WO2022202610A1 - エポキシ樹脂組成物、エポキシ樹脂硬化物 - Google Patents

エポキシ樹脂組成物、エポキシ樹脂硬化物 Download PDF

Info

Publication number
WO2022202610A1
WO2022202610A1 PCT/JP2022/012297 JP2022012297W WO2022202610A1 WO 2022202610 A1 WO2022202610 A1 WO 2022202610A1 JP 2022012297 W JP2022012297 W JP 2022012297W WO 2022202610 A1 WO2022202610 A1 WO 2022202610A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
compound
formula
mass
Prior art date
Application number
PCT/JP2022/012297
Other languages
English (en)
French (fr)
Inventor
大典 松▲崎▼
一希 早坂
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2023509101A priority Critical patent/JPWO2022202610A1/ja
Priority to CN202280016326.6A priority patent/CN116981710A/zh
Publication of WO2022202610A1 publication Critical patent/WO2022202610A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used

Definitions

  • the present invention relates to epoxy resin compositions and epoxy resin cured products.
  • Epoxy resin has excellent moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, etc., and has been used in fields such as molding materials, adhesive materials, electronic parts, and ink materials. Epoxy resins are also used as sealing materials for electronic components such as semiconductor devices.
  • cured epoxy resins used as sealing materials are required not to crack or peel off due to stress such as thermal expansion or thermal contraction.
  • stress such as thermal expansion or thermal contraction.
  • Patent Document 1 it has been studied to add various additives to the epoxy resin.
  • the present invention has been made in view of such circumstances, and provides an epoxy resin composition capable of suppressing cracks and peeling due to thermal stress while suppressing the deterioration of the inherent mechanical and thermal properties of epoxy resins. It provides
  • an epoxy resin (A) 100 parts by mass of an epoxy resin (A), 5 to 90 parts by mass of a compound (B) represented by the following formula (1), and 10 to 90 parts by mass of a curing agent (C) are included.
  • An epoxy resin composition is provided.
  • the epoxy resin composition of one embodiment of the present invention contains an epoxy resin (A), a compound (B), and a curing agent (C).
  • Epoxy resin (A) means a compound other than compound (B) having multiple epoxy groups (preferably multiple glycidyl groups).
  • the number of epoxy groups in one molecule of the epoxy resin (A) is, for example, 2, 3 or 4, preferably 2 or 3, more preferably 2.
  • the epoxy equivalent of the epoxy resin (A) is, for example, 120 to 400 (g/eq). eq) and may be in a range between any two of the values exemplified herein. Epoxy equivalent can be measured according to JIS K 7236:2009.
  • the epoxy resin (A) is preferably liquid at 25°C from the viewpoint of handling.
  • the weight average molecular weight (Mw) of the epoxy resin (A) is, for example, 240 to 600, specifically, for example, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, It may be in a range between any two of the numerical values exemplified here. Mw can be measured by a gel permeation chromatography (GPC) method.
  • the epoxy resin (A) preferably does not have a reactive functional group selected from an amino group, a carboxyl group, a phenolic hydroxyl group, and a thiol group, and is not a carboxylic acid anhydride. Since such a reactive functional group has high reactivity with the epoxy group, it reacts with the epoxy group contained in the compound (B) to form a bond between the epoxy resin (A) and the compound (B). This is because the mechanical properties and thermophysical properties inherent in the epoxy resin tend to deteriorate.
  • the epoxy resin (A) and the compound (B) are bonded via the curing agent (C), and the epoxy resin (A) and the compound (B) are It is preferred not to react directly.
  • the epoxy resin (A) and the compound (B) may not cure. preferable.
  • the epoxy resin (A) preferably does not have an addition reaction site (hereinafter referred to as "DA reaction addition site") formed by a Diels-Alder reaction from a conjugated diene structure and a dienophile structure. This is because such an addition reaction portion tends to deteriorate the mechanical properties and thermophysical properties inherent in the epoxy resin.
  • DA reaction addition site an addition reaction site formed by a Diels-Alder reaction from a conjugated diene structure and a dienophile structure.
  • Examples of the epoxy resin (A) include bifunctional or crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin; Novolac epoxy resins such as epoxy resins, phenol novolak epoxy resins, and naphthol novolak epoxy resins; Aralkyl-type epoxy resins; trifunctional epoxy resins such as triphenolmethane-type epoxy resins and alkyl-modified triphenolmethane-type epoxy resins are preferred. Particularly preferred are cresol novolac type epoxy resins and biphenylene skeleton-containing phenol aralkyl type epoxy resins.
  • Examples of commercially available epoxy resins (A) are as follows. ⁇ Biphenyl type epoxy resin: YX4000 (Mitsubishi Chemical) ⁇ Bisphenol A type epoxy resin: jER-828 (Mitsubishi Chemical) ⁇ Bisphenol F type epoxy resin: EPICLON 830 (DIC) ⁇ Cresol novolac type epoxy resin: EPICLON N-680 (DIC) ⁇ Biphenylene skeleton-containing phenol aralkyl type epoxy resin: NC3000 (Nippon Kayaku)
  • Compound (B) is a compound represented by the following formula (1).
  • Compound (B) comprises a DA reaction adduct.
  • the DA addition reaction part dissociates when the cured epoxy resin is exposed to high temperatures, thereby relieving the stress of the cured epoxy resin and suppressing the occurrence of cracks and peeling in the cured epoxy resin. .
  • the content of the compound (B) with respect to 100 parts by mass of the epoxy resin (A) is 5 to 90 parts by mass, preferably 5 to 80 parts by mass, more preferably 5 to 60 parts by mass. If the content of the compound (B) is too small, the stress relaxation effect will not be sufficiently exhibited. If the content of the compound (B) is too large, the mechanical properties and thermophysical properties tend to deteriorate significantly. Specifically, this content is, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 parts by mass. , within a range between any two of the numerical values exemplified herein.
  • R 1 is * 2 —(CH 2 ) a —X—(CH 2 ) b —* 1 or * 2 —Ar 1 —(CH 2 ) a —X—(CH 2 ) b ⁇ * 1
  • * 1 is the bond with the epoxy group
  • * 2 is the bond with the other group
  • X is a group represented by -O-, -S-, -NR 2 - or -COO-
  • R 2 is -CH 3 , -C 2 H 5 or -(CH 2 ) a - a group represented by CH(O) CH2
  • Ar 1 is an unsubstituted phenyl group or a phenyl group substituted with 1 to 4 (eg, 1,2,3,4) methyl or ethyl groups
  • a is an integer of 0 to 5 (eg, 0, 1, 2, 3, 4, 5)
  • b is an integer of 1 to 5 (eg, 1, 2, 3, 4, 5)
  • Y is a
  • R 3 is —(CH 2 ) d —, —[(CH 2 ) d —O] e —(CH 2 ) d —, —Ar 2 —, or —Ar 3 —R 4 -Ar 3 -
  • d is an integer of 1 to 8 (eg, 1,2,3,4,5,6,7,8)
  • e is an integer of 1 to 3 (eg, 1,2,3)
  • Ar 2 and Ar 3 are each an unsubstituted phenyl group, a phenyl group substituted with 1 to 4 (eg, 1,2,3,4) methyl or ethyl groups, an unsubstituted biphenyl group, or a biphenyl group substituted with 1 to 8 (e.g., 1,2,3,4,5,6,7,8) methyl or ethyl groups
  • R 4 is -(CH 2 ) f -, -O-, -S-, -SO-, -SO 2 -
  • Y in formula (1) is preferably a group represented by formula (2).
  • the compound (B) has two DA reaction addition sites, so that the stress relaxation effect is remarkable.
  • R 3 in formula (2) is preferably -Ar 3 -R 4 -Ar 3 -.
  • the compound (B) can be obtained, for example, by subjecting a conjugated diene compound represented by formula (3) and a dienophile compound represented by formula (4) or (5) to Diels-Alder reaction.
  • the compound (B) preferably has a dissociation initiation temperature of 80 to 190°C.
  • the dissociation initiation temperature is the temperature at which dissociation of the DA addition reaction portion of compound (B) is initiated, and can be measured by the method described in "3. Evaluation of epoxy resin composition" below. If the dissociation starting temperature is too low, the mechanical properties and thermophysical properties tend to deteriorate. Hard to be effective.
  • the dissociation start temperature is, for example, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190° C. may be within the range.
  • Compound (B) does not have a reactive functional group selected from an amino group, a carboxyl group, a phenolic hydroxyl group, and a thiol group, and is not a carboxylic acid anhydride, so that compound (B) is an epoxy resin (A). does not react with the epoxy groups of
  • the curing agent (C) is a compound capable of reacting with a plurality of epoxy groups and linking compounds having epoxy groups.
  • the curing agent (C) preferably has a plurality of reactive functional groups selected from amino groups, carboxyl groups, phenolic hydroxyl groups and thiol groups, or is a carboxylic acid anhydride.
  • the epoxy resin composition is cured by the curing agent (C) connecting the epoxy resins (A) to each other, the compounds (B) to each other, or the epoxy resin (A) and the compound (B) to each other to increase the molecular weight. It becomes an epoxy resin hardened product.
  • the content of the curing agent (C) with respect to 100 parts by mass of the epoxy resin (A) is 10 to 90 parts by mass, preferably 20 to 85 parts by mass, more preferably 30 to 80 parts by mass. If the curing agent (C) is too little or too much, the mechanical properties and thermophysical properties of the epoxy resin cured product tend to deteriorate.
  • This content is specifically, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 parts by mass, here may be within a range between any two of the numerical values exemplified in .
  • the total epoxy equivalent weight of the epoxy resin (A) and the compound (B) and the curing agent It is preferable that the curing agent (C) is contained in the composition so that the functional group equivalent weight of (C) is close to that of the curing agent (C).
  • the value of ⁇ functional group equivalent of curing agent (C) ⁇ / ⁇ total value of epoxy equivalents of epoxy resin (A) and compound (B) ⁇ is, for example, 0.8 to 1.2, specifically For example, 0.8, 0.9, 1.0, 1.1, 1.2, and may be in the range between any two of the numerical values exemplified herein.
  • the epoxy resin cured product obtained by curing the epoxy resin composition in which the epoxy resin (A), the compound (B) and the curing agent (C) are blended in the above ratio has the mechanical and thermophysical properties inherent in the epoxy resin. Cracks and peeling due to thermal stress are suppressed while suppressing the deterioration of
  • the curing agent (C) is preferably at least one selected from amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and polyvalent carboxylic acid compounds.
  • amine curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA); diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), diaminodiphenyl One or more selected from the group consisting of aromatic polyamines such as sulfone (DDS); and polyamine compounds such as dicyandiamide (DICY) and organic acid dihydralazide. Aliphatic polyamines are particularly preferred as amine-based curing agents.
  • amine curing agents examples include as follows. ⁇ Aliphatic polyamine: jER Cure ST12 (Mitsubishi Chemical), ADEKA Hardener EH-6019 (ADEKA)
  • phenolic curing agent examples include phenolic novolac resins, cresol novolak resins and other phenols, cresols, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • Novolak resins obtained by condensation or co-condensation of phenols such as phenols and formaldehyde or ketones in the presence of an acidic catalyst; One or more selected from the group consisting of aralkyl resins; phenol aralkyl resins such as phenol aralkyl resins having a biphenylene skeleton; and phenol resins having a trisphenylmethane skeleton.
  • the phenolic curing agent preferably contains one or more resins selected from the group consisting of biphenylaralkyl-type phenolic resins and triphenylmethane-type phenolic resins.
  • cresol novolak resins and phenol aralkyl resins having a biphenylene skeleton are particularly preferred.
  • phenolic curing agents examples include as follows. ⁇ Cresol novolak type: PHENOLITETD-2131 (DIC) ⁇ Biphenyl aralkyl type: KAYAHARDGPH-65 (Nippon Kayaku)
  • Acid anhydride curing agents include, for example, hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), alicyclic acid anhydrides such as maleic anhydride; trimellitic anhydride (TMA), pyroanhydride
  • HHPA hexahydrophthalic anhydride
  • MTHPA methyltetrahydrophthalic anhydride
  • TMA trimellitic anhydride
  • pyroanhydride One or more selected from the group consisting of aromatic acid anhydrides such as mellitic acid (PMDA), benzophenonetetracarboxylic acid (BTDA), and phthalic anhydride can be used.
  • polycarboxylic acid compounds include phthalic acid, hydroxyisophthalic acid, succinic acid, sebacic acid, maleic acid, dodecenylsuccinic acid, chlorendic acid, pyromellitic acid, trimellitic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid. , tetrahydrophthalic acid, methyltetrahydrophthalic acid, and methylnadic acid.
  • the epoxy resin composition of the present invention may contain a curing catalyst. By containing a curing catalyst, the epoxy resin composition can shorten the curing time.
  • the content of the curing catalyst with respect to 100 parts by mass of the epoxy resin (A) is 0.1 to 5 parts by mass, preferably 0.3 to 4.5 parts by mass, more preferably 0.5 to 4.0 parts by mass. .
  • this content is, for example, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 , 4.5, and 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified herein.
  • Curing catalysts include, for example, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) or salts thereof; 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) or salts thereof tertiary amines such as benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol and N,N-dimethylcyclohexylamine; and phosphines such as triphenylphosphine and tris(dimethoxy)phosphine.
  • DBU 1,8-diazabicyclo[5.4.0]undecene-7
  • DBN 1,5-diazabicyclo[4.3.0]nonene-5
  • tertiary amines such as benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol and N,N-dimethylcyclohexylamine
  • phosphines such as triphen
  • the epoxy resin composition of the present invention may optionally contain ultraviolet absorbers, antioxidants, antiseptics, rust inhibitors, pigments, tackifiers, surface lubricants, brighteners, water repellents, and photosensitizers. , Organic / inorganic fibers, plasticizers, conductive fillers, inorganic fillers, flame retardants, antistatic agents, foam stabilizers, release agents, colorants and foaming agents. good.
  • An additive may be used individually by 1 type, and may use 2 or more types.
  • the content of the additive with respect to 100 parts by mass of the epoxy resin (A) is, for example, 0 to 50 parts by mass, more preferably 0 to 20 parts by mass. Specifically, this content is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 parts by mass, and ranges between any two of the numerical values illustrated here may be within
  • the epoxy resin composition of the present invention may contain a solvent.
  • solvents include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; cyclopentane, cyclohexane, cycloheptane and cyclooctane.
  • Ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dibutyl ether, tetrahydrofuran, dioxane, anisole, phenylethyl ether, diphenyl ether; chloroform, carbon tetrachloride, 1,2-dichloroethane , halogenated hydrocarbons such as chlorobenzene; esters such as ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone and cyclohexanone; N,N-dimethylformamide, N, amides such as N-dimethylacetamide and N-methylpyrrolidone; nitriles such as acetonitrile and benzonitrile; and sulfoxides such as
  • the content of the solvent in the epoxy resin composition of the present invention is usually 70% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less.
  • a cured epoxy resin product can be formed by curing the epoxy resin composition of the present invention.
  • the epoxy resin composition can be cured by heating or light irradiation, for example.
  • the heating temperature (curing temperature) during curing is usually 20 to 300°C, preferably 40 to 250°C, more preferably 60 to 200°C.
  • the curing temperature is, for example, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 250, 260, 280, 300 ° C. Numerical values exemplified here may be in the range between any two of
  • the heating time (curing time) for curing is usually 10 to 1440 minutes, preferably 30 to 900 minutes, more preferably 60 to 480 minutes.
  • the heating can also be performed in multiple stages.
  • light such as ultraviolet light, visible light, and infrared light can be used, and ultraviolet light is preferred.
  • the exposure dose is preferably 1 to 10000 mJ/cm 2 , more preferably 10 to 3000 mJ/cm 2 .
  • light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, chemical lamps, black light fluorescent lamps, and electrodeless UV lamps.
  • the curing reaction can be carried out by coating the epoxy resin composition of the present invention on a substrate, or by injecting it into a mold.
  • the shape of the cured product of the present invention is not particularly limited, and examples thereof include plate-like, sheet-like and film-like shapes.
  • Their thickness is, for example, usually 0.01 to 1000 mm, preferably 0.1 to 100 mm, more preferably 0.1 to 5 mm.
  • the epoxy resin composition may be of a one-component type or a two-component type.
  • the first component contains the epoxy resin (A) and the compound (B)
  • the second component contains the curing agent (C).
  • the curing agent (C) since the curing agent (C) does not react with the epoxy resin (A) or the compound (B) during storage, the storage stability is improved.
  • the curing agent (C) can be reacted with the epoxy resin (A) and the compound (B) by mixing the first liquid and the second liquid.
  • the epoxy resin composition of the present invention it is possible to form an epoxy resin cured product that suppresses cracks and peeling due to thermal stress while suppressing the deterioration of the mechanical and thermal properties inherent in the epoxy resin.
  • the epoxy resin composition of the present invention has the above properties, it can be used for applications such as electronic materials, binders, paints, and adhesives.
  • substrate substrates for electronic members such as semiconductor packages, build-up films, solder resist inks, underfill materials, solid sealing materials for packages, binders for paving, binders for carbon fiber reinforced plastics (CFRP), Cationic electrodeposition coating agents, heavy-duty anti-corrosion coatings, powder coatings, infrastructure repair/reinforcing adhesives, general household/industrial adhesives.
  • CFRP carbon fiber reinforced plastics
  • Production example 4 18.9 g (0.10 mol) of 4-hydroxyphenylmaleimide, 3.22 g (0.01 mol) of tetrabutylammonium bromide, 40% by mass of water were placed in a reactor equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet. 80 g of an aqueous sodium oxide solution and 80 g of toluene were charged, the temperature was raised to 60° C. while introducing nitrogen gas, 46.3 g (0.50 mol) of epichlorohydrin was added dropwise, and the mixture was stirred for 2 hours.
  • Production example 6 50.0 g (0.24 mol) of 9-(hydroxymethyl)anthracene, 7.74 g (0.024 mol) of tetrabutylammonium bromide, 40 masses were placed in a reactor equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet. % sodium hydroxide aqueous solution and 200 g of toluene were charged, the temperature was raised to 60° C. while introducing nitrogen gas, 111.1 g (1.2 mol) of epichlorohydrin was added dropwise, and the mixture was stirred for 2 hours.
  • epoxy resin composition 2-1 100 parts by mass of epoxy resin (A) (jER-828, manufactured by Mitsubishi Chemical) and 10 parts by mass of compound (B1) were placed in a container and left in an environment of 80° C. for 1 hour. Then, using a glass rod, jER-828 and compound (B1) were mixed and allowed to stand until the temperature of the mixture reached 25°C. After that, a mixture of jER-828 and compound (B1) and 52 parts by mass of curing agent (C) (ST-12: manufactured by DIC) were mixed in a mixer (ARE-310: manufactured by Thinky) for 2 minutes to form an epoxy resin composition. got stuff
  • Example 2-9 Comparative Examples 1-3, Reference Examples 1-3 Epoxy resin compositions of Examples 2 to 9, Comparative Examples 1 to 3, and Reference Examples 1 to 3 were obtained in the same manner as in Example 1, except that the composition was changed to those shown in Tables 1 and 2.
  • the curing agent (C) was heated at 80° C. for 30 minutes before being charged into the mixer.
  • jER-828 bisphenol A type epoxy resin
  • Mitsubishi Chemical EPICLON830 bisphenol F type epoxy resin
  • DIC ST12 aliphatic polyamine curing agent (jER Cure ST12)
  • Mitsubishi Chemical TD-2131 cresol novolac type curing agent ( PHENOLITETD-2131); PPh 3 manufactured by DIC: triphenylphosphine
  • the examples had higher glass transition temperatures than the comparative examples, and had values close to those of the reference examples that did not contain the compound (B).
  • the tensile elastic modulus, the maximum tensile stress, the shear adhesive strength and the storage elastic modulus were also equivalent to those of the reference example.
  • the examples were superior to the reference examples in the results of the thermal cycle test. From the above, it was found that according to the examples of the present invention, cracks and peeling due to thermal stress can be suppressed while suppressing the deterioration of the mechanical properties and thermophysical properties inherent in the epoxy resin.
  • the details of the evaluation are as follows. [Glass transition temperature/dissociation start temperature]
  • the epoxy resin composition to be evaluated was poured into a mold treated with a fluorine-based mold release agent, heated at 80° C. for 3 hours, and further heat-cured at 120° C. for 3 hours to prepare a dumbbell test piece.
  • the test piece is sealed in a simple sealed pan, and a differential scanning calorimeter (DSC) is used to measure the heat change by raising the temperature from 30 ° C. to 200 ° C. at a rate of 10 ° C./min under a nitrogen stream.
  • a graph was drawn between calorific value and temperature, and the characteristic inflection observed at this time was taken as the glass transition.
  • the glass transition temperature the value obtained by the midpoint method from the DSC curve was used.
  • the dissociation start temperature the value of the extrapolated start temperature of the endothermic peak appearing at a temperature higher than the glass transition temperature was used.
  • the epoxy resin composition to be evaluated was poured into a mold treated with a fluorine-based mold release agent, heated at 80° C. for 3 hours, and further heat-cured at 120° C. for 3 hours to prepare a dumbbell test piece.
  • the tensile modulus and maximum tensile stress of the obtained test piece were measured according to JIS-K7161 under the following conditions. ⁇ Sample size: Dumbbell size 1BA ⁇ Test speed: 1.0 mm/min ⁇ Measurement environment: Temperature 25°C ⁇ Number of measurements: Measured 3 times and calculated from the average value
  • the obtained test piece is left in an environment of 25°C for 24 hours, and a thermal shock device TSA-71L-A (manufactured by Espec) is used to perform a thermal cycle of -40°C x 30 minutes and 200°C x 30 minutes as one cycle. was repeated 150 times, and the presence or absence of peeling of the test piece was visually confirmed. The test was performed three times for the same curable composition, and the numbers in the table indicate the number of times peeling occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

エポキシ樹脂が本来有する力学物性や熱物性の悪化を抑制しつつ、熱応力によるクラック・剥がれを抑制することのできる、エポキシ樹脂組成物を提供する。 本発明によれば、エポキシ樹脂(A)100質量部と、下記式(1)で示される化合物(B)を5~90質量部と、硬化剤(C)10~90質量部と、を含むエポキシ樹脂組成物が提供される。

Description

エポキシ樹脂組成物、エポキシ樹脂硬化物
 本発明は、エポキシ樹脂組成物及びエポキシ樹脂硬化物に関する。
 エポキシ樹脂は成形性、電気特性、耐湿性、耐熱性、機械特性等に優れていることから、従来から、成形材料、接着剤用材料、電子部品、インキ材料等の分野において用いられている。また、半導体デバイス等の電子部品素子の封止材料としてもエポキシ樹脂が用いられている。
 例えば、封止材として用いられるエポキシ樹脂硬化物には、熱膨張や熱収縮等の応力による、クラック・剥がれを生じさせないことが求められる。熱応力によるクラック・剥がれを抑制するために、エポキシ樹脂に各種添加剤を配合することが検討されている(例えば特許文献1)。
特開2003-183348号公報
 しかし、添加剤の配合によりエポキシ樹脂本来の力学物性や熱物性が損なわれる問題があった。
 本発明はこのような事情に鑑みてなされたものであり、エポキシ樹脂が本来有する力学物性や熱物性の悪化を抑制しつつ、熱応力によるクラック・剥がれを抑制することのできる、エポキシ樹脂組成物を提供するものである。
 本発明によれば、エポキシ樹脂(A)100質量部と、下記式(1)で示される化合物(B)を5~90質量部と、硬化剤(C)10~90質量部と、を含むエポキシ樹脂組成物が提供される。
 本発明者が鋭意検討を行ったところ、上記組成物を用いることによって、上記課題が解決可能であることを見出し、本発明の完成に到った。
 以下、本発明の実施形態について、詳細に説明する。
1.エポキシ樹脂組成物の組成
 本発明の一実施形態のエポキシ樹脂組成物は、エポキシ樹脂(A)と、化合物(B)と、硬化剤(C)を含有する。
1-1.エポキシ樹脂(A)
 エポキシ樹脂(A)は、複数のエポキシ基(好ましくは複数のグリシジル基)を有する、化合物(B)以外の化合物を意味する。エポキシ樹脂(A)の1分子中のエポキシ基の数は、例えば、2、3、4であり、2又は3が好ましく、2がさらに好ましい。エポキシ樹脂(A)のエポキシ当量は、例えば120~400(g/eq)であり、具体的には例えば、120、140、160、180、200、220、240、260、280、300(g/eq)であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。エポキシ当量は、JIS K 7236:2009に従って測定することができる。
 エポキシ樹脂(A)は、25℃で液状であることが取り扱い性の観点で好ましい。エポキシ樹脂(A)の重量平均分子量(Mw)は、例えば、240~600であり、具体的には例えば、240、280、320、360、400、440、480、520、560、600であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定することができる。
 エポキシ樹脂(A)は、アミノ基、カルボキシ基、フェノール性水酸基、及びチオール基から選択される反応性官能基を有さず、且つカルボン酸無水物でないことが好ましい。このような反応性官能基は、エポキシ基との反応性が高いので、化合物(B)に含まれるエポキシ基と反応して、エポキシ樹脂(A)と化合物(B)の間に結合を形成してしまい、エポキシ樹脂が本来有する力学物性や熱物性を悪化させやすいからである。
 本実施形態のエポキシ樹脂組成物では、エポキシ樹脂(A)と化合物(B)は、硬化剤(C)を介して結合することが想定されており、エポキシ樹脂(A)と化合物(B)が直接反応しないことが好ましい。例えば、硬化剤(C)がない状態でエポキシ樹脂(A)と化合物(B)を共存させた状態で120℃3時間加熱したときにエポキシ樹脂(A)と化合物(B)が硬化しないことが好ましい。
 エポキシ樹脂(A)は、共役ジエン構造とジエノフィル構造からディールスアルダー反応によって形成される付加反応部(以下、「DA反応付加部」)を備えないことが好ましい。このような付加反応部は、エポキシ樹脂が本来有する力学物性や熱物性を悪化させやすいからである。
 エポキシ樹脂(A)としては、たとえば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の2官能性または結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂およびアルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂が好ましく、このうち、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂が特に好ましい。
 エポキシ樹脂(A)の市販品の例は、以下の通りである。
・ビフェニル型エポキシ樹脂:YX4000(三菱ケミカル)
・ビスフェノールA型エポキシ樹脂:jER-828(三菱ケミカル)
・ビスフェノールF型エポキシ樹脂:EPICLON 830(DIC)
・クレゾールノボラック型エポキシ樹脂:EPICLON N-680(DIC)
・ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂:NC3000(日本化薬)
1-2.化合物(B)
 化合物(B)は、下記式(1)で示される化合物である。化合物(B)は、DA反応付加部を備える。DA付加反応部は、エポキシ樹脂硬化物が高温にさらされたときに解離することによって、エポキシ樹脂硬化物の応力が緩和されて、エポキシ樹脂硬化物にクラックや剥がれが発生することが抑制される。
 エポキシ樹脂(A)100質量部に対する化合物(B)の含有量は、5~90質量部であり、5~80質量部が好ましく、5~60質量部がさらに好ましい。化合物(B)の含有量が少なすぎると応力緩和の効果が十分に発揮されない。化合物(B)の含有量が多すぎると、力学物性や熱物性の悪化が顕著になりやすい。この含有量は、具体的には例えば、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、*-(CH-X-(CH-*、又は、*-Ar-(CH-X-(CH-*であり、*がエポキシ基との結合部であり、*が他の基との結合部であり、
 Xは、-O-、-S-、-NR-、又は-COO-で表される基であり、Rは、-CH、-C、又は-(CH-CH(O)CHで表される基あり、
 Arは、未置換のフェニル基、又は1~4(例:1,2,3,4)個のメチル基又はエチル基で置換されたフェニル基であり、
 aは、0~5(例:0,1,2,3,4,5)の整数、bは、1~5(例:1,2,3,4,5)の整数であり、
 Yは、直接結合又は式(2)で表される基であり、式(2)中の*及び*は、それぞれ、R及びNとの結合部である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Rは、-(CH-、-[(CH-O]-(CH-、-Ar-、又は-Ar-R-Ar-であり、
 dは、1~8(例:1,2,3,4,5,6,7,8)の整数、eは、1~3(例:1,2,3)の整数であり、
 Ar及びArは、それぞれ、未置換のフェニル基、1~4(例:1,2,3,4)個のメチル基又はエチル基で置換されたフェニル基、未置換のビフェニル基、又は1~8(例:1,2,3,4,5,6,7,8)個のメチル基又はエチル基で置換されたビフェニル基であり、
 Rは、-(CH-、-O-、-S-、-SO-、-SO-、-CO-、又は-[(CH-O]-(CH-で表される基であり、
 fは、1~8(例:1,2,3,4,5,6,7,8)の整数、gは、1~3(例:1,2,3)の整数である。)
 式(1)中のYは、式(2)で表される基であることが好ましい。この場合、化合物(B)が2つのDA反応付加部を備えるので、応力緩和の効果が顕著である。前記式(2)のRは、-Ar-R-Ar-であることが好ましい。
 化合物(B)は、例えば、式(3)で表される共役ジエン化合物と、式(4)又は式(5)で表されるジエノフィル化合物をディールスアルダー反応させることによって得ることができる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 化合物(B)は、解離開始温度が80~190℃であることが好ましい。解離開始温度は、化合物(B)のDA付加反応部の解離が開始される温度であり、後述の「3.エポキシ樹脂組成物の評価」において説明した方法によって測定可能である。解離開始温度が低すぎると力学物性や熱物性が悪化しやすく、解離開始温度が高すぎると、通常の熱サイクルの際の化合物(B)のDA付加反応部が解離されずに、応力緩和の効果が発揮されにくい。解離開始温度は、具体的には例えば、80、90、100、110、120、130、140、150、160、170、180、190℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 化合物(B)は、アミノ基、カルボキシ基、フェノール性水酸基、及びチオール基から選択される反応性官能基を有さず、カルボン酸無水物でもないので、化合物(B)がエポキシ樹脂(A)のエポキシ基と反応することがない。
1-3.硬化剤(C)
 硬化剤(C)は、複数のエポキシ基と反応して、エポキシ基を有する化合物同士を連結可能な化合物である。硬化剤(C)は、アミノ基、カルボキシ基、フェノール性水酸基、及びチオール基から選択される反応性官能基を複数有するか、又はカルボン酸無水物であることが好ましい。硬化剤(C)によって、エポキシ樹脂(A)同士、化合物(B)同士、又はエポキシ樹脂(A)と化合物(B)が互いに連結されて高分子量化することによって、エポキシ樹脂組成物が硬化して、エポキシ樹脂硬化物となる。
 エポキシ樹脂(A)100質量部に対する硬化剤(C)の含有量は、10~90質量部であり、20~85質量部が好ましく、30~80質量部がさらに好ましい。硬化剤(C)が少なすぎても多すぎても、エポキシ樹脂硬化物の力学物性や熱物性が悪くなりやすい。この含有量は、具体的には例えば、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 特に、化合物(B)を配合した場合であってもエポキシ樹脂(A)が有する諸物性を大きく変化させない観点から、エポキシ樹脂(A)および化合物(B)のエポキシ当量の合計値と、硬化剤(C)の官能基当量とで近い値となるように硬化剤(C)が組成物中に含有されることが好ましい。{硬化剤(C)の官能基当量}/{エポキシ樹脂(A)および化合物(B)のエポキシ当量の合計値}の値は、例えば、0.8~1.2であり、具体的には例えば、0.8、0.9、1.0、1.1、1.2であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 エポキシ樹脂(A)と、化合物(B)と、硬化剤(C)を上記割合で配合したエポキシ樹脂組成物を硬化させて得られるエポキシ樹脂硬化物は、エポキシ樹脂が本来有する力学物性や熱物性の悪化を抑制しつつ、熱応力によるクラック・剥がれが抑制される。
 硬化剤(C)は、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、多価カルボン酸化合物から選ばれる少なくとも1つであることが好ましい。
(アミン系硬化剤)
 アミン系硬化剤としては、たとえば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシリレンジアミン(MXDA)などの脂肪族ポリアミン;ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミン;ジシアンジアミド(DICY)や有機酸ジヒドララジドなどのポリアミン化合物からなる群から選択される1種または2種以上が挙げられる。アミン系硬化剤としては、脂肪族ポリアミンが特に好ましい。
 アミン系硬化剤の市販品の例は、以下の通りである。
・脂肪族ポリアミン:jERキュアST12(三菱ケミカル)、アデカハードナーEH-6019(ADEKA)
(フェノール系硬化剤)
 フェノール系硬化剤としては、たとえば、フェノールノボラック樹脂、クレゾールノボラック樹脂をはじめとするフェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のフェノール類とホルムアルデヒドやケトン類とを酸性触媒下で縮合または共縮合させて得られるノボラック樹脂;上述のフェノール類とジメトキシパラキシレンまたはビス(メトキシメチル)ビフェニルから合成されるフェニレン骨格を有するフェノールアラルキル樹脂;ビフェニレン骨格を有するフェノールアラルキル樹脂などのフェノールアラルキル樹脂;トリスフェニルメタン骨格を有するフェノール樹脂からなる群から選択される1種または2種以上が挙げられる。フェノール系硬化剤は、好ましくはビフェニルアラルキル型フェノール樹脂およびトリフェニルメタン型フェノール樹脂からなる群から選択される1または2以上の樹脂を含む。
 フェノール系硬化剤としては、クレゾールノボラック樹脂や、ビフェニレン骨格を有するフェノールアラルキル樹脂が特に好ましい。
 フェノール系硬化剤の市販品の例は、以下の通りである。
・クレゾールノボラック型:PHENOLITETD-2131(DIC)
・ビフェニルアラルキル型:KAYAHARDGPH-65(日本化薬)
(酸無水物系硬化剤)
 酸無水物系硬化剤としては、たとえば、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)や無水マレイン酸などの脂環族酸無水物;無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)、無水フタル酸などの芳香族酸無水物からなる群から選択される1種または2種以上が挙げられる。
(多価カルボン酸化合物)
 多価カルボン酸化合物としては、例えば、フタル酸、ヒドロキシイソフタル酸、コハク酸、セバシン酸、マレイン酸、ドデセニルコハク酸、クロレンデック酸、ピロメリット酸、トリメリット酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルナジック酸が挙げられる。
1-4.硬化触媒
 本発明のエポキシ樹脂組成物は、硬化触媒を含有してもよい。硬化触媒を含有することで、エポキシ樹脂組成物が硬化時間を短縮することができる。
エポキシ樹脂(A)100質量部に対する硬化触媒の含有量は、0.1~5質量部であり、0.3~4.5質量部が好ましく、0.5~4.0質量部がさらに好ましい。この含有量は、具体的には例えば、0.1、0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硬化触媒としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)またはその塩;1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)またはその塩;ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィンなどのホスフィン類が挙げられる。
1-5.添加剤
 本発明のエポキシ樹脂組成物は、必要に応じて、紫外線吸収剤、酸化防止剤、防腐剤、防錆剤、顔料、粘着付与剤、表面潤滑剤、光沢剤、撥水剤、感光剤、有機・無機繊維、可塑剤、導電性フィラー、無機フィラー、難燃剤、帯電防止剤、整泡剤、離型剤、着色剤および発泡剤から選ばれる少なくとも1種の添加剤を含有してもよい。添加剤は1種単独で用いてもよく、2種以上を用いてもよい。エポキシ樹脂(A)100質量部に対する添加剤の含有量は、例えば0~50質量部であり、0~20質量部がさらに好ましい。この含有量は、具体的には例えば、0、5、10、15、20、25、30、35、40、45、50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
1-6.溶媒
 本発明のエポキシ樹脂組成物は、溶媒を含有してもよい。溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂環式炭化水素;ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、フェニルエチルエーテル、ジフェニルエーテル等のエーテル;クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、N-メチルピロリドン等のアミド;アセトニトリル、ベンゾニトリル等のニトリル;ジメチルスルホキシド、スルホラン等のスルホキシドが挙げられる。溶媒は1種単独で用いてもよく、2種以上を用いてもよい。
 本発明のエポキシ樹脂組成物中の溶媒の含有量は、通常は70質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。
2.エポキシ樹脂組成物の使用方法
 本発明のエポキシ樹脂組成物を硬化させることによってエポキシ樹脂硬化物を形成することができる。エポキシ樹脂組成物は、一例では、加熱又は光照射によって硬化させることができる。
 熱硬化の場合、硬化時の加熱温度(硬化温度)は、通常は20~300℃、好ましくは40~250℃、より好ましくは60~200℃である。硬化温度は、具体的には例えば、20、40、60、80、100、120、140、160、180、200、220、240、250、260、280、300℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、硬化時の加熱時間(硬化時間)は、通常は10~1440分、好ましくは30~900分、より好ましくは60~480分である。前記加熱は、多段階で行うこともできる。
 光硬化の場合、紫外線、可視光線、赤外線等の光が挙げられ、紫外線が好ましい。露光量は、好ましくは1~10000mJ/cm、より好ましくは10~3000mJ/cmである。光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライドランプ、ケミカルランプ、ブラックライト蛍光灯、無電極UVランプが挙げられる。
 前記硬化反応は、本発明のエポキシ樹脂組成物を基板上に塗布して行うこともでき、また型枠内に注入して行うこともできる。
 本発明の硬化物の形状は特に限定されず、例えば、板状、シート状、フィルム状が挙げられる。これらの厚さは、例えば、通常は0.01~1000mm、好ましくは0.1~100mmであり、さらに好ましくは、0.1~5mmである。
 エポキシ樹脂組成物は、一液型であっても二液型であってもよい。二液型である場合、第1液がエポキシ樹脂(A)と化合物(B)を含み、第2液が硬化剤(C)を含むことが好ましい。この場合、保存時には、硬化剤(C)がエポキシ樹脂(A)又は化合物(B)と反応することが無いので、貯蔵安定性が向上する。使用時には、第1液と第2液を混合することによって、硬化剤(C)をエポキシ樹脂(A)及び化合物(B)と反応させることができる。
 本発明のエポキシ樹脂組成物を用いることにより、エポキシ樹脂が本来有する力学物性や熱物性の悪化を抑制しつつ、熱応力によるクラック・剥がれが抑制されたエポキシ樹脂硬化物を形成することができる。
 本発明のエポキシ樹脂組成物は、前記特性を有することから、例えば、電子材料、バインダー、塗料、接着剤等の用途に使用することができる。具体的には、半導体パッケージ等の電子部材用のサブストレート基板、ビルドアップフィルム、ソルダーレジストインキ、アンダーフィル材、パッケージ用固形封止材、舗装用バインダー、炭素繊維強化プラスチック(CFRP)用バインダー、カチオン電着塗装剤、重防食塗料、粉体塗料、インフラ補修/補強用接着剤、一般家庭/工業用接着剤が挙げられる。本発明のエポキシ樹脂組成物は、それら用途に好適である。
1.化合物(B)の製造
1-1.製造例1
 撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置に3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド(BMI-5100:大和化成工業製) 66.4g(0.15mol)、フルフリルグリシジルエーテル 92.5g(0.60mol)を仕込み、窒素ガスを導入しながら80℃まで昇温し、その後2時間攪拌した。室温まで冷却後、酢酸エチル:ヘキサン=3:1の混合溶媒で希釈した後、シリカゲルクロマトグラフィーで精製を行い、式(6)で表される化合物(B1)を得た。
Figure JPOXMLDOC01-appb-C000008
1-2.製造例2
 3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド0.15molの代わりに、m-フェニレンビスマレイミド(BMI-3000:大和化成工業製)40.2g(0.15mol)を使用したこと以外は、製造例1と同様の方法で、式(7)で表される化合物(B2)を得た。
Figure JPOXMLDOC01-appb-C000009
1-3.製造例3
 3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド0.15molの代わりに、1,2-ビス(マレイミド)エタン33.0g(0.15mol)を使用したこと以外は、製造例1と同様の方法で、式(8)で表される化合物(B3)を得た。
Figure JPOXMLDOC01-appb-C000010
1-4.製造例4
 撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置に4-ヒドロキシフェニルマレイミド18.9g(0.10mol)、テトラブチルアンモニウムブロミド3.22g(0.01mol)、40質量%水酸化ナトリウム水溶液80g、トルエン80gを仕込み、窒素ガスを導入しながら60℃まで昇温し、エピクロロヒドリン46.3g(0.50mol)を滴下後、2時間攪拌した。反応終了後、水層を分離し、有機層をイオン交換水で3回洗浄し、硫酸マグネシウムで乾燥後、濃縮した。ついで撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置に濃縮残渣、フルフリルグリシジルエーテル30.8g(0.20mol)を仕込み、窒素ガスを導入しながら80℃まで昇温し、その後2時間攪拌した。室温まで冷却後、酢酸エチル:ヘキサン=3:1の混合溶媒で希釈した後、シリカゲルクロマトグラフィーで精製を行い、式(9)で表される化合物(B4)を得た。
Figure JPOXMLDOC01-appb-C000011
1-5.製造例5
 フルフリルグリシジルエーテル0.60molの代わりにフルフリルアルコール58.9g(0.60mol)を使用したこと以外は、製造例1と同様の方法で、式(10)で表される比較化合物1を得た。
Figure JPOXMLDOC01-appb-C000012
1-6.製造例6
 撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置に9-(ヒドロキシメチル)アントラセン50.0g(0.24mol)、テトラブチルアンモニウムブロミド7.74g(0.024mol)、40質量%水酸化ナトリウム水溶液200g、トルエン200gを仕込み、窒素ガスを導入しながら60℃まで昇温し、エピクロロヒドリン111.1g(1.2mol)を滴下後、2時間攪拌した。反応終了後、水層を分離し、有機層をイオン交換水で3回洗浄し、硫酸マグネシウムで乾燥後、濃縮した。ついで撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置に濃縮残渣、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド(BMI-5100:大和化成工業製)26.6g(0.06mol)を仕込み、窒素ガスを導入しながら180℃まで昇温し、その後2時間攪拌した。室温まで冷却後、酢酸エチルで希釈した後、シリカゲルクロマトグラフィーで精製を行い、式(11)で表される比較化合物2を得た。
Figure JPOXMLDOC01-appb-C000013
2.エポキシ樹脂組成物の製造
2-1.実施例1
 エポキシ樹脂(A)(jER-828:三菱ケミカル製)100質量部、化合物(B1)10質量部を容器に入れ、80℃環境下で1時間放置した。その後、ガラス棒を用い、jER-828と化合物(B1)を混合し、混合物の温度が25℃になるまで放置した。その後、jER-828と化合物(B1)の混合物と、硬化剤(C)(ST-12:DIC製)52質量部とをミキサー(ARE-310:シンキー製)で2分間混合し、エポキシ樹脂組成物を得た。
2-2.実施例2~9、比較例1~3、参考例1~3
 表1~表2に記載の配合組成に変更した以外は実施例1と同様の方法によって、実施例2~9、比較例1~3、参考例1~3のエポキシ樹脂組成物を得た。
 なお、実施例5、参考例2については、硬化剤(C)をミキサーに投入する前に80℃で30分間加熱した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表中の成分の詳細は、以下の通りである。
jER-828:ビスフェノールA型エポキシ樹脂;三菱ケミカル製
EPICLON830:ビスフェノールF型エポキシ樹脂;DIC製
ST12:脂肪族ポリアミン系硬化剤(jERキュアST12);三菱ケミカル製
TD-2131:クレゾールノボラック型硬化剤(PHENOLITETD-2131);DIC製
PPh:トリフェニルホスフィン
3.エポキシ樹脂組成物の評価
 実施例・比較例・参考例のエポキシ樹脂組成物について、各種評価を実施した。その結果を表1~表2に示す。
 表1~表2に示すように、実施例は、比較例に比べて、ガラス転移温度が高く、化合物(B)を含まない参考例に近い値を有していた。また、実施例は、引張り弾性率、最大引張応力、せん断接着力及び貯蔵弾性率も参考例と同等であった。さらに、実施例は、冷熱サイクル試験の結果が参考例よりも優れていた。以上より、本発明の実施例によれば、エポキシ樹脂が本来有する力学物性や熱物性の悪化を抑制しつつ、熱応力によるクラック・剥がれを抑制することのできることが分かった。
 評価の詳細は、以下の通りである。
[ガラス転移温度・解離開始温度]
 評価対象のエポキシ樹脂組成物をフッ素系離型剤で処理した成形型に流し込み、80℃で3時間加熱した後、さらに120℃3時間加熱硬化し、ダンベル試験片を作製した。
 前記試験片を簡易密閉パンに封入し、示差走査熱量計(DSC)を用いて、窒素気流下、30℃から200℃まで10℃/分で昇温して熱変化を測定して、「吸発熱量」と「温度」とのグラフを描き、このとき観測される特徴的な変曲をガラス転移とした。なお、ガラス転移温度は、DSC曲線からミッドポイント法によって得た値を使用した。解離開始温度は、ガラス転移温度より高温に現れる吸熱ピークの補外開始温度の値を使用した。
[引張り弾性率・最大引張応力]
 評価対象のエポキシ樹脂組成物をフッ素系離型剤で処理した成形型に流し込み、80℃で3時間加熱した後、さらに120℃3時間加熱硬化し、ダンベル試験片を作製した。
 得られた試験片について、JIS-K7161に準拠し、下記条件で引張り弾性率および最大引張応力を測定した。
・試料サイズ:ダンベル寸法1BA
・試験速度:1.0mm/min
・測定環境:温度25℃
・測定回数:3回測定し、平均値から算出
[せん断接着力]
 幅25mm×長さ100mm×厚さ1.0mmのSUS板に、評価対象のエポキシ樹脂組成物を塗布し、硬化性組成物が塗布されたSUS板を得た。その後、別の幅25mm×長さ100mm×厚さ1.0mmのSUS板を貼り付け面積が25mm×12.5mm、硬化物の厚さが0.20mmとなるように、前記エポキシ樹脂組成物が塗布されたSUS板の硬化性組成物が塗布された側に貼り合わせ、クリップで固定した。その後、80℃で3時間加熱後、さらに120℃で3時間加熱し試験片を得た。得られた試験片について、万能引張試験機にてせん断接着力をJIS K 6850:1999に従い測定した(引っ張り速度2.0mm/min.、試験環境温度25℃)。
[貯蔵弾性率]
 評価対象のエポキシ樹脂組成物をフッ素系離型剤で処理した成形型に流し込み、80℃で3時間加熱した後、さらに120℃3時間加熱硬化し、長さ5.0cm、幅1.0cm、厚さ1.0mmの試験片を作製した。得られた試験片について、動的粘弾性測定装置RSA3(TAInstruments製)を用いて、貯蔵弾性率を下記の条件で測定した。なお、表に記載の貯蔵弾性率の値は、200℃における貯蔵弾性率の値である。
・昇温速度5℃/min
・周波数1.0Hz
・測定温度範囲:30~300℃
[冷熱サイクル試験]
 幅25mm×長さ100mm×厚さ1.0mmのSUS板に、評価対象のエポキシ樹脂組成物を塗布し、硬化性組成物が塗布されたSUS板を得た。その後、別の幅25mm×長さ100mm×厚さ1.0mmのSUS板を貼り付け面積が25mm×12.5mm、硬化物の厚さが0.20mmとなるように前記エポキシ樹脂組成物が塗布されたSUS板の硬化性組成物が塗布された側に貼り合わせ、クリップで固定した。その後、80℃で3時間加熱後、さらに120℃で3時間加熱し試験片を得た。得られた試験片を25℃環境下に24時間放置し、冷熱衝撃装置TSA-71L-A(エスペック製)を用い、-40℃×30分、200℃×30分を1サイクルとする冷熱サイクルを150回繰り返した後の試験片の剥がれの有無を目視で確認した。試験は同一硬化性組成物につき3回実施し、表中の数値は剥がれが生じた回数を示す。

Claims (6)

  1.  エポキシ樹脂(A)100質量部と、
     下記式(1)で示される化合物(B)を5~90質量部と、
     硬化剤(C)10~90質量部と、
    を含むエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、*-(CH-X-(CH-*、又は、*-Ar-(CH-X-(CH-*であり、*がエポキシ基との結合部であり、*が他の基との結合部であり、
     Xは、-O-、-S-、-NR-、又は-COO-で表される基であり、Rは、-CH、-C、又は-(CH-CH(O)CHで表される基あり、
     Arは、未置換のフェニル基、又は1~4個のメチル基又はエチル基で置換されたフェニル基であり、
     aは、0~5の整数、bは、1~5の整数であり、
     Yは、直接結合又は式(2)で表される基であり、式(2)中の*及び*は、それぞれ、R及びNとの結合部である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、-(CH-、-[(CH-O]-(CH-、-Ar-、又は-Ar-R-Ar-であり、
     dは、1~8の整数、eは、1~3の整数であり、
     Ar及びArは、それぞれ、未置換のフェニル基、1~4個のメチル基又はエチル基で置換されたフェニル基、未置換のビフェニル基、又は1~8個のメチル基又はエチル基で置換されたビフェニル基であり、
     Rは、-(CH-、-O-、-S-、-SO-、-SO-、-CO-、又は-[(CH-O]-(CH-で表される基であり、
     fは、1~8の整数、gは、1~3の整数である。)
  2.  請求項1に記載のエポキシ樹脂組成物であって、
     前記式(1)中のYは、式(2)で表される基である、エポキシ樹脂組成物。
  3.  請求項2に記載のエポキシ樹脂組成物であって、
     前記式(2)のRは、-Ar-R-Ar-である、エポキシ樹脂組成物。
  4.  請求項1~請求項3の何れか1つに記載のエポキシ樹脂組成物であって、
     前記硬化剤が、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、多価カルボン酸化合物から選ばれる少なくとも1つである、エポキシ樹脂組成物。
  5.  請求項1~請求項4の何れか1つに記載のエポキシ樹脂組成物であって、
     前記エポキシ樹脂(A)100質量部に対して、前記化合物(B)を5~80質量部含む、エポキシ樹脂組成物。
  6.  請求項1~請求項5の何れか1つに記載のエポキシ樹脂組成物を硬化させて得られるエポキシ樹脂硬化物。
PCT/JP2022/012297 2021-03-23 2022-03-17 エポキシ樹脂組成物、エポキシ樹脂硬化物 WO2022202610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509101A JPWO2022202610A1 (ja) 2021-03-23 2022-03-17
CN202280016326.6A CN116981710A (zh) 2021-03-23 2022-03-17 环氧树脂组合物、环氧树脂固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048538 2021-03-23
JP2021048538 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202610A1 true WO2022202610A1 (ja) 2022-09-29

Family

ID=83395800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012297 WO2022202610A1 (ja) 2021-03-23 2022-03-17 エポキシ樹脂組成物、エポキシ樹脂硬化物

Country Status (4)

Country Link
JP (1) JPWO2022202610A1 (ja)
CN (1) CN116981710A (ja)
TW (1) TW202248270A (ja)
WO (1) WO2022202610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120348A (zh) * 2023-02-20 2023-05-16 深圳先进技术研究院 自合成的da结构环氧树脂、底部填充胶及其制备方法
WO2024053402A1 (ja) * 2022-09-06 2024-03-14 Dic株式会社 グリシジル基含有化合物、硬化性樹脂組成物、硬化物及び積層体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194038A (zh) * 2014-08-29 2014-12-10 浙江大学 一种环氧树脂组合物及其湿法超声降解方法和应用
CN105694790A (zh) * 2016-02-29 2016-06-22 中国工程物理研究院材料研究所 一种可快速拆解的环氧胶粘剂及其制备和拆解方法
CN108219111A (zh) * 2018-01-03 2018-06-29 中国工程物理研究院化工材料研究所 一种温和条件下自修复、可再加工和可循环利用的热固性材料及其处理方法
WO2021251099A1 (ja) * 2020-06-12 2021-12-16 国立大学法人九州大学 易解体性接着材料、物品および解体方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194038A (zh) * 2014-08-29 2014-12-10 浙江大学 一种环氧树脂组合物及其湿法超声降解方法和应用
CN105694790A (zh) * 2016-02-29 2016-06-22 中国工程物理研究院材料研究所 一种可快速拆解的环氧胶粘剂及其制备和拆解方法
CN108219111A (zh) * 2018-01-03 2018-06-29 中国工程物理研究院化工材料研究所 一种温和条件下自修复、可再加工和可循环利用的热固性材料及其处理方法
WO2021251099A1 (ja) * 2020-06-12 2021-12-16 国立大学法人九州大学 易解体性接着材料、物品および解体方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053402A1 (ja) * 2022-09-06 2024-03-14 Dic株式会社 グリシジル基含有化合物、硬化性樹脂組成物、硬化物及び積層体
CN116120348A (zh) * 2023-02-20 2023-05-16 深圳先进技术研究院 自合成的da结构环氧树脂、底部填充胶及其制备方法

Also Published As

Publication number Publication date
CN116981710A (zh) 2023-10-31
TW202248270A (zh) 2022-12-16
JPWO2022202610A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TWI641648B (zh) 苯并、環氧化合物及酸酐之混合物
WO2022202610A1 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物
TWI487724B (zh) 塗料組成物
JP2013512988A (ja) エポキシ樹脂組成物
WO2007037206A1 (ja) 熱硬化性樹脂、及びそれを含む熱硬化性組成物、並びにそれから得られる成形体
JP2019035087A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP2011162710A (ja) 無溶剤一液型シアン酸エステル−エポキシ複合樹脂組成物
WO2010113784A1 (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
KR20160127094A (ko) 반응 하이브리드 벤족사진 수지 및 이의 용도
US9051498B2 (en) Epoxy resins with high thermal stability and toughness
AU2021328256A1 (en) Thermoset resin compositions
JPWO2012020661A1 (ja) エポキシ樹脂組成物及び硬化物
JP6119376B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP6620981B2 (ja) 熱硬化性成形材料、その製造方法および半導体封止材
KR101189185B1 (ko) 나프탈렌계 에폭시 수지 및 이를 포함하는 에폭시 수지 조성물
KR102400694B1 (ko) 부가물 및 이의 용도
EP0188337A2 (en) Thermosettable heat-resistant epoxy resin composition
JP5170724B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
KR20100082321A (ko) 새로운 에폭시 수지 및 이를 포함하는 열경화성 고분자 복합체
JP4509539B2 (ja) エポキシ樹脂組成物シート
JP2019052276A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JPH05310891A (ja) エポキシ樹脂組成物及びその硬化方法
JPS6023424A (ja) 耐熱性樹脂組成物
JP2022013418A (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
JP2014024907A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280016326.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775398

Country of ref document: EP

Kind code of ref document: A1