WO2022205697A1 - 对准标记数获取方法和装置 - Google Patents

对准标记数获取方法和装置 Download PDF

Info

Publication number
WO2022205697A1
WO2022205697A1 PCT/CN2021/108469 CN2021108469W WO2022205697A1 WO 2022205697 A1 WO2022205697 A1 WO 2022205697A1 CN 2021108469 W CN2021108469 W CN 2021108469W WO 2022205697 A1 WO2022205697 A1 WO 2022205697A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
exposure
time
alignment
alignment marks
Prior art date
Application number
PCT/CN2021/108469
Other languages
English (en)
French (fr)
Inventor
汪恒
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/648,670 priority Critical patent/US11860555B2/en
Publication of WO2022205697A1 publication Critical patent/WO2022205697A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70541Tagging, i.e. hardware or software tagging of features or components, e.g. using tagging scripts or tagging identifier codes for identification of chips, shots or wafers

Definitions

  • the present application relates to, but is not limited to, a method and device for acquiring the number of alignment marks.
  • Exposure machine refers to equipment that transfers the image information on film and other transparent bodies to the surface coated with photosensitive material by turning on the light to emit ultraviolet light.
  • photosensitive material such as liquid photoresist, photosensitive resist dry film, etc.
  • the alignment time of the wafer during alignment is related to the number of alignment marks on the wafer. The more alignment marks, the longer the alignment time. Therefore, how to determine the appropriate number of alignment marks to improve the exposure machine It is still a problem to be considered to improve the lithography exposure efficiency and improve the production efficiency of semiconductor products.
  • the embodiment of the present application provides a method for obtaining the number of alignment marks, including:
  • the exposure machine includes an alignment platform and an exposure platform.
  • the wafer is defined as the first wafer when it is located on the exposure platform, and the first wafer has exposure parameters.
  • the wafer is defined as the second wafer, and the wafer is defined as the second wafer.
  • the second wafer has the number of alignment marks; the same wafer passes through the alignment stage and the exposure stage in sequence to complete the exposure process;
  • the number of target alignment marks of the second wafer is determined according to the exposure parameters of the first wafer and a corresponding relationship, wherein the corresponding relationship is the exposure parameters and the alignment
  • the relationship between the number of markers, the corresponding relationship is used to make the first time difference less than or equal to the preset value
  • the target alignment mark number is output.
  • FIG. 1 is a schematic diagram of an application scenario of the method for obtaining the number of alignment marks provided by the present application.
  • FIG. 2 is a schematic flowchart of a method for acquiring the number of alignment marks provided in Embodiment 1 of the present application.
  • FIG. 3 is a schematic flowchart of a method for acquiring the number of alignment marks provided in Embodiment 2 of the present application.
  • FIG. 4 is a schematic diagram of a first correspondence provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic diagram of a second corresponding relationship provided in Embodiment 2 of the present application.
  • FIG. 6 is a schematic diagram of a device for acquiring the number of alignment marks provided in Embodiment 3 of the present application.
  • FIG. 7 is a schematic diagram of a computer device according to an embodiment of the present application.
  • the exposure machine refers to the equipment that emits ultraviolet rays by turning on the light, and transfers the image information on the film and other transparent bodies to the surface coated with the photosensitive material.
  • the exposure machine is provided with an alignment platform and an exposure platform.
  • the lithography exposure of a wafer needs to complete the alignment process and the exposure process in sequence.
  • the next wafer to be exposed has not been aligned when the exposure of one wafer is completed, it will take a long time before the exposure of the next wafer can be performed, which will reduce the exposure time of the exposure machine.
  • Photolithography exposure efficiency The alignment time of the wafer during alignment is related to the number of alignment marks on the wafer. The greater the number of alignment marks, the longer the alignment time. Therefore, if the appropriate number of alignment marks can be determined, it can be greatly improved. Therefore, the waiting time in the wafer lithography exposure process is shortened, thereby improving the lithography exposure efficiency of the exposure machine and improving the production efficiency of semiconductor products.
  • the present application provides a method and device for obtaining the number of alignment marks
  • the method for obtaining the number of alignment marks obtains the exposure time of the wafer on the exposure platform, and also obtains the alignment time of the wafer on the alignment platform , and calculate the time difference between the alignment time and the exposure time. If the time difference exceeds a preset value, the optimal number of alignment marks (target alignment marks) of the wafer on the alignment platform is determined based on the corresponding relationship.
  • the corresponding relationship is the relationship between the exposure parameter and the number of alignment marks, and the corresponding relationship is used to make the time difference less than or equal to the preset value, so the number of target alignment marks determined based on the corresponding relationship can make the time difference less than or equal to the preset value.
  • Setting the number of alignment marks of the wafer on the alignment platform to the target number of alignment marks can control the time difference to be less than or equal to the preset value, thereby improving the lithography exposure efficiency of the exposure machine and improving the quality of semiconductor products.
  • the effect of production efficiency can be controlled to be less than or equal to the preset value, thereby improving the lithography exposure efficiency of the exposure machine and improving the quality of semiconductor products. The effect of production efficiency.
  • the method for obtaining the number of alignment marks provided in the present application is applied to a terminal device, such as a server dedicated to a laboratory, a personal computer, and the like.
  • a terminal device such as a server dedicated to a laboratory, a personal computer, and the like.
  • 1 is a schematic diagram of the application of the method for obtaining the number of alignment marks provided by the application.
  • the terminal device stores the correspondence between exposure parameters and the number of alignment marks, and the terminal device also receives that the exposure machine is performing the first The first time when a wafer is exposed, the second time when the exposure machine performs the second wafer alignment, and the exposure parameters of the first wafer.
  • the terminal device determines and outputs the target alignment mark number of the second wafer according to the exposure parameters of the first wafer and the corresponding relationship .
  • Setting the number of alignment marks for the second wafer during alignment according to the target number of alignment marks can control the time difference between the first time and the second time to be less than or equal to the preset value, thereby improving the The efficiency of exposure machine lithography exposure.
  • Embodiment 1 of the present application provides a method for obtaining the number of alignment marks, including:
  • the exposing machine includes an alignment platform and an exposure platform, and when the wafer is located at When exposing the platform, the wafer is defined as the first wafer, and the first wafer has exposure parameters.
  • the wafer is defined as the second wafer, and the second wafer has the alignment parameters. Number of marks; the same wafer passes through the alignment stage and exposure stage in sequence to complete the exposure process.
  • the first wafer has completed the alignment process and entered the exposure process, and the second wafer is currently in the alignment process.
  • the first time and the second time can be recorded by the staff and then input to the terminal device.
  • the unit of the first time and the second time may be seconds (second, s for short).
  • the exposure parameters of the first wafer are, for example, the exposure energy of the exposure machine when exposing the first wafer, the number of exposure areas on the first wafer (shot counts on the first wafer).
  • the first time and the second time can be understood as time, and the first time difference can be understood as the difference between the alignment end time of the second wafer and the exposure end time of the first wafer, that is, the first time difference
  • a time difference is the duration of waiting for the second wafer to complete alignment when the exposure of the first wafer is ended.
  • the unit of the first time difference is consistent with the unit of the first time and the second time.
  • the unit of the first time and the second time is s
  • the unit of the first time difference is also s.
  • the preset value can be set to a number greater than 0 but infinitely close to 0, for example, the preset value can be 0.17, or 0.03, and the preset value can also be set to 0 .
  • the corresponding relationship is the relationship between the exposure parameters of the first wafer and the number of alignment marks of the second wafer.
  • the corresponding relationship is the relationship between each parameter included in the exposure parameters of the first wafer and the number of alignment marks of the second wafer.
  • the relationship between the number of alignment marks As described above, the exposure parameters of the first wafer, such as the exposure energy of the exposure machine when exposing the first wafer, and the number of exposure areas on the first wafer, the corresponding relationship includes the exposure energy and the pair of
  • the relationship between the number of alignment marks also includes the relationship between the number of exposure areas and the number of alignment marks.
  • the corresponding relationship is based on the relationship established based on the exposure process of the first wafer and the alignment process of the second wafer ending at almost the same time, that is, the corresponding relationship is based on the alignment time of the second wafer and the alignment time of the second wafer.
  • the relationship is established when the difference between the exposure times of the first wafer is less than or equal to the preset value. Therefore, after the target alignment mark number of the second wafer is determined according to the exposure parameters of the first wafer and the corresponding relationship, the alignment time of the second wafer based on the target alignment mark number is infinitely close to the target alignment mark number.
  • the time during which the first wafer is exposed, that is, the first time difference is less than or equal to the preset value. In this case, after the exposure process of the first wafer is completed, the exposure of the second wafer can be directly performed without waiting too long.
  • the terminal device can display the target alignment mark number for the worker to set the alignment process of the second wafer.
  • the terminal device can also send the target alignment mark number to the staff's mobile phone, personal computer, tablet computer and other terminal devices.
  • the number of alignment marks of the second wafer is output as the number of target alignment marks of the second wafer.
  • the first time difference is less than or equal to the preset value
  • the number of alignment marks of the second wafer is output as the target number of alignment marks of the second wafer. Because whether the first time is greater than or equal to the second time, or the first time difference is less than or equal to the preset value, all meet the requirements for the lithography exposure efficiency of the exposure machine, so it can be directly output At this time, the number of alignment marks of the second wafer is the number of target alignment marks of the second wafer.
  • the terminal device receives the first time when the exposure machine is performing the first wafer exposure, the second time when the exposure machine is performing the second wafer alignment, and exposure parameters of the first wafer.
  • the terminal device determines and outputs the target alignment of the second wafer according to the exposure parameters of the first wafer and the corresponding relationship number of marks.
  • the time difference between the first time and the second time can be controlled to be less than or equal to the preset value, whereby, the efficiency of lithography exposure of the exposure machine is improved, thereby improving the production efficiency of semiconductor products.
  • the method for obtaining the number of alignment marks provided in Embodiment 2 of the present application further describes the obtaining of the corresponding relationship on the basis of Embodiment 1.
  • the method for obtaining the number of alignment marks include:
  • the historical first time difference is a historical The difference between the first time and the historical second time, the historical first time is the time when the exposure machine is performing the historical exposure of the first wafer, and the historical second time is the exposure machine when the first wafer is being exposed. The time of the historical alignment of the two wafers.
  • the historical exposure refers to the exposure of the first wafer performed by the exposure machine in a previous time
  • the historical first time refers to the exposure of the first wafer performed by the exposure machine in a previous exposure of the first wafer. time.
  • the historical alignment refers to the alignment of the second wafer performed by the exposure machine at a certain time before
  • the historical second time refers to the alignment of the second wafer performed by the exposure machine at a certain previous time Alignment time when the circle is aligned.
  • the first time difference in history, the first time in history and the second time in history mentioned in this step are all the time before the exposure machine performed lithography on the first wafer and the second wafer
  • the first time difference in history, the first time in history and the second time in history exist correspondingly.
  • the first wafer exposure parameter and the number of the second wafer alignment marks are obtained, and the first wafer exposure parameter refers to the difference between the first wafer exposure parameter and the historical first
  • the exposure parameter of the first wafer corresponding to the time difference, and the number of alignment marks of the second wafer refers to the number of alignment marks of the second wafer corresponding to the historical first time difference.
  • the corresponding relationship is acquired according to a plurality of exposure parameters of the first wafer and a plurality of alignment marks of the second wafer.
  • the first wafer exposure parameter and the second wafer alignment mark number refer to the exposure parameter of the first wafer and the second wafer obtained when the historical first time difference is less than or equal to the preset value Number of alignment marks.
  • the first wafer exposure parameter includes first wafer exposure energy and the number of first wafer exposure areas
  • the corresponding relationship includes a first corresponding relationship and a second corresponding relationship.
  • the first correspondence refers to the relationship between the exposure energy of the first wafer and the number of alignment marks of the second wafer
  • the second correspondence refers to the number of exposed areas of the first wafer and the number of the second wafer alignment marks. The relationship between the number of wafer alignment marks.
  • the terminal device When acquiring the first correspondence, acquires the first correspondence according to a plurality of exposure energies of the first wafer and a number of alignment marks of the second wafer.
  • the limit exposure energy of the KRF exposure machine during wafer exposure is 50mj/cm 2 .
  • the preset value is set in the range of 0.18 ⁇ 0.2
  • a plurality of the first wafer exposure energies when the historical first time difference of the KRF exposure machine is less than or equal to the preset value are acquired.
  • Table 1 when the historical first time difference (buffer time) is 0.18s, the obtained first wafer exposure energy (DOSE) is 24mj/cm 2 , and the obtained second wafer is aligned
  • the mark counts were 16.9.
  • the obtained exposure energy of the first wafer is 36 mj/cm 2
  • the obtained number of alignment marks of the second wafer is 17.
  • a total of 7 groups of data are obtained in Table 1 as the basis for obtaining the first correspondence.
  • the obtained multiple first wafer exposure energies include 24mj/cm 2 , 36mj/cm 2 , 45mj/cm 2 , 50mj/cm 2 , 55mj/cm 2 , 60mj/cm 2 and 65mj/cm 2
  • the obtained number of the second wafer alignment marks includes 16.9, 17, 17.1, 17.1 , 18.6, 22.2 and 28.2.
  • the exposure energy of the first wafer is less than or equal to 50mj/cm 2 (DOSE ⁇ 50mj/cm 2 )
  • the increase of the exposure energy of the first wafer is almost the same as the mark counts of the second wafer. No effect.
  • the exposure energy of the first wafer is greater than 50 mj/cm 2
  • x represents the exposure energy of the first wafer
  • y represents the number of alignment marks of the second wafer
  • Z represents a constant.
  • the terminal device When acquiring the second correspondence, acquires the second correspondence according to the number of the first wafer exposure areas and the number of the second wafer alignment marks.
  • the limit exposure energy of the KRF exposure machine during wafer exposure is 50mj/cm 2 .
  • the maximum value of the exposure energy of the first wafer is set to 50 mj/cm 2
  • the number of alignment marks of the second wafer when the historical first time difference is less than or equal to the preset value is obtained.
  • Table 2 a total of 6 sets of data are obtained as the basis for obtaining the second correspondence.
  • the obtained shot counts of the first wafers include 101, 106, 108 , 113 , 121 and 130
  • the obtained second wafer alignment mark counts include 14, 17, 18.5, 22, 28 and 34.
  • the exposure machine includes an alignment platform and an exposure platform, and when the wafer is exposed
  • the wafer is defined as the first wafer, and the first wafer has exposure parameters
  • the wafer is defined as the second wafer, and the second wafer has The number of alignment marks; the same wafer passes through the alignment stage and the exposure stage in sequence to complete the exposure process.
  • steps S303 to S306 reference may be made to the relevant descriptions of steps S201 to S204 in the first embodiment, and details are not repeated here.
  • Steps S301 to S302 can be executed before step S303 or before step S305. Steps S301 to S302 are executed only once, and the terminal device stores the corresponding relationship after acquiring the corresponding relationship, and needs to use it when Then call the corresponding relationship.
  • the method for obtaining the number of alignment marks describes how to obtain the corresponding relationship on the basis of the first embodiment.
  • it needs to be based on the fact that the historical first time difference is less than or equal to the preset value Obtain a large number of first wafer exposure parameters and a large number of second wafer alignment marks, and then obtain the corresponding relationship according to a large number of first wafer exposure parameters and a large number of second wafer alignment marks .
  • the first wafer exposure parameter includes the first wafer exposure energy and the number of first wafer exposure areas
  • the corresponding relationship can be obtained through the first wafer exposure energy and the number of the second wafer alignment marks
  • the first corresponding relationship in the corresponding relationship can be obtained through the number of the first wafer exposure areas and the number of the second wafer alignment marks.
  • step S305 the number of target alignment marks can be determined according to the first correspondence and/or The second correspondence determines the target alignment mark number of the second wafer.
  • Embodiment 3 of the present application provides a device 10 for obtaining the number of alignment marks, and the device 10 for obtaining alignment marks includes:
  • the acquiring module 11 is used to acquire the first time of the exposure machine when the first wafer is exposed, and the second time of the exposure machine when the second wafer is aligned; wherein, the exposure machine includes an alignment platform and an exposure machine.
  • the wafer when the wafer is located on the exposure platform, the wafer is defined as the first wafer, the first wafer has exposure parameters, and when the wafer is located on the alignment platform, the wafer is defined as the second wafer, and the first wafer is defined as the second wafer.
  • the two wafers have alignment marks; the same wafer passes through the alignment platform and the exposure platform in sequence to complete the exposure process.
  • the obtaining module 11 is further configured to obtain a first time difference between the second time and the first time when the first time is less than the second time.
  • the processing module 12 is used to determine the number of target alignment marks of the second wafer according to the exposure parameters of the first wafer and the corresponding relationship when the first time difference is greater than a preset value, wherein the corresponding relationship is the exposure parameters and the corresponding relationship.
  • the relationship between the number of alignment marks, the corresponding relationship is used to make the first time difference less than or equal to the preset value.
  • the output module 13 is used for outputting the target alignment mark number.
  • the acquiring module 11 is further configured to acquire the first wafer exposure parameter and the number of second wafer alignment marks corresponding to the historical first time difference when the historical first time difference is less than or equal to the preset value; wherein the historical first time difference is The first time difference is the difference between the historical first time and the historical second time, the historical first time is the time when the exposure machine performs historical exposure of the first wafer, and the historical second time is the exposure The time when the machine is performing historical alignment of the second wafer; the corresponding relationship is obtained according to a plurality of exposure parameters of the first wafer and a plurality of alignment marks of the second wafer.
  • the first wafer exposure parameter includes first wafer exposure energy and the number of first wafer exposure areas, and the corresponding relationship includes a first corresponding relationship and a second corresponding relationship, and the acquisition module 11 is specifically configured to: according to a plurality of the first Obtain the first correspondence between a wafer exposure energy and the number of alignment marks of the second wafer; obtain the first correspondence according to the number of exposure areas of the first wafer and the alignment marks of the second wafer number to obtain the second correspondence.
  • the output module 13 is further configured to output the number of alignment marks of the second wafer as the target number of alignment marks of the second wafer when the first time is greater than or equal to the second time.
  • the output module 13 is further configured to output the number of alignment marks of the second wafer as the target number of alignment marks of the second wafer when the first time difference is less than or equal to the preset value.
  • the device for obtaining the number of alignment marks provided in this embodiment can be used to execute the method for obtaining the number of alignment marks provided in the first embodiment to the second embodiment.
  • Embodiment 4 of the present application further provides a terminal device 20, including a memory 21, a processor 22 and a transceiver 23, where the memory 21 is used to store instructions, the transceiver 23 is used to communicate with other devices, the The processor 22 is configured to execute the instructions stored in the memory 21, so that the terminal device executes the alignment mark acquisition methods provided in the first embodiment to the second embodiment.
  • the specific implementation and technical effects are similar, and are not repeated here.
  • the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the instructions are executed, the computer-executable instructions are used to implement the first to the above embodiments when the instructions are executed by a processor.
  • the second provided method for obtaining alignment marks has similar specific implementations and technical effects, and will not be repeated here.
  • the present application also provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by the processor, it realizes the alignment mark acquisition methods provided in the first embodiment to the second embodiment.
  • the specific implementation methods and technical effects are similar. Repeat.
  • the above-mentioned computer-readable storage medium may be a read-only memory (Read Only Memory, ROM), a programmable read-only memory (Programmable Read-Only Memory, PROM), an erasable programmable read-only memory (Erasable Programmable read-only memory) Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory (Flash Memory) , magnetic surface memory, CD-ROM, or CD-ROM (Compact Disc Read-Only Memory, CD-ROM) and other memory. It can also be various electronic devices including one or any combination of the above memories, such as mobile phones, computers, tablet devices, personal digital assistants, and the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种对准标记数获取方法,包括:S201,获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;当晶圆位于曝光平台时定义晶圆为第一晶圆,第一晶圆具有曝光参数,当晶圆位于对准平台时定义晶圆为第二晶圆,第二晶圆具有对准标记数;S202,当第一时间小于第二时间时,获取第二时间和第一时间之间的第一时间差;S203,当第一时间差大于预设值时,根据第一晶圆的曝光参数和对应关系确定第二晶圆的目标对准标记数,其中对应关系是曝光参数和对准标记数之间的关系,对应关系用于使得第一时间差小于或等于预设值;S204,输出目标对准标记数。这种方法可以提高曝光机的光刻曝光效率,提高半导体制品的制作效率,还公开了一种对准标记数获取装置(10)。

Description

对准标记数获取方法和装置
本申请要求于2021年3月30日提交中国专利局、申请号为202110339784.0、申请名称为“对准标记数获取方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于一种对准标记数获取方法和装置。
背景技术
曝光机是指通过开启灯光发出紫外线,将胶片和其他透体上的图像信息转移到涂有感光物质的表面上的设备。在对半导体进行光刻曝光制作产品时,先在基板上涂覆一层感光材料(如液态感光胶、光敏抗蚀干膜等),然后对涂覆在基材上的光敏性物质进行光辐射,使其溶解性发生变化,在显影液作用下,未感光部分的感光材料溶解,感光部分的感光材料留在基材上形成图像。
在对半导体进行光刻曝光时,曝光机上设置有对准平台和曝光平台,一个晶圆的光刻曝光要依次完成对准过程和曝光过程。在曝光机的实际使用中,一般需要连续对多个晶圆进行光刻曝光,即基于曝光平台对一个晶圆进行曝光过程,同时基于对准平台对另一个晶圆进行对准过程。如果在完成对一个晶圆的曝光过程时,另一个晶圆还未完成对准过程,则需要等对准过程完成后才能进行曝光;这部分等待时间就会降低曝光机的光刻曝光效率。即,缩短该一个晶圆的曝光时间和该下一个晶圆的对准时间之间的差值,可以有效得提高曝光机的光刻曝光效率,从而提高半导体制品的制作效率。
而晶圆在进行对准时的对准时间又与晶圆的对准标记数有关,对准标记数越多则对准时间越长,因此,如何确定合适的对准标记数,以提高曝光机的光刻曝光效率,提高半导体制品的制作效率,仍然是需要考虑的问题。
发明内容
本申请实施例提供一种对准标记数获取方法,包括:
获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;其中,所述曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义所述晶圆为所述第一晶圆,所述第一晶圆具有曝光参数,当晶圆位于对准平台时定义所述晶圆为所述第二晶圆,所述第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺;
当所述第一时间小于所述第二时间时,获取所述第二时间和所述第一时间之间的第一时间差;
当所述第一时间差大于预设值时,根据所述第一晶圆的曝光参数和对应关系确定所述第二晶圆的目标对准标记数,其中所述对应关系是曝光参数和对准标记数之间的关系,所 述对应关系用于使得所述第一时间差小于或等于所述预设值;
输出所述目标对准标记数。
附图说明
图1为本申请提供的对准标记数获取方法的一种应用场景示意图。
图2为本申请实施例一提供的对准标记数获取方法的流程示意图。
图3为本申请实施例二提供的对准标记数获取方法的流程示意图。
图4为本申请的实施例二提供的第一对应关系的示意图。
图5为本申请的实施例二提供的第二对应关系的示意图。
图6为本申请实施例三提供的对准标记数获取装置的示意图。
图7为本申请的一个实施例提供的计算机设备的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
曝光机是指通过开启灯光发出紫外线,将胶片和其他透体上的图像信息转移到涂有感光物质的表面上的设备,曝光机上设置有对准平台和曝光平台,在曝光机对半导体进行光刻曝光制作产品时,一个晶圆的光刻曝光要依次完成对准过程和曝光过程。在曝光机的实际使用中,一般需要连续对多个晶圆进行光刻曝光,即在一个晶圆已经完成对准过程进入曝光过程后,此时需要基于对准平台对另一个晶圆进行对准。如果在完成对一个晶圆的曝光时,下一个要进行曝光的晶圆还没有完成对准,则需要等待较长的时间才可以进行该下一个晶圆的曝光,这就会降低曝光机的光刻曝光效率。晶圆在进行对准时的对准时间与晶圆的对准标记数有关,对准标记数越多则对准时间越长,因此,如果可以确定合适的对准标记数,就可以很大程度上缩短晶圆光刻曝光过程中的等待时间,从而提高曝光机的光刻曝光效率,提高半导体制品的制作效率。
基于此,本申请提供一种对准标记数获取方法和装置,该对准标记数获取方法获取了处于曝光平台的晶圆的曝光时间,还获取了处于对准平台的晶圆的对准时间,并计算对准时间和曝光时间之间的时间差,如果时间差超过预设值,则基于对应关系确定出处于对准平台的晶圆的最佳对准标记数(目标对准标记数)。其中该对应关系是曝光参数和对准标记数之间的关系,该对应关系用于使得该时间差小于或等于该预设值,因此基于该对应关系确定的该目标对准标记数可以使得该时间差小于或等于该预设值。将处于对准平台的晶圆的对准标记数设置为该目标对准标记数可以将该时间差控制在小于或等于该预设值,从而达到提高曝光机的光刻曝光效率和提高半导体制品的制作效率的效果。
请参见图1,本申请提供的该对准标记数获取方法应用于终端设备,该终端设备例如实验室专用的服务器、个人电脑等。图1为本申请提供的对准标记数获取方法的应 用示意图,图中,该终端设备中存储有曝光参数和对准标记数之间的对应关系,该终端设备还接收该曝光机在进行第一晶圆曝光时的第一时间、该曝光机在进行第二晶圆对准时的第二时间和该第一晶圆的曝光参数。当该第二时间和该第一时间之间的时间差小于预设值时,该终端设备根据该第一晶圆的曝光参数和该对应关系确定并输出该第二晶圆的目标对准标记数。根据该目标对准标记数设定该第二晶圆在进行对准时的对准标记数可以将该第一时间和该第二时间之间的时间差控制在小于或等于该预设值,从而提高曝光机光刻曝光的效率。
请参见图2,本申请实施例一提供一种对准标记数获取方法,包括:
S201,获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的时间,其中,该曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义该晶圆为该第一晶圆,该第一晶圆具有曝光参数,当晶圆位于对准平台时定义该晶圆为该第二晶圆,该第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺。
请参考以上关于曝光机进行光刻曝光过程的描述,该第一晶圆已经完成了对准过程进入了曝光过程,该第二晶圆此时处于对准过程中。该第一时间和该第二时间可以由工作人员记录后输入至该终端设备。该第一时间和该第二时间的单位可以为秒(second,简称s)。
该第一晶圆的曝光参数例如为该曝光机在进行第一晶圆曝光时的曝光能量、该第一晶圆上的曝光区域数(该第一晶圆上的shot counts)。
S202,当该第一时间小于该第二时间时,获取该第二时间和该第一时间之间的第一时间差。
当该第一时间小于该第二时间时,说明在该曝光机完成该第一晶圆的曝光时,该第二晶圆还没有完成对准,此时就需要等待该第二晶圆完成对准才可以执行对该第二晶圆的曝光。该第一时间和该第二时间可以理解为时刻,该第一时间差可以理解为该第二晶圆的对准结束时刻和该第一晶圆的曝光结束时刻之间的差值,即该第一时间差为结束该第一晶圆的曝光时,需要等待该第二晶圆完成对准的时长。
该第一时间差的单位与该第一时间和该第二时间的单位保持一致,例如该第一时间和第二时间的单位为s,则该第一时间差的单位也为s。
S203,当该第一时间差大于预设值时,根据该第一晶圆的曝光参数和对应关系确定该第二晶圆的目标对准标记数,其中该对应关系是曝光参数和对准标记数之间的关系,该对应关系用于使得该第一时间差小于或等于该预设值。
为了提高曝光机进行光刻曝光的效率,该预设值可以设置为大于0但无限接近于0的数字,例如,该预设值可以为0.17,或0.03,该预设值也可以设置为0。
该对应关系是该第一晶圆的曝光参数和该第二晶圆的对准标记数之间的关系,准确的说,该对应关系是该第一晶圆的曝光参数包含的每个参数与该对准标记数之间的关系。如上描述的,该第一晶圆的曝光参数例如该曝光机在进行第一晶圆曝光时的曝光能量、该第一晶圆上的曝光区域数,则该对应关系包括该曝光能量和该对准标记数之间的关系,还包括该曝光区域数和该对准标记数之间的关系。
该对应关系是基于该第一晶圆的曝光过程和该第二晶圆的对准过程几乎基于同一时间结束而设立的关系,即该对应关系是基于该第二晶圆的对准时间与该第一晶圆的曝光时间之间的差值小于或等于该预设值而设立的关系。因此,根据该第一晶圆的曝光参数和该对应关系确定该第二晶圆的目标对准标记数之后,该第二晶圆基于该目标对准标记数进行对准的时间无限接近于该第一晶圆进行曝光的时间,即该第一时间差小于或等于该预设值。此时完成该第一晶圆的曝光过程后便可以不用等待太长的时间,可以直接进行该第二晶圆的曝光。
S204,输出该目标对准标记数。
该终端设备可以显示该目标对准标记数,以供工作人员进行该第二晶圆的对准过程的设置。该终端设备还可以将该目标对准标记数发送至工作人员的手机、个人电脑、平板电脑等终端设备上。
可选的,当该第一时间大于或等于该第二时间时,输出该第二晶圆的对准标记数为该第二晶圆的目标对准标记数。或者,当该第一时间差小于或等于该预设值时,输出该第二晶圆的对准标记数为该第二晶圆的目标对准标记数。因为无论是该第一时间大于或等于该第二时间的情况,还是该第一时间差小于或等于该预设值的情况,都符合针对该曝光机的光刻曝光效率的要求,因此可以直接输出此时该第二晶圆的对准标记数为该第二晶圆的目标对准标记数。
本实施例提供的该对准标记数获取方法中,该终端设备接收该曝光机在进行第一晶圆曝光时的第一时间、该曝光机在进行第二晶圆对准时的第二时间和该第一晶圆的曝光参数。当该第二时间和该第一时间之间的第一时间差大于预设值时,该终端设备根据该第一晶圆的曝光参数和该对应关系确定并输出该第二晶圆的目标对准标记数。根据该目标对准标记数设定该第二晶圆在进行对准时的对准标记数之后,可以将该第一时间和该第二时间之间的时间差控制在小于或等于该预设值,从而提高曝光机光刻曝光的效率,进而提高半导体制品的制作效率。
请参见图3,本申请实施例二提供的该对准标记数获取方法在实施例一的基础上对该对应关系的获取进行进一步的描述,在本实施例中,该对准标记数获取方法包括:
S301,当历史第一时间差小于或等于该预设值时,获取与该历史第一时间差对应的第一晶圆曝光参数和第二晶圆对准标记数;其中,该历史第一时间差是历史第一时间和历史第二时间之间的差值,该历史第一时间为该曝光机在进行该第一晶圆的历史曝光时的时间,该历史第二时间为该曝光机在进行该第二晶圆的历史对准时的时间。
该历史曝光指的是该曝光机在之前某一次进行的该第一晶圆的曝光,该历史第一时间指的是该曝光机在该之前某一次进行该第一晶圆的曝光时的曝光时间。同样的,该历史对准指的是该曝光机在该之前某一次进行的该第二晶圆的对准,该历史第二时间指的是该曝光机在该之前某一次进行该第二晶圆的对准时的对准时间。即,本步骤中所提及的该历史第一时间差、该历史第一时间和该历史第二时间均是该曝光机在该之前某一次进行该第一晶圆和该第二晶圆光刻曝光时的时间参数,该历史第一时间差、该历史第一时间和该历史第二时间之间是相对应存在的。
在确定该历史第一时间差小于或等于该预设值后,获取该第一晶圆曝光参数和该第 二晶圆对准标记数,该第一晶圆曝光参数指的是与该历史第一时间差对应的该第一晶圆的曝光参数,该第二晶圆对准标记数指的是与该历史第一时间差对应的该第二晶圆的对准标记数。
S302,根据多个该第一晶圆曝光参数和多个该第二晶圆对准标记数获取该对应关系。
该第一晶圆曝光参数和该第二晶圆对准标记数指的是该历史第一时间差小于或等于该预设值时获取的该第一晶圆的曝光参数和该第二晶圆的对准标记数。
可选的,该第一晶圆曝光参数包括第一晶圆曝光能量和第一晶圆曝光区域数,该对应关系包括第一对应关系和第二对应关系。该第一对应关系指的是该第一晶圆曝光能量与该第二晶圆对准标记数之间的关系,该第二对应关系指的是该第一晶圆曝光区域数与该第二晶圆对准标记数之间的关系。
在获取该第一对应关系时,该终端设备根据多个该第一晶圆曝光能量和多个该第二晶圆对准标记数获取该第一对应关系。
以机型为KRF的曝光机为例,该KRF曝光机在晶圆曝光时的极限曝光能量为50mj/cm 2。当设定该预设值为0.18~0.2范围时,获取到该KRF曝光机的历史第一时间差小于或等于该预设值时的多个该第一晶圆曝光能量。如下表1所示,当该历史第一时间差(buffer time)为0.18s时,获取到的该第一晶圆曝光能量(DOSE)为24mj/cm 2、获取到的该第二晶圆对准标记数(mark counts)为16.9。当该历史第一时间差为0.17s时,获取到的该第一晶圆曝光能量为36mj/cm 2,获取到的该第二晶圆对准标记数为17。依次类推,表1中共获取了7组数据作为获取该第一对应关系的依据,该7组数据中,获取到的多个该第一晶圆曝光能量包括24mj/cm 2、36mj/cm 2、45mj/cm 2、50mj/cm 2、55mj/cm 2、60mj/cm 2和65mj/cm 2,对应的,获取到的多个该第二晶圆对准标记数包括16.9、17、17.1、17.1、18.6、22.2和28.2。
表1:
DOSE(mj/cm 2) 24 36 45 50 55 60 65
buffer time/s 0.18 0.17 0.15 0.1 -0.1 -0.7 -1.7
mark counts 16.9 17 17.1 17.1(Z) 18.6 22.2 28.2
根据表1中的数据对该第一晶圆曝光能量和该第二晶圆对准标记数之间的关系进行模拟,最终得到的该第一对应关系的示意图如图4所示。
该第一对应关系即为:
当该第一晶圆曝光能量小于或等于50mj/cm 2(DOSE<50mj/cm 2)时,该第一晶圆曝光能量的增大对该第二晶圆对准标记数(mark counts)几乎没有影响。当该第一晶圆曝光能量大于50mj/cm 2时,DOSE和mark counts呈现y=0.048X2-4.8X+120+Z的关系。其中,x代表所述第一晶圆曝光能量,y代表所述第二晶圆对准标记数,Z代表常数。
在获取该第二对应关系时,该终端设备根据多个该第一晶圆曝光区域数和多个该第二晶圆对准标记数获取该第二对应关系。
以机型为KRF的曝光机为例,该KRF曝光机在晶圆曝光时的极限曝光能量为 50mj/cm 2。此时将该第一晶圆曝光能量的最大值设定为50mj/cm 2,获取当历史第一时间差小于或等于该预设值时的该第二晶圆对准标记数。如下表2所示,共获取了6组数据作为获取该第二对应关系的依据,该6组数据中,获取到的多个该第一晶圆曝光区域数(shot count)包括101、106、108、113、121和130,对应的,获取到的该第二晶圆对准标记数(mark counts)包括14、17、18.5、22、28和34。
表2:
shot count 101 106 108 113 121 130
Mark counts 14 17 18.5 22 28 34
根据表2中的数据对该第一晶圆曝光区域数和该第二晶圆对准标记数之间的关系进行模拟,最终得到的该第二对应关系的示意图如图5所示。
该第二对应关系即为Y=0.7012X-57.099,其中X代表该第一晶圆曝光区域数,Y代表该第二晶圆对准标记数。
S303,获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;其中,该曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义该晶圆为该第一晶圆,该第一晶圆具有曝光参数,当晶圆位于对准平台时定义该晶圆为该第二晶圆,该第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺。
S304,当该第一时间小于该第二时间时,获取该第二时间和该第一时间之间的第一时间差。
S305,当该第一时间差大于预设值时,根据该第一晶圆的曝光参数和对应关系确定该第二晶圆的目标对准标记数,其中该对应关系是曝光参数和对准标记数之间的关系,该对应关系用于使得该第一时间差小于或等于该预设值。
S306,输出该目标对准标记数。
关于步骤S303~步骤S306的相关描述可以参考实施例一中关于步骤S201~步骤S204的相关描述,此处不再赘述。
步骤S301~步骤S302可以在步骤S303之前执行,也可以在步骤S305之前执行,步骤S301~步骤S302只执行一次,该终端设备在获取到该对应关系后将该对应关系进行存储,需要使用的时候再调取该对应关系即可。
本实施例提供的该对准标记数获取方法在实施例一的基础上描述了如何获取该对应关系,在获取该对应关系时,需要基于该历史第一时间差小于或等于该预设值的情况下获取大量的第一晶圆曝光参数和大量的第二晶圆对准标记数,再根据大量的该第一晶圆曝光参数和大量的该第二晶圆对准标记数获取到该对应关系。其中,该第一晶圆曝光参数包括第一晶圆曝光能量和第一晶圆曝光区域数,通过该第一晶圆曝光能量和该第二晶圆对准标记数可以获取到该对应关系中的该第一对应关系,通过该第一晶圆曝光区域数和该第二晶圆对准标记数可以获取到该对应关系中的该第二对应关系。
经过实验验证,无论是根据该第一对应关系还是该第二对应关系确定该目标对准标记数,得到的结果都是一致的,因此在步骤S305中,可以根据该第一对应关系和/或 该第二对应关系确定该第二晶圆的目标对准标记数。
请参见图6,本申请实施例三提供一种对准标记数获取装置10,该对准标记获取装置10包括:
获取模块11,用于获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;其中,该曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义该晶圆为该第一晶圆,该第一晶圆具有曝光参数,当晶圆位于对准平台时定义该晶圆为该第二晶圆,该第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺。
该获取模块11还用于当该第一时间小于该第二时间时,获取该第二时间和该第一时间之间的第一时间差。
处理模块12,用于当该第一时间差大于预设值时,根据该第一晶圆的曝光参数和对应关系确定该第二晶圆的目标对准标记数,其中该对应关系是曝光参数和对准标记数之间的关系,该对应关系用于使得该第一时间差小于或等于该预设值。
输出模块13,用于输出该目标对准标记数。
该获取模块11还用于当历史第一时间差小于或等于该预设值时,获取与该历史第一时间差对应的第一晶圆曝光参数和第二晶圆对准标记数;其中,该历史第一时间差是历史第一时间和历史第二时间之间的差值,该历史第一时间为该曝光机在进行该第一晶圆的历史曝光时的时间,该历史第二时间为该曝光机在进行该第二晶圆的历史对准时的时间;根据多个该第一晶圆曝光参数和多个该第二晶圆对准标记数获取该对应关系。
该第一晶圆曝光参数包括第一晶圆曝光能量和第一晶圆曝光区域数,该对应关系包括第一对应关系和第二对应关系,该获取模块11具体用于:根据多个该第一晶圆曝光能量和该第二晶圆的多个该对准标记数获取该第一对应关系;根据多个该第一晶圆曝光区域数和该第二晶圆的多个该对准标记数获取该第二对应关系。
该输出模块13还用于当该第一时间大于或等于该第二时间时,输出该第二晶圆的对准标记数为该第二晶圆的目标对准标记数。
该输出模块13还用于当该第一时间差小于或等于该预设值时,输出该第二晶圆的对准标记数为该第二晶圆的目标对准标记数。
本实施例提供的对准标记数获取装置,可用于执行如上实施例一至实施例二提供的对准标记数获取方法,具体实现方式和技术效果类似,这里不再赘述。
请参见图7,本申请实施例四还提供一种终端设备20,包括存储器21,处理器22和收发器23,该存储器21用于存储指令,该收发器23用于和其他设备通信,该处理器22用于执行该存储器21中存储的指令,以使该终端设备执行如上实施例一至实施例二提供的对准标记获取方法,具体实现方式和技术效果类似,这里不再赘述。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该指令被执行时,使得计算机执行指令被处理器执行时用于实现如上实施例一至实施例二提供的该对准标记获取方法,具体实现方式和技术效果类似,这里不再赘述。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时,实现如上实施例一至实施例二提供的对准标记获取方法,具体实现方式和技术效果类似,这里不再赘述。
需要说明的是,上述计算机可读存储介质可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM)等存储器。也可以是包括上述存储器之一或任意组合的各种电子设备,如移动电话、计算机、平板设备、个人数字助理等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所描述的方法。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机 或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种对准标记数获取方法,包括:
    获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;其中,所述曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义所述晶圆为所述第一晶圆,所述第一晶圆具有曝光参数,当晶圆位于对准平台时定义所述晶圆为所述第二晶圆,所述第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺;
    当所述第一时间小于所述第二时间时,获取所述第二时间和所述第一时间之间的第一时间差;
    当所述第一时间差大于预设值时,根据所述第一晶圆的曝光参数和对应关系确定所述第二晶圆的目标对准标记数,其中所述对应关系是曝光参数和对准标记数之间的关系,所述对应关系用于使得所述第一时间差小于或等于所述预设值;
    输出所述目标对准标记数。
  2. 根据权利要求1所述的方法,其中,还包括:
    当历史第一时间差小于或等于所述预设值时,获取与所述历史第一时间差对应的第一晶圆曝光参数和第二晶圆对准标记数;其中,所述历史第一时间差是历史第一时间和历史第二时间之间的差值,所述历史第一时间为所述曝光机在进行所述第一晶圆的历史曝光时的时间,所述历史第二时间为所述曝光机在进行所述第二晶圆的历史对准时的时间;
    根据多个所述第一晶圆曝光参数和多个所述第二晶圆对准标记数获取所述对应关系。
  3. 根据权利要求2所述的方法,其中,所述第一晶圆曝光参数包括第一晶圆曝光能量和第一晶圆曝光区域数。
  4. 根据权利要求3所述的方法,其中,所述对应关系包括第一对应关系和第二对应关系,所述根据多个所述第一晶圆曝光参数和多个所述第二晶圆对准标记数获取所述对应关系包括:
    根据多个所述第一晶圆曝光能量和多个所述第二晶圆对准标记数获取所述第一对应关系;
    根据多个所述第一晶圆曝光区域数和多个所述第二晶圆对准标记数获取所述第二对应关系。
  5. 根据权利要求1所述的方法,其中,还包括:
    当所述第一时间大于或等于所述第二时间时,输出所述第二晶圆的对准标记数为所述第二晶圆的目标对准标记数。
  6. 根据权利要求1所述的方法,其中,还包括:
    当所述第一时间差小于或等于所述预设值时,输出所述第二晶圆的对准标记数为所述第二晶圆的目标对准标记数。
  7. 一种对准标记数获取装置,包括:
    获取模块,用于获取曝光机在进行第一晶圆曝光时的第一时间,以及获取曝光机在进行第二晶圆对准时的第二时间;其中,所述曝光机包括对准平台和曝光平台,当晶圆位于曝光平台时定义所述晶圆为所述第一晶圆,所述第一晶圆具有曝光参数,当晶圆位于对准平台时定义所述晶圆为所述第二晶圆,所述第二晶圆具有对准标记数;同一晶圆依次经过对准平台和曝光平台以完成曝光工艺;
    所述获取模块还用于当所述第一时间小于所述第二时间时,获取所述第二时间和 所述第一时间之间的第一时间差;
    处理模块,用于当所述第一时间差大于预设值时,根据所述第一晶圆的曝光参数和对应关系确定所述第二晶圆的目标对准标记数,其中所述对应关系是曝光参数和对准标记数之间的关系,所述对应关系用于使得所述第一时间差小于或等于所述预设值;
    输出模块,用于输出所述目标对准标记数。
  8. 根据权利要求7所述的装置,其中,所述获取模块还用于:
    当历史第一时间差小于或等于所述预设值时,获取与所述历史第一时间差对应的第一晶圆曝光参数和第二晶圆对准标记数;其中,所述历史第一时间差是历史第一时间和历史第二时间之间的差值,所述历史第一时间为所述曝光机在进行所述第一晶圆的历史曝光时的时间,所述历史第二时间为所述曝光机在进行所述第二晶圆的历史对准时的时间;
    根据多个所述第一晶圆曝光参数和多个所述第二晶圆对准标记数获取所述对应关系。
  9. 根据权利要求8所述的装置,其中,所述第一晶圆曝光参数包括第一晶圆曝光能量和第一晶圆曝光区域数。
  10. 根据权利要求9所述的装置,其中,所述对应关系包括第一对应关系和第二对应关系,所述获取模块具体用于:
    根据多个所述第一晶圆曝光能量和所述第二晶圆的多个所述对准标记数获取所述第一对应关系;
    根据多个所述第一晶圆曝光区域数和所述第二晶圆的多个所述对准标记数获取所述第二对应关系。
  11. 根据权利要求7所述的装置,其中,所述输出模块还用于:
    当所述第一时间大于或等于所述第二时间时,输出所述第二晶圆的对准标记数为所述第二晶圆的目标对准标记数。
  12. 根据权利要求7所述的装置,其中,所述输出模块还用于:
    当所述第一时间差小于或等于所述预设值时,输出所述第二晶圆的对准标记数为所述第二晶圆的目标对准标记数。
  13. 一种终端设备,其特征在于,包括存储器,处理器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述终端设备执行如权利要求1-6任一项所述的对准标记数获取方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述指令被执行时,使得计算机执行如权利要求1-6任一项所述的对准标记数获取方法。
  15. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-6任一项所述的对准标记数获取方法。
PCT/CN2021/108469 2021-03-30 2021-07-26 对准标记数获取方法和装置 WO2022205697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/648,670 US11860555B2 (en) 2021-03-30 2022-01-22 Alignment mark count acquiring method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110339784.0 2021-03-30
CN202110339784.0A CN113325668B (zh) 2021-03-30 2021-03-30 对准标记数获取方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/648,670 Continuation US11860555B2 (en) 2021-03-30 2022-01-22 Alignment mark count acquiring method and device

Publications (1)

Publication Number Publication Date
WO2022205697A1 true WO2022205697A1 (zh) 2022-10-06

Family

ID=77414740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108469 WO2022205697A1 (zh) 2021-03-30 2021-07-26 对准标记数获取方法和装置

Country Status (2)

Country Link
CN (1) CN113325668B (zh)
WO (1) WO2022205697A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117524914A (zh) * 2024-01-04 2024-02-06 华羿微电子股份有限公司 一种盲封晶圆的加工方法及设备
CN117711994A (zh) * 2024-02-06 2024-03-15 泓浒(苏州)半导体科技有限公司 一种基于链路逻辑图的晶圆单片运输控制方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493013A (ja) * 1990-08-09 1992-03-25 Seiko Epson Corp 露光、描画方法及び装置
JPH09148236A (ja) * 1995-11-22 1997-06-06 Nikon Corp 露光装置の基板ステージの移動制御方法及び装置
US20040150824A1 (en) * 2003-01-22 2004-08-05 Takahiro Matsumoto Alignment method and apparatus and exposure apparatus
JP2006013090A (ja) * 2004-06-25 2006-01-12 Nikon Corp 露光装置及びデバイス製造方法
US20150205211A1 (en) * 2014-01-23 2015-07-23 Canon Kabushiki Kaisha Patterning method, lithography apparatus and system, and article manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323383A (ja) * 1999-05-10 2000-11-24 Nec Yamagata Ltd 半導体装置の製造方法及び製造装置
US6950188B2 (en) * 2003-04-23 2005-09-27 International Business Machines Corporation Wafer alignment system using parallel imaging detection
JP5398314B2 (ja) * 2008-03-18 2014-01-29 富士フイルム株式会社 露光装置、及び露光方法
CN111354670B (zh) * 2018-12-20 2023-05-26 夏泰鑫半导体(青岛)有限公司 对准方法、对准***及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493013A (ja) * 1990-08-09 1992-03-25 Seiko Epson Corp 露光、描画方法及び装置
JPH09148236A (ja) * 1995-11-22 1997-06-06 Nikon Corp 露光装置の基板ステージの移動制御方法及び装置
US20040150824A1 (en) * 2003-01-22 2004-08-05 Takahiro Matsumoto Alignment method and apparatus and exposure apparatus
JP2006013090A (ja) * 2004-06-25 2006-01-12 Nikon Corp 露光装置及びデバイス製造方法
US20150205211A1 (en) * 2014-01-23 2015-07-23 Canon Kabushiki Kaisha Patterning method, lithography apparatus and system, and article manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117524914A (zh) * 2024-01-04 2024-02-06 华羿微电子股份有限公司 一种盲封晶圆的加工方法及设备
CN117524914B (zh) * 2024-01-04 2024-04-12 华羿微电子股份有限公司 一种盲封晶圆的加工方法及设备
CN117711994A (zh) * 2024-02-06 2024-03-15 泓浒(苏州)半导体科技有限公司 一种基于链路逻辑图的晶圆单片运输控制方法及***
CN117711994B (zh) * 2024-02-06 2024-04-19 泓浒(苏州)半导体科技有限公司 一种基于链路逻辑图的晶圆单片运输控制方法及***

Also Published As

Publication number Publication date
CN113325668A (zh) 2021-08-31
CN113325668B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2022205697A1 (zh) 对准标记数获取方法和装置
US8124319B2 (en) Semiconductor lithography process
TWI590304B (zh) 光敏化化學放大光阻中之臨界尺寸控制
US20190243250A1 (en) Line edge roughness reduction via step size alteration
US20150008343A1 (en) Electron Beam Data Storage System and Method for High Volume Manufacturing
CN107810448B (zh) 使用时间偏移曝光的非均匀图案校正
TW201738788A (zh) 光敏化化學放大光阻之模型校正
CN109073984A (zh) 光敏化学放大型抗蚀剂(ps-car)模拟
US10418245B2 (en) Method for integrated circuit manufacturing with directed self-assembly (DSA)
JP2019053305A (ja) 半導体装置の製造方法
TW200836244A (en) Immersion lithography method
JP2004078033A (ja) パターン微細化用被覆形成剤およびそれを用いた微細パターンの形成方法
JP2014211478A5 (zh)
JP2001189253A (ja) レジストパターン形成方法、レジストパターン形成方法に使用する上層材および半導体装置
KR20130099338A (ko) 내열성이 우수한 화학증폭형 포지티브 감광형 고감도 유기절연막 조성물 및 이를 이용한 유기절연막의 형성방법
US11860555B2 (en) Alignment mark count acquiring method and device
JP2011061163A5 (zh)
US20220326616A1 (en) Multi-tone scheme for maskless lithography
KR20050104917A (ko) 스피너설비의 베이크장치
JPH0470754A (ja) 露光方法および装置
JP6419581B2 (ja) 半導体装置の製造装置及び半導体装置の製造装置の管理方法
TWI820349B (zh) 光學鄰近校正方法及基板處理方法
Liu et al. Model-based proximity effect correction for electron-beam direct-write lithography
US9274410B2 (en) Method and system for automated generation of masks for spacer formation from a desired final wafer pattern
CN114721226B (zh) 光罩摆放误差校正方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934341

Country of ref document: EP

Kind code of ref document: A1