WO2022205491A1 - 一种金属有机骨架复合材料及其制备方法 - Google Patents

一种金属有机骨架复合材料及其制备方法 Download PDF

Info

Publication number
WO2022205491A1
WO2022205491A1 PCT/CN2021/085760 CN2021085760W WO2022205491A1 WO 2022205491 A1 WO2022205491 A1 WO 2022205491A1 CN 2021085760 W CN2021085760 W CN 2021085760W WO 2022205491 A1 WO2022205491 A1 WO 2022205491A1
Authority
WO
WIPO (PCT)
Prior art keywords
cubtc
composite material
metal
cubht
organic framework
Prior art date
Application number
PCT/CN2021/085760
Other languages
English (en)
French (fr)
Inventor
孟春凤
陈东
焦自创
胡品飞
袁爱华
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2022205491A1 publication Critical patent/WO2022205491A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers

Definitions

  • the invention relates to an organic framework material and a preparation method thereof, in particular to a metal-organic framework composite material and a preparation method thereof.
  • Metal-organic frameworks with hierarchical pore structures, controllable structures, and abundant active centers have received great attention from researchers since their introduction in the 1990s, and have been widely used in gas storage and separation, molecular recognition, pollutant enrichment and adsorption, photocatalysis and other fields.
  • the application of metal-organic framework materials in the field of electrochemistry has been gradually carried out, and it is one of the hottest materials in the field of electrochemical energy storage devices and electrocatalysts.
  • the transfer efficiency of charges has a significant impact on the kinetics of chemical reactions, which in turn affects the overall performance of active materials.
  • Metal-organic frameworks usually have extremely low electronic conductivity due to their special valence bond structure, so their charge transfer efficiency is low when used as active materials, which hinders their application in the field of electrochemistry.
  • the common metal-organic framework material copper trimesate as an example, its electrical conductivity is usually 10 -9 S/cm, which is much lower than 10 0 S/cm of common semiconductor material single crystal silicon.
  • the purpose of the present invention is to provide a metal-organic framework composite material with significantly improved electrical conductivity
  • another purpose of the present invention is to provide a mild reaction, easy to operate and control, The preparation method of metal-organic framework composite material which can significantly improve the electrical conductivity.
  • the metal-organic framework composite material of the present invention forms a core-shell structure CuBHT@CuBTC from CuBHT and CuBTC.
  • CuBHT is the shell
  • CuBTC is the core
  • the preparation method of the above-mentioned metal-organic framework composite material comprises the following steps:
  • Step 1 preparation of copper trimesate (CuBTC): under stirring, slowly drop the trimesic acid solution into the mixed solution of copper nitrate trihydrate and polyvinylpyrrolidone at a rate of 10mL/min, and then dropwise add the solution. After the end, the obtained mixed solution was allowed to stand at room temperature to obtain a blue precipitate, the precipitate was centrifuged, washed with methanol for several times and then dried to obtain CuBTC powder;
  • CuBTC copper trimesate
  • Step 2 preparation of copper trimesate (CuBTC) dispersion: Weigh the CuBTC powder obtained in step 1, add a solvent after grinding, and ultrasonically disperse to obtain a CuBTC dispersion;
  • Step 3 preparation of CuBHT@CuBTC composite material: adding hexamercaptobenzene into CuBTC dispersion under the protection of inert gas for in-situ reaction, centrifuging, washing the precipitate and drying in an oven to obtain the core-shell structure CuBHT@CuBTC .
  • This method has good universality and can be extended to the synthesis of other core-shell structure metal-organic framework composites containing copper, iron, nickel, cobalt, manganese, palladium and other transition metals, and its electrical conductivity has been improved to varying degrees.
  • This method has the greatest improvement in the electrical conductivity of copper-based metal-organic frameworks.
  • step 1 the concentration of copper nitrate trihydrate is 10-20 mg/mL, and the concentration of polyvinylpyrrolidone is 5-8 mg/mL.
  • the molar ratio of copper nitrate trihydrate and trimesic acid was 3:2.
  • the solvent is any one of N,N-dimethylformamide, N-methylpyrrolidone and dichloromethane.
  • concentration of the CuBTC dispersion liquid is 1 to 10 mg/mL.
  • the preparation method of CuBHT is as follows: dissolving the copper salt in ethanol, N,N-dimethylformamide or N-methylpyrrolidone to form a solution of 1-50 mg/mL, blowing nitrogen gas for 30 minutes, Then add hexamercaptobenzene powder under nitrogen protection and stir rapidly.
  • the molar ratio of hexamercaptobenzene powder and copper salt is 1:3.
  • the copper salt is copper chloride, copper sulfate or copper nitrate.
  • the mass ratio of hexamercaptobenzene to CuBTC is 1-10:30.
  • the in-situ reaction temperature is 5-35°C
  • the reaction time is 2-120 minutes
  • the powder drying temperature is 40-90°C.
  • hexamercaptobenzene has a very high coordination ability, and can directly extract transition metal ions from the surface of transition metal salts, hydroxides, oxides, and other coordination polymers, and generate transition metal-hexanol at an extremely fast speed.
  • the mercaptobenzene complex covers the surface of the original transition metal compound to form a core-shell structure. This is a one-step kinetically controlled process, and the determining step of the reaction is the diffusion rate of hexamercaptobenzene, so the morphology of the original transition metal compound is preserved.
  • transition metal-hexamercaptobenzene complexes usually have higher electrical conductivity, so they can be used to improve the electrical conductivity of transition metal compounds.
  • a CuBHT@CuBTC composite material with a core-shell structure was successfully synthesized.
  • the electrical conductivity of the powder tablet of this material is more than 1 S/cm, which is higher than that of pure copper trimesate (10 -9 S/cm). ) increased by 9 orders of magnitude;
  • the preparation method is simple and convenient, the reactions are all carried out in solution, the process is easier to control, the product purification is easier, and the application prospect in the field of electrochemistry is broad;
  • transition metal ions such as copper, iron, nickel, cobalt, manganese, and palladium.
  • Fig. 1 is the scanning electron microscope picture of the present invention, a is CuBHT@CuBTC composite material, b is pure CuBTC;
  • Fig. 2 is the element distribution diagram of CuBHT@CuBTC composite material of the present invention.
  • Fig. 3 is the X-ray powder diffraction pattern of the present invention, a is CuBHT@CuBTC composite material, b is pure CuBTC.
  • the preparation method of CuBHT is as follows: dissolving copper chloride in ethanol to form a solution of 1 mg/mL, bubbling nitrogen for 30 minutes to remove oxygen, and then adding hexamercaptobenzene powder (molar ratio to copper salt is 1:3) under nitrogen protection And rapid stirring, black solid precipitation appeared immediately in the blue solution, after stirring for 30 minutes, the precipitation was filtered, washed three times with solvent, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid was 3:2.
  • the obtained mixed solution was allowed to stand at room temperature for 24 hours to obtain a blue precipitate. After washing three times, drying at 80°C to obtain CuBTC powder;
  • the preparation method of CuBHT is as follows: dissolving copper sulfate in N,N-dimethylformamide to form a solution of 50 mg/mL, blowing nitrogen for 30 minutes to remove oxygen, then adding hexamercaptobenzene powder (with copper salt) under nitrogen protection Molar ratio of 1:3) and rapid stirring, black solid precipitate appeared in the blue solution immediately, after stirring for 30 minutes, the precipitate was filtered, washed with solvent 3 times, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid was 3:2.
  • the obtained mixed solution was allowed to stand at room temperature for 24 hours to obtain a blue precipitate. After washing three times, drying at 80°C to obtain CuBTC powder;
  • the preparation method of CuBHT is as follows: dissolving copper nitrate in N-methylpyrrolidone to form a solution of 25 mg/mL, blowing nitrogen for 30 minutes to remove oxygen, and then adding hexamercaptobenzene powder (molar ratio to copper salt is 1) under nitrogen protection : 3) and stirred rapidly, a black solid precipitate appeared in the blue solution immediately, and after stirring for 30 minutes, the precipitate was filtered, washed with solvent 3 times, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid was 3:2.
  • the obtained mixed solution was allowed to stand at room temperature for 24 hours to obtain a blue precipitate. After washing three times, drying at 80°C to obtain CuBTC powder;
  • the preparation method of CuBHT is as follows: dissolving copper chloride in ethanol to form a solution of 10 mg/mL, bubbling nitrogen for 30 minutes to remove oxygen, and then adding hexamercaptobenzene powder (molar ratio to copper salt is 1:3) under nitrogen protection And rapid stirring, black solid precipitation appeared immediately in the blue solution, after stirring for 30 minutes, the precipitation was filtered, washed three times with solvent, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid is 3:2.
  • the resulting mixed solution is allowed to stand at room temperature for 24 hours to obtain a blue precipitate.
  • the precipitate is centrifuged and washed three times with methanol. After drying at 80°C, CuBTC powder was obtained;
  • the preparation method of CuBHT is as follows: dissolving copper sulfate in N-methylpyrrolidone to form a solution of 40 mg/mL, blowing nitrogen for 30 minutes to remove oxygen, then adding hexamercaptobenzene powder (molar ratio to copper salt is 1) under nitrogen protection : 3) and stirred rapidly, a black solid precipitate appeared in the blue solution immediately, and after stirring for 30 minutes, the precipitate was filtered, washed with solvent 3 times, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid was 3:2.
  • the obtained mixed solution was allowed to stand at room temperature for 24 hours to obtain a blue precipitate. After washing three times, drying at 50 °C to obtain CuBTC powder;
  • the preparation method of CuBHT is as follows: dissolving copper nitrate in N,N-dimethylformamide to form a solution of 30 mg/mL, blowing nitrogen for 30 minutes to remove oxygen, then adding hexamercaptobenzene powder (with copper salt) under nitrogen protection Molar ratio of 1:3) and rapid stirring, black solid precipitate appeared in the blue solution immediately, after stirring for 30 minutes, the precipitate was filtered, washed with solvent 3 times, and then dried in a vacuum oven at 80°C.
  • a preparation method of CuBHT@CuBTC metal-organic framework composite material comprising the following steps:
  • the molar ratio of copper nitrate and trimesic acid was 3:2.
  • the obtained mixed solution was allowed to stand at room temperature for 24 hours to obtain a blue precipitate. After washing three times, drying at 80°C to obtain CuBTC powder;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种金属有机骨架复合材料及其制备方法,所述复合材料是由CuBHT和CuBTC形成核壳结构CuBHT@CuBTC。所述制备方法包括以下步骤:步骤一,搅拌下将均苯三酸溶液滴加到三水合硝酸铜与聚乙烯吡咯烷酮的混合溶液中,静置沉淀,离心分离,洗涤后干燥得CuBTC粉末;步骤二,称所得CuBTC粉末,研磨后加入溶剂,超声分散得CuBTC分散液;步骤三,将六巯基苯加入到CuBTC分散液中原位反应,离心分离,沉淀洗涤后干燥,得到CuBHT@CuBTC。本发明成功的合成出了一种具有核壳结构的CuBHT@CuBTC复合材料,电导率达1S/cm以上,相比纯均苯三酸铜的电导率提升了9个数量级。

Description

一种金属有机骨架复合材料及其制备方法 技术领域
本发明涉及有机骨架材料及其制法,具体为一种金属有机骨架复合材料及其制备方法。
背景技术
具有多级孔道结构、结构可控且活性中心丰富的金属有机骨架材料自1990s年面世以来便受到科研工作者的极大关注,已广泛应用于气体存储和分离、分子识别、污染物富集和吸附、光催化等领域。近年,将金属有机骨架材料应用于电化学领域的研究也逐渐开展,其在电化学储能器件和电催化剂中大显身手,是研究的热点材料之一。然而,在电化学器件中,电荷的传递效率对化学反应的动力学具有重要影响,进而影响活性材料的总体性能。金属有机骨架材料由于其特殊的价键结构,通常具有极低的电子导电率,因此其作为活性物质时电荷传递效率较低,阻碍了其在电化学领域的应用扩展。以常见的具有广泛用途的金属有机骨架材料均苯三酸铜为例,其电导率通常为10 -9S/cm,远低于常见半导体材料单晶硅10 0S/cm。通过改善金属有机骨架材料的电导率以提高其综合性能,扩展其在电化学储能和电催化领域的应用,对丰富基础知识,发展和设计新材料具有极其重要的意义。
目前,已有研究报道在金属有机骨架材料的孔道结构中引入具有氧化还原活性的客体、变价金属离子等方法来提高材料的电荷传递能力,然而这些方法不仅制备过程较繁琐,破坏金属有机骨架的多孔结构,对电导率的改善程度也有限。
因此,如何在温和的条件下大幅度提高金属有机骨架材料的导电性性能亟待解决。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明的目的是提供一种电导率显著提高的金属有机骨架复合材料,本发明的另一目的是提供一种反应温和、易于操作和控制、能显著提高导电性能的金属有机骨架复合材料的制备方法。
技术方案:本发明所述的一种金属有机骨架复合材料,由CuBHT和CuBTC形成核壳结构CuBHT@CuBTC。
进一步地,CuBHT为壳层,CuBTC为核。
上述金属有机骨架复合材料的制备方法,包括以下步骤:
步骤一,均苯三酸铜(CuBTC)的制备:在搅拌下,将均苯三酸溶液以10mL/min 的速率缓慢滴加到三水合硝酸铜与聚乙烯吡咯烷酮的混合溶液中,待滴加结束后,将所得混合溶液在室温下静置,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤多次后干燥得到CuBTC粉末;
步骤二,均苯三酸铜(CuBTC)分散液的制备:称取步骤一所得CuBTC粉末,研磨后加入溶剂,超声分散,得到CuBTC分散液;
步骤三,CuBHT@CuBTC复合材料的制备:在惰性气体保护下将六巯基苯加入到CuBTC分散液中进行原位反应,离心分离,将沉淀洗涤后放入烘箱干燥,得到核壳结构CuBHT@CuBTC。
此方法有较好的普适性,可推广至合成其他含有铜、铁、镍、钴、锰、钯等过渡金属的核壳结构金属有机骨架复合材料,并且其电导率有不同程度的提升。此方法对铜基金属有机骨架材料的电导性能提升最大。
进一步地,步骤一中,三水合硝酸铜的浓度为10~20mg/mL,聚乙烯吡咯烷酮的浓度为5~8mg/mL。三水合硝酸铜和均苯三酸的摩尔比为3:2。
进一步地,步骤二中,溶剂为N,N-二甲基甲酰胺、N-甲基吡咯烷酮和二氯甲烷中的任意一种。CuBTC分散液的浓度为1~10mg/mL。
进一步地,步骤三中,CuBHT的制备方法为:将铜盐溶解在乙醇、N,N-二甲基甲酰胺或N-甲基吡咯烷酮中形成1~50mg/mL的溶液,鼓氮气30分钟,然后在氮气保护下加入六巯基苯粉末并快速搅拌,六巯基苯粉末与铜盐摩尔比为1:3,搅拌30~40分钟反应结束后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱在80℃烘干。铜盐为氯化铜、硫酸铜或硝酸铜。六巯基苯与CuBTC的质量比为1~10:30。原位反应的温度为5~35℃,反应时间为2~120分钟,粉末干燥温度为40~90℃。
制备原理:六巯基苯具有极高的配位能力,可从过渡金属盐、氢氧化物、氧化物、以及其他配位聚合物表面直接夺取过渡金属离子,以极快的速度生成过渡金属-六巯基苯配合物,覆盖在原过渡金属化合物表面,形成核壳结构。这是一步动力学控制的过程,反应的决定步骤为六巯基苯的扩散速率,所以原过渡金属化合物的形貌得以保留。同时,过渡金属-六巯基苯配合物通常具有较高的电导率,因此可以用来改善过渡金属化合物的电导率。
有益效果:本发明和现有技术相比,具有如下显著性特点:
1、成功的合成出了一种具有核壳结构的CuBHT@CuBTC复合材料,这种材料粉末压片的电导率达1S/cm以上,相比纯均苯三酸铜(10 -9S/cm)的电导率提升了9个 数量级;
2、制备方法简单便捷,反应均在溶液中进行,进程更加容易控制,产物提纯更加容易,在电化学领域应用前景广阔;
3、可推广至其他含铜、铁、镍、钴、锰、钯等过渡金属离子的金属有机骨架材料。
附图说明
图1是本发明的扫描电镜图,a为CuBHT@CuBTC复合材料,b为纯CuBTC;
图2是本发明CuBHT@CuBTC复合材料的元素分布图;
图3是本发明的X射线粉末衍射图,a为CuBHT@CuBTC复合材料,b为纯CuBTC。
具体实施方式
以下各实施例中所使用的原料均为购买直接使用。
实施例1
CuBHT的制备方法为:将氯化铜溶解在乙醇中形成1mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将3.9g三水合硝酸铜与2g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为15.6mg/mL,聚乙烯吡咯烷酮的浓度为8mg/mL,另称取2.26g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后80℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取20mg的CuBTC粉末,置于研钵中充分研磨后加入二氯甲烷20mL,超声至分散液为均匀的蓝色,得到浓度为1mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氮气保护和搅拌下将含1mg六巯基苯的5mL二氯甲烷溶液加入到CuBTC分散液 中。5℃原位反应60分钟后离心分离,将沉淀用二氯甲烷洗涤后放入烘箱40℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为蓝绿色粉末,电导率为1.1S/cm。
实施例2
CuBHT的制备方法为:将硫酸铜溶解在N,N-二甲基甲酰胺中形成50mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将2.59g三水合硝酸铜与1.25g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为10mg/mL,聚乙烯吡咯烷酮的浓度为5mg/mL,另称取1.5g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后80℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取50mg的CuBTC粉末,置于研钵中充分研磨后加入N-甲基吡咯烷酮20mL,超声至分散液为均匀的蓝色,得到浓度为2.5mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氩气保护和搅拌下将5mg六巯基苯粉末加入到CuBTC分散液中。35℃原位反应120分钟后离心分离,将沉淀用乙醇洗涤后放入烘箱80℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为绿色粉末,其压片电导率为1.3S/cm。
实施例3
CuBHT的制备方法为:将硝酸铜溶解在N-甲基吡咯烷酮中形成25mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将3.9g三水合硝酸铜与2g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为15.6mg/mL,聚乙烯吡咯烷酮的浓度为8mg/mL,另称取2.26g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后80℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取0.15g的CuBTC粉末,置于研钵中充分研磨后加入N,N-二甲基甲酰胺20mL,超声至分散液为均匀的蓝色,得到浓度为7.5mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氮气保护和搅拌下将10mg六巯基苯粉末加入到CuBTC分散液中,分散液立即变为黑色。20℃原位反应2分钟后离心分离,将沉淀用乙醇洗涤后放入烘箱80℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为墨绿色粉末,电导率为4.6S/cm。
本实施例所得产物的扫描电镜结果如图1所示,反应前的CuBTC表面较光滑,反应后生成的CuBHT@CuBTC表面***糙,但八面体结构没有改变。
实施例4
CuBHT的制备方法为:将氯化铜溶解在乙醇中形成10mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将5g三水合硝酸铜与2g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为20mg/mL,聚乙烯吡咯烷酮的浓度为8mg/mL,另称取2.9g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后80℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取0.15g的CuBTC粉末,置于研钵中充分研磨后加入N,N-二甲基甲酰胺20mL,超声至分散液为均匀的蓝色,得到浓度为7.5mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氮气保护和搅拌下将50mg六巯基苯粉末加入到CuBTC分散液中,蓝色分散液立即变为黑色。10℃原位反应120分钟后离心分离,将沉淀用乙醇洗涤后放入烘箱90℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为黑色,电导率为13.4S/cm。
实施例5
CuBHT的制备方法为:将硫酸铜溶解在N-甲基吡咯烷酮中形成40mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将3.9g三水合硝酸铜与2g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为15.6mg/mL,聚乙烯吡咯烷酮的浓度为8mg/mL,另称取2.26g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后50℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取0.21g的CuBTC粉末,置于研钵中充分研磨后加入N-甲基吡咯烷酮20mL,超声至分散液为均匀的蓝色,得到浓度为10.5mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氮气保护和搅拌下将50mg六巯基苯溶解在10mL的N,N-二甲基甲酰胺中制得浓度为5mg/mL的溶液。在氮气保护下吸取6mL六巯基苯溶液滴加到CuBTC分散液中,分散液立即变为黑色。30℃原位反应30分钟后离心分离,将沉淀用乙醇洗涤后放入烘箱90℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为墨绿色粉末,压片电导率8.3S/cm。
实施例6
CuBHT的制备方法为:将硝酸铜溶解在N,N-二甲基甲酰胺中形成30mg/mL的溶液,鼓氮气30分钟以除去氧气,然后在氮气保护下加入六巯基苯粉末(与铜盐摩尔比为1:3)并快速搅拌,蓝色溶液中立即出现黑色固体沉淀,搅拌30分钟后将沉淀过滤,用溶剂洗涤3次,然后用真空烘箱80℃烘干。
一种CuBHT@CuBTC金属有机骨架复合材料的制备方法,包括以下步骤:
(1)均苯三酸铜的制备:
将3.9g三水合硝酸铜与2g聚乙烯吡咯烷酮溶解于250mL无水甲醇溶剂中,得到硝酸铜与聚乙烯吡咯烷酮的混合甲醇溶液,三水合硝酸铜的浓度为15.6mg/mL,聚乙烯吡咯烷酮的浓度为8mg/mL,另称取2.26g均苯三酸溶解于250mL无水甲醇溶液,在搅拌下将均苯三酸的醇溶液以10mL/min的速率缓慢滴加到上述硝酸铜与聚乙烯吡咯烷酮的混合溶液中,硝酸铜和均苯三酸的摩尔比为3:2,待滴加结束后,将所得混合溶液在室温下静置24小时,得到蓝色沉淀,将沉淀离心分离,用甲醇洗涤三次后80℃干燥,得到CuBTC粉末;
(2)CuBTC分散液的制备:
称取0.15g的CuBTC粉末,置于研钵中充分研磨后加入N,N-二甲基甲酰胺20mL,超声至分散液为均匀的蓝色,得到浓度为7.5mg/mL的CuBTC分散液。
(3)CuBHT@CuBTC复合材料的制备:
在氮气保护和搅拌下将30mg六巯基苯粉末加入到CuBTC分散液中,分散液立即变为黑色。15℃原位反应60分钟后离心分离,将沉淀用乙醇洗涤后放入烘箱80℃干燥,得到核壳结构CuBHT@CuBTC。产物外观为墨绿色粉末,压片电导率为6.7S/cm。
对比例
纯均苯三酸铜(CuBTC),具体合成见实施例6的步骤(1)。
如图2,由实施例6所得产物的元素分布图,可以看出,硫元素仅分布在八面体壳层,说明六巯基苯与CuBTC表面的铜反应后原位生成了CuBHT包裹在CuBTC表面,CuBTC核不受影响。实施例6所得CuBHT@CuBTC与纯CuBTC的X射线粉末衍射图如图3所示,反应后的产物中CuBTC的量仍占据绝对优势,CuBHT信号不明显。

Claims (10)

  1. 一种金属有机骨架复合材料,其特征在于:由CuBHT和CuBTC形成核壳结构CuBHT@CuBTC。
  2. 根据权利要求1所述的一种金属有机骨架复合材料,其特征在于:所述CuBHT为壳层,所述CuBTC为核。
  3. 根据权利要求1所述的一种金属有机骨架复合材料的制备方法,其特征在于,包括以下步骤:
    步骤一,在搅拌下,将均苯三酸溶液滴加到三水合硝酸铜与聚乙烯吡咯烷酮的混合溶液中,待滴加结束后,将所得混合溶液在室温下静置,得到沉淀,将沉淀离心分离,用甲醇洗涤多次后干燥得到CuBTC粉末;
    步骤二,称取步骤一所得CuBTC粉末,研磨后加入溶剂,超声分散,得到CuBTC分散液;
    步骤三,在惰性气体保护下将六巯基苯加入到CuBTC分散液中进行原位反应,离心分离,将沉淀洗涤后放入烘箱干燥,得到核壳结构CuBHT@CuBTC。
  4. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤一中,三水合硝酸铜的浓度为10~20mg/mL,聚乙烯吡咯烷酮的浓度为5~8mg/mL。
  5. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤一中,三水合硝酸铜和均苯三酸的摩尔比为3:2。
  6. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤二中,溶剂为N,N-二甲基甲酰胺、N-甲基吡咯烷酮和二氯甲烷中的任意一种。
  7. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤二中,CuBTC分散液的浓度为1~10mg/mL。
  8. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤三中,CuBHT的制备方法为:将铜盐溶解在乙醇、N,N-二甲基甲酰胺或N-甲基吡咯烷酮中形成1~50mg/mL的溶液,鼓氮气,然后在氮气保护下加入六巯基苯粉末并搅拌,反应结束后将沉淀过滤,用溶剂洗涤,然后真空烘干。
  9. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤三中,六巯基苯与CuBTC的质量比为1~10:30。
  10. 根据权利要求3所述的一种金属有机骨架复合材料的制备方法,其特征在于:所述步骤三中,原位反应的温度为5~35℃,反应时间为2~120分钟,粉末干燥温度为 40~90℃。
PCT/CN2021/085760 2021-03-29 2021-04-07 一种金属有机骨架复合材料及其制备方法 WO2022205491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110337158.8 2021-03-29
CN202110337158.8A CN113087920B (zh) 2021-03-29 2021-03-29 一种金属有机骨架复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2022205491A1 true WO2022205491A1 (zh) 2022-10-06

Family

ID=76670901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085760 WO2022205491A1 (zh) 2021-03-29 2021-04-07 一种金属有机骨架复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113087920B (zh)
WO (1) WO2022205491A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926189A (zh) * 2023-01-12 2023-04-07 台州学院 一种新型复合材料hkust-1@pq及其制备方法
CN116632219A (zh) * 2023-07-19 2023-08-22 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用
CN116818850A (zh) * 2023-07-03 2023-09-29 张博 一种新型气体传感器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628162B (zh) * 2022-03-22 2023-11-28 中国科学院化学研究所 一种基于无孔导电配位聚合物的高性能超级电容器
CN115198532B (zh) * 2022-08-17 2023-05-26 中国科学院兰州化学物理研究所 一种固-液复合润滑混纺纤维织物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759063A (zh) * 2018-12-12 2019-05-17 浙江工业大学 一种核壳型co氧化催化剂及其制备方法与应用
KR20190105465A (ko) * 2018-03-05 2019-09-17 국방과학연구소 다기능성 금속-유기 복합체를 함유하는 독성가스 제거용 조성물
CN112225914A (zh) * 2020-10-14 2021-01-15 江苏科技大学 一种CuTCNQ@CuBTC核壳材料及其制备方法
CN112394095A (zh) * 2020-11-30 2021-02-23 江西农业大学 一种选择性检测亚硝酸根离子的电化学传感器及其制备方法与应用
CN112490441A (zh) * 2020-10-30 2021-03-12 江苏科技大学 一种石墨烯-六巯基苯铜电极材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654696A (zh) * 2018-03-22 2018-10-16 中国科学院上海高等研究院 四氧化三钴@hkust-1型核壳结构复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105465A (ko) * 2018-03-05 2019-09-17 국방과학연구소 다기능성 금속-유기 복합체를 함유하는 독성가스 제거용 조성물
CN109759063A (zh) * 2018-12-12 2019-05-17 浙江工业大学 一种核壳型co氧化催化剂及其制备方法与应用
CN112225914A (zh) * 2020-10-14 2021-01-15 江苏科技大学 一种CuTCNQ@CuBTC核壳材料及其制备方法
CN112490441A (zh) * 2020-10-30 2021-03-12 江苏科技大学 一种石墨烯-六巯基苯铜电极材料及其制备方法与应用
CN112394095A (zh) * 2020-11-30 2021-02-23 江西农业大学 一种选择性检测亚硝酸根离子的电化学传感器及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU ZHENZHEN, ADEKOYA DAVID, HUANG XING, KIEFEL MILTON J., XIE JIAN, XU WEI, ZHANG QICHUN, ZHU DAOBEN, ZHANG SHANQING: "Highly Conductive Two-Dimensional Metal–Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 14, no. 9, 22 September 2020 (2020-09-22), US , pages 12016 - 12026, XP055925071, ISSN: 1936-0851, DOI: 10.1021/acsnano.0c05200 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926189A (zh) * 2023-01-12 2023-04-07 台州学院 一种新型复合材料hkust-1@pq及其制备方法
CN115926189B (zh) * 2023-01-12 2023-11-10 台州学院 一种复合材料hkust-1@pq及其制备方法
CN116818850A (zh) * 2023-07-03 2023-09-29 张博 一种新型气体传感器及其制备方法
CN116632219A (zh) * 2023-07-19 2023-08-22 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用
CN116632219B (zh) * 2023-07-19 2023-10-24 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用

Also Published As

Publication number Publication date
CN113087920A (zh) 2021-07-09
CN113087920B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2022205491A1 (zh) 一种金属有机骨架复合材料及其制备方法
CN101421034B (zh) 用于水分吸附和脱附的吸附剂
CN103964412B (zh) 一种氮掺杂多孔结构碳材料的制备方法
Ataee-Esfahani et al. Rational synthesis of Pt spheres with hollow interior and nanosponge shell using silica particles as template
CN110563992B (zh) 一种阳离子型金属有机骨架膜材料的制备方法
Li et al. Thermo-enhanced photocatalytic oxidation of amines to imines over MIL-125-NH 2@ Ag@ COF hybrids under visible light
Wang et al. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance
WO2021068570A1 (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
Shen et al. Bottom-up synthesis of cerium–citric acid coordination polymers hollow microspheres with tunable shell thickness and their corresponding porous CeO 2 hollow spheres for Pt-based electrocatalysts
CN111215032B (zh) 一种mof材料的快速制备方法
CN109449415B (zh) 一种mof衍生的二氧化锰/四氧化三锰的层状复合材料的制备方法
CN110760074B (zh) 一种离子液体体系中多级孔金属有机骨架材料的制备方法
WO2018046930A1 (en) Process for the preparation of zirconium based mofs.
CN105289749B (zh) 无定形Fe2O3@Cd‑MOF和磁性Fe3O4@Cd‑MOF纳米复合材料及其制备方法
Yu et al. Electrospinning, solvothermal, and self-assembly synthesis of recyclable and renewable AgBrTiO2/CNFs with excellent visible-light responsive photocatalysis
Liu et al. Non‐Interpenetrated 3D Covalent Organic Framework with Dia Topology for Au Ions Capture
Liang et al. Tetrazole-functionalized two-dimensional covalent organic frameworks coordinated with metal ions for electrocatalytic oxygen evolution reaction
Liu et al. Controllable fabrication of 3D porous carbon nitride with ultra-thin nanosheets templated by ionic liquid for highly efficient water splitting
Zhang et al. Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage
Zhou et al. Oriented assembled prussian blue analogue framework for confined catalytic decomposition of ammonium perchlorate
Amini et al. Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol
Jing et al. Cyano‐Rich g‐C3N4 in Photochemistry: Design, Applications, and Prospects
CN114130396A (zh) 一种具有超高诺氟沙星降解性能的单原子催化剂的制备方法
CN111690148B (zh) 一种二维金属-有机骨架材料的绿色制备方法
CN109575305B (zh) Co-MOF气敏纳米材料的制备方法及其产品和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934145

Country of ref document: EP

Kind code of ref document: A1