis between when the driven pulley 15 is driven (during push side operation) and when it is driven (during return side operation), and the driven thrust can be detected by the motor current.
 従動プーリ15の推力を周期的に正逆方向で入れ替える前記押し戻し制御を行うことで、以下の作用がある。すなわち、従動プーリ15の推力を受ける部分(加重される部分)を周期的に抜重することで、従動プーリ15のヒステリシスを実質的に除去することが可能となる。このため、図5に示すように、モータ電流とドリブン推力との相関線は、駆動時と被動時とでほぼ重なる。したがって、駆動時および被動時の何れのドリブン推力もモータ電流で検知することが可能となる。例えば、可動プーリ半体18を押す方向のドリブン推力を発生させるモータ電流を検出してこれを平均化する。このモータ電流に基づき、可動プーリ半体18を戻す方向のドリブン推力を導出することが可能となる。送りねじ機構49のフリクションは、ドリブン推力ひいてはモータ電流から一意的に求めることが可能となる。 By performing the push-back control that periodically switches the thrust of the driven pulley 15 in the forward and reverse directions, the following effects are obtained. That is, the hysteresis of the driven pulley 15 can be substantially eliminated by periodically unloading the portion of the driven pulley 15 that receives the thrust force (the weighted portion). For this reason, as shown in FIG. 5, the correlation lines between the motor current and the driven thrust substantially overlap during driving and during driven. Therefore, it is possible to detect the driven thrust force both during driving and during driven by the motor current. For example, the motor current that produces the driven thrust in the direction pushing the movable pulley half 18 is detected and averaged. Based on this motor current, it is possible to derive the driven thrust in the direction of returning the movable pulley half 18 . The friction of the feed screw mechanism 49 can be uniquely determined from the driven thrust and the motor current.
 次に、変速制御部61で実行される処理について図6、図7のフローチャートを参照して説明する。これらの処理は電源がON(車両のメインスイッチがON)の場合に所定の周期で繰り返し実行される。
 図6を参照し、基本的な制御として、まず、要求ドリブン推力を算出し(ステップS11)、算出したドリブン推力を二次側アクチュエータ41に出力させる(ステップS12)。二次側アクチュエータ41には、ステップS11で算出したドリブン推力に相当するモータ電流が供給される。
Next, the processing executed by the shift control section 61 will be described with reference to the flow charts of FIGS. 6 and 7. FIG. These processes are repeatedly executed at a predetermined cycle when the power is ON (the main switch of the vehicle is ON).
Referring to FIG. 6, as basic control, first, the required driven thrust is calculated (step S11), and the calculated driven thrust is output to the secondary side actuator 41 (step S12). A motor current corresponding to the driven thrust calculated in step S11 is supplied to the secondary side actuator 41 .
 図7を参照し、より高効率な制御として、まず、変速機10のスリップ率を算出する(ステップS21)。このスリップ率は、例えば以下の式1で算出される。

 スリップ率(%)=(1-(PCDレシオ)/(軸回転数レシオ))×100
・・・式1

 上記「PCD」は、従動プーリ15におけるベルト巻き掛け径を示す。
Referring to FIG. 7, as more efficient control, first, the slip ratio of transmission 10 is calculated (step S21). This slip ratio is calculated, for example, by Equation 1 below.

Slip ratio (%) = (1-(PCD ratio)/(shaft speed ratio)) x 100
・・・Formula 1

The above "PCD" indicates the belt winding diameter on the driven pulley 15. As shown in FIG.
 ベルトスリップ時には、従動プーリ15の軸上において、Vベルト19の回転速度に対して従動プーリ15の回転速度が遅れる。すなわち、動力伝達している従動プーリ15の回転数のレシオ(軸回転数レシオ)に対して、Vベルト19の回転数のレシオがハイレシオになる。このとき、従動プーリ15のPCD(ベルト巻き掛け径)が内周側に変化(減少)している。そこで、従動プーリ15の軸回転数レシオとVベルト19のPCDレシオとを検出し、これらを比較することによって、変速機10のスリップ率を検出することができる。そして、スリップ率とドリブン推力との関係は一意に定まるため、スリップ率を用いたドリブン推力のフィードバック制御が可能となる。 When the belt slips, the rotational speed of the driven pulley 15 lags behind the rotational speed of the V-belt 19 on the shaft of the driven pulley 15 . That is, the ratio of the number of rotations of the V-belt 19 becomes high with respect to the ratio of the number of rotations of the driven pulley 15 transmitting power (the ratio of the number of rotations of the shaft). At this time, the PCD (belt winding diameter) of the driven pulley 15 changes (decreases) toward the inner circumference. Therefore, the slip ratio of the transmission 10 can be detected by detecting the shaft rotation speed ratio of the driven pulley 15 and the PCD ratio of the V-belt 19 and comparing them. Since the relationship between the slip ratio and the driven thrust is uniquely determined, feedback control of the driven thrust using the slip ratio becomes possible.
 図7のステップS22では、スリップ率が目標スリップ率を越えたか否かを判定する。ステップS22でNO(スリップ率が目標値を越えていない)の場合、ステップS23に移行し、ドリブン推力(DUTY)を加算する制御を行う。ステップS22でYES(スリップ率が目標値を越えている)の場合、ステップS24に移行し、ドリブン推力(DUTY)を減算する制御を行う。
 このように、実施形態のドリブン荷重制御では、車速に対するアクセル開度から要求推力を算出し、この要求推力からモータ電流を算出することができる。
At step S22 in FIG. 7, it is determined whether or not the slip ratio exceeds the target slip ratio. If NO in step S22 (the slip ratio does not exceed the target value), the process proceeds to step S23 to perform control to add the driven thrust (DUTY). If YES in step S22 (the slip ratio exceeds the target value), the process proceeds to step S24 to perform control for subtracting the driven thrust (DUTY).
Thus, in the driven load control of the embodiment, it is possible to calculate the required thrust from the accelerator opening with respect to the vehicle speed, and to calculate the motor current from the required thrust.
 以上説明したように、実施形態における変速装置10Aは、軸方向に固定された固定プーリ半体17と、前記固定プーリ半体17に対して軸方向に移動可能な可動プーリ半体18と、を備える従動プーリ15と、従動プーリ15に巻き掛けられ、固定プーリ半体17と可動プーリ半体18との間に挟持されるVベルト19と、可動プーリ半体18を軸方向に移動させる二次側アクチュエータ41と、を備え、二次側アクチュエータ41は、可動プーリ半体18を固定プーリ半体17に近付く側に押す方向の力と、可動プーリ半体18を固定プーリ半体17から離れる側に戻す方向の力と、を予め定めた周期で交互に付与する押し戻し制御を実施する。 As described above, the transmission 10A in the embodiment includes the fixed pulley half 17 fixed in the axial direction and the movable pulley half 18 axially movable with respect to the fixed pulley half 17. a V-belt 19 wound around the driven pulley 15 and sandwiched between a fixed pulley half 17 and a movable pulley half 18; a side actuator 41 , and the secondary side actuator 41 has a force in a direction to push the movable pulley half 18 toward the fixed pulley half 17 and a force in a direction to push the movable pulley half 18 away from the fixed pulley half 17 . A push-back control is performed to alternately apply a force in the direction of returning to the direction to return to and at a predetermined cycle.
 この構成によれば、可動プーリ半体18を軸方向に移動させてVベルト19の巻き掛け径を変化させる変速制御において、押し戻し制御によって戻し方向の力を可動プーリ半体18に周期的に付与することで、摺動部分のフリクションを抜くことが可能となる。すなわち、Vベルト19および従動プーリ15の間のフリクションを周期的に除去しつつ、かつ可動プーリ半体18を軸方向移動させるための送りねじ機構49のフリクションも周期的に除去しつつ、可動プーリ半体18を軸方向移動させて巻き掛け径を変化させることが可能となる。したがって、可動プーリ半体18を軸方向移動させる送りねじ機構49にボールねじ以外の通常ねじ(台形ねじ、角ねじ等)を用いた上、アクチュエータの容量を削減してコストダウンを図った上で、変速動作をスムーズに行うことができ、アクチュエータを含む装置全体の制御性を高めることができる。なお、実施形態では従動プーリ15に押し戻し制御を実施するが、駆動プーリ11に押し戻し制御を実施してもよい。 According to this configuration, in the speed change control for moving the movable pulley half 18 in the axial direction to change the winding diameter of the V-belt 19, a force in the returning direction is periodically applied to the movable pulley half 18 by the push-back control. By doing so, it is possible to remove the friction of the sliding portion. That is, while periodically removing the friction between the V-belt 19 and the driven pulley 15 and periodically removing the friction of the feed screw mechanism 49 for moving the movable pulley half 18 in the axial direction, the movable pulley The winding diameter can be changed by moving the half body 18 in the axial direction. Therefore, the feed screw mechanism 49 for moving the movable pulley half 18 in the axial direction uses a normal screw (trapezoidal screw, square screw, etc.) other than the ball screw, and the capacity of the actuator is reduced to reduce the cost. , the shift operation can be performed smoothly, and the controllability of the entire device including the actuator can be enhanced. In the embodiment, push-back control is performed on the driven pulley 15 , but push-back control may be performed on the drive pulley 11 .
 上記変速装置10Aにおいて、前記押し戻し制御は、可動プーリ半体18を固定プーリ半体17側に押す時間t1が、可動プーリ半体18を固定プーリ半体17と反対側に戻す時間t2よりも長い。
 この構成によれば、可動プーリ半体18はVベルト19の張力により固定プーリ半体17から離れる側(戻し側)に付勢されるが、可動プーリ半体18の戻し時間を押し時間よりも短く抑えることで、可動部材が戻り過ぎることを抑制し、変速への影響を抑えることができる。
In the transmission 10A, in the push-back control, the time t1 for pushing the movable pulley half 18 toward the fixed pulley half 17 is longer than the time t2 for returning the movable pulley half 18 to the side opposite to the fixed pulley half 17. .
According to this configuration, the movable pulley half 18 is urged away from the fixed pulley half 17 (return side) by the tension of the V-belt 19, but the return time of the movable pulley half 18 is longer than the push time. By keeping it short, it is possible to suppress the movable member from returning too much, thereby suppressing the influence on the shift.
 上記変速装置10Aにおいて、二次側アクチュエータ41と可動プーリ半体18とは、送りねじ機構49を介して接続され、送りねじ機構49には、台形ねじ、角ねじおよび三角ねじの何れかが用いられる。
 この構成によれば、押し戻し制御により送りねじ機構49のフリクションを抜くことで、ボールねじに代わり台形ねじ等の通常ねじを用いた場合にも、ねじロックの懸案を抑えることができる。このため、通常ねじの採用によるコストダウンを図った上で、変速動作をスムーズに行うことができる。
In the transmission 10A, the secondary side actuator 41 and the movable pulley half 18 are connected via a feed screw mechanism 49, and the feed screw mechanism 49 uses any one of a trapezoidal screw, a square screw and a triangular screw. be done.
According to this configuration, by removing the friction of the feed screw mechanism 49 by the push-back control, even when a normal screw such as a trapezoidal screw is used in place of the ball screw, the problem of screw lock can be suppressed. Therefore, it is possible to reduce costs by adopting a normal screw, and to smoothly perform a gear shifting operation.
 上記変速装置10Aにおいて、前記押し戻し制御における可動プーリ半体18を戻す方向の力は、送りねじ機構49のフリクションを規定量だけ越える値に設定され、かつ前記規定量は一定に設定される。
 この構成によれば、可動プーリ半体18はVベルト19の張力により固定プーリ半体17から離れる側(戻し側)に付勢されるが、可動プーリ半体18を戻す力を螺合部のフリクションを規定量越える程度で一定に保つことで、可動プーリ半体18が戻り過ぎることを抑制し、変速への影響を抑えることができる。
In the transmission 10A, the force in the direction of returning the movable pulley half 18 in the push-back control is set to a value exceeding the friction of the feed screw mechanism 49 by a specified amount, and the specified amount is set constant.
According to this configuration, the movable pulley half 18 is urged to the side (return side) away from the fixed pulley half 17 by the tension of the V-belt 19, but the force to return the movable pulley half 18 is applied to the threaded portion. By keeping the friction at a constant level exceeding the specified amount, it is possible to suppress the movable pulley half 18 from returning too much, thereby suppressing the influence on the speed change.
 上記変速装置10Aにおいて、可動プーリ半体18を押す方向の力は、従動プーリ15への要求負荷に応じて可変である。
 この構成によれば、アクセル開度等に基づく要求負荷(推力)に応じて、可動プーリ半体18を押す力を可変とし、変速動作をスムーズかつ迅速に行うことができる。
In the transmission 10A, the force in the direction of pushing the movable pulley half 18 is variable according to the required load on the driven pulley 15. As shown in FIG.
According to this configuration, the force that pushes the movable pulley half 18 can be varied according to the required load (thrust force) based on the degree of opening of the accelerator, and the speed change operation can be performed smoothly and quickly.
 上記変速装置10Aにおいて、駆動プーリ11および従動プーリ15に渡って前記Vベルト19が巻き掛けられてベルト式無段変速機10が構成され、駆動プーリ11は、入力装置(エンジン3)から動力が入力されるとともに、Vベルト式無段変速機10のレシオ制御を行い、従動プーリ15は、出力装置25に動力を出力するとともに、Vベルト式無段変速機10の荷重制御を行い、前記押し戻し制御は、荷重制御を行う側の従動プーリ15で行う。
 この構成によれば、アクセル開度等に基づき要求負荷(推力)が頻繁に変化する荷重制御側に対し、押し戻し制御を組み込むことで、可動プーリ半体18の送りねじ機構49にボールねじではない通常ねじを用いた場合にも、ねじロックの発生を抑制することができる。
In the transmission 10A, the belt-type continuously variable transmission 10 is constructed by winding the V-belt 19 over the drive pulley 11 and the driven pulley 15. The drive pulley 11 receives power from the input device (engine 3). While being input, ratio control of the V-belt type continuously variable transmission 10 is performed, and the driven pulley 15 outputs power to the output device 25, performs load control of the V-belt type continuously variable transmission 10, and pushes back. Control is performed by the driven pulley 15 on the side that performs load control.
According to this configuration, the feed screw mechanism 49 of the movable pulley half 18 is not a ball screw by incorporating the push-back control for the load control side where the required load (thrust force) frequently changes based on the accelerator opening and the like. Even when a normal screw is used, the occurrence of screw locking can be suppressed.
 なお、本発明は上記実施形態に限られるものではなく、例えば、実施形態のパワーユニット1は、スクータ型の自動二輪車以外にも鞍乗り型車両全般に搭載可能である。前記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪(四輪バギー等)の車両も含まれる。また、原動機に電気モータを含む車両も含まれる。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above embodiment, and for example, the power unit 1 of the embodiment can be mounted on general straddle-type vehicles in addition to scooter-type motorcycles. The saddle type vehicle includes all types of vehicles in which the driver straddles the vehicle body, not only motorcycles (including motorized bicycles and scooter type vehicles), but also three-wheeled vehicles (one front wheel and two rear wheels). , including vehicles with two front wheels and one rear wheel) or vehicles with four wheels (such as four-wheel buggies). Also included are vehicles whose prime mover includes an electric motor.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
 1 パワーユニット
 3 エンジン(入力装置)
 10 Vベルト式無段変速機(無段変速機)
 10A 変速装置
 11 駆動プーリ(傘体対)
 13 固定プーリ半体(固定傘体)
 14 可動プーリ半体(可動傘体)
 15 従動プーリ(傘体対)
 17 固定プーリ半体(固定傘体)
 18 可動プーリ半体(可動傘体)
 19 Vベルト(無端部材)
 25 出力装置
 31 一次側アクチュエータ(動力装置)
 39 送りねじ機構(螺合部)
 41 二次側アクチュエータ(動力装置)
 49 送りねじ機構(螺合部)
 t1 押す時間
 t2 戻す時間
1 power unit 3 engine (input device)
10 V belt type continuously variable transmission (continuously variable transmission)
10A transmission device 11 drive pulley (canopy body pair)
13 fixed pulley half (fixed canopy)
14 Movable pulley half (movable canopy)
15 driven pulley (canopy pair)
17 fixed pulley half (fixed canopy)
18 Movable pulley half (movable canopy)
19 V belt (endless member)
25 output device 31 primary side actuator (power device)
39 feed screw mechanism (threaded portion)
41 secondary side actuator (power unit)
49 feed screw mechanism (threaded part)
t1 Time to press t2 Time to return

Claims (6)

  1.  軸方向に固定された固定傘体(13,17)と、前記固定傘体(13,17)に対して軸方向に移動可能な可動傘体(14,18)と、を備える傘体対(11,15)と、
     前記傘体対(11,15)に巻き掛けられ、前記固定傘体(13,17)と前記可動傘体(14,18)との間に挟持される無端部材(19)と、
     前記可動傘体(14,18)を軸方向に移動させる動力装置(31,41)と、を備える変速装置(10A)において、
     前記動力装置(31,41)は、前記可動傘体(14,18)を前記固定傘体(13,17)に近付く側に押す方向の力と、前記可動傘体(14,18)を前記固定傘体(13,17)から離れる側に戻す方向の力と、を予め定めた周期で交互に付与する押し戻し制御を実施することを特徴とする変速装置。
    A canopy pair ( 11, 15) and
    an endless member (19) wound around the pair of canopy bodies (11, 15) and sandwiched between the fixed canopy bodies (13, 17) and the movable canopy bodies (14, 18);
    A transmission (10A) comprising a power unit (31, 41) for axially moving the movable canopy (14, 18),
    The power devices (31, 41) are configured to push the movable canopy (14, 18) toward the fixed canopy (13, 17) and to move the movable canopy (14, 18) toward the fixed canopy (13, 17). A transmission characterized by carrying out a push-back control in which a force in a direction of returning away from a fixed canopy (13, 17) and a force in a direction to return the fixed canopy (13, 17) are alternately applied in a predetermined cycle.
  2.  前記押し戻し制御は、前記可動傘体(14,18)を前記固定傘体(13,17)側に押す時間(t1)が、前記可動傘体(14,18)を前記固定傘体(13,17)と反対側に戻す時間(t2)よりも長いことを特徴とする請求項1に記載の変速装置。 The push-back control is such that the time (t1) for pushing the movable canopy (14, 18) toward the fixed canopy (13, 17) is such that the movable canopy (14, 18) moves toward the fixed canopy (13, 17). Transmission according to claim 1, characterized in that it is longer than the time (t2) of returning to the opposite side of 17).
  3.  前記動力装置(31,41)と前記可動傘体(14,18)とは、螺合部(39,49)を介して接続され、
     前記螺合部(39,49)には、台形ねじ、角ねじおよび三角ねじの何れかが用いられることを特徴とする請求項1又は2に記載の変速装置。
    The power devices (31, 41) and the movable canopy (14, 18) are connected via screwed portions (39, 49),
    3. A transmission according to claim 1, wherein any one of a trapezoidal thread, a square thread and a triangular thread is used for said threaded portion (39, 49).
  4.  前記押し戻し制御における前記可動傘体(14,18)を戻す方向の力は、前記螺合部(39,49)のフリクションを規定量だけ越える値に設定され、かつ前記規定量は一定に設定されることを特徴とする請求項3に記載の変速装置。 The force in the direction of returning the movable canopy (14, 18) in the push-back control is set to a value that exceeds the friction of the screw portions (39, 49) by a specified amount, and the specified amount is set constant. The transmission according to claim 3, characterized in that:
  5.  前記可動傘体(14,18)を押す方向の力は、前記傘体対(11,15)への要求負荷に応じて可変であることを特徴とする請求項1から4の何れか一項に記載の変速装置。 5. Any one of claims 1 to 4, characterized in that the force in the direction of pushing said movable canopy (14, 18) is variable according to the required load on said pair of canopies (11, 15). The transmission according to .
  6.  一対の前記傘体対(11,15)に渡って前記無端部材(19)が巻き掛けられて無段変速機(10)が構成され、
     一対の前記傘体対(11,15)の一方は、入力装置(3)から動力が入力されるとともに、前記無段変速機(10)のレシオ制御を行い、
     一対の前記傘体対(11,15)の他方は、出力装置(25)に動力を出力するとともに、前記無段変速機(10)の荷重制御を行い、
     前記押し戻し制御は、前記荷重制御を行う側の前記傘体対(15)で行うことを特徴とする請求項1から5の何れか一項に記載の変速装置。
    The endless member (19) is wound around the pair of canopy bodies (11, 15) to form a continuously variable transmission (10),
    one of the pair of canopy bodies (11, 15) receives power from an input device (3) and performs ratio control of the continuously variable transmission (10);
    the other of the pair of canopy bodies (11, 15) outputs power to an output device (25) and controls the load of the continuously variable transmission (10);
    The transmission according to any one of claims 1 to 5, wherein the push-back control is performed by the canopy body pair (15) on the side that performs the load control.
PCT/JP2021/013922 2021-03-31 2021-03-31 Speed-changing device WO2022208768A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/013922 WO2022208768A1 (en) 2021-03-31 2021-03-31 Speed-changing device
JP2023510057A JP7439343B2 (en) 2021-03-31 2021-03-31 transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013922 WO2022208768A1 (en) 2021-03-31 2021-03-31 Speed-changing device

Publications (1)

Publication Number Publication Date
WO2022208768A1 true WO2022208768A1 (en) 2022-10-06

Family

ID=83458214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013922 WO2022208768A1 (en) 2021-03-31 2021-03-31 Speed-changing device

Country Status (2)

Country Link
JP (1) JP7439343B2 (en)
WO (1) WO2022208768A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220570A (en) * 1997-02-10 1998-08-21 Nissan Motor Co Ltd Target change gear ratio generating device for continuously variable transmission
JP2018165527A (en) * 2017-03-28 2018-10-25 Ntn株式会社 Variable speed pulley support device for belt type continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220570A (en) * 1997-02-10 1998-08-21 Nissan Motor Co Ltd Target change gear ratio generating device for continuously variable transmission
JP2018165527A (en) * 2017-03-28 2018-10-25 Ntn株式会社 Variable speed pulley support device for belt type continuously variable transmission

Also Published As

Publication number Publication date
JPWO2022208768A1 (en) 2022-10-06
JP7439343B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2006001410A1 (en) Belt type continuously variable transmission for saddle-riding type vehicle and saddle-riding type vehicle
US8755980B2 (en) Vehicle and control device and control method thereof
US7980122B2 (en) Internal combustion engine
US11543005B2 (en) Electronic CVT with friction clutch
US7862459B2 (en) Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission
US7235035B2 (en) Release clutch for a vehicle
JP5460920B2 (en) Torque control device for drive source
WO2022208768A1 (en) Speed-changing device
JP6283641B2 (en) Automatic clutch vehicle
US11592100B2 (en) Uniform clamp actuated shift infinitely variable transmission system
TWI707098B (en) A continuously variable transmission device with gear regulation device
JP6332311B2 (en) Vehicle control device
JP5048462B2 (en) Vehicle, control device thereof, and control method thereof
US7688557B2 (en) Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism
JP5341998B2 (en) Vehicle control device
TWI278407B (en) Continuously variable ratio drive
JP3375362B2 (en) Continuously variable transmission control device for vehicles
JP5548181B2 (en) Power transmission control device
JP6307486B2 (en) Vehicle control device
JP5416194B2 (en) Power transmission control device
JP6567912B2 (en) Power transmission control device for four-wheel drive vehicle
JP7330628B2 (en) vehicle controller
JP3953962B2 (en) Vehicle control device
WO2022176694A1 (en) Straddled vehicle
JP5739710B2 (en) Electronic transmission control unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934934

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023510057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112023000149085

Country of ref document: IT

Ref document number: 2301006189

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934934

Country of ref document: EP

Kind code of ref document: A1