WO2022202583A1 - 無機酸化物粉末、樹脂組成物及び圧縮成形品 - Google Patents

無機酸化物粉末、樹脂組成物及び圧縮成形品 Download PDF

Info

Publication number
WO2022202583A1
WO2022202583A1 PCT/JP2022/012146 JP2022012146W WO2022202583A1 WO 2022202583 A1 WO2022202583 A1 WO 2022202583A1 JP 2022012146 W JP2022012146 W JP 2022012146W WO 2022202583 A1 WO2022202583 A1 WO 2022202583A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cumulative frequency
inorganic oxide
particle size
oxide powder
Prior art date
Application number
PCT/JP2022/012146
Other languages
English (en)
French (fr)
Inventor
輝洋 相京
朋浩 川畑
純 山口
敦司 山下
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023509089A priority Critical patent/JPWO2022202583A1/ja
Publication of WO2022202583A1 publication Critical patent/WO2022202583A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/022Classification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation

Definitions

  • Patent Document 1 a spherical alumina powder having a predetermined average particle size and having at least two or more maximum frequency peaks within a predetermined range in the particle size distribution and a spherical silica powder having a predetermined average particle size and specific surface area are combined into a predetermined A highly thermally conductive inorganic powder containing a proportion of According to this highly thermally conductive inorganic powder, it is possible to prepare a highly thermally conductive resin composition that does not easily become highly viscous even when highly filled in a resin, and has high fluidity and low burr characteristics.
  • the present invention provides an inorganic oxide powder, a resin composition containing an inorganic oxide powder, and a resin composition that can provide a resin composition having a low ratio of low-shear viscosity to high-shear viscosity.
  • An object of the present invention is to provide a compression-molded product that is
  • the present invention has the following aspects.
  • the second region located in the range of 0.001 ⁇ m to 20 ⁇ m in particle size with respect to the cumulative frequency of the first region located in the range of 0.001 ⁇ m to 10 ⁇ m in particle size
  • the value of the cumulative frequency ratio (cumulative frequency of the second region / cumulative frequency of the first region) is 1.2 to 1.4, and the grain size is in the range of 0.001 ⁇ m or more and 10 ⁇ m or less.
  • the inorganic oxide powder has a particle size in the range of 0.001 to 20 ⁇ m with respect to the cumulative frequency in the first region in which the particle size is in the range of 0.001 to 10 ⁇ m.
  • the value of the ratio of the cumulative frequencies of the regions is 1.2 to 1.4.
  • the inorganic oxide powder according to the present embodiment not only has excellent fluidity, but can also provide a resin composition with low viscosity under low shear.
  • the inorganic oxide powder preferably has a cumulative frequency in the 1a region of 30 to 70%, more preferably 35 to 70%, and further preferably 40 to 65%. preferable.
  • the cumulative frequency of region 1a can be 42-58%.
  • the cumulative frequency of the 2a region is preferably 40 to 80%, more preferably 45 to 75%, and further preferably 50 to 70%. preferable.
  • the cumulative frequency of region 2a can be 54-75%.
  • the inorganic oxide powder has a particle size in the range of 0.1 to 20 ⁇ m with respect to the cumulative frequency of region 1b in which the particle size is in the range of 0.1 to 10 ⁇ m in the volume-based frequency particle size distribution.
  • the value of the ratio of the cumulative frequency of a certain 2b region (cumulative frequency of the 2b region/cumulative frequency of the 1b region) is 1.2 to 1.4.
  • the ratio of the cumulative frequency of the 2b region to the cumulative frequency of the 1b region (cumulative frequency of the 2b region/cumulative frequency of the 1b region) is 1.2 to 1.3 or 1.3 to 1.4.
  • the inorganic oxide powder preferably has a cumulative frequency in the 1b region of 30 to 70%, more preferably 35 to 70%, and further preferably 40 to 65%. preferable.
  • the cumulative frequency of region 1b can be 42-58%.
  • the cumulative frequency of the 2b region is preferably 40 to 80%, more preferably 45 to 75%, and further preferably 50 to 70%. preferable.
  • the cumulative frequency of region 2b can be 54-75%.
  • the inorganic oxide powder has a particle size in the range of 0.001 to 35 ⁇ m with respect to the cumulative frequency in the first region in which the particle size is in the range of 0.001 to 10 ⁇ m.
  • the value of the ratio of the cumulative frequencies of the regions is preferably 1.4 to 2.2, more preferably 1.5 to 2.0. preferable.
  • the inorganic oxide powder contains 90% by mass or more, or 92% by mass or more of alumina. In one embodiment, the inorganic oxide powder contains 90% by mass or more, or 92% by mass or more of spherical amorphous alumina.
  • the inorganic oxide powder preferably has a BET specific surface area of 0.5 to 2.0 m 2 /g, more preferably 0.8 to 1.8 m 2 /g, and more preferably 1.0 to 1.0 m 2 /g. It is more preferably 1.5 m 2 /g, particularly preferably 1.1 to 1.5 m 2 /g.
  • the specific surface area by the BET method can be measured using a specific surface area measuring instrument such as "Macsorb HM model-1208" (manufactured by MACSORB).
  • the specific surface area can be adjusted by changing the particle size and ratio of the inorganic oxide powder to be blended.
  • the inorganic oxide powder preferably has a cumulative frequency of 90% or more, more preferably 95% or more, in a particle size range of 0.01 ⁇ m or more and 70 ⁇ m or less. , more preferably 98% or more.
  • the inorganic oxide powder may have a cumulative frequency of 100% with a particle size in the range of 0.01 ⁇ m to 70 ⁇ m.
  • the inorganic oxide powder preferably has a cumulative frequency of 90% or more, more preferably 95% or more, in a particle size range of 0.01 ⁇ m or more and 60 ⁇ m or less. , more preferably 98% or more.
  • the inorganic oxide powder preferably has a volume-based cumulative 50 % diameter D50 of 5 to 20 ⁇ m, more preferably 5 to 15 ⁇ m, from the viewpoint of fluidity and viscosity of the resin composition.
  • the volume-based cumulative 50% diameter D50 is a particle size corresponding to a cumulative value of 50% in a volume-based cumulative particle size distribution measured by a laser diffraction light scattering method (refractive index: 1.68).
  • additives can be added to the resin composition as needed.
  • Other additives include rubber-like substances such as silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrenic block copolymers and saturated elastomers, and various thermoplastics other than the above-mentioned resins.
  • resins resinous materials such as silicone resins, and resins obtained by partially or entirely modifying epoxy resins and phenolic resins with aminosilicone, epoxysilicone, alkoxysilicone, etc., and flame retardant aids such as Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 and the like; flame retardants such as halogenated epoxy resins and phosphorus compounds; and coloring agents such as carbon black, iron oxide, dyes and pigments.
  • the viscosity of the resin composition at low shear is preferably 45 to 70 Pa s, preferably 45 to 65 Pa s, measured at a temperature of 30 ° C. and a rotation speed of 1 rpm using an E-type viscometer. is more preferable.
  • the viscosity at low shear is kept low at the beginning of pressing the work against the resin composition, so the effect on wire deformation less, and has excellent moldability.
  • the viscosity of the resin composition under high shear is preferably 35 to 55 Pa s, preferably 40 to 55 Pa s, measured at a temperature of 30° C. and a rotation speed of 10 rpm using an E-type viscometer. is more preferable.
  • the viscosity at high shear is kept low, resulting in excellent moldability.
  • a compression-molded article according to the present embodiment includes the resin composition described above.
  • a known compression molding method can be used as a method for manufacturing the compression-molded product.
  • the resin composition can be produced by compression molding by heat curing under conditions of a temperature of 180° C. and a pressure of 8 MPa.
  • the compression-molded product contains a resin composition having a small ratio of the viscosity at low shear and the viscosity at high shear, it is possible to seal workpieces such as semiconductor chips without gaps and with extremely few voids. has the characteristics of Therefore, the compression-molded product can be preferably used as a semiconductor encapsulant, an adhesive member, a heat dissipation sheet, and the like for electronic devices.
  • Examples 1 to 6, Comparative Examples 1 to 6 Alumina raw material powder having an average particle size (D 50 ) having a maximum value in the range of 2 to 45 ⁇ m is introduced into a high-temperature flame formed by using LPG as a fuel gas and oxygen as a combustion support gas, and is melted and spheroidized. Inorganic oxide powder (spherical alumina powder) was thus produced. The cumulative frequency of each particle size range was adjusted to the value shown in Table 1 by adjusting the blending amount of the raw material powder, sieving, classification, and the like.
  • the resulting inorganic oxide powder was measured for viscosity (at low shear and at high shear) when blended with an epoxy resin by the method described below. Using the obtained values, the value of the ratio of the viscosity at low shear to the viscosity at high shear was calculated. Table 1 shows the results.
  • a resin composition comprising 20% by mass of a bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation: Epicoat 807, epoxy equivalent 170, viscosity 4 Pa s) and 80% by mass of the spherical alumina powder prepared above was prepared.
  • the viscosity of the resin composition was measured using an E-type viscometer (trade name “TVE-10” manufactured by Toki Sangyo Co., Ltd.) at a temperature of 30° C. and a rotation speed of 1 rpm.
  • the viscosity of the resin composition under high shear was measured using an E-type viscometer (trade name "TVE-10” manufactured by Toki Sangyo Co., Ltd.) at a temperature of 30° C. and a rotation speed of 10 rpm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる無機酸化物粉末、無機酸化物粉末を含む樹脂組成物、樹脂組成物を成形してなる圧縮成形品を提供する。 【解決手段】体積基準の頻度粒度分布において、粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上20μm以下の範囲に位置する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)が1.2~1.4であり、粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上35μm以下の範囲に位置する第3領域の累積頻度の比の値(第3領域の累積頻度/第1領域の累積頻度)が1.4~2.2であり、前記第3領域の累積頻度が、70~95体積%である、無機酸化物粉末とする。

Description

無機酸化物粉末、樹脂組成物及び圧縮成形品
 本発明は、無機酸化物粉末、樹脂組成物及び圧縮成形品に関する。
 近年、ICの高機能化及び高速化の進展に伴い、その発熱量は増大傾向にあり、封止材等の電子部品に用いられる樹脂に対しても高い熱放散性を実現する要求が高まっている。従来、樹脂の高い熱放散性を実現するために、樹脂中に熱伝導性が高い無機粉末を高含有量で充填することが行われている。熱伝導性が高い無機粉末としては、窒化アルミニウム、酸化アルミニウム、結晶シリカ等が知られている。しかし、熱伝導性が高い無機粉末を樹脂中に高充填すると樹脂の流動性が低下してしまい、成形性に劣る場合がある。
 特許文献1には、粒度分布において所定の範囲内に少なくとも2つ以上の頻度極大ピークを有する所定の平均粒子径の球状アルミナ粉末と所定の平均粒径及び比表面積の球状シリカ粉末とを所定の割合で含有する高熱伝導性無機質粉末が記載されている。この高熱伝導性無機粉末によれば、樹脂に高充填しても容易に高粘度化しない、高流動性かつ低バリ特性を有する高熱伝導性樹脂組成物を調製することができる。
特開2004-244491号公報
 電子部品の樹脂封止の成形方法として、トランスファーモールド法とコンプレッションモールド(圧縮成形)法とが知られている。トランスファーモールド法は、予め保温された金型のポット内にタブレット状の樹脂を投入し、溶融された樹脂をブランジャーでキャビティ内へ充填する成形方法である。コンプレッションモールド法は、パウダー又は顆粒状の樹脂組成物をキャビティ内に供給し、溶融された樹脂組成物にワークを押し当てて圧縮成形する方法である。コスト低減の観点からは、コンプレッションモールド法が望ましい。コンプレッションモールド法において成形性を高めるためには、用いられる樹脂組成物は、高せん断時の流動性に優れるだけでなく、低せん断時の流動性にも優れることが求められる。すなわち、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる無機酸化物粉末が求められている。
 本発明は、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる無機酸化物粉末、無機酸化物粉末を含む樹脂組成物、樹脂組成物を成形してなる圧縮成形品を提供することを課題とする。
 本発明は以下の態様を有する。
[1]体積基準の頻度粒度分布において、粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上20μm以下の範囲に位置する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)が1.2~1.4であり、粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上35μm以下の範囲に位置する第3領域の累積頻度の比の値(第3領域の累積頻度/第1領域の累積頻度)が1.4~2.2であり、前記第3領域の累積頻度が、70~95体積%である、無機酸化物粉末。
[2]BET法による比表面積が、0.5~2.0m/gである、[1]に記載の無機酸化物粉末。
[3]粒径が0.01μm以上70μm以下の範囲の累積頻度が90体積%以上である、[1]又は[2]に記載の無機酸化物粉末。
[4][1]から[3]のいずれかに記載の無機酸化物粉末と樹脂とを含む、樹脂組成物。
[5]圧縮成形品の製造に用いられる、[4]に記載の樹脂組成物。
[6][4]又は[5]に記載の樹脂組成物を含む、圧縮成形品。
 本発明によれば、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる無機酸化物粉末、無機酸化物粉末を含む樹脂組成物、樹脂組成物を成形してなる圧縮成形品を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。本明細書において、数値範囲に関する「X~Y」との記載は、X以上Y以下であることを意味している。
[無機酸化物粉末]
 本実施形態に係る無機酸化物粉末は、体積基準の頻度粒度分布において、
 粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上20μm以下の範囲に位置する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)が1.2~1.4であり、
 粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上35μm以下の範囲に位置する第3領域の累積頻度の比の値(第3領域の累積頻度/第1領域の累積頻度)が1.4~2.2であり、
 前記第3領域の累積頻度が、70~95体積%である。
 このように設計された無機酸化物粉末は、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる。低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物は、コンプレッションモールド法において、樹脂にワークを押し当てる際に初めから終わりまで粘度が低く保たれるので、成形性に優れている。
 加えて、このように設計された無機酸化物粉末は、溶融時の流動性に優れる樹脂組成物を与えることができる。その結果、コンプレッションモールド法においてより成形性を高めることができる。
 「体積基準の頻度粒度分布」は、レーザー回折光散乱法(屈折率:1.68)により測定され、横軸を粒径(μm)、縦軸を体積基準の頻度(%)とする分布曲線で表される。無機酸化物粉末は、体積基準の頻度粒度分布において、少なくとも一つのピークを有していることが好ましい。ピークはショルダーを有していてもよい。
 「粒径」は、体積基準の頻度粒度分布の横軸に表される数値とする。
 「ピーク」は、体積基準の頻度粒度分布において一つの極大値を有している分布曲線を意味している。
 「ショルダー」は、ピークから完全に分離していない不完全なピーク(すなわち、ピークを構成する分布曲線の傾斜の途中に膨らみが形成されている段差部分)であり一つの極大値を有する又は有しない分布曲線を意味している。
 「極大値」は、体積基準の頻度粒度分布において曲線の傾きが正から負へと変わる境界のことを意味している。
 「領域」は、ここでは、体積基準の頻度粒度分布において、極大値の有無及び数に関わらず、所定の粒径を有する範囲に位置する分布曲線を意味している。
 「第1領域」は、体積基準の頻度粒度分布において粒径が0.001~10μmの範囲に位置する分布曲線の一領域を意味している。
 「第2領域」は、体積基準の頻度粒度分布において粒径が0.001~20μmの範囲に位置する分布曲線の一領域を意味している。なお、第2領域には第1領域が含まれている。
 「累積頻度」は、体積基準の頻度粒度分布の所定の粒径範囲における頻度(%)の累積値のことを意味している。
 「低せん断時の粘度」は、E型粘度計を用い、温度30℃、1rpmの回転数により測定した粘度を意味している。
 「高せん断時の粘度」は、E型粘度計を用い、温度30℃、10rpmの回転数により測定した粘度を意味している。
(第2領域の累積頻度/第1領域の累積頻度)
 無機酸化物粉末は、体積基準の頻度粒度分布において、粒径が0.001~10μmの範囲に位置する第1領域の累積頻度に対する、粒径が0.001~20μmの範囲に位置する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)が、1.2~1.4である。第1領域の累積頻度に対する第2領域の累積頻度の比の値を1.2~1.4とすることで、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができる。
 従来、粒径が異なる小径粒子、中径粒子、及び大径粒子の複数の無機酸化物粉末を配合して中径粒子及び/又は大径粒子の隙間を小径粒子で埋めることで最密充填構造を形成させ流動性に優れた樹脂組成物とすることが試みられている。本実施形態に係る無機酸化物粉末は、流動性に優れるだけでなく、低せん断時の粘度が低い樹脂組成物を与えることができる。この理由は現段階では明らかではないが、第1領域の累積頻度に対する第2領域の累積頻度の比の値を1.2~1.4とすることで、小径粒子(粒径が10μm以下の微粒子)の凝集が抑制されて低せん断時における粒子の動きやすさが向上するためであると推測される。
 第1領域の累積頻度に対する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)は、1.2~1.3、又は1.3~1.4とすることもできる。
 無機酸化物粉末は、流動性の観点から、第1領域の累積頻度が、30~70%であることが好ましく、35~70%であることがより好ましく、40~65%であることがさらに好ましい。一実施形態において、第1領域の累積頻度は、42~58%である。
 無機酸化物粉末は、流動性の観点から、第2領域の累積頻度が、40~80%であることが好ましく、45~75%であることがより好ましく、50~70%であることがさらに好ましい。一実施形態において、第2領域の累積頻度は、54~75%である。
 一実施形態において、無機酸化物粉末は、体積基準の頻度粒度分布において、粒径が0.01~10μmの範囲である第1a領域の累積頻度に対する、粒径が0.01~20μmの範囲である第2a領域の累積頻度の比の値(第2a領域の累積頻度/第1a領域の累積頻度)が、1.2~1.4である。第1a領域の累積頻度に対する第2a領域の累積頻度の比の値(第2a領域の累積頻度/第1a領域の累積頻度)は、1.2~1.3又は1.3~1.4とすることもできる。
 無機酸化物粉末は、流動性の観点から、第1a領域の累積頻度が、30~70%であることが好ましく、35~70%であることがより好ましく、40~65%であることがさらに好ましい。一実施形態において、第1a領域の累積頻度は、42~58%であり得る。
 無機酸化物粉末は、流動性の観点から、第2a領域の累積頻度が、40~80%であることが好ましく、45~75%であることがより好ましく、50~70%であることがさらに好ましい。一実施形態において、第2a領域の累積頻度は、54~75%であり得る。
 一実施形態において、無機酸化物粉末は、体積基準の頻度粒度分布において、粒径が0.1~10μmの範囲である第1b領域の累積頻度に対する、粒径が0.1~20μmの範囲である第2b領域の累積頻度の比の値(第2b領域の累積頻度/第1b領域の累積頻度)が、1.2~1.4である。第1b領域の累積頻度に対する第2b領域の累積頻度の比の値(第2b領域の累積頻度/第1b領域の累積頻度)は、1.2~1.3又は1.3~1.4とすることもできる。
 無機酸化物粉末は、流動性の観点から、第1b領域の累積頻度が、30~70%であることが好ましく、35~70%であることがより好ましく、40~65%であることがさらに好ましい。一実施形態において、第1b領域の累積頻度は、42~58%であり得る。
 無機酸化物粉末は、流動性の観点から、第2b領域の累積頻度が、40~80%であることが好ましく、45~75%であることがより好ましく、50~70%であることがさらに好ましい。一実施形態において、第2b領域の累積頻度は、54~75%であり得る。
 第1領域(粒径:0.001~10μm)の累積頻度に対する第2領域(0.001~20μm)の累積頻度の比の値を1.2~1.4に調整する方法としては、例えば、第1及び第2領域の累積頻度を上記した好ましい範囲に調整する方法等が挙げられる。
 なお、累積頻度の調整は、粒度を調整した原料粉末の配合量を調整することや、篩分けや分級等で行うことができる。
(第3領域の累積頻度/第1領域の累積頻度)
 無機酸化物粉末は、体積基準の頻度粒度分布において、粒径が0.001~10μmの範囲に位置する第1領域の累積頻度に対する、粒径が0.001~35μmの範囲に位置する第3領域の累積頻度の比の値(第3領域の累積頻度/第1領域の累積頻度)が、1.4~2.2であることが好ましく、1.5~2.0であることがより好ましい。
 第1領域の累積頻度に対する第3領域の累積頻度の比の値を1.4~2.2とすることで、流動性の高い樹脂組成物を与えることができる。
 「第3領域」は、体積基準の頻度粒度分布において粒径が0.001~35μmの範囲に位置する分布曲線の一領域を意味している。「第1領域」については、上述のとおりである。なお、第3領域には第1領域及び第2領域が含まれている。
 無機酸化物粉末は、樹脂組成物の流動性の観点から、第3領域の累積頻度が、70~95%であり、75~95%であることが好ましく、75~90%であることがより好ましい。第1領域の累積頻度については上述のとおりである。一実施形態において、第3領域の累積頻度は、77~94%であり得る。
 第1領域(粒径:0.001~10μm)の累積頻度に対する第3領域(粒径:0.001~35μm)の累積頻度の比の値を1.4~2.2に調整する方法としては、例えば、第1~3領域の累積頻度を上記した好ましい範囲に調整する方法等が挙げられる。なお、累積頻度の調整は、粒度を調整した原料粉末の配合量を調整することや、篩分けや分級等で行うことができる。
 無機酸化物粉末は、体積基準の頻度粒度分布において、少なくとも、一つのピークを有していることが好まく、2以上のピークを有する場合、流動性に優れた樹脂組成物を与えることができる。
(無機酸化物粉末)
 無機酸化物粉末としては、金属酸化物粉末が挙げられる。金属酸化物粉末としては、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、マグネシア(MgO)、カルシア(CaO)等の無機質粉末が挙げられる。無機質粉末は、これらから選択される1以上の金属酸化物粉末を含むことが好ましく、アルミナを含むことがより好ましく、アルミナであることがさらに好ましい。樹脂への高充填化の観点から、球状のアルミナを含むことが好ましい。「球状」とは、走査型電子顕微鏡を用いて100倍で観察したときに円形状又は丸みを帯びた粒形状に観察されることを意味する。一実施形態において、無機酸化物粉末は、アルミナを90質量%以上、又は92質量%以上含む。一実施形態において、無機酸化物粉末は、球状非晶質アルミナを90質量%以上、又は92質量%以上含む。
 無機酸化物粉末は、BET法による比表面積が、0.5~2.0m/gであることが好ましく、0.8~1.8m/gであることがより好ましく、1.0~1.5m/gであることがさらに好ましく、1.1~1.5m/gであることが特に好ましい。BET法による比表面積が、0.5~2.0m/gであることで、粘度を所定の範囲に調整することができる。
 BET法による比表面積は、例えば「Macsorb HM model-1208」(MACSORB社製)等の比表面積測定機を用いて測定することができる。
 比表面積の調整方法は、配合する無機酸化物粉末の粒径、比率を変えることで行うことができる。
 無機酸化物粉末は、体積基準の頻度粒度分布において、好ましくは粒径が0.01μm以上70μm以下の範囲における累積頻度が、90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることがさらに好ましい。一実施形態において、無機酸化物粉末は、粒径が0.01μm以上70μm以下の範囲の累積頻度が100%であり得る。
 無機酸化物粉末は、体積基準の頻度粒度分布において、好ましくは粒径が0.01μm以上60μm以下の範囲おける累積頻度が、90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることがさらに好ましい。一実施形態において、無機酸化物粉末は、粒径が0.01μm以上60μm以下の範囲の累積頻度が100%であり得る。
 無機酸化物粉末は、体積基準の頻度粒度分布において、好ましくは粒径が1μm以上50μm以下の範囲における累積頻度が、90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることがさらに好ましい。一実施形態において、無機酸化物粉末は、粒径が1~50μmの範囲の累積頻度が100%であり得る。
 無機酸化物粉末は、体積基準累積50%径D50が、樹脂組成物の流動性、粘度の観点から、5~20μmであることが好ましく、5~15μmであることがより好ましい。体積基準累積50%径D50は、レーザー回折光散乱法(屈折率:1.68)により測定される体積基準の累積粒度分布において、累積値が50%に相当する粒子径である。
 無機酸化物粉末の製造は、市販の所定の粒度分布を有する無機酸化物粉末を混合して製造してもよく、既存の溶射技術によって製造してもよい。生産性、生産コストの観点から、溶射技術によることが好ましい。既存の溶射技術は、例えば「製綱窯炉に対する溶射捕集技術について 製鉄研究1982第310号」を基本とし、水素、メタン、天然ガス、アセチレンガス、プロパンガス、ブタン等の燃料ガスとで形成された高温火炎中に原料粉末を投入し、溶融球状化させることが挙げられる。製造装置の一例は、球状化炉と、その炉に接続された捕集装置とを基本構成としているものである。球状化炉で製造された球状無機酸化物粉末は、ブロワー等にて空気輸送され捕集装置で回収される。球状無機酸化物粉末は、捕集装置による捕集前及び/又は捕集後に、必要に応じて、分級される。球状化炉本体と輸送配管等は水冷ジャケット方式で水冷されていることが好ましい。捕集装置としては、サイクロン、重力沈降、ルーバー、バグフィルター等が用いられる。捕集温度は、可燃ガスの量による発熱量とブロワーの吸引量によって決定され、その調整は冷却水量や、ライン内に設けられた外気の取り入れ量等で行われる。球状アルミナ粉末の製造用原料としては、水酸化アルミニウム、アルミナ、金属アルミニウム等が使用される。
 原料粉末はあらかじめ粒度を製品粒度(目的とする無機酸化物粉末と同じ粒度)に調整しておくことが望ましいが、球状化処理後に分級処理して粒度調整を行うこともできる。また、同じ組成を有する球状無機質粉末であっても粒径が異なる数種の原料を分別して溶融球状し、後に混合し調整して得ることもできる。
 混合は、例えば、常温の条件下で、既知のブレンダー、ミキサー等の機器を用いて行うことができる。
 無機酸化物粉末は、シランカップリング剤等の表面処理を行うことによって、粉末の吸水率を低減させ、樹脂組成物の高強度化、更には樹脂と粉末との間の界面抵抗を低下させ、熱伝導率を一段と向上させることができる。
 シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β(3,4-エポキシシンクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシリメトキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等、その他表面処理剤として、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤等を用いることができる。
(用途)
 無機酸化物粉末は、電子機器用の半導体封止材、接着剤、放熱シート等の製造に好ましく用いることができる。特に、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を与えることができるので、圧縮成形品の製造に好ましく用いることができる。
[樹脂組成物]
 本実施形態に係る樹脂組成物は、上記した無機酸化物粉末と樹脂とを含む。無機酸化物粉末については、上述のとおりである。
 無機酸化物粉末の含有量は、耐熱性、機械強度等の観点から、樹脂組成物中に、好ましくは80~95質量%であり、より好ましくは85~95質量%であり、さらに好ましくは90~95質量%である。一実施形態において、無機酸化物粉末の含有量は、樹脂組成物中に80質量%を超え95質量%以下であり得る。
 樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられ、これらから選択される1以上を含むことが好ましい。
 樹脂組成物が封止用成形材料である場合、樹脂にはエポキシ樹脂が用いられることが好ましい。エポキシ樹脂としては、一分子中にエポキシ基を二個以上有するエポキシ樹脂であればいかなるものでも使用可能である。その具体例をあげれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールSなどのグリシジルエーテル、フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β-ナフトールノボラック型エオキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、2,7-ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素などのハロゲンを導入したエポキシ樹脂等である。
 樹脂の含有量は、好ましくは5~20質量%であり、より好ましくは5~15質量%であり、さらに好ましくは5~10質量%である。
 エポキシ樹脂を含む場合の硬化剤としては、例えば、フェノールアラルキル樹脂;フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t-ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるフェノールノボラック型樹脂;ポリパラヒドロキシスチレン樹脂;ビスフェノールAやビスフェノールS等のビスフェノール化合物;ピロガロールやフロログルシノール等の3官能フェノール類;無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物;メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン等が挙げられる。
 硬化剤との反応を促進させるために硬化促進剤を配合することができる。硬化促進剤としては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7,トリフェニルホスフィン、ベンジルジメチルアミン、2-メチルイミダゾール等が挙げられる。
 樹脂組成物には、必要に応じてその他の添加剤を配合することができる。その他の添加剤としては、低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、上述した樹脂以外の、各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエポキシ樹脂やフェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂等、難燃助剤として、Sb、Sb、Sb等、難燃剤として、ハロゲン化エポキシ樹脂やリン化合物等、着色剤として、カーボンブラック、酸化鉄、染料、顔料等が挙げられる。
 樹脂組成物は、低せん断時の粘度と高せん断時の粘度との比が小さいので、圧縮成形する場合でも成形性に優れており、半導体チップ等の被加工材(ワーク)を隙間なく封止することができる。
 樹脂組成物は、低せん断時の粘度として、E型粘度計を用い、温度30℃、1rpmの回転数により測定した粘度が45~70Pa・sであることが好ましく、45~65Pa・sであることがより好ましい。低せん断時の粘度を45~70Pa・sにすることで、コンプレッションモールド(圧縮成形)法において、樹脂組成物にワークを押し当て始めの段階で粘度が低く保たれるので、ワイヤー変形への影響が少なく、成形性に優れている。
 樹脂組成物は、高せん断時の粘度として、E型粘度計を用い、温度30℃、10rpmの回転数により測定した粘度が35~55Pa・sであることが好ましく、40~55Pa・sであることがより好ましい。高せん断時の粘度を35~55Pa・sにすることで、コンプレッションモールド(圧縮成形)法における高せん断時の粘度が低く保たれるので、成形性に優れている。
 樹脂組成物は、上記した低せん断時の粘度と高せん断時の粘度との比の値(低せん断時の粘度/高せん断時の粘度)が、1.5未満であることが好ましく、1.4以下であることがより好ましく、1.3以下であることがさらに好ましい。低せん断時の粘度と高せん断時の粘度との比の値が1.5未満である場合は、コンプレッションモールド(圧縮成形)法において、樹脂組成物にワークを押し当てる際に初めから終わりまで粘度が低く保たれるので、成形性に優れている。
 樹脂組成物の製造は、上記各材料の所定量を撹拌、溶解、混合、分散させることにより行うことができる。これらの混合物の混合、撹拌、分散等の装置としては、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれらの装置を適宜組み合わせて使用してもよい。
(用途)
 樹脂組成物は、電子機器用の半導体封止材、接着剤、放熱シート等の製造に好ましく用いることができる。特に、低せん断時の粘度と高せん断時の粘度との比が小さいので、圧縮成形品の製造に好ましく用いることができる。
[圧縮成形品]
 本実施形態に係る圧縮成形品は、上記した樹脂組成物を含む。圧縮成形品の製造方法は、公知のコンプレッションモールド法を用いることができる。例えば、圧縮成型機を用いて、温度180℃、圧力8MPaの条件下で、加熱硬化させることにより樹脂組成物を圧縮成形して製造することができる。
 圧縮成形品は、低せん断時の粘度と高せん断時の粘度との比が小さい樹脂組成物を含むので、半導体チップ等の被加工材を隙間なく、ボイドが極めて少なく封止することができる等の特性を有している。そのため、圧縮成形品は、電子機器用の半導体封止材、接着性部材、放熱シート等として好ましく用いることができる。
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
[実施例1~6、比較例1~6]
 平均粒径(D50)が2~45μmの範囲に極大値を有するアルミナ原料粉末を、燃料ガスとしてLPG、助燃ガスとして、酸素を用いて形成された高温火炎中に投入し、溶融球状化させることによって無機酸化物粉末(球状アルミナ粉末)を作製した。
 各粒度領域の累積頻度は、原料粉末の配合量を調整することや、篩分けや分級等で行うことで、表1に記載の値に調整した。
(頻度粒度分布)
 得られた無機酸化物粉末について、粒度分布測定機(ベックマン・コールター株式会社製、「LS-13230」)を用いて、屈折率1.68及び測定溶媒として、水を用い、前処理条件として、60秒間、超音波ホモジナイザー200Wの条件で、レーザー回折光散乱法による体積基準の頻度粒度分布を測定した。
 得られた頻度粒度分布から、第1領域~第3領域の各領域における累積頻度を求めた。また、第1領域の累積頻度に対する第2領域の累積頻度の比の値、及び、第1領域の累積頻度に対する第3領域の累積頻度の比の値をそれぞれ算出した。結果を表1に示す。なお、実施例及び比較例のいずれも粒径が0.01μm以上70μm以下の範囲の累積頻度が90%以上であった。
(比表面積)
 得られた無機酸化物粉末を1.0g計量し、測定用のセルに投入、前処理後、BET比表面積値を測定した。結果を表1に示す。測定機はMACSORB社製「Macsorb HM model-1208」を使用した。以下に前処理条件を示す。
  脱気温度:300℃
  脱気時間:18分
  冷却時間:4分
 次いで、得られた各無機酸化物粉末を以下の材料と、以下の配合量で、ヘンシェルミキサ(日本コークス工業社製「FM-20C/I」)を用いて、常温、回転数2000rpmの条件下で混合し、樹脂組成物を得た。作製した上記の球状アルミナ粉末90質量部と、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製YX-4000HK)5.5質量部と、フェノール樹脂(フェノールアラルキル樹脂、明和化成株式会社製MEHC-7800S)4.8質量部と、トリフェニルホスフィン(北興化学工業株式会社製:TPP)0.15質量部と、N-フェニル-3-アミノプロピルトリメトキシシラン信越化学工業株式会社製:KBM-573)0.35質量部とをドライブレンドした。その後、同方向噛み合い二軸押出混練機(スクリュー径D=25mm、L/D=10.2、パドル回転数50~120rpm、吐出量3.0kg/Hr、混練物温度98~100℃)で加熱混練し、樹脂組成物を得た。
(流動性)
 得られた各樹脂組成物について、以下に示す方法で流動性を測定した。結果を表1に示す。
 スパイラルフロー金型を用い、EMMI-1-66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠して行った。金型温度は175℃、成型圧力7.4MPa、保圧時間90秒とした。200cm以上であるものを○(優)として、200cm未満であるものと不良(×)として評価した。
(粘度)
 得られた無機酸化物粉末について、以下に示す方法でエポキシ樹脂に配合した際の粘度(低せん断時及び高せん断時)を測定した。得られた値を用いて低せん断時の粘度と高せん断時の粘度との比の値を算出した。結果を表1に示す。
 ビスフェノールF型であるエポキシ樹脂(三菱化学社製:エピコート807、エポキシ当量170、粘度4Pa・s)20質量%と作製した上記の球状アルミナ粉末80質量%とからなる樹脂組成物を作製し、低せん断時の粘度として、E型粘度計(東機産業社製商品名「TVE-10」)を用い、温度30℃、1rpmの回転数により樹脂組成物の粘度測定を行った。高せん断時の粘度として、E型粘度計(東機産業社製商品名「TVE-10」)を用い、温度30℃、10rpmの回転数により樹脂組成物の粘度測定を行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例で得られた無機酸化物粉末(球状アルミナ粉末)を含む樹脂組成物は、低せん断時の粘度と高せん断時の粘度との比が1.5未満であり、低せん断時の粘度と高せん断時の粘度との比が小さい。そのため、コンプレッションモールド法において樹脂組成物にワークを押し当てる際に初めから終わりまで粘度が低く保たれる。その結果、優れた成形性で圧縮成形品を製造することができる。

Claims (6)

  1.  体積基準の頻度粒度分布において、粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上20μm以下の範囲に位置する第2領域の累積頻度の比の値(第2領域の累積頻度/第1領域の累積頻度)が1.2~1.4であり、
     粒径が0.001μm以上10μm以下の範囲に位置する第1領域の累積頻度に対する、粒径が0.001μm以上35μm以下の範囲に位置する第3領域の累積頻度の比の値(第3領域の累積頻度/第1領域の累積頻度)が1.4~2.2であり、
     前記第3領域の累積頻度が、70~95体積%である、無機酸化物粉末。
  2.  BET法による比表面積が、0.5~2.0m/gである、請求項1に記載の無機酸化物粉末。
  3.  粒径が0.01μm以上70μm以下の範囲の累積頻度が90体積%以上である、請求項1又は2に記載の無機酸化物粉末。
  4.  請求項1から3のいずれか一項に記載の無機酸化物粉末と樹脂とを含む、樹脂組成物。
  5.  圧縮成形品の製造に用いられる、請求項4に記載の樹脂組成物。
  6.  請求項4又は5に記載の樹脂組成物を含む、圧縮成形品。
PCT/JP2022/012146 2021-03-26 2022-03-17 無機酸化物粉末、樹脂組成物及び圧縮成形品 WO2022202583A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509089A JPWO2022202583A1 (ja) 2021-03-26 2022-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053525 2021-03-26
JP2021053525 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202583A1 true WO2022202583A1 (ja) 2022-09-29

Family

ID=83397224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012146 WO2022202583A1 (ja) 2021-03-26 2022-03-17 無機酸化物粉末、樹脂組成物及び圧縮成形品

Country Status (3)

Country Link
JP (1) JPWO2022202583A1 (ja)
TW (1) TW202300578A (ja)
WO (1) WO2022202583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128321A1 (ja) * 2022-12-16 2024-06-20 デンカ株式会社 球状アルミナ粉末
WO2024128320A1 (ja) * 2022-12-16 2024-06-20 デンカ株式会社 球状アルミナ粉末

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278415A (ja) * 1994-04-13 1995-10-24 Shin Etsu Chem Co Ltd 半導体封止用樹脂組成物及び半導体装置
JPH09194242A (ja) * 1996-01-16 1997-07-29 Denki Kagaku Kogyo Kk アルミナセメント及びそれを用いた不定形耐火物
JPH09210570A (ja) * 1995-11-30 1997-08-12 Kawasaki Steel Corp 火炎溶射方法
JP2001064522A (ja) * 1999-08-27 2001-03-13 Toray Ind Inc 半導体封止用樹脂組成物
JP2002128520A (ja) * 2000-10-20 2002-05-09 Shiraishi Chuo Kenkyusho:Kk 球状カルシウムアルミネート及びその製造方法
JP2003003074A (ja) * 2001-06-20 2003-01-08 Mitsui Chemicals Inc シリカ含有樹脂組成物およびその精密成形体
JP2005089293A (ja) * 2003-08-13 2005-04-07 Sakai Chem Ind Co Ltd ペロブスカイト化合物粉体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278415A (ja) * 1994-04-13 1995-10-24 Shin Etsu Chem Co Ltd 半導体封止用樹脂組成物及び半導体装置
JPH09210570A (ja) * 1995-11-30 1997-08-12 Kawasaki Steel Corp 火炎溶射方法
JPH09194242A (ja) * 1996-01-16 1997-07-29 Denki Kagaku Kogyo Kk アルミナセメント及びそれを用いた不定形耐火物
JP2001064522A (ja) * 1999-08-27 2001-03-13 Toray Ind Inc 半導体封止用樹脂組成物
JP2002128520A (ja) * 2000-10-20 2002-05-09 Shiraishi Chuo Kenkyusho:Kk 球状カルシウムアルミネート及びその製造方法
JP2003003074A (ja) * 2001-06-20 2003-01-08 Mitsui Chemicals Inc シリカ含有樹脂組成物およびその精密成形体
JP2005089293A (ja) * 2003-08-13 2005-04-07 Sakai Chem Ind Co Ltd ペロブスカイト化合物粉体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128321A1 (ja) * 2022-12-16 2024-06-20 デンカ株式会社 球状アルミナ粉末
WO2024128320A1 (ja) * 2022-12-16 2024-06-20 デンカ株式会社 球状アルミナ粉末

Also Published As

Publication number Publication date
TW202300578A (zh) 2023-01-01
JPWO2022202583A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
US8354091B2 (en) Alumina powder and method for preparing the same as well as use thereof
JP5380290B2 (ja) シリカ粉末の製造方法
WO2022202583A1 (ja) 無機酸化物粉末、樹脂組成物及び圧縮成形品
KR101191590B1 (ko) 알루미나질 섬유 집합체, 그 제조 방법 및 용도
JP2004244491A (ja) 高熱伝導性無機質粉末およびその樹脂組成物
JP2001048521A (ja) 微細球状シリカ粉末とその製造方法および用途
JP3446951B2 (ja) 無機質粉末及びそれが充填された樹脂組成物
WO2022202584A1 (ja) 無機酸化物粉末、樹脂組成物及び圧縮成形品
JP5526027B2 (ja) 非晶質シリカ質粉末、その製造方法、樹脂組成物、及び半導体封止材
JP2005139295A (ja) 金属酸化物粉末、その製造方法、用途
JP2001158614A (ja) 球状無機質粉末及びその用途
JP5767863B2 (ja) 球状アルミナ粉末、その製造方法及びそれを用いた組成物
JP6612919B2 (ja) 非晶質シリカ粉末、樹脂組成物、及び半導体封止材
WO2022202592A1 (ja) 無機酸化物粉末、樹脂組成物及び圧縮成形品
JP3721285B2 (ja) 球状無機質粉末及びその用途
JP2002252314A (ja) 球状無機質粉末及びその用途
WO2022239708A1 (ja) 凝集を低減したシリカ粉末、及び樹脂組成物、並びに半導体封止材
TWI457281B (zh) 氧化矽質粉末、其製造方法及用途
JP4131620B2 (ja) シリカ粉末及びその用途
JP5345787B2 (ja) 半導体封止材用シリカ・アルミナ複合酸化物超微粉末の製造方法
JP4342036B2 (ja) シリカ質充填材用助剤の製造方法
WO2022210260A1 (ja) 球状無機質粉末及び液状封止材
WO2022071131A1 (ja) 球状アルミナ粉末、樹脂組成物、半導体封止材料
EP4317067A1 (en) Inorganic powder, inorganic composition, and resin composition
KR20090064596A (ko) 알루미나 분말 및 그 제조 방법과 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775371

Country of ref document: EP

Kind code of ref document: A1