WO2022202472A1 - 流体圧緩衝器 - Google Patents

流体圧緩衝器 Download PDF

Info

Publication number
WO2022202472A1
WO2022202472A1 PCT/JP2022/011525 JP2022011525W WO2022202472A1 WO 2022202472 A1 WO2022202472 A1 WO 2022202472A1 JP 2022011525 W JP2022011525 W JP 2022011525W WO 2022202472 A1 WO2022202472 A1 WO 2022202472A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
damping
side chamber
resistance
cylinder tube
Prior art date
Application number
PCT/JP2022/011525
Other languages
English (en)
French (fr)
Inventor
一樹 長谷川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to US18/550,900 priority Critical patent/US20240157752A1/en
Priority to EP22775262.3A priority patent/EP4317737A1/en
Priority to CN202280022545.5A priority patent/CN116997732A/zh
Publication of WO2022202472A1 publication Critical patent/WO2022202472A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/062Bi-tubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/063Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid comprising a hollow piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/112Fluid actuation

Definitions

  • the present invention relates to a fluid pressure damper.
  • the piston rod is connected to a rod portion extending to the outside of the cylinder and an end portion of the rod portion to move slidably in the cylinder, It has a piston partitioned into a bottom side chamber and a rod side chamber.
  • the rod part is replaceable with a rod inner space formed inside the rod part and communicating with the bottom side chamber of the cylinder, a first communication passage connecting the rod inner space and the rod side chamber of the cylinder, and a first communication passage. and an orifice plug provided.
  • the fluid pressure damper described in JP2015-206374A is configured to generate a damping force with a compact structure by providing an orifice plug in the first communication passage formed in the rod portion.
  • An object of the present invention is to provide a fluid pressure damper that can secure an installation space for a damping section.
  • a fluid pressure damper includes a cylinder tube, a piston rod that is inserted into the cylinder tube so as to move back and forth, and a piston rod that is connected to the piston rod to divide the inside of the cylinder tube into a rod-side chamber and a bottom-side chamber.
  • a piston and a damping section that generates a damping force by applying resistance to the flow of the working fluid between the rod-side chamber and the bottom-side chamber, the piston rod being connected to the piston and sliding on the cylinder tube. It has a freely supported rod portion and a head portion connected to the rod portion and exposed to the outside of the cylinder tube, and the damping portion is provided at the head portion of the piston rod.
  • FIG. 1 is a cross-sectional view of a shock absorber according to a first embodiment of the invention.
  • FIG. 2 is an enlarged sectional view showing the structure around the head portion of the shock absorber according to the first embodiment.
  • FIG. 3 is a configuration diagram schematically showing a damping section according to a modification of the first embodiment.
  • FIG. 4 is a cross-sectional view of the shock absorber according to the second embodiment.
  • FIG. 5 is a configuration diagram schematically showing the damping section of the second embodiment.
  • FIG. 6 is a configuration diagram schematically showing a damping section according to a modification of the second embodiment.
  • FIG. 1 A fluid pressure damper according to a first embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. A case where the fluid pressure damper is the shock absorber 100 mounted on the vehicle will be described below.
  • the shock absorber 100 is, for example, a device that is interposed between the vehicle body and the axle of the vehicle to generate a damping force to suppress the vibration of the vehicle body.
  • the shock absorber 100 includes a cylindrical cylinder tube 10, a piston rod 20 inserted into the cylinder tube 10 so as to move back and forth and extending to the outside of the cylinder tube 10, and a and a piston 30 that is connected and moves slidably along the inner peripheral surface of the cylinder tube 10 .
  • the shock absorber 100 is mounted on the vehicle with the cylinder tube 10 facing upward and the piston rod 20 facing downward.
  • the inside of the cylinder tube 10 is divided into a bottom side chamber 1 and a rod side chamber 2 by the piston 30 .
  • the bottom-side chamber 1 and the rod-side chamber 2 are each filled with hydraulic oil as a hydraulic fluid.
  • the bottom side chamber 1 is filled with gas together with hydraulic oil to obtain a spring action by utilizing the change in volume inside the cylinder tube 10 as the piston rod 20 moves into and out of the cylinder tube 10. be done.
  • the shock absorber 100 is a fluid pressure damper having an air suspension function capable of supporting the vehicle body by the spring action of gas. In this case, the damping force can be generated and the vehicle body can be supported by the shock absorber 100 without providing a separate spring for supporting the vehicle body.
  • the cylinder tube 10 does not have to be filled with gas.
  • a free piston may be provided which is movably provided inside the bottom side chamber 1 and separates the bottom side chamber 1 into a liquid chamber filled with working oil and an air chamber filled with gas.
  • the piston 30 is configured to face the liquid chamber.
  • the cylinder tube 10 is a cylindrical member with a bottom, and its open end is closed by a cylinder head 11 through which the piston rod 20 is slidably inserted.
  • the cylinder head 11 is fixed to the cylinder tube 10 by being fastened to the end of the cylinder tube 10 with a bolt (not shown).
  • the inner peripheral surface of the cylinder head 11 is provided with a seal member (not shown) and a dust seal (not shown) which are in sliding contact with the outer peripheral surface of the piston rod 20 .
  • a mounting portion 10a for mounting the shock absorber 100 to the vehicle is provided at the closed end of the cylinder tube 10 (the end opposite to the cylinder head 11).
  • the piston rod 20 includes a rod portion 21 connected to the piston 30 and slidably supported by the cylinder head 11 of the cylinder tube 10, a head portion 23 exposed to the outside of the cylinder tube 10, and provided inside the rod portion 21. and a pipe portion 27 as a flow passage portion.
  • the rod portion 21 is formed with a concave portion 21a that opens to the end face on the piston 30 side. Inside the rod portion 21, a rod inner chamber 2a is formed as a rod inner space by the concave portion 21a. The end of the rod portion 21 is connected to the piston 30 with a bolt (not shown).
  • the head portion 23 has a larger diameter than the rod portion 21, and is always exposed to the outside of the cylinder tube 10 regardless of the expansion/contraction state of the shock absorber 100 (in other words, the stroke position of the piston rod 20 with respect to the cylinder tube 10). . From another point of view, the head portion 23 is a portion of the piston rod 20 that does not slide with respect to the cylinder head 11 .
  • the head portion 23 is formed separately from the rod portion 21, for example, and is connected to the end portion of the rod portion 21 by a method such as welding.
  • the rod part 21 and the head part 23 are not limited to the configuration in which they are separately formed and connected, and may be integrally formed.
  • the head portion 23 is provided with a stopper portion 24 that defines the stroke end during contraction of the shock absorber 100, and an attachment portion 20a for attaching the shock absorber 100 to the vehicle.
  • the stopper portion 24 is provided with an annular cushion ring 15 that prevents collision between the cylinder head 11 and the piston rod 20 at the stroke end when the shock absorber 100 is contracted.
  • the pipe portion 27 is a cylindrical pipe member having a through hole 27a formed along the axial direction.
  • a through hole 27 a of the pipe portion 27 communicates with the bottom side chamber 1 through a piston passage 31 formed in the piston 30 .
  • One end of the pipe portion 27 is inserted into an insertion hole 23a formed in the head portion 23, and the other end is inserted into an insertion hole 30a formed in the piston 30.
  • the pipe portion 27 is provided so as to be sandwiched between the head portion 23 and the piston 30 .
  • O-rings (not shown) are provided to seal the gaps.
  • the rod inner chamber 2 a is formed as an annular space by the outer peripheral surface of the pipe portion 27 , the inner peripheral surface of the rod portion 21 , the head portion 23 and the piston 30 .
  • the rod inner chamber 2 a communicates with the rod side chamber 2 through a plurality of first communication passages 22 formed in the rod portion 21 of the piston rod 20 .
  • the plurality of first communication passages 22 are arranged in the circumferential direction of the rod portion 21 so as to open to the inner and outer peripheral surfaces of the rod portion 21 , and are formed so as to penetrate the rod portion 21 in the radial direction.
  • the hydraulic oil in the rod inner chamber 2a is quickly led to the rod side chamber 2 when the shock absorber 100 is retracted at high speed or when it is retracted from the maximum extension state. Thereby, a rapid pressure drop in the rod side chamber 2 is suppressed.
  • the shock absorber 100 further includes a damping portion 50 that applies resistance to the flow of hydraulic oil between the rod-side chamber 2 and the bottom-side chamber 1 to generate a damping force.
  • the damping portion 50 is provided inside the head portion 23 of the piston rod 20 .
  • the head portion 23 has a housing hole 40 housing the damping portion 50, a connection hole 45 communicating the housing hole 40 and the through hole 27a of the pipe portion 27, Second communication paths 46a and 46b communicating with the chamber 2a are formed.
  • the bottom side chamber 1 and the rod side chamber 2 are defined by a piston passage 31 (see FIG. 1), a through hole 27a of the pipe portion 27, a connection hole 45, an accommodation hole 40, second communication passages 46a and 46b, a rod inner chamber 2a, and a rod inner chamber 2a. They communicate with each other through a channel constituted by one communication channel 22 (see FIG. 1).
  • the shock absorber 100 is of a so-called internal piping type, in which the flow path communicating between the bottom side chamber 1 and the rod side chamber 2 is provided inside the shock absorber 100 .
  • the shock absorber 100 may be of a so-called external piping type in which a part of the flow path communicating between the bottom side chamber 1 and the rod side chamber 2 is provided outside the shock absorber 100 .
  • the damping section 50 has a first resistance section 51 and a second resistance section 60 that provide resistance to the flow of hydraulic oil.
  • the first resistance portion 51 applies resistance only to the flow of hydraulic oil from the bottom side chamber 1 to the rod side chamber 2 .
  • the first resistance portion 51 includes a first orifice 52 as a first throttle portion that applies resistance to the passing hydraulic fluid to generate a damping force, and a flow of hydraulic fluid from the bottom side chamber 1 to the rod inner chamber 2a. and a check valve 55 that allows only
  • the second resistance portion 60 provides resistance to both directions of the hydraulic oil flow between the bottom side chamber 1 and the rod side chamber 2 .
  • the second resistance portion 60 has a second orifice 61 as a second throttle portion that applies resistance to the passing hydraulic oil to generate a damping force.
  • the first resistance section 51 and the second resistance section 60 are provided in parallel with each other, as shown in FIG.
  • a check valve 55 is provided at a position closer to the bottom side chamber 1 than the first orifice 52 in the flow of hydraulic fluid.
  • the damping portion 50 is housed in the housing hole 40 formed in the head portion 23 of the piston rod 20 and provided inside the head portion 23 .
  • the damping section 50 has a first orifice plug 53 provided with a first orifice 52 and a second orifice plug 62 provided with a second orifice 61 .
  • the accommodation hole 40 of the head portion 23 includes a first accommodation portion 41 that accommodates the first orifice plug 53 and the check valve 55, a second accommodation portion 42 that accommodates the second orifice plug 62, and a first accommodation portion 41. and a communication portion 43 that communicates with the second housing portion 42 .
  • the first housing portion 41 and the second housing portion 42 are opened to the outer surface of the head portion 23 , and the respective openings are sealed with plugs 80 and 81 .
  • the check valve 55 has a ball body 56 as a valve body and a seating portion 57 on which the ball body 56 is seated.
  • the seat portion 57 is formed in a stepped portion formed between the first housing portion 41 and the communication portion 43 .
  • the ball body 56 is seated on the seat portion 57 to block the flow of hydraulic oil from the first accommodation portion 41 to the communication portion 43 .
  • the head portion 23 is formed with second communicating passages 46a and 46b that communicate the rod inner chamber 2a with the first accommodating portion 41 and the second accommodating portion 42. As shown in FIG.
  • One of the second communicating passages 46 a is formed to open to the first accommodating portion 41 between the first orifice plug 53 and the plug 80 that seals the opening of the first accommodating portion 41 .
  • the other second communication path 46 b is formed to open to the second housing portion 42 between the second orifice plug 62 and the plug 81 that seals the opening of the second housing portion 42 .
  • the first orifice plug 53 is provided between the second communication passage 46a on one side and the communication portion 43
  • the A second orifice plug 62 is provided between the second communicating passage 46 b and the communicating portion 43 .
  • the shock absorber 100 when the shock absorber 100 is contracted, the hydraulic fluid in the bottom side chamber 1 passes through both the first orifice 52 and the second orifice 61 and is led to the rod side chamber 2 . Therefore, in the shock absorber 100, a damping force corresponding to the flow path resistance exerted by the first orifice 52 and the second orifice 61 as a whole is generated.
  • the shock absorber 100 contracts relatively smoothly, and then generates a large damping force when extending, and the shock absorber 100 extends from the road surface to the vehicle body. Effectively attenuates input vibrations.
  • the damping portion 50 is provided inside the head portion 23 of the piston rod 20.
  • the volume of the head portion 23 can be easily secured compared to the rod portion 21, and accordingly, the installation space for the damping portion 50 can be easily secured. Therefore, even if the damping section 50 has a relatively complicated configuration or a large configuration, it can be easily incorporated into the shock absorber 100 . As a result, the shock absorber 100 can achieve various damping characteristics.
  • the shock absorber 100 since the damping portion 50 is provided in the head portion 23 of the piston rod 20 which is always exposed to the outside of the cylinder tube 10, compared with the case where the damping portion 50 is provided in the rod portion 21 or the piston 30, the shock absorber 100 can be adjusted without disassembling the Specifically, by removing the plugs 80 and 81 exposed to the outside and replacing the first orifice plug 53 and the second orifice plug 62, the damping characteristics of the shock absorber 100 can be easily changed.
  • the first orifice 52 and the second orifice 61 are fixed orifices with constant flow resistance.
  • the first orifice 52 and/or the second orifice 61 may be variable orifices (variable restrictors) having variable flow path resistance.
  • shock absorber 100 has second orifice 61a, which is a variable orifice, so that the damping force of shock absorber 100 can be adjusted more easily.
  • the configuration of the variable orifice and its adjustment mechanism will not be described or illustrated because a known configuration can be adopted. be done.
  • the first resistance portion 51 applies resistance only to the flow of hydraulic oil from the bottom side chamber 1 toward the rod side chamber 2 .
  • the shock absorber 100 has different damping characteristics during the extension operation and during the contraction operation.
  • the first resistance portion 51 may provide resistance only to the flow of hydraulic oil from the rod-side chamber 2 toward the bottom-side chamber 1 .
  • the first resistance portion 51 applies resistance only to the flow of hydraulic fluid from the bottom side chamber 1 to the rod side chamber 2, and the second resistance portion 60 only resists the flow of hydraulic fluid from the rod side chamber 2 to the bottom side chamber 1. may be given. In this case, it is desirable that the first orifice 52 and the second orifice 61 have different attenuation characteristics.
  • the configuration in which the damping portion 50 has the first resistance portion 51 and the second resistance portion 60 provided in parallel with each other is not essential, and the damping portion 50 can Any configuration is possible.
  • the damping section 50 may generate damping force with the same damping characteristics for expansion and contraction of the shock absorber 100 .
  • a shock absorber 200 according to a second embodiment will be described with reference to FIGS. 4 and 5.
  • FIG. the points different from the first embodiment will be mainly described, and the same reference numerals will be given to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate.
  • the shock absorber 200 according to the second embodiment differs from the shock absorber 100 according to the first embodiment in the configuration of the damping portion 150 .
  • the damping portion 150 of the shock absorber 200 according to the second embodiment includes a first resistance portion 51 and a second resistance portion 160 which are provided in parallel, as in the first embodiment. , has
  • the configuration of the first resistor portion 51 is the same as that of the first embodiment, so the description is omitted.
  • the second resistance section 160 has a damping valve 161 that changes the resistance applied to the flow of hydraulic oil passing through it according to its position.
  • the damping valve 161 has a first throttle position 161A that imparts a predetermined resistance to the flow of hydraulic fluid passing therethrough, and a resistance that is different in magnitude from the resistance imparted by the first throttle position 161A. and a second aperture position 161B to provide. That is, the first throttle position 161A and the second throttle position 161B have different pressure loss characteristics with respect to the flow of hydraulic oil passing therethrough.
  • the damping valve 161 has a valve body (not shown) that switches positions, and a spring 162 as a biasing member that biases the valve body. In the damping valve 161, the valve body is biased by a spring 162 so as to reach the first throttle position 161A.
  • the damping portion 150 also has a switching portion 165 that is pressed by the cylinder tube 10 as the piston rod 20 enters the cylinder tube 10 to switch the position of the damping valve 161, as shown in FIG.
  • the switching portion 165 has a lever portion 166 protruding outside the piston rod 20 and a pressing rod portion 167 that presses the valve body as the lever portion 166 is switched. At least part of the pressing rod portion 167 is inserted into the head portion 23 of the piston rod 20 .
  • the cylinder head 11 of the cylinder tube 10 is provided with a projecting portion 120 for switching the lever portion 166 .
  • the stroke area of the piston rod used may differ depending on the conditions of the object such as the vehicle or equipment to which the shock absorber is attached. That is, for a certain shock absorber, both a situation in which the shock absorber expands and contracts in a relatively expanded state and a situation in which the shock absorber expands and contracts in a relatively contracted state may occur.
  • the stroke region of the shock absorber differs between a state in which a vehicle is loaded with a load such as a person or luggage and a state in which the vehicle is not loaded. In such a case where the stroke area varies depending on the situation, it is desirable to configure the damping characteristics of the shock absorber to differ according to the stroke area.
  • the damping valve 161 of the damping section 50 assumes the first throttle position 161A by the biasing force of the spring 162, as shown in FIGS. Therefore, when the shock absorber 100 expands and contracts in the extended state, a damping force is generated based on the damping characteristic corresponding to the pressure loss characteristic of the first throttle position 161A.
  • damping portion 150 is provided in head portion 23, so damping portion 150 can be easily incorporated into shock absorber 100 even with a complicated configuration including damping valve 161, switching portion 165, and the like. be able to.
  • the pressure loss characteristic of the first throttle position 161A of the damping valve 161 is configured so as to generate a damping characteristic suitable for the shock absorber 100 in the extended state
  • the pressure loss characteristic of the second throttle position 161B is configured to be suitable for the shock absorber 100. It can be configured to generate suitable damping characteristics when 100 is in a contracted state. As a result, an appropriate damping force can be generated according to the condition of the object to which the shock absorber 100 is attached.
  • the lever portion 166 is in direct contact with the projection portion 120 of the cylinder tube 10 and is pressed against the projection portion 120.
  • the lever portion 166 may be pressed by the magnetic force (repulsive force) of . That is, the switching portion may be configured to be switched by being pressed by the cylinder tube 10 in a non-contact manner.
  • the damping portion 150 has the switching portion 165 that is pressed by the cylinder tube 10 as the piston rod 20 enters the cylinder tube 10 to switch the position of the damping valve 161 .
  • the shock absorber 200 generates a damping force with different damping characteristics in a relatively expanded state and a contracted state.
  • the solenoid portion 265 moves the valve element of the damping valve 161 against the biasing force of the spring 162 by receiving an electric signal from the controller 90 . As a result, the position of the damping valve 161 is switched from the first throttle position 161A to the second throttle position 161B. When the solenoid portion 265 is de-energized, the damping valve 161 is switched to the first throttle position 161 A by the biasing force of the spring 162 .
  • the damping characteristic of the damping valve 161 is not limited to the stroke range of the piston rod 20, and can be applied even in various other situations. can be changed.
  • the damping characteristic can be changed according to the steering operation of the vehicle and the running state of the vehicle such as road surface conditions. In this manner, the damping characteristics of shock absorber 200 can be changed at any timing, thereby improving convenience.
  • the shock absorbers 100 and 200 include a cylinder tube 10, a piston rod 20 that is inserted into the cylinder tube 10 so as to move back and forth, and a piston connected to the piston rod 20 that divides the inside of the cylinder tube 10 into a rod-side chamber 2 and a bottom-side chamber 1. 30, and damping portions 50, 150, and 250 that generate damping force by providing resistance to the flow of the working fluid between the rod side chamber 2 and the bottom side chamber 1. and a head portion 23 exposed to the outside of the cylinder tube 10 . It is provided in the part 23 .
  • the piston rod 20 has a rod inner chamber 2a formed inside the rod portion 21, and a first communication passage that guides hydraulic fluid between the rod side chamber 2 and the rod inner chamber 2a. 22, and second communication passages 46a, 46b for guiding hydraulic fluid between the rod inner chamber 2a and damping portions 50, 150, 250. 1 and the damping portion 50,150,250.
  • the installation space for the damping units 50, 150, 250 is secured even in the case of a so-called internal piping type in which the flow path communicating between the bottom side chamber 1 and the rod side chamber 2 is provided inside the shock absorbers 100, 200. can do.
  • the damping portions 50, 150, 250 each have a first resistance portion 51 and second resistance portions 60, 160, 260 that impart resistance to the flow of the working fluid.
  • 1 resistance part 51 gives resistance only with respect to the flow of the hydraulic oil which goes from one of the rod side chamber 2 and the bottom side chamber 1 to the other.
  • the damping portion 50 has a second orifice 61a that provides variable resistance to the flow of hydraulic oil passing therethrough.
  • the damping portion 150 includes the damping valve 161 that changes the resistance applied to the working fluid according to the position, and and a switching portion 165 that is pressed by the cylinder tube 10 to switch the position of the damping valve 161 .
  • shock absorber 200 can generate an appropriate damping force according to the stroke.
  • the damping portion 250 includes the damping valve 161 that changes the resistance applied to the working fluid according to the position, and the damping valve 161 driven by energization to change the position of the damping valve 161. and a switching solenoid portion 265 .
  • the damping force generated by the damping valve 161 can be adjusted at any timing by energizing the solenoid portion 265, which improves convenience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

ショックアブソーバ(100)は、シリンダチューブ(10)と、シリンダチューブ(10)に進退自在に挿入されるピストンロッド(20)と、ピストンロッド(20)に連結されシリンダチューブ(10)内をロッド側室(2)とボトム側室(1)とに区画するピストン(30)と、ロッド側室(2)とボトム側室(1)との間の作動流体の流れに対して抵抗を付与して減衰力を発生する減衰部(50)と、を備え、ピストンロッド(20)は、ピストン(30)に連結されシリンダチューブ(10)に摺動自在に支持されるロッド部(21)と、シリンダチューブ(10)の外部に露出するヘッド部(23)と、を有し、減衰部(50)は、ピストンロッド(20)のヘッド部(23)に設けられる。

Description

流体圧緩衝器
 本発明は、流体圧緩衝器に関するものである。
 JP2015-206374Aに記載の流体圧緩衝器では、ピストンロッドは、シリンダの外部へと延出するロッド部と、ロッド部の端部に連結されてシリンダ内を摺動自在に移動し、シリンダ内をボトム側室とロッド側室に区画するピストンと、を有する。ロッド部は、ロッド部の内部に形成されてシリンダのボトム側室と連通するロッド内空間と、ロッド内空間とシリンダのロッド側室とを接続する第1連通路と、第1連通路に交換可能に設けられるオリフィスプラグと、を有する。
 JP2015-206374Aに記載の流体圧緩衝器は、ロッド部に形成される第1連通路にオリフィスプラグを設けることで、コンパクトな構造で減衰力を発生できるように構成されている。
 一方、流体圧緩衝器において多様な減衰特性を実現したい場合などには、減衰力を発生する減衰部の構成が大型化したり複雑化したりすることがある。このような場合には、減衰部の設置スペースを確保する必要がある。
 本発明は、減衰部の設置スペースを確保できる流体圧緩衝器を提供することを目的とする。
 本発明のある態様によれば、流体圧緩衝器は、シリンダチューブと、シリンダチューブに進退自在に挿入されるピストンロッドと、ピストンロッドに連結されシリンダチューブ内をロッド側室とボトム側室とに区画するピストンと、ロッド側室とボトム側室との間での作動流体の流れに対して抵抗を付与して減衰力を発生する減衰部と、を備え、ピストンロッドは、ピストンに連結されシリンダチューブに摺動自在に支持されるロッド部と、ロッド部に接続されシリンダチューブの外部に露出するヘッド部と、を有し、減衰部は、ピストンロッドのヘッド部に設けられる。
図1は、本発明の第1実施形態に係るショックアブソーバの断面図である。 図2は、第1実施形態に係るショックアブソーバのヘッド部周辺の構造を示す拡大断面図である。 図3は、第1実施形態の変形例に係る減衰部を模式的に示す構成図である。 図4は、第2実施形態に係るショックアブソーバの断面図である。 図5は、第2実施形態の減衰部を模式的に示す構成図である。 図6は、第2実施形態の変形例に係る減衰部を模式的に示す構成図である。
 以下、図面を参照して、本発明の各実施形態に係る流体圧緩衝器について説明する。
(第1実施形態)
 図1及び図2を参照して、第1実施形態に係る流体圧緩衝器について説明する。以下では、流体圧緩衝器が車両に搭載されるショックアブソーバ100である場合について説明する。
 ショックアブソーバ100は、例えば、車両の車体と車軸との間に介装され、減衰力を発生させて車体の振動を抑制する装置である。
 図1に示すように、ショックアブソーバ100は、筒状のシリンダチューブ10と、シリンダチューブ10に進退自在に挿入されシリンダチューブ10の外部へと延出するピストンロッド20と、ピストンロッド20の先端に連結されシリンダチューブ10の内周面に沿って摺動自在に移動するピストン30と、を備える。本実施形態では、ショックアブソーバ100は、シリンダチューブ10が上側、ピストンロッド20が下側となる向きに車両に搭載される。
 シリンダチューブ10内は、ピストン30によってボトム側室1とロッド側室2とに区画される。ボトム側室1とロッド側室2には、それぞれ作動流体としての作動油が封入される。また、図示は省略するが、ボトム側室1には、シリンダチューブ10に対するピストンロッド20の進入、退出に伴うシリンダチューブ10内の容積変化を利用してばね作用を得るためのガスが作動油と共に封入される。このように、ショックアブソーバ100は、ガスによるばね作用によって車体の支持が可能なエアサスペンションの機能を備える流体圧緩衝器である。この場合、車体を支持するばねを別途設けなくても、ショックアブソーバ100によって減衰力の発生及び車体の支持が可能となる。
 なお、これに限らず、シリンダチューブ10内にガスが封入されなくてもよい。また、ボトム側室1の内部に移動自在に設けられ、ボトム側室1を作動油が充填される液室とガスが封入される気室とに隔てるフリーピストンが設けられてもよい。この場合、ピストン30は、液室に面するように構成される。フリーピストンを設けることによって、気室のガスが後述する減衰部50に導かれないため、ショックアブソーバ100は、シリンダチューブ10が下側、ピストンロッド20が上側となる向きで使用することも可能となる。つまり、ショックアブソーバ100の鉛直方向に対する姿勢が限定されない。
 シリンダチューブ10は、有底筒状部材であり、その開口端はピストンロッド20が摺動自在に挿通するシリンダヘッド11によって閉塞される。シリンダヘッド11は、ボルト(図示省略)にてシリンダチューブ10の端部に締結されることによって、シリンダチューブ10に固定される。シリンダヘッド11の内周面には、ピストンロッド20の外周面に摺接するシール部材(図示省略)やダストシール(図示省略)が設けられる。
 シリンダチューブ10の閉塞端(シリンダヘッド11とは逆側の端部)には、ショックアブソーバ100を車両に取り付けるための取付部10aが設けられる。
 ピストンロッド20は、ピストン30に連結されシリンダチューブ10のシリンダヘッド11に摺動自在に支持されるロッド部21と、シリンダチューブ10の外部に露出するヘッド部23と、ロッド部21の内側に設けられる流路部としてのパイプ部27と、を有する。
 ロッド部21には、ピストン30側の端面に開口する凹部21aが形成される。ロッド部21の内部には、凹部21aによってロッド内空間としてのロッド内室2aが形成される。ロッド部21の端部は、ボルト(図示省略)によってピストン30に連結される。
 ヘッド部23は、ロッド部21よりも大径に形成され、ショックアブソーバ100の伸縮状態(言い換えれば、シリンダチューブ10に対するピストンロッド20のストローク位置)に関わらず、シリンダチューブ10の外部に常時露出する。別の観点でいえば、ヘッド部23は、ピストンロッド20において、シリンダヘッド11に対して摺動しない部分である。ヘッド部23は、例えば、ロッド部21とは別体として形成され、溶接等の方法によってロッド部21の端部に接続される。なお、ロッド部21とヘッド部23とは、別体に形成されて連結される構成に限定されず、一体に形成されるものでもよい。
 ヘッド部23には、ショックアブソーバ100の収縮作動時のストロークエンドを規定するストッパ部24と、ショックアブソーバ100を車両に取り付けるための取付部20aと、が設けられる。ストッパ部24には、ショックアブソーバ100の収縮作動時にストロークエンドでのシリンダヘッド11とピストンロッド20との衝突を防止する環状のクッションリング15が設けられる。
 パイプ部27は、軸心方向に沿って貫通穴27aが形成される円筒状の管部材である。パイプ部27の貫通穴27aは、ピストン30に形成されるピストン通路31を通じてボトム側室1に連通する。
 パイプ部27の一端は、ヘッド部23に形成された挿入穴23aに挿入され、他端はピストン30に形成された挿入穴30aに挿入される。このように、パイプ部27は、ヘッド部23とピストン30によって挟まれるようにして設けられる。ヘッド部23の挿入穴23a及びピストン30の挿入穴30aとパイプ部27との間には、それぞれ隙間を封止するOリング(図示省略)が設けられる。
 ロッド内室2aは、パイプ部27の外周面、ロッド部21の内周面、ヘッド部23、及びピストン30によって環状の空間として形成される。ロッド内室2aは、ピストンロッド20のロッド部21に形成される複数の第1連通路22によってロッド側室2と連通する。複数の第1連通路22は、ロッド部21の周方向に並びロッド部21の内外周面に開口するように径方向に貫通して形成される。ロッド内室2aが設けられることで、ショックアブソーバ100が高速で収縮作動する際や、最伸長状態から収縮作動する際には、ロッド内室2aの作動油が速やかにロッド側室2へ導かれる。これにより、ロッド側室2の急激な圧力低下が抑制される。
 ショックアブソーバ100は、ロッド側室2とボトム側室1との間での作動油の流れに対して抵抗を付与して減衰力を発生する減衰部50をさらに備える。減衰部50は、ピストンロッド20のヘッド部23の内部に設けられる。
 ヘッド部23には、図2に示すように、減衰部50を収容する収容穴40と、収容穴40とパイプ部27の貫通穴27aとを連通する接続穴45と、収容穴40とロッド内室2aとを連通する第2連通路46a,46bと、が形成される。
 ボトム側室1とロッド側室2とは、ピストン通路31(図1参照)、パイプ部27の貫通穴27a、接続穴45、収容穴40、第2連通路46a,46b、ロッド内室2a、及び第1連通路22(図1参照)によって構成される流路により連通する。このように、ショックアブソーバ100は、ボトム側室1とロッド側室2とを連通する流路がショックアブソーバ100の内部に設けられる、いわゆる内部配管式のものである。なお、ショックアブソーバ100は、ボトム側室1とロッド側室2とを連通する流路の一部がショックアブソーバ100の外部に設けられる、いわゆる外部配管式のものであってもよい。
 減衰部50は、図1及び図2に示すように、それぞれ作動油の流れに対して抵抗を付与する第1抵抗部51及び第2抵抗部60を有する。
 第1抵抗部51は、ボトム側室1からロッド側室2へ向かう作動油の流れに対してのみ抵抗を付与する。第1抵抗部51は、通過する作動油に対して抵抗を付与して減衰力を発生する第1絞り部としての第1オリフィス52と、ボトム側室1からロッド内室2aへの作動油の流れのみを許容する逆止弁55と、を有する。
 第2抵抗部60は、ボトム側室1とロッド側室2との間の作動油の流れの双方向のいずれに対しても抵抗を付与する。第2抵抗部60は、通過する作動油に対して抵抗を付与して減衰力を発生する第2絞り部としての第2オリフィス61を有する。
 第1抵抗部51と第2抵抗部60とは、図1に示すように、互いに並列に設けられる。第1抵抗部51では、第1オリフィス52よりも作動油の流れにおいてボトム側室1側となる位置に逆止弁55が設けられる。
 以下、減衰部50の具体的構成について、主に図2を参照して説明する。
 図2に示すように、減衰部50は、ピストンロッド20のヘッド部23に形成される収容穴40に収容されて、ヘッド部23の内部に設けられる。
 減衰部50は、第1オリフィス52が設けられる第1オリフィスプラグ53と、第2オリフィス61が設けられる第2オリフィスプラグ62と、を有する。
 ヘッド部23の収容穴40は、第1オリフィスプラグ53及び逆止弁55を収容する第1収容部41と、第2オリフィスプラグ62を収容する第2収容部42と、第1収容部41と第2収容部42とを連通する連絡部43と、によって構成される。第1収容部41及び第2収容部42は、それぞれヘッド部23の外面に開口しており、それぞれの開口はプラグ80,81によって封止されている。
 逆止弁55は、弁体としてのボール体56と、ボール体56が着座する着座部57と、を有する。着座部57は、第1収容部41と連絡部43との間に形成される段差部に形成される。着座部57にボール体56が着座することで、第1収容部41から連絡部43へ向かう作動油の流れが遮断される。
 また、ヘッド部23には、ロッド内室2aと第1収容部41及び第2収容部42とを連通する第2連通路46a,46bが形成される。
 一方の第2連通路46aは、第1オリフィスプラグ53と第1収容部41の開口を封止するプラグ80との間において、第1収容部41に開口するように形成される。他方の第2連通路46bは、第2オリフィスプラグ62と第2収容部42の開口を封止するプラグ81との間において、第2収容部42に開口するように形成される。言い換えると、ボトム側室1とロッド側室2との間の作動油の流れで見た場合に、一方の第2連通路46aと連絡部43との間に第1オリフィスプラグ53が設けられ、他方の第2連通路46bと連絡部43との間に第2オリフィスプラグ62が設けられる。
 ショックアブソーバ100が収縮作動した際には、ボトム側室1の圧力が上昇し、ボトム側室1の作動油は、パイプ部27を通じて収容穴40の連絡部43に導かれる。連絡部43に導かれた作動油は、一部が逆止弁55を開弁し第1オリフィス52を通過して第2連通路46aからロッド内室2aに導かれ、残りの一部が第2オリフィス61を通過して第2連通路46bからロッド内室2aに導かれる。ロッド内室2aに導かれた作動油は、第1連通路22を通じてロッド側室2に導かれる。このように、ショックアブソーバ100の収縮作動の際には、ボトム側室1の作動油は、第1オリフィス52及び第2オリフィス61の両方を通過してロッド側室2に導かれる。このため、ショックアブソーバ100では、第1オリフィス52及び第2オリフィス61が全体として発揮する流路抵抗に応じた減衰力が発生される。
 ショックアブソーバ100が伸長作動した際には、ロッド側室2の圧力が上昇し、ロッド側室2の作動油は、ロッド内室2a及び第2連通路46bを通じて、第2収容部42に導かれる。第2収容部42に導かれた作動油は、第2オリフィス61を通過し、パイプ部27を通じてボトム側室1に導かれる。
 一方、ロッド側室2の圧力上昇によって逆止弁55は閉弁するため、ロッド側室2の作動油は、第2オリフィス61を通じてはボトム側室1に導かれない。よって、ショックアブソーバ100の伸長作動の際には、第2オリフィス61が発揮する流路抵抗に応じた減衰力が発生される。したがって、収縮作動時には第1オリフィス52を通じたボトム側室1からロッド側室2への作動油の流れが許容される分、ショックアブソーバ100は、伸長作動時の方が収縮作動時よりも大きな減衰力を発生しやすい。これにより、車両が路面上の突起部に乗り上げたような場合には、ショックアブソーバ100は比較的スムーズに収縮作動し、その後、伸長作動する際に大きな減衰力を発生して、路面から車体に入力される振動を効果的に減衰させる。
 以上の第1実施形態によれば、以下に示す効果を奏する。
 ショックアブソーバ100では、減衰部50がピストンロッド20のヘッド部23の内部に設けられる。ヘッド部23は、ロッド部21と比較して、体積を確保しやすく、これに応じて減衰部50の設置スペースを確保しやすい。このため、減衰部50が比較的複雑な構成や大型な構成となっても、容易にショックアブソーバ100に組み込むことができる。これにより、ショックアブソーバ100において、多様な減衰特性を実現することができる。
 また、ショックアブソーバ100では、減衰部50がシリンダチューブ10の外部に常時露出するピストンロッド20のヘッド部23に設けられるため、ロッド部21やピストン30に設けられる場合と比較して、ショックアブソーバ100を分解しなくとも調整ができる。具体的には、外部に露出しているプラグ80,81を取り外して第1オリフィスプラグ53及び第2オリフィスプラグ62を交換することで、ショックアブソーバ100の減衰特性を容易に変更できる。
 次に、本実施形態の変形例について、説明する。以下のような変形例も本発明の範囲内であり、以下の変形例と上記実施形態の各構成とを組み合わせたり、以下の変形例と後述の各実施形態の各構成とを組み合わせたり、以下の変形例同士を組み合わせたりすることも可能である。
 上記実施形態では、第1オリフィス52及び第2オリフィス61は、流路抵抗が不変の固定オリフィスである。これに対し、第1オリフィス52及び/又は第2オリフィス61は、流路抵抗が可変である可変オリフィス(可変絞り部)であってもよい。例えば、図3に示すように、ショックアブソーバ100が可変オリフィスである第2オリフィス61aを有することで、ショックアブソーバ100の減衰力の調整をより一層容易に行うことができる。可変オリフィス及びその調整機構の構成は、公知の構成を採用できるため具体的説明及び図示を省略するが、例えば、手工具によって第2オリフィス61aの開口面積(流路面積)を調整できるように構成される。
 また、上記実施形態では、第1抵抗部51は、ボトム側室1からロッド側室2へ向かう作動油の流れにのみ抵抗を付与する。これにより、ショックアブソーバ100では、伸長作動時と収縮作動時とで減衰特性が異なる。これに対し、第1抵抗部51が、ロッド側室2からボトム側室1へ向かう作動油の流れにのみ抵抗を付与するものでもよい。また、第1抵抗部51がボトム側室1からロッド側室2へ向かう作動油の流れにのみ抵抗を付与し、第2抵抗部60がロッド側室2からボトム側室1へ向かう作動油の流れにのみ抵抗を付与するものでもよい。この場合には、第1オリフィス52と第2オリフィス61とは、異なる減衰特性を有することが望ましい。さらに、減衰部50が互いに並列に設けられる第1抵抗部51及び第2抵抗部60を有する構成は必須のものではなく、減衰部50は、ショックアブソーバ100に発生させる所望の減衰力に応じて任意の構成とすることができる。例えば、減衰部50は、ショックアブソーバ100の伸長及び収縮に対して、同じ減衰特性によって減衰力を発生するものでもよい。
(第2実施形態)
 次に、図4及び図5を参照して、第2実施形態に係るショックアブソーバ200について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態と同一の構成には同一の符号を付して説明を適宜省略する。具体的には、第2実施形態に係るショックアブソーバ200は、減衰部150の構成が第1実施形態に係るショックアブソーバ100と相違する。
 第2実施形態に係るショックアブソーバ200の減衰部150は、図4及び図5に示すように、第1実施形態と同様、互いに並列に設けられる第1抵抗部51と、第2抵抗部160と、を有する。
 第1抵抗部51の構成は、第1実施形態と同様であるため、説明を省略する。
 第2抵抗部160は、図5に示すように、通過する作動油の流れに付与する抵抗がポジションに応じて変化する減衰弁161を有する。
 減衰弁161は、通過する作動油の流れに所定の抵抗を付与する第1絞りポジション161Aと、第1絞りポジション161Aによって付与される抵抗とは異なる大きさの抵抗を通過する作動油の流れに付与する第2絞りポジション161Bと、を有する。つまり、第1絞りポジション161Aと第2絞りポジション161Bとは、通過する作動油の流れに対する圧力損失特性が異なっている。減衰弁161は、ポジションを切り換える弁体(図示省略)と、弁体を付勢する付勢部材としてのスプリング162と、を有する。減衰弁161では、第1絞りポジション161Aとなるように弁体がスプリング162によって付勢されている。
 また、減衰部150は、図4に示すように、ピストンロッド20がシリンダチューブ10内に進入するのに伴ってシリンダチューブ10に押圧されて減衰弁161のポジションを切り換える切換部165を有する。
 切換部165は、ピストンロッド20の外部に突出するレバー部166と、レバー部166の切り換えに伴って弁体を押圧する押圧ロッド部167と、を有する。押圧ロッド部167の少なくとも一部は、ピストンロッド20のヘッド部23に挿入される。
 また、第2実施形態では、図4に示すように、シリンダチューブ10のシリンダヘッド11には、レバー部166を切り換えるための突出部120が設けられる。
 ここで、一般に、ショックアブソーバでは、使用されるピストンロッドのストローク領域が、ショックアブソーバが取り付けられる車両や設備といった対象物の状況によって異なることがある。つまり、あるショックアブソーバに対して、比較的伸長した状態でショックアブソーバが伸縮する状況と、比較的収縮した状態でショックアブソーバが伸縮する状況との両方が生じることがある。例えば、車両に人や荷物等の積載物が積載された状態と、積載されていない状態とでは、ショックアブソーバのストローク領域が異なる。このようにストローク領域が状況によって異なるような場合には、ストローク領域に合わせてショックアブソーバの減衰特性も異なるように構成することが望まれている。
 これに対し、ショックアブソーバ200では、比較的伸長した状態では、図4及び図5に示すように、減衰部50の減衰弁161は、スプリング162の付勢力によって第1絞りポジション161Aをとる。よって、伸長状態においてショックアブソーバ100が伸縮すると、第1絞りポジション161Aの圧力損失特性に応じた減衰特性に基づいて、減衰力が発生される。
 ショックアブソーバ200が比較的収縮した状態となると、シリンダチューブ10の突出部120によってレバー部166が押圧されて、減衰弁161は第2絞りポジション161Bに切り換えられる。よって、収縮状態においてショックアブソーバ200が伸縮すると、第2絞りポジション161Bの圧力損失特性に応じた減衰特性に基づいて、減衰力が発生される。
 このように、ショックアブソーバ200では、減衰部150がヘッド部23に設けられるため、減衰弁161や切換部165などを有する複雑な構成であっても、減衰部150をショックアブソーバ100に容易に組み込むことができる。そして、本実施形態では、ピストンロッド20のストローク領域が変化すると、減衰弁161のポジションが切り換えられて、ショックアブソーバ200が発生する減衰力の減衰特性が変化する。よって、減衰弁161の第1絞りポジション161Aの圧力損失特性をショックアブソーバ100が伸長状態にある場合に適した減衰特性を発生できるように構成し、第2絞りポジション161Bの圧力損失特性をショックアブソーバ100が収縮状態にある場合に適した減衰特性を発生できるように構成することができる。これにより、ショックアブソーバ100が取り付けられる対象物の状況に合わせて適切な減衰力を発生することができる。
 なお、本実施形態では、レバー部166は、シリンダチューブ10の突出部120が直接接触して突出部120に押圧される構成であるが、これに限らず、例えば、シリンダチューブ10に設けられる磁石の磁力(反発力)によってレバー部166が押圧される構成でもよい。つまり、切換部は、シリンダチューブ10によって非接触に押圧されることで切り換えらえる構成でもよい。
 次に、図6を参照して、第2実施形態の変形例について説明する。
 上記第2実施形態では、減衰部150は、ピストンロッド20がシリンダチューブ10内に進入するのに伴ってシリンダチューブ10に押圧されて減衰弁161のポジションを切り換える切換部165を有する。これにより、ショックアブソーバ200は、比較的伸長した状態と収縮した状態とで異なる減衰特性によって減衰力を発生する。
 これに対し、図6に示す変形例に係る減衰部250は、切換部165に代えて、通電によって駆動されて減衰弁161のポジションを切り換えるソレノイド部265を有する。
 ソレノイド部265は、コントローラ90から電気信号が入力されることによって減衰弁161の弁体をスプリング162の付勢力に抗して移動させる。これにより、減衰弁161のポジションが第1絞りポジション161Aから第2絞りポジション161Bに切り換えられる。ソレノイド部265への通電が遮断された状態では、減衰弁161は、スプリング162の付勢力によって第1絞りポジション161Aに切り換えられる。
 このような変形例によれば、上記第2実施形態と同様の効果を奏すると共に以下に示す効果を奏する。
 図6に示す変形例では、ソレノイド部265によって減衰弁161のポジションが切り換えられる構成であるため、ピストンロッド20のストローク領域に限定されず、その他の様々な状況においても、減衰弁161の減衰特性を変えることができる。例えば、車両のステアリング操作や路面状況など車両の走行状態に応じて減衰特性を変更することができる。このように、任意のタイミングでショックアブソーバ200の減衰特性を変更できるため、利便性が向上する。
 以下、本発明の各実施形態の構成、作用、及び効果をまとめて説明する。
 ショックアブソーバ100,200は、シリンダチューブ10と、シリンダチューブ10に進退自在に挿入されるピストンロッド20と、ピストンロッド20に連結されシリンダチューブ10内をロッド側室2とボトム側室1とに区画するピストン30と、ロッド側室2とボトム側室1との間の作動流体の流れに対して抵抗を付与して減衰力を発生する減衰部50,150,250と、を備え、ピストンロッド20は、ピストン30に連結されシリンダチューブ10に摺動自在に支持されるロッド部21と、シリンダチューブ10の外部に露出するヘッド部23と、を有し、減衰部50,150,250は、ピストンロッド20のヘッド部23に設けられる。
 この構成では、ピストンロッド20のヘッド部23に減衰部50,150,250が設けられることで、減衰部50,150,250の設置スペースを容易に確保できる。
 また、ショックアブソーバ100,200では、ピストンロッド20には、ロッド部21の内部に形成されるロッド内室2aと、ロッド側室2とロッド内室2aとの間で作動油を導く第1連通路22と、ロッド内室2aと減衰部50,150,250との間で作動油を導く第2連通路46a,46bと、が形成され、ピストンロッド20は、ロッド内室2aに収容されボトム側室1と減衰部50,150,250との間で作動油を導くパイプ部27をさらに有する。
 この構成では、ボトム側室1とロッド側室2とを連通する流路がショックアブソーバ100,200の内部に設けられる、いわゆる内部配管式であっても、減衰部50,150,250の設置スペースを確保することができる。
 また、ショックアブソーバ100,200では、減衰部50,150,250が、それぞれ作動流体の流れに対して抵抗を付与する第1抵抗部51及び第2抵抗部60,160,260を有し、第1抵抗部51が、ロッド側室2及びボトム側室1の一方から他方に向かう作動油の流れに対してのみ抵抗を付与する。
 この構成では、減衰部50,150,250の設置スペースが確保できるため、第1抵抗部51及び第2抵抗部60,160,260の2つの抵抗部を設け、ショックアブソーバ100,200の収縮と伸長とで減衰力を異ならせることができる。
 また、第1実施形態に係るショックアブソーバ100の変形例では、減衰部50は、通過する作動油の流れに付与する抵抗が可変の第2オリフィス61aを有する。
 この構成では、減衰部50が発生する減衰力を調整することができるため、ショックアブソーバが用いられる製品や使用状況などに合わせた減衰力を発生することができる。
 また、第2実施形態に係るショックアブソーバ200では、減衰部150が、ポジションに応じて作動流体に付与する抵抗が変化する減衰弁161と、ピストンロッド20がシリンダチューブ10内に進入するのに伴ってシリンダチューブ10に押圧されて減衰弁161のポジションを切り換える切換部165と、を有する。
 この構成では、減衰部150が発生する減衰力の減衰特性を、ショックアブソーバ100のピストンロッド20のストロークに応じて変化させることができる。よって、ショックアブソーバ200は、ストロークに応じた適切な減衰力を発生することができる。
 また、第2実施形態の変形離に係るショックアブソーバ200では、減衰部250が、ポジションに応じて作動流体に付与する抵抗が変化する減衰弁161と、通電によって駆動されて減衰弁161のポジションを切り換えるソレノイド部265と、を有する。
 この発明では、減衰弁161が発生する減衰力をソレノイド部265への通電によって任意のタイミングで調整できるため、利便性が向上する。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2021年3月23日に日本国特許庁に出願された特願2021-49215に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  流体圧緩衝器であって、
     シリンダチューブと、
     前記シリンダチューブに進退自在に挿入されるピストンロッドと、
     前記ピストンロッドに連結され前記シリンダチューブ内をロッド側室とボトム側室とに区画するピストンと、
     前記ロッド側室と前記ボトム側室との間の作動流体の流れに対して抵抗を付与して減衰力を発生する減衰部と、を備え、
     前記ピストンロッドは、
     前記ピストンに連結され前記シリンダチューブに摺動自在に支持されるロッド部と、
     前記シリンダチューブの外部に露出するヘッド部と、を有し、
     前記減衰部は、前記ピストンロッドの前記ヘッド部に設けられる流体圧緩衝器。
  2.  請求項1に記載の流体圧緩衝器であって、
     前記ピストンロッドには、前記ロッド部の内部に形成されるロッド内空間と、前記ロッド側室と前記ロッド内空間との間で作動流体を導く第1連通路と、前記ロッド内空間と前記減衰部との間で作動流体を導く第2連通路と、が形成され、
     前記ピストンロッドは、前記ロッド内空間に収容され前記ボトム側室と前記減衰部との間で作動流体を導く流路部をさらに有する流体圧緩衝器。
  3.  請求項1又は2に記載の流体圧緩衝器であって、
     前記減衰部は、それぞれ作動流体の流れに対して抵抗を付与する第1抵抗部及び第2抵抗部を有し、
     前記第1抵抗部は、前記ロッド側室及び前記ボトム側室の一方から他方に向かう作動流体の流れに対してのみ抵抗を付与する流体圧緩衝器。
  4.  請求項1又は2に記載の流体圧緩衝器であって、
     前記減衰部は、通過する作動流体の流れに付与する抵抗が可変の可変絞り部を有する流体圧緩衝器。
  5.  請求項1又は2に記載の流体圧緩衝器であって、
     前記減衰部は、
     作動流体に付与する抵抗がポジションに応じて変化する減衰弁と、
     前記ピストンロッドが前記シリンダチューブ内に進入するのに伴って前記シリンダチューブに押圧されて前記減衰弁のポジションを切り換える切換部と、を有する流体圧緩衝器。
  6.  請求項1又は2に記載の流体圧緩衝器であって、
     前記減衰部は、
     作動流体に付与する抵抗がポジションに応じて変化する減衰弁と、
     通電によって駆動されて前記減衰弁のポジションを切り換えるソレノイド部と、を有する流体圧緩衝器。
PCT/JP2022/011525 2021-03-23 2022-03-15 流体圧緩衝器 WO2022202472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/550,900 US20240157752A1 (en) 2021-03-23 2022-03-15 Fluid pressure dumper
EP22775262.3A EP4317737A1 (en) 2021-03-23 2022-03-15 Fluid pressure shock absorber
CN202280022545.5A CN116997732A (zh) 2021-03-23 2022-03-15 流体压力缓冲器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049215 2021-03-23
JP2021049215A JP2022147805A (ja) 2021-03-23 2021-03-23 流体圧緩衝器

Publications (1)

Publication Number Publication Date
WO2022202472A1 true WO2022202472A1 (ja) 2022-09-29

Family

ID=83394962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011525 WO2022202472A1 (ja) 2021-03-23 2022-03-15 流体圧緩衝器

Country Status (5)

Country Link
US (1) US20240157752A1 (ja)
EP (1) EP4317737A1 (ja)
JP (1) JP2022147805A (ja)
CN (1) CN116997732A (ja)
WO (1) WO2022202472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171507A1 (ja) * 2022-03-08 2023-09-14 Kyb株式会社 流体圧緩衝器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369837A (ja) * 1989-08-09 1991-03-26 Tokico Ltd 油圧緩衝器
JP2015063998A (ja) * 2013-09-24 2015-04-09 カヤバ工業株式会社 緩衝器及び懸架装置
JP2015206374A (ja) 2014-04-17 2015-11-19 カヤバ工業株式会社 シリンダ装置
JP2020097997A (ja) * 2018-12-18 2020-06-25 Kyb株式会社 流体圧緩衝器
JP2021049215A (ja) 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 ドラム式洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369837A (ja) * 1989-08-09 1991-03-26 Tokico Ltd 油圧緩衝器
JP2015063998A (ja) * 2013-09-24 2015-04-09 カヤバ工業株式会社 緩衝器及び懸架装置
JP2015206374A (ja) 2014-04-17 2015-11-19 カヤバ工業株式会社 シリンダ装置
JP2020097997A (ja) * 2018-12-18 2020-06-25 Kyb株式会社 流体圧緩衝器
JP2021049215A (ja) 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 ドラム式洗濯機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171507A1 (ja) * 2022-03-08 2023-09-14 Kyb株式会社 流体圧緩衝器

Also Published As

Publication number Publication date
CN116997732A (zh) 2023-11-03
US20240157752A1 (en) 2024-05-16
JP2022147805A (ja) 2022-10-06
EP4317737A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US8695766B2 (en) Shock absorber
JP3180069B2 (ja) ショックアブソーバ
US8511446B2 (en) Nested check high speed valve
JP5518079B2 (ja) 高速圧縮減衰バルブ
JP7224383B2 (ja) 緩衝器
US9592716B2 (en) Pressure damping device
WO2015041298A1 (ja) 緩衝装置
KR20100046231A (ko) 디스크 스프링 유입구조
KR20090128483A (ko) 베이스 라인 밸브형의 계속적으로 변화가능한 밸브를 갖는 충격 완충기
JP2000110881A (ja) 二段型ショックアブソ―バ
WO2015041309A1 (ja) 緩衝装置
JP2015059641A (ja) 緩衝装置
JP2014043950A (ja) 完全変位弁組立体を備えたショックアブソーバ
US11655875B2 (en) Damping valve and shock absorber
JP2017526875A (ja) 周波数依存型受動弁を備えたショックアブソーバ
CN109983249B (zh) 频率相关阻尼器
KR20130082082A (ko) 2단 밸브 및 유압 감쇄 밸브
WO2022202472A1 (ja) 流体圧緩衝器
JP2009052703A (ja) 減衰力調整式油圧緩衝器
JP7109293B2 (ja) 緩衝器
JP6972352B2 (ja) 緩衝器
JP5136780B2 (ja) 流体圧緩衝器
JP7202170B2 (ja) 流体圧緩衝器
JP5483007B2 (ja) 緩衝器
WO2016194548A1 (ja) 緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550900

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022545.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022775262

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775262

Country of ref document: EP

Effective date: 20231023