WO2022202132A1 - シラン架橋性ポリマー含有組成物 - Google Patents

シラン架橋性ポリマー含有組成物 Download PDF

Info

Publication number
WO2022202132A1
WO2022202132A1 PCT/JP2022/008396 JP2022008396W WO2022202132A1 WO 2022202132 A1 WO2022202132 A1 WO 2022202132A1 JP 2022008396 W JP2022008396 W JP 2022008396W WO 2022202132 A1 WO2022202132 A1 WO 2022202132A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
polymer
weight
parts
group
Prior art date
Application number
PCT/JP2022/008396
Other languages
English (en)
French (fr)
Inventor
美伸 大西
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023508856A priority Critical patent/JPWO2022202132A1/ja
Publication of WO2022202132A1 publication Critical patent/WO2022202132A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention provides an organic organic compound having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silyl group capable of forming a crosslink by forming a siloxane bond (hereinafter also referred to as a "hydrolyzable silyl group").
  • Compositions containing polymeric silane-crosslinkable polymers are described in detail below.
  • an organic polymer having a hydrolyzable silyl group (hereinafter referred to as a silane crosslinkable polymer), an organic polymer whose main chain skeleton is a polyoxyalkylene polymer or a polyisobutylene polymer has already been industrially produced and used as a sealant. , adhesives, paints, etc. (see Patent Documents 1 and 2).
  • a composition containing a silane crosslinkable polymer is usually cured using a condensation catalyst such as an organic tin compound having a carbon-tin bond, typified by dibutyltin bis(acetylacetonate).
  • a condensation catalyst such as an organic tin compound having a carbon-tin bond, typified by dibutyltin bis(acetylacetonate).
  • sealant applications require high curing speed, excellent curability and adhesiveness, low modulus to some extent, flexibility, and high restorability, even without the use of organic tin compounds. There are many things.
  • An object of the present invention is to provide a silane-crosslinkable polymer-containing composition that exhibits good curability and high restorability even in the low modulus range, in view of the above-mentioned current situation.
  • composition containing a silane-crosslinkable polymer having one or more branched chains and a silane-crosslinkable polymer having only one silyl group terminal in one molecule and having no branch point The present inventors have found that good curability and high restorability can be obtained even in a low modulus region by using the material, resulting in the present invention.
  • the present invention provides a silane crosslinkable polymer (A) represented by the following formula (1) (HO) x —Y— [O—CO—NH—CR 12 —SiR a X 3 -a ] px (1)
  • Y is a polymer chain having at least one or more branch points
  • R is each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • R 1 is each independently a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • X is a hydroxyl group or a hydrolyzable group
  • p is an integer of 3 to 10; is an integer from 0 to p-1, and a may be the same or different and is 0, 1 or 2.
  • a silane crosslinkable polymer (B) having no branch point and having only one terminal silyl group in one molecule represented by the following formula (2) —SiR 2 c X 3-c (2) (in formula (2),
  • p is 3 in formula (1) of the silane-crosslinkable polymer (A) represented by formula (1).
  • the polymer skeleton of the silane-crosslinkable polymers (A) and (B) is a polyoxyalkylene polymer.
  • the silyl group of the silane-crosslinkable polymer (B) is represented by the following formula (3) or (4).
  • the content of the silane-crosslinkable polymer (B) is 5 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the silane-crosslinkable polymer (A). Further, preferably, when the total of the silane crosslinkable polymer (A) and the silane crosslinkable polymer (B) is 100 parts by weight, it further contains 0.1 to 20 parts by weight of an aminosilane compound (C). composition.
  • the present invention can provide a silane-crosslinkable polymer-containing composition that exhibits good curability and high restorability even in the low modulus region.
  • silane crosslinkable polymer (A) has a structure represented by the following formula (1).
  • Y is a polymer chain having at least one or more branch points
  • R is each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • R 1 are each independently a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • X is a hydroxyl group or a hydrolyzable group
  • p is an integer of 3 to 10
  • x is is an integer from 0 to p ⁇ 1, a may be the same or different and is 0, 1 or 2;
  • Y is a polymer chain having at least one or more branch points, is not particularly limited, and various polymer skeletons described later can be used.
  • a polymer chain having a branch point refers to a branched polymer skeleton having a branch point in the polymer skeleton composed of a plurality of repeating units.
  • the number of branch points and the number of branches at each branch point are not limited, but the number of terminals determined by branching is preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6. , more preferably 3 to 5, and most preferably 3.
  • Each R independently represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, even more preferably 1 to 3, and particularly preferably 1 or 2.
  • the hydrocarbon group has a substituent, the substituent is not particularly limited, and examples thereof include halogen groups such as chloro, alkoxy groups such as methoxy, and amino groups such as N,N-diethylamino. .
  • two or more R may be the same or different.
  • R include unsubstituted groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-hexyl, 2-ethylhexyl and n-dodecyl groups.
  • Alkyl group chloromethyl group, methoxymethyl group, substituted alkyl group such as N,N-diethylaminomethyl group; vinyl group, isopropenyl group, unsaturated hydrocarbon group such as allyl group; cycloalkyl group such as cyclohexyl group; phenyl aryl groups such as toluyl group and 1-naphthyl group; and aralkyl groups such as benzyl group.
  • Each R 1 is independently a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, even more preferably 1 to 3, and particularly preferably 1 or 2.
  • the hydrocarbon group has a substituent, the substituent is not particularly limited, and examples thereof include halogen groups such as chloro, alkoxy groups such as methoxy, and amino groups such as N,N-diethylamino. . It is particularly preferred that R 1 is a hydrogen atom. Moreover, a plurality of R 1 may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group.
  • examples of X include hydroxyl group, hydrogen, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and alkenyloxy group.
  • the above alkoxy group and the like may have a substituent.
  • An alkoxy group is preferred because it is moderately hydrolyzable and easy to handle, methoxy, ethoxy, n-propoxy and isopropoxy are more preferred, methoxy and ethoxy are still more preferred, and methoxy is particularly preferred.
  • X's they may be the same or different.
  • p is an integer of 3 to 10, preferably 3 to 8, more preferably 3 to 6, even more preferably 3 to 5, and particularly preferably 3.
  • x is an integer from 0 to p ⁇ 1, preferably 0 to 2, more preferably 0 to 1. From the viewpoint of curability, x is most preferably 0.
  • a in the formula (1) represents 0, 1, or 2. Preferably 0 or 1. In particular, a is preferably 1 from the viewpoint of storage stability.
  • the silane-crosslinkable polymer (B) is a polymer having no branch point and having only one terminal silyl group represented by the following formula (2) per molecule.
  • a polymer having no branch point refers to a polymer skeleton composed of a plurality of repeating units having no branch point and having a linear polymer skeleton. —SiR 2 c X 3-c (2)
  • each R 2 is independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and c is 0, 1 or 2.
  • Each R 2 independently represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, even more preferably 1 to 3, and particularly preferably 1 or 2.
  • the hydrocarbon group has a substituent, the substituent is not particularly limited, and examples thereof include halogen groups such as chloro, alkoxy groups such as methoxy, and amino groups such as N,N-diethylamino. .
  • two or more R 2 may be the same or different.
  • R 2 include the groups described in the above specific examples of R. Preferred are substituted or unsubstituted alkyl groups, more preferred are methyl groups, ethyl groups, chloromethyl groups and methoxymethyl groups, still more preferred are methyl groups and methoxymethyl groups, and particularly preferred are methyl groups. is the base.
  • c in the formula (2) represents 0, 1, or 2. From the viewpoint of reactivity and restorability, c is preferably 0 or 1, and most preferably 0.
  • silyl group contained in the silane-crosslinkable polymer (B) is represented by the following formula (3) or (4). Especially preferred. —O—CO—NH—(CH 2 ) 3 —SiX 3 (3) (X is the same as described above.) —O—(CH 2 ) 3 —SiX 3 (4) (X is the same as described above.)
  • Step (I) A step of producing an organic polymer having a polymer skeleton composed of a plurality of repeating units and containing hydroxyl groups.
  • Step (II) A step of subjecting an organic polymer containing a hydroxyl group to a urethanization reaction with a compound containing a hydrolyzable silyl group and an isocyanate group.
  • the method for producing the silane-crosslinkable polymer (B) is not particularly limited, but may include the following steps.
  • step (I) The order of performing steps (I) to (III) is preferably step (I) followed by step (II), or step (I) followed by step (III). Further, by using a hydroxyl group-containing organic polymer produced by a method other than step (I), step (II) or step (III) can be performed alone.
  • Step (I) ⁇ Organic polymer containing hydroxyl group>
  • the position at which the hydroxyl group contained in the organic polymer is bonded to the polymer skeleton is not particularly limited, but it is preferably the terminal of the polymer skeleton.
  • the polymer skeleton of the silane-crosslinkable polymer (A) is not particularly limited as long as it has one or more branched chains, and various polymer skeletons can be used. Moreover, the polymer skeleton of the silane-crosslinkable polymer (A) corresponds to the polymer chain represented by Y in the formula (1).
  • the polymer skeleton of the silane-crosslinkable polymer (B) is not particularly limited as long as it is a linear polymer skeleton having no branch points, and various polymer skeletons can be used.
  • the types of polymer backbones of the silane-crosslinkable polymers (A) and (B) may be the same or different.
  • polystyrene crosslinkable polymers (A) and (B) include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene co- polymers, and polyoxyalkylene polymers such as polyoxypropylene-polyoxybutylene copolymers; ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, Copolymers of isoprene or butadiene with acrylonitrile and/or styrene, polybutadiene, copolymers of isoprene or butadiene with acrylonitrile and styrene, and hydrogenated polyolefins obtained by hydrogenating these polyolefin polymers Saturated hydrocarbon-based polymers such as polymers; polyester-based polymers;
  • saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth)acrylic acid ester-based polymers have relatively low glass transition temperatures, and the obtained cured products have excellent cold resistance.
  • polyoxyalkylene-based polymers are more preferred, and polyoxypropylene is particularly preferred.
  • the organic polymer may be a polymer having one type of polymer skeleton, or a mixture of two or more types of polymers having different polymer skeletons.
  • the mixture may be a mixture of polymers produced separately, or a mixture produced at the same time so as to have an arbitrary composition.
  • the number average molecular weight of the organic polymer is not particularly limited, but the polystyrene equivalent molecular weight in GPC is preferably 3,000 to 100,000, and more preferably. is 3,000 to 50,000, more preferably 3,000 to 30,000.
  • the number average molecular weight is 3,000 or more, the relative amount of hydrolyzable silyl groups with respect to the whole polymer is within an appropriate range, which is desirable in terms of production cost.
  • the number average molecular weight is 100,000 or less, it is easy to achieve a desired viscosity from the viewpoint of workability.
  • the number average molecular weight can be determined in terms of polystyrene by GPC measurement.
  • the preferred range of the number average molecular weights of the silane-crosslinkable polymers (A) and (B) is also the same as the range of the number average molecular weight of the organic polymer explained above.
  • the molecular weight distribution (Mw/Mn) of the organic polymer is not particularly limited, it is preferably narrow. Specifically, it is preferably less than 2.0, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. Moreover, from the viewpoint of improving mechanical properties such as durability and elongation of the cured product, it is preferably 1.2 or less.
  • the molecular weight distribution (Mw/Mn) can be calculated from the number-average molecular weight and the weight-average molecular weight obtained in terms of polystyrene by GPC measurement.
  • the preferred range of the molecular weight distribution of the silane-crosslinkable polymers (A) and (B) is also the same as the range of the molecular weight distribution of the organic polymer explained above.
  • a polymerization method using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex is preferable because a polymer with a small molecular weight distribution (Mw/Mn) can be obtained. .
  • the number of terminal hydroxyl groups of the polyoxyalkylene polymer having one or more branched chains is preferably 3 to 10, more preferably 3 to 8, and 3 to 6. More preferably, 3 to 5 is even more preferred, and 3 is most preferred. It is preferable to use a polyoxyalkylenetriol having three terminal hydroxyl groups, that is, specifically a polyoxyalkylenetriol.
  • examples of the hydroxyl-containing initiator include compounds having 3 or more active hydrogen atoms in one molecule, and hydroxyl groups having 3 to 10 hydroxyl groups in one molecule.
  • Compounds and/or unsaturated alcohols are preferred. Specifically, compounds with 3 hydroxyl groups such as glycerin and polyoxypropylene triol with a molecular weight of 100 to 4000, compounds with 4 hydroxyl groups such as pentaerythritol, and compounds with 6 hydroxyl groups such as sorbitol and dipentaerythritol. , sucrose, and other compounds having eight hydroxyl groups.
  • examples of the initiator having a hydroxyl group include compounds having one active hydrogen atom in one molecule, specifically butanol, allyl alcohol, low molecular weight poly Oxypropylene monoallyl ethers and low-molecular-weight polyoxypropylene monoalkyl ethers can be mentioned.
  • the epoxy compound is not particularly limited, examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferred.
  • ((Meth)acrylic acid ester polymer) As another aspect of the method for producing an organic polymer containing a hydroxyl group, when the polymer skeleton of the silane-crosslinkable polymer (A) and/or (B) is a (meth)acrylic acid ester polymer, the organic polymer containing the hydroxyl group
  • (I) a compound having a polymerizable unsaturated group and a hydroxyl group (for example, 2-hydroxyethyl acrylate) is copolymerized with a monomer having a (meth)acrylic structure to obtain a polymer.
  • Method (II) After obtaining a polymer by polymerizing a monomer having a (meth)acrylic structure by a living radical polymerization method such as atom transfer radical polymerization, any position in the resulting polymer (preferably a molecule chain end), and the like.
  • (Saturated hydrocarbon polymer) when the polymer skeleton of the silane-crosslinkable polymer (A) and/or (B) is a saturated hydrocarbon-based polymer, a method for producing the above-mentioned hydroxyl-containing organic polymer As, after obtaining a polymer by polymerizing an olefinic compound having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene, and isobutylene as a main monomer, any position ( (Preferably, a method of introducing a hydroxyl group at the end of the molecular chain).
  • the silane-crosslinkable polymer (A) and/or (B) can also be obtained by urethanizing an organic polymer having a hydroxyl group and a compound containing a hydrolyzable silyl group and an isocyanate group.
  • a silyl group-containing isocyanate compound may be used alone or in combination of two or more.
  • the amount of the silyl group-containing isocyanate compound to be used can be appropriately determined in consideration of the amount of hydroxyl groups possessed by the organic polymer and the desired amount of hydrolyzable silyl groups to be introduced, and is not particularly limited. , preferably 0.1 to 10 molar equivalents, more preferably 0.3 to 5 molar equivalents, and even more preferably 0.5 to 3 molar equivalents, relative to the hydroxyl groups of the organic polymer.
  • the silyl group-containing isocyanate compound contains an isocyanate group capable of undergoing a urethanization reaction with the hydroxyl group of the organic polymer and a hydrolyzable silyl group. It is a compound that exists in the same molecule.
  • the silyl group-containing isocyanate compound can be represented by the following formula (5). OCN-CR 12 -SiR a X 3 -a (5) (R, R 1 , X, and a in formula (5) are the same as described above for formula (1).)
  • silyl group-containing isocyanate compounds include (isocyanatomethyl)trimethoxysilane, (isocyanatomethyl)triethoxysilane, (isocyanatomethyl)dimethoxymethylsilane, (isocyanatomethyl)diethoxymethylsilane, and the like. .
  • the silyl group-containing isocyanate compound contains an isocyanate group capable of undergoing a urethanization reaction with the hydroxyl group of the organic polymer and a hydrolyzable silyl group. It is a compound that exists in the same molecule.
  • the silyl group-containing isocyanate compound the silyl group-containing isocyanate compounds mentioned as specific examples in the case of obtaining the silane-crosslinkable polymer (A) can be used.
  • a silyl group-containing isocyanate compound represented by the following formula (6) can be used.
  • silyl group-containing isocyanate compounds include (3-isocyanatopropyl)trimethoxysilane and (3-isocyanatopropyl)triethoxysilane.
  • the urethanization reaction may be carried out without using a urethanization catalyst, but may be carried out in the presence of a urethanization catalyst for the purpose of improving the reaction rate or improving the reaction rate.
  • a urethanization catalyst examples include conventionally known urethanization catalysts listed in Polyurethanes: Chemistry and Technology, Part I, Table 30, Chapter 4, Saunders and Frisch, Interscience Publishers, New York, 1963.
  • a catalyst can be used. Specific examples thereof include base catalysts such as organic tin compounds, bismuth compounds, and organic amines, but are not limited to these.
  • an organic tin compound is preferable because of its high activity.
  • a urethanization catalyst with low activity to a hydrolyzable silyl group is preferred, and from this point of view, an organic tin compound containing a sulfur atom is preferred.
  • organic tin compound containing a sulfur atom is preferred.
  • an organic bismuth compound is preferable in that it has good activity and maintains good storage stability of the silyl group-containing organic polymer.
  • Bismuth-containing catalysts are manufactured by Borchers GmbH under the trade names of Borchi (R) Kat 22, Borchi (R) Kat 24, Borchi (R) Kat 320, Borchi (R) Kat 315 EU, Borchi (R) Catalyst with Kat VP 0243, Borchi (R) Kat VP 0244, product name manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Bismuth (III) 2-ethylhexanoate 2-ethylhexanoate solution (Bi: 25%), 2- Bismuth(III) ethylhexanoate, 70-75% in xylenes ( ⁇ 24% Bi) (99.99+%-Bi) PURATREM, etc., are not particularly limited as long as they promote the urethanization reaction.
  • the amount of the urethanization catalyst to be added can be appropriately set by those skilled in the art, but from the viewpoint of reaction activity, it is preferably 1 to 1000 ppm, more preferably 10 to 100 ppm, relative to 100 parts by weight of the organic polymer. Within this range, in addition to obtaining sufficient reaction activity, the physical properties of the produced silane-crosslinkable polymer can be maintained well.
  • the urethanization reaction can be carried out without using a solvent, but for the purpose of uniformly dissolving the organic polymer, the silyl group-containing isocyanate compound, and the urethanization catalyst, the temperature control of the reaction system, In order to easily realize the addition of the urethanization catalyst, an organic solvent may be added.
  • an organic solvent When an organic solvent is used, its type is not particularly limited and may be selected as appropriate. Hydrogen, aliphatic halogenated hydrocarbons such as dichloroethane and chloroform, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and isopropylbenzene, aromatic halogenated hydrocarbons such as chlorobenzene and chlorotoluene, tetrahydrofuran (THF ), ether solvents such as tetrahydropyran (THP), and the like. As the organic solvent, only one type may be used, or two or more types may be used in combination.
  • Hydrogen aliphatic halogenated hydrocarbons such as dichloroethane and chloroform
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and isopropylbenzene
  • aromatic halogenated hydrocarbons such as chloro
  • the temperature during the urethanization reaction can be appropriately set by those skilled in the art, but it is preferably 50°C or higher and 120°C or lower, more preferably 70°C or higher and 100°C or lower.
  • the reaction time may also be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that an unintended condensation reaction between polymers does not proceed.
  • the reaction time is preferably from 15 minutes to 5 hours, more preferably from 30 minutes to 3 hours.
  • the silane crosslinkable polymer (B) is obtained by reacting a portion of the hydroxyl groups of an organic polymer having hydroxyl groups (also referred to as the hydroxyl groups of the organic polymer) with an alkali metal salt, followed by adding a carbon-carbon unsaturated bond-containing halogen It can also be obtained by reacting with a compound to convert to a carbon-carbon unsaturated bond-containing group, and then subjecting the carbon-carbon unsaturated bond to a hydrosilylation reaction with a hydrolyzable silyl group-containing hydrosilane compound.
  • the silyl group of the silane-crosslinkable polymer (B) obtained using step (III) is not particularly limited, but is particularly preferably represented by the following formula (4). —O—(CH 2 ) 3 —SiX 3 (4) (X in formula (4) is the same as described above for formula (1).)
  • Such a silyl group can be obtained by using allyl chloride or the like as the carbon-carbon unsaturated bond-containing halide, and trichlorosilane, trimethoxysilane, triethoxysilane, or triisopropyl It can be formed by using penyloxysilane or the like.
  • reaction with alkali metal salt In converting the hydroxyl group of the organic polymer to a group containing a carbon-carbon unsaturated bond, first, the hydroxyl group-containing organic polymer is reacted with an alkali metal salt to convert the hydroxyl group of the organic polymer into a metaloxy group. Conversion is preferred.
  • a double metal cyanide complex catalyst can also be used instead of the alkali metal salt.
  • a metaloxy group-containing organic polymer is formed in the above manner.
  • the alkali metal salt is not particularly limited, examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
  • Sodium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide are preferred from the viewpoint of ease of handling and solubility, and sodium methoxide and sodium tert. -butoxide is more preferred. From the standpoint of availability, sodium methoxide is particularly preferred, and from the standpoint of reactivity, sodium tert-butoxide is particularly preferred.
  • the alkali metal salt may be dissolved in a solvent before being subjected to the reaction.
  • the amount of the alkali metal salt used is not particularly limited, but in order to increase the reaction rate, the molar ratio to the hydroxyl group of the organic polymer is preferably 0.5 or more, more preferably 0.6 or more, and 0.7. More preferably 0.8 or more is even more preferable.
  • the molar ratio is preferably 1.2 or less, more preferably 1.1 or less.
  • the temperature at which the alkali metal salt is allowed to act can be appropriately set by those skilled in the art, but is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 145°C or lower.
  • the time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • reaction with carbon-carbon unsaturated bond-containing halide By reacting a carbon-carbon unsaturated bond-containing halide to the metaloxy group-containing organic polymer, the metaloxy group of the metaloxy group-containing organic polymer is converted into a carbon-carbon unsaturated bond-containing group. can be converted.
  • the halide reacts with the metaloxy group to form an ether bond through a halogen substitution reaction. This forms an organic polymer with carbon-carbon unsaturation.
  • carbon-carbon unsaturated bond-containing halide examples include, but are not limited to, vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, iodine and methallyl chloride. Allyl chloride and methallyl chloride are preferred for ease of handling.
  • the amount of the halide containing a carbon-carbon unsaturated bond to be added is not particularly limited, but the molar ratio of the organic halide to the metaloxy group possessed by the organic polymer is preferably 0.7 or more, preferably 1.0. The above is more preferable. Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
  • the temperature at which the metaloxy group-containing organic polymer is reacted with the carbon-carbon unsaturated bond-containing halide is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 140°C or lower.
  • the reaction time is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • hydrolyzable silyl group-containing hydrosilane compounds include trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl)dichlorosilane, (dichloromethyl)dichlorosilane, bis(chloromethyl)chlorosilane, ( Halosilanes such as methoxymethyl)dichlorosilane, (dimethoxymethyl)dichlorosilane, bis(methoxymethyl)chlorosilane; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane, ethyldimethoxysilane, methoxy dimethylsilane, ethoxydimethylsilane, (chloromethyl
  • the amount of the hydrosilane compound containing a hydrolyzable silyl group is not particularly limited, but the molar ratio of the organic halide to the carbon-carbon unsaturated bond of the organic polymer is preferably 0.6 or more. 0.8 or more is more preferable. Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
  • the hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to promote the reaction.
  • a hydrosilylation catalyst metals such as cobalt, nickel, iridium, platinum, palladium, rhodium and ruthenium, and complexes thereof can be used.
  • platinum-phosphine complexes [eg Ph(PPh 3 ) 4 , Pt(PBu 3 ) 4 ]; platinum-phosphite complexes [eg Pt ⁇ P(OPh) 3 ⁇ 4 ]; be done.
  • platinum catalysts such as chloroplatinic acid and platinum-vinylsiloxane complexes are preferred.
  • the hydrosilylation reaction can be carried out without using a solvent, but for the purpose of uniformly dissolving the organic polymer, hydrosilane compound, and hydrosilylation catalyst, temperature control of the reaction system, hydrosilylation catalyst In order to easily realize the addition of, it may be carried out by adding an organic solvent.
  • the temperature during the hydrosilylation reaction is not particularly limited and can be appropriately set by those skilled in the art. However, for the purpose of reducing the viscosity of the reaction system and improving the reactivity, heating conditions are preferred, specifically 50° C. to 150° C. °C, more preferably 70°C to 120°C.
  • the reaction time may also be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that an unintended condensation reaction between polymers does not proceed. Specifically, the reaction time is preferably 30 minutes or more and 5 hours or less, more preferably 3 hours or less.
  • composition comprising a silane-crosslinkable polymer (A) and a silane-crosslinkable polymer (B) can be provided.
  • the composition may use only one type of the silane-crosslinkable polymer (A), or may use two or more types in combination.
  • the composition may use only one type of the silane-crosslinkable polymer (B), or may use two or more types in combination.
  • the composition when the composition can be cured to obtain a cured product, the composition is sometimes called a curable composition.
  • the composition can reduce the modulus of the cured product by reacting the silane crosslinkable polymer (B) with a part of the terminal of the silane crosslinkable polymer (A), and has physical properties suitable for use as a sealant. can be adjusted.
  • the silane-crosslinkable polymer (A) when the silane-crosslinkable polymer (A) is 100 parts by weight, the content of the silane-crosslinkable polymer (B) can be appropriately determined according to the desired modulus, curability and restorability. 5 to 200 parts by weight is preferable, 10 to 150 parts by weight is more preferable, and 20 to 100 parts by weight is particularly preferable.
  • an aminosilane compound (C) which is an amino group-containing silane coupling agent, can also be used as a curing catalyst. Since the aminosilane compound (C) is usually added as an adhesion imparting agent in many cases, the use of the aminosilane compound (C) as a curing catalyst is preferable in that a composition that does not use a commonly used curing catalyst can be produced. . Therefore, when using the aminosilane compound (C), it is preferable not to add other curing catalysts.
  • aminosilane examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriethoxysilane, ⁇ -(2-aminoethyl) Aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriisopropoxysilane, ⁇ -(2-(2-aminoethyl)aminoethyl
  • the amount of the aminosilane compound (C) to be blended is 0.1 parts by weight or more and 20 parts by weight or less when the total of the silane crosslinkable polymer (A) and the silane crosslinkable polymer (B) is 100 parts by weight. is preferred, 0.5 to 15 parts by weight is more preferred, and 1 to 10 parts by weight is even more preferred.
  • the composition according to the present embodiment contains other additives such as a curing catalyst, a silicon compound, an adhesion imparting agent, a plasticizer, a solvent, a diluent, a silicate, a filler, an anti-sagging agent, an antioxidant, and a light stabilizer. agent, UV absorber, physical property modifier, tackifier resin, epoxy group-containing compound, photo-curing substance, oxygen-curing substance, surface property modifier, epoxy resin, other resins, flame retardant, foaming agent You can Moreover, various additives may be added to the composition according to the present embodiment as necessary for the purpose of adjusting various physical properties of the composition or the cured product. Examples of such additives include curability modifiers, radical inhibitors, metal deactivators, antiozonants, phosphorus peroxide decomposers, lubricants, pigments, antifungal agents, and the like. be done.
  • composition according to the present embodiment contains the aminosilane compound (C) described above and/or other curing catalysts for the purpose of promoting the reaction of hydrolyzing and condensing the hydrolyzable silyl groups, that is, the curing reaction. It is preferable to contain.
  • curing catalysts conventionally known ones can be used. Specifically, organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, alkoxy metals, inorganic acids, etc. can be used. .
  • organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dibutyltin oxide and silicate compounds.
  • dioctyltin diacetate dioctyltin dilaurate
  • dioctyltin bis(ethyl maleate) dioctyltin bis(octyl maleate)
  • dioctyltin bis(acetylacetonate) phosphate dioctyltin distearate
  • dioctyltin oxide a reaction product of dioctyltin oxide and a silicate compound, and the like.
  • Dioctyltin compounds are preferred due to recent heightened environmental concerns.
  • the composition according to the present embodiment does not contain an organic tin compound, and the curing catalyst is generally less active than the organic tin compound. (in particular, amine compounds, etc.). Even if the composition according to the present embodiment contains an amine compound, it can exhibit good curability.
  • carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate.
  • carboxylic acid group the following carboxylic acid and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; biguanides such as phenylbiguanide; and ketimine compounds.
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetonate), aluminum tris (acetylacetonate), diisopropoxy aluminum ethylacetate
  • titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxytitanium bis (ethylacetonate), aluminum tris (acetylacetonate), diisopropoxy aluminum ethylacetate
  • aluminum compounds such as acetate
  • zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • fluorine anion-containing compounds As other curing catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • the curing catalyst may be used in combination of two or more different catalysts.
  • the combination of the amine compound and carboxylic acid, or the combination of the amine compound and alkoxy metal provides the effect of improving the reactivity. There is a possibility that it will be
  • the amount of the curing catalyst is preferably 0.001 to 20 parts by weight, preferably 0.01 to 15 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. parts are more preferred, and 0.01 to 10 parts by weight are particularly preferred. If the amount of the curing catalyst is less than 0.001 part by weight, the reaction rate may be insufficient. On the other hand, when the amount of the curing catalyst exceeds 20 parts by weight, the reaction rate is too fast, and the usable time of the composition is shortened, resulting in poor workability and poor storage stability.
  • some curing catalysts may exude to the surface of the cured product or contaminate the surface of the cured product after the composition is cured.
  • the amount of the curing catalyst may be set to 0.01 to 3.0 parts by weight, it is possible to maintain good surface conditions of the cured product while ensuring curability.
  • Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
  • the amount of the filler to be used is preferably 1 to 300 parts by weight, more preferably 10 to 250 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight.
  • Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition.
  • the balloon is hollow inside with a spherical filler, and is made of inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. materials.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. .
  • An adhesion imparting agent can be added to the composition according to the present embodiment.
  • a silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
  • silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatomethyltrimethoxysilane, ⁇ -isocyan
  • Condensates of various silane coupling agents such as condensation products of amino group-containing silanes, condensation products of amino group-containing silanes and other alkoxysilanes; reaction products of amino group-containing silanes and epoxy group-containing silanes; Reaction products of various silane coupling agents, such as reaction products of containing silanes and (meth)acrylic group-containing silanes, can also be used.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more.
  • the amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, when the total of the silane crosslinkable polymer (A) and the silane crosslinkable polymer (B) is 100 parts by weight. Parts by weight are more preferred.
  • aminosilane compound (C) which is a curing catalyst
  • aminosilane compound (C) when no other curing catalyst is used, the amino group-containing silanes (aminosilane compound (C)) are It becomes an additive that functions both as a curing catalyst and as an adhesion-imparting agent.
  • plasticizer can be added to the composition according to the present embodiment.
  • plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and
  • polymer plasticizer can be used.
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • a plasticizer may be used individually and may use 2 or more types together.
  • the amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. 20 to 100 parts by weight is more preferable.
  • solvent or diluent can be added to the composition according to the present invention.
  • Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers.
  • the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. .
  • the above solvents or diluents may be used alone or in combination of two or more.
  • An anti-sagging agent may be added to the composition according to the present embodiment to prevent sagging and improve workability, if necessary.
  • the anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of anti-sagging agent to be used is preferably 0.1 to 20 parts by weight when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight.
  • antioxidant antioxidant agent
  • An antioxidant can be used in the composition according to the present embodiment.
  • the use of an antioxidant can enhance the weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. part is more preferred.
  • a light stabilizer can be used in the composition according to this embodiment.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
  • the amount of the light stabilizer to be used is preferably 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. part is more preferred.
  • An ultraviolet absorber can be used in the composition according to this embodiment.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • UV absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted acrylonitrile-based, and metal chelate-based compounds.
  • Benzotriazole-based compounds are particularly preferred, and are commercially available under the names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571, Tinuvin 1600, Tinuvin B75 (manufactured by BASF).
  • the amount of the ultraviolet absorber to be used is preferably 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. part is more preferred.
  • a physical property modifier for adjusting the tensile properties of the resulting cured product may be added to the composition according to the present embodiment, if necessary.
  • the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane.
  • arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; trialkylsilylborates such as silyl)borate; silicone varnishes; polysiloxanes;
  • the physical property modifiers may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in its molecule by hydrolysis has the effect of lowering the modulus of the cured product without exacerbating the stickiness of the surface of the cured product.
  • Compounds that generate trimethylsilanol are particularly preferred.
  • examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups.
  • Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. part is more preferred.
  • a tackifier resin can be added to the composition according to the present embodiment for the purpose of enhancing the adhesiveness or adhesion to a substrate, or for other purposes.
  • the tackifying resin there is no particular limitation, and those commonly used can be used.
  • terpene-based resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
  • petroleum resins e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. is more preferred, and 5 to 30 parts by weight is even more preferred.
  • a compound containing an epoxy group can be used in the composition according to the present embodiment.
  • the use of a compound having an epoxy group can enhance the restorability of the cured product.
  • Examples of compounds having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof.
  • the epoxy compound is preferably used in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B).
  • a photocurable substance can be used in the composition according to the present embodiment.
  • a photocurable substance When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
  • the amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the total amount of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B). 5 to 10 parts by weight is more preferred.
  • oxygen-curable substance can be used in the composition according to this embodiment.
  • oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust.
  • Specific examples of oxygen-curable substances include drying oils such as paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins.
  • silicone resins 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably 0.1 to 20 parts by weight when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight. 5 to 10 parts by weight is more preferred.
  • oxygen-curable substances are preferably used in combination with photo-curable substances.
  • Epoxy resin can be used in combination with the composition according to the present embodiment.
  • a composition containing an epoxy resin is particularly preferred as an adhesive, especially an adhesive for exterior wall tiles.
  • epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
  • the amount of the epoxy resin used is preferably in the range of 1 to 10000 parts by weight when the total of the silane-crosslinkable polymer (A) and the silane-crosslinkable polymer (B) is 100 parts by weight.
  • the epoxy resin is less than 1 part by weight, it becomes difficult to obtain the effect of improving the impact strength and toughness of the cured epoxy resin. Become.
  • a curing agent that cures the epoxy resin can be used in combination with the composition according to the present embodiment.
  • the epoxy resin curing agent that can be used is not particularly limited, and generally used epoxy resin curing agents can be used.
  • the amount used is preferably in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • composition according to the present embodiment can also be prepared as a one-component type in which all the ingredients are preformed and sealed and stored, and cured by moisture in the air after application. It can also be prepared as a two-component type in which components such as the material, plasticizer, and water are blended and the blending materials and the organic polymer composition are mixed before use. From the viewpoint of workability, the one-component type is preferred.
  • the composition is of the one-component type, all the ingredients are blended in advance. Therefore, it is recommended that the ingredients containing water be dehydrated and dried before use, or dehydrated by decompression during compounding and kneading. preferable.
  • the ingredients containing water be dehydrated and dried before use, or dehydrated by decompression during compounding and kneading. preferable.
  • methyltrimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane Addition of alkoxysilane compounds such as ethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane further improves the storage stability.
  • the composition according to the present embodiment includes adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proof materials, vibration-damping materials, and soundproofing materials. , can be used as foaming materials, paints, spraying materials.
  • a cured product obtained by curing the composition according to the present embodiment is excellent in flexibility and adhesiveness, and thus can be suitably used as a sealant or an adhesive.
  • composition according to the present embodiment includes electrical and electronic component materials such as solar cell backside sealing materials, electrical and electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, acoustic insulating materials, Elastic adhesives, binders, contact adhesives, spray sealing materials, crack repairing materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical adhesives , medical adhesive sheets, sealing materials for medical equipment, dental impression materials, food packaging materials, joint sealing materials for exterior materials such as sizing boards, coating materials, anti-slip coating materials, cushioning materials, primers, conductive materials for shielding electromagnetic waves, Thermally conductive materials, hot-melt materials, potting agents for electrical and electronic devices, films, gaskets, concrete reinforcing materials, adhesives for temporary fixing, various molding materials, and anti-corrosion and anti-corrosion of wired glass and laminated glass edges (cut parts).
  • electrical and electronic component materials such as solar cell backside sealing materials, electrical and electronic components such as
  • waterproof sealant Used for various applications such as waterproof sealant, automobile parts, large vehicle parts such as trucks and buses, train car parts, aircraft parts, ship parts, electrical parts, liquid sealants used in various machine parts, etc. It is possible. Taking automobiles as an example, it can be used in a wide variety of ways, such as adhesive attachment of plastic covers, trims, flanges, bumpers, windows, interior members, and exterior parts. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings, etc. alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. .
  • composition according to the present embodiment is an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiling, an adhesive for masonry, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing.
  • Adhesives, vehicle panel adhesives, electrical, electronic and precision equipment assembly adhesives, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure sensitive adhesives, direct It can also be used as a sealing material for glazing, a sealing material for double glazing, a sealing material for the SSG construction method, a sealing material for working joints in buildings, a material for civil engineering, and a material for bridges.
  • it can be used as an adhesive material such as an adhesive tape and an adhesive sheet.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid delivery system Tosoh HLC-8220GPC Column: TSK-GEL H type manufactured by Tosoh Solvent: THF Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
  • Synthesis example 1 Polyoxypropylene triol having a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a branched polyoxypropylene having a terminal hydroxyl group and a number average molecular weight of 23,300. Oxypropylene (C-1) was obtained.
  • Bismuth 2-ethylhexanoate (III) 2-ethylhexanoic acid solution (Bi: 25%) 30 ppm with respect to 100 parts by weight of polymer (C-2), and 0.95 mol with respect to hydroxyl groups possessed by the polymer
  • An equivalent amount of (isocyanatemethyl)dimethoxymethylsilane is added to carry out a urethanization reaction on the hydroxyl groups of the polymer to obtain linear silyl group-containing polyoxypropylene (A-2) having no branch points.
  • rice field 2-ethylhexanoic acid solution (Bi: 25%) 30 ppm with respect to 100 parts by weight of polymer (C-2), and 0.95 mol with respect to hydroxyl groups possessed by the polymer
  • Bismuth 2-ethylhexanoate (III) 2-ethylhexanoic acid solution (Bi: 25%) 30 ppm with respect to 100 parts by weight of polymer (C-3), and 0.95 mol with respect to hydroxyl groups possessed by the polymer
  • An equivalent amount of (isocyanatomethyl)dimethoxymethylsilane is added to carry out a urethanization reaction on the hydroxyl groups of the polymer to obtain linear silyl group-containing polyoxypropylene (A-3) having no branch points. rice field.
  • allyl chloride was added in an amount of 2.1 molar equivalents relative to the hydroxyl groups of the polymer (C-4) and reacted at 130° C. for 2 hours. Allyl was distilled off. The obtained unpurified allyl-terminated polyoxypropylene was mixed with n-hexane and water and stirred, and the water was removed by centrifugation. removed. As a result, polyoxypropylene (D-1) having a carbon-carbon unsaturated bond (allyl group) at one end was obtained.
  • Example 1 to 3 Comparative Examples 1 to 6, Reference Example 1
  • DINP manufactured by J-Plus Co., Ltd.: diisononyl phthalate
  • Hakuenka CCR manufactured by Shiraishi Calcium Co., Ltd.: precipitated calcium carbonate
  • the obtained composition was filled in a mold and cured at 23° C. and 50% RH for 3 days and further at 50° C. for 4 days to prepare a sheet-like cured product having a thickness of about 3 mm.
  • the cured sheet material was punched into a No. 3 dumbbell shape and subjected to a tensile strength test at 23° C. and 50% RH to measure the modulus at 50% or 100% elongation, the strength at break and elongation.
  • the measurement was performed using an autograph (AGS-J) manufactured by Shimadzu Corporation at a pulling speed of 200 mm/min. Results are shown in each table.
  • the obtained composition was filled in a mold and cured at 23° C. and 50% RH for 3 days and further at 50° C. for 4 days to prepare a sheet-like cured product having a thickness of about 3 mm.
  • Example 1 containing the silane-crosslinkable polymer (A) having a branch point and the silane-crosslinkable polymer (B) contains the silane-crosslinkable polymer (A) having a branch point.
  • the modulus was lowered as compared with the composition of Reference Example 1, which did not contain the silane-crosslinkable polymer (B).
  • a low modulus can be achieved by combining the silane-crosslinkable polymer (A) having a branch point with the silane-crosslinkable polymer (B) having a silyl group at only one terminal.
  • Example 1 exhibits better curability and recovery compared to the compositions of Comparative Examples 1 and 2, which contain a linear crosslinkable polymer having no branch points and a silane crosslinkable polymer (B). showed sex.
  • the silane-crosslinkable polymers having no branch points contained in Comparative Examples 1 and 2 have different molecular weights, and the higher the molecular weight, the fewer the number of silyl terminals that can be introduced.
  • the modulus is lower than that of the composition of Example 1, and the curability and restorability are also lowered due to the lower crosslink density between silyl groups.
  • a composition that gives a flexible cured product with a low modulus is desired. However, if the modulus is lowered in this way, curability and restorability tend to be disadvantageous.
  • the modulus of Example 1 was between Comparative Examples 1 and 2, the results of curability and restorability were the best.
  • compositions of Examples 2 and 3 containing the silane-crosslinkable polymer (A) having a branch point and the silane-crosslinkable polymer (B) having a specific silyl group have a branch point
  • Comparative Examples 3 to 6 containing a linear silane crosslinkable polymer having no and a silane crosslinkable polymer (B) having a specific silyl group Example 2 is compared with Comparative Examples 3 and 4, Example 3 compared with Comparative Examples 5 and 6) showed particularly good curability and restorability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

以下の式(1)で表されるシラン架橋性ポリマー(A) (HO)-Y-[O-CO-NH-CR -SiR3-ap-x (1) 及び、以下の式(2)で表されるシリル基末端を1分子中に1個のみ有する、分岐点を有しないシラン架橋性ポリマー(B) -SiR 3-c (2) を含む組成物であり、前記シラン架橋性ポリマー(A)を100重量部としたとき、前記シラン架橋性ポリマー(B)の含有量が5重量部以上200重量部以下である組成物。Yは少なくとも一か所以上の分岐点を有するポリマー鎖であり、Rは炭化水素基であり、R、Rは水素原子または炭化水素基であり、Xは水酸基または加水分解性基であり、pは3から10の整数であり、xは0からp-1の整数であり、a、cは0、1または2である。

Description

シラン架橋性ポリマー含有組成物
 本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋を形成し得るシリル基(以下、「加水分解性シリル基」ともいう。)を有する有機重合体であるシラン架橋性ポリマーを含有する組成物に関する。
 加水分解性シリル基を有する有機重合体(以下、シラン架橋性ポリマー)として、主鎖骨格がポリオキシアルキレン重合体やポリイソブチレン重合体である有機重合体は、既に工業的に生産され、シーリング材、接着剤、塗料などの用途に広く使用されている(特許文献1及び特許文献2を参照)。
 シラン架橋性ポリマーを含有する組成物は、通常、ジブチル錫ビス(アセチルアセトナート)に代表される、炭素-錫結合を有する有機錫化合物などの縮合触媒を用いて硬化させる。しかしながら、近年、欧州を中心として化学物質の規制強化により、有機錫系化合物はその毒性が指摘されており、代替技術への要望が高まっている。
 一方、加水分解性シリル基に結合したα位炭素に非共有電子対を有する酸素、窒素、硫黄等のヘテロ原子が結合した直鎖状の有機重合体を使用することで、有機錫系化合物を用いない場合でも、高い硬化速度を有する組成物が得られることが知られている(特許文献3を参照)。
 また、このような特定の末端構造を有する直鎖状の有機重合体に、さらに加水分解性シリル基を1分子中に1個のみ有するシラン架橋性ポリマーとを組み合わせることで、シーラント配合物の硬化後のモジュラスを低下させることができることが報告されている(特許文献4を参照)。
特開昭52-73998号公報 特開平10-245482号公報 特表2005-514504号公報 国際公開第2015/024773号
 一般的にシーリング材用途では、有機錫系化合物を使用しない場合でも、高い硬化速度を有し、硬化性や接着性に優れ、かつ、ある程度低モジュラスで柔軟性があり、高い復元性が求められることが多い。
 特定の末端構造を有する有機重合体を使用することで、有機錫系化合物を使用しない場合でも高い硬化速度が達成できるが、さらに低モジュラス化させるために、加水分解性シリル基同士の架橋密度を低下させると、硬化性、復元性は不利になる場合があった。
 この点、特許文献4に記載される方法や配合物について筆者が検証したところ、硬化性、復元性の観点で改善の余地があった。
 本発明は、上記現状に鑑み、低モジュラス領域においても良好な硬化性と、高い復元性を示すシラン架橋性ポリマー含有組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、1つ以上の分岐鎖を有するシラン架橋性ポリマーと、シリル基末端を1分子中に1個のみ有する、分岐点を有しないシラン架橋性ポリマーを含む組成物を用いることにより、低モジュラス領域においても良好な硬化性と、高い復元性とが得られることを見出し、本発明に至った。
 すなわち、本発明は、下記式(1)で表されるシラン架橋性ポリマー(A)
(HO)-Y-[O-CO-NH-CR -SiR3-ap-x  (1)
(式(1)中、Yは少なくとも一か所以上の分岐点を有するポリマー鎖であり、Rは、それぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Rはそれぞれ独立に、水素原子、または炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Xは水酸基または加水分解性基であり、pは3から10の整数であり、xは0からp-1の整数であり、aは同一または異なっていてもよく、0、1または2である。)
 及び、以下の式(2)で表されるシリル基末端を1分子中に1個のみ有する、分岐点を有しないシラン架橋性ポリマー(B)
-SiR 3-c  (2)(式(2)中、Xは前記記載と同じであり、Rはそれぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、cは0、1または2である。)
 を含む組成物であり、前記シラン架橋性ポリマー(A)を100重量部としたとき、前記シラン架橋性ポリマー(B)の含有量が5重量部以上200重量部以下である組成物に関する。
 好ましくは、前記式(1)で表されるシラン架橋性ポリマー(A)の式(1)中のpが3である。
 また、好ましくは、シラン架橋性ポリマー(A)及び(B)の重合体骨格が、ポリオキシアルキレン系重合体である。
 また、好ましくは、前記シラン架橋性ポリマー(B)のシリル基が以下の式(3)、または式(4)で表される。
-O-CO-NH-(CH-SiX  (3)
(Xは前記記載と同じである。)
-O-(CH-SiX  (4)
(Xは前記記載と同じである。)
 また、好ましくは、前記シラン架橋性ポリマー(B)の含有量が、前記シラン架橋性ポリマー(A)を100重量部としたとき5重量部以上100重量部以下である組成物である。
 また、好ましくは、前記シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、さらにアミノシラン化合物(C)を0.1重量部以上20重量部以下含む組成物である。
 本発明では、低モジュラス領域においても良好な硬化性と、高い復元性を示すシラン架橋性ポリマー含有組成物を提供することができる。
 以下に本発明の実施形態を詳細に説明する。
 <<シラン架橋性ポリマー(A)>>
 シラン架橋性ポリマー(A)は、下記式(1)で表される構造を有するものである。
(HO)-Y-[O-CO-NH-CR -SiR3-ap-x  (1)
 式(1)中、Yは少なくとも一か所以上の分岐点を有するポリマー鎖であり、Rは、それぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Rはそれぞれ独立に、水素原子、または炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Xは水酸基または加水分解性基であり、pは3から10の整数であり、xは0からp-1の整数であり、aは同一または異なっていてもよく、0、1または2である。
 Yは、少なくとも一か所以上の分岐点を有するポリマー鎖であり、特に制限はなく、後述する各種の重合体骨格を使用することができる。分岐点を有するポリマー鎖とは、複数の繰り返し単位から構成される重合体骨格に分岐点がある、分岐鎖状の重合体骨格を指す。分岐点の数や、各分岐点での枝分かれ数などに制限はないが、分岐によって決定される末端数は3~10個が好ましく、3~8個がより好ましく、3~6個がさらに好ましく、3~5個がよりさらに好ましく、3個が最も好ましい。
 Rは、それぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基を表す。前記炭素数は1~10が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3がより更に好ましく、1又は2が特に好ましい。前記炭化水素基が置換基を有する場合、該置換基としては特に限定されないが、例えば、クロロ基等のハロゲン基、メトキシ基等のアルコキシ基、N,N-ジエチルアミノ基等のアミノ基が挙げられる。Rが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。
 Rの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-ドデシル基等の無置換のアルキル基;クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基等の置換アルキル基;ビニル基、イソプロペニル基、アリル基などの不飽和炭化水素基;シクロヘキシル基等のシクロアルキル基;フェニル基、トルイル基、1-ナフチル基等のアリール基;ベンジル基等のアラルキル基等が挙げられる。好ましくは置換又は無置換のアルキル基であり、より好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、さらに好ましくは、メチル基、メトキシメチル基であり、特に好ましくは、メチル基である。
 Rはそれぞれ独立に、水素原子、または炭素原子数1から20の置換あるいは非置換の炭化水素基である。前記炭素数は1~10が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3がより更に好ましく、1又は2が特に好ましい。前記炭化水素基が置換基を有する場合、該置換基としては特に限定されないが、例えば、クロロ基等のハロゲン基、メトキシ基等のアルコキシ基、N,N-ジエチルアミノ基等のアミノ基が挙げられる。Rは水素原子であることが特に好ましい。また、複数個のRは互いに同一であってもよいし、異なっていてもよい。
 Xは、水酸基又は加水分解性基を表す。Xとしては、例えば、水酸基、水素、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。前記のアルコキシ基等は、置換基を有していてもよい。加水分解性が穏やかで取扱いやすいことから、アルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。Xが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。
 pは3から10の整数であり、pは3~8が好ましく、3~6がより好ましく、3~5がさらに好ましく、3が特に好ましい。
 xは0からp-1の整数であり、xは0~2が好ましく、0~1がより好ましい。硬化性の観点から、xは0であることが最も好ましい。
 前記式(1)中のaは、0、1、又は2を表す。好ましくは0又は1である。特に、貯蔵安定性の観点から、aは1であることが好ましい。
 <<シラン架橋性ポリマー(B)>>
 シラン架橋性ポリマー(B)は、以下の式(2)で表されるシリル基末端を1分子中に1個のみ有する、分岐点を有しないポリマーである。分岐点を有しないポリマーとは、複数の繰り返し単位から構成される重合体骨格に分岐点がなく、直鎖状の重合体骨格を有するものを指す。
-SiR 3-c  (2)
 式(2)中、Xは前記記載と同じであり、Rはそれぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、cは0、1または2である。
 Rは、それぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基を表す。前記炭素数は1~10が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3がより更に好ましく、1又は2が特に好ましい。前記炭化水素基が置換基を有する場合、該置換基としては特に限定されないが、例えば、クロロ基等のハロゲン基、メトキシ基等のアルコキシ基、N,N-ジエチルアミノ基等のアミノ基が挙げられる。Rが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。
 Rの具体例としては、先述したRの具体例で記載した基が挙げられる。好ましくは置換又は無置換のアルキル基であり、より好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、さらに好ましくは、メチル基、メトキシメチル基であり、特に好ましくは、メチル基である。
 前記式(2)中のcは、0、1、又は2を表す。反応性、復元性の観点から、cは0又は1であることが好ましく、cは0であることが最も好ましい。
 合成が簡便である点や、復元性の観点から、前記シラン架橋性ポリマー(B)に含まれるシリル基が、以下の式(3)、または式(4)で表されるものであることが特に好ましい。
-O-CO-NH-(CH-SiX  (3)
(Xは前記の記載と同じ。)
-O-(CH-SiX  (4)
(Xは前記の記載と同じ。)
 <<シラン架橋性ポリマー(A)及び(B)の製法>>
 シラン架橋性ポリマー(A)及び(B)の製造方法は特に限定されないが、以下の工程を含むことができる。
工程(I):複数の繰り返し単位から構成される重合体骨格を有し、かつ、水酸基を含む有機重合体を製造する工程。
工程(II):水酸基を含む有機重合体と、加水分解性シリル基及びイソシアネート基を含有する化合物をウレタン化反応させる工程。
 また、シラン架橋性ポリマー(B)の製造方法は、特に限定されないが、以下の工程を含むことができる。
工程(III):水酸基を含む有機重合体の水酸基を、アルカリ金属塩と反応させた後に、炭素-炭素不飽和結合含有ハロゲン化物と反応させ、炭素-炭素不飽和結合含有基に変換した後、炭素-炭素不飽和結合に、加水分解性シリル基含有ヒドロシラン化合物をヒドロシリル化反応させる工程。
 工程(I)~(III)を実施する順序は、工程(I)、工程(II)、または工程(I)、工程(III)の順であることが好ましい。また、工程(I)以外の方法で作られた水酸基を含む有機重合体を用いることで、工程(II)、又は工程(III)を単独で実施することもできる。
 以下、各工程について説明する。
 [工程(I)]
 <水酸基を含む有機重合体>
 有機重合体に含まれる水酸基が重合体骨格に結合する位置は特に限定されないが、重合体骨格の末端であることが好ましい。
 シラン架橋性ポリマー(A)の重合体骨格は、1つ以上の分岐鎖を有する重合体骨格であれば、特に制限はなく、各種の重合体骨格を使用することができる。また、シラン架橋性ポリマー(A)の重合体骨格は、前記式(1)においてYで表されるポリマー鎖に該当する。
 シラン架橋性ポリマー(B)の重合体骨格は、分岐点を有さない直鎖状の重合体骨格であれば、特に制限はなく、各種の重合体骨格を使用することができる。
 シラン架橋性ポリマー(A)及び(B)の重合体骨格の種類は同じでも良く、また異なっていてもよい。
 シラン架橋性ポリマー(A)及び(B)の重合体骨格の種類の具体例としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらの中でも、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体が、比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることとから好ましく、ポリオキシアルキレン系重合体がより好ましく、ポリオキシプロピレンが特に好ましい。
 前記有機重合体は、1種類の重合体骨格を有する重合体であってもよいし、異なる重合体骨格を有する2種類以上の重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように同時に製造された混合物でもよい。
 シラン架橋性ポリマー(A)及び(B)を得る場合、前記有機重合体の数平均分子量は、特に限定されないが、GPCにおけるポリスチレン換算分子量において好ましくは3,000~100,000であり、より好ましくは3,000~50,000であり、さらに好ましくは3,000~30,000である。数平均分子量が3,000以上であると、重合体全体に対する加水分解性シリル基の相対量が適切な範囲にあり、製造コストの点で望ましい。また、数平均分子量が100,000以下であると、作業性の点から望ましい粘度を達成しやすい。当該数平均分子量はGPC測定によってポリスチレン換算で求めることができる。シラン架橋性ポリマー(A)及び(B)の数平均分子量の好ましい範囲についても、以上に説明した有機重合体の数平均分子量の範囲と同様である。
 前記有機重合体の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましい。具体的には2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。また、硬化物の耐久性や伸びなどの機械的特性を向上させる観点から、1.2以下が好ましい。分子量分布(Mw/Mn)は、GPC測定によってポリスチレン換算で求められる数平均分子量と重量平均分子量から算出することができる。シラン架橋性ポリマー(A)及び(B)の分子量分布の好ましい範囲についても、以上に説明した有機重合体の分子量分布の範囲と同様である。
 <水酸基を含む有機重合体の製造方法>
 (ポリオキシアルキレン系重合体)
 水酸基を含む有機重合体の製造方法の一態様として、シラン架橋性ポリマー(A)及び/又は(B)の重合体骨格がポリオキシアルキレン系重合体である場合、前記水酸基を含む有機重合体の製造方法としては、従来公知の方法によって、水酸基を有する開始剤にエポキシ化合物を重合させることで製造できる。これによって水酸基末端ポリオキシアルキレン系重合体が得られる。具体的な重合方法としては特に限定されないが、分子量分布(Mw/Mn)の小さい重合体が得られることから、亜鉛ヘキサシアノコバルテートグライム錯体等の複合金属シアン化物錯体触媒を用いた重合方法が好ましい。
 シラン架橋性ポリマー(A)を得る場合、1つ以上の分岐鎖を有するポリオキシアルキレン系重合体の末端水酸基数は3~10個が好ましく、3~8個がより好ましく、3~6個がさらに好ましく、3~5個がよりさらに好ましく、3個が最も好ましい。末端水酸基数が3個、すなわち、具体的にはポリオキシアルキレントリオールを用いることが好ましい。
 シラン架橋性ポリマー(A)を得る場合、水酸基を有する開始剤としては、1分子内に3個以上の活性水素原子を有する化合物が挙げられ、1分子中に3~10個の水酸基を有するヒドロキシ化合物および/または不飽和アルコールが好ましい。具体的には、グリセリン、分子量100~4000のポリオキシプロピレントリオールなど水酸基数が3個の化合物、ペンタエリスリトールなどの水酸基数4個の化合物、ソルビトール、ジペンタエリスリトールなどの水酸基数が6個の化合物、ショ糖などの水酸基数が8個の化合物が挙げられる。
 シラン架橋性ポリマー(B)を得る場合、水酸基を有する開始剤としては、1分子内に1個の活性水素原子を有する化合物が挙げられ、具体的には、ブタノール、アリルアルコール、低分子量のポリオキシプロピレンモノアリルエーテル、低分子量のポリオキシプロピレンモノアルキルエーテルが挙げられる。
 前記エポキシ化合物としては特に限定されないが、例えば、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類、メチルグリシジルエーテル、ブチルグリシジルエーテル等のグリシジルエーテル類等が挙げられる。好ましくはプロピレンオキサイドである。
 ((メタ)アクリル酸エステル系重合体)
 水酸基を含む有機重合体の製造方法の別態様として、シラン架橋性ポリマー(A)及び/又は(B)の重合体骨格が(メタ)アクリル酸エステル系重合体である場合、前記水酸基を含む有機重合体の製造方法としては、(I)重合性不飽和基と水酸基を有する化合物(例えば、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル構造を有するモノマーと共に共重合して重合体を得る方法、(II)原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)に水酸基を導入する方法などが挙げられる。
 (飽和炭化水素系重合体)
 本実施形態の別の態様として、シラン架橋性ポリマー(A)及び/又は(B)の重合体骨格が飽和炭化水素系重合体である場合には、前記水酸基を含む含有有機重合体の製造方法としては、エチレン、プロピレン、1-ブテン、およびイソブチレンなどの炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体のいずれかの位置(好ましくは分子鎖末端)に水酸基を導入する方法などが挙げられる。
 [工程(II)]
 <ウレタン化反応>
 シラン架橋性ポリマー(A)及び/又は(B)は、水酸基を有する有機重合体と加水分解性シリル基及びイソシアネート基を含有する化合物をウレタン化反応させることで得ることもできる。シリル基含有イソシアネート化合物は1種類を単独で使用してもよいし、2種以上を併用してもよい。
 前記シリル基含有イソシアネート化合物の使用量は、前記有機重合体が有する水酸基の量と、目的とする加水分解性シリル基の導入量を考慮して適宜決定することができ、特に限定されないが、例えば、前記有機重合体が有する水酸基に対して0.1~10モル当量であることが好ましく、0.3~5モル当量がより好ましく、0.5~3モル当量がさらに好ましい。
 工程(II)を用いてシラン架橋性ポリマー(A)を得る場合、前記シリル基含有イソシアネート化合物は、有機重合体が有する水酸基とのウレタン化反応が可能なイソシアネート基と、加水分解性シリル基を同一分子中に有する化合物である。該シリル基含有イソシアネート化合物は、下記式(5)で表すことができる。
OCN-CR -SiR3-a  (5)
(式(5)中のR、R、X、及びaは、式(1)について前述したものと同じである。)
 前記シリル基含有イソシアネート化合物の具体例としては、例えば、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン、(イソシアネートメチル)ジエトキシメチルシラン等が挙げられる。
 工程(II)を用いてシラン架橋性ポリマー(B)を得る場合、前記シリル基含有イソシアネート化合物は、有機重合体が有する水酸基とのウレタン化反応が可能なイソシアネート基と、加水分解性シリル基を同一分子中に有する化合物である。前記シリル基含有イソシアネート化合物の具体例としては、前記シラン架橋性ポリマー(A)を得る場合に具体例として挙げたシリル基含有イソシアネート化合物を用いることができる。さらに、それら以外にも、例えば、(3-イソシアネートプロピル)トリメトキシシラン、(3-イソシアネートプロピル)ジメトキシメチルシラン、(3-イソシアネートプロピル)トリエトキシシラン、(3-イソシアネートプロピル)ジエトキシメチルシラン等が挙げられる。
 特に、前記式(3)で表されるシリル基を含むシラン架橋性ポリマー(B)を得る場合は、下記式(6)で表されるシリル基含有イソシアネート化合物を用いることができる。
OCN-(CH-SiX  (6)
(式(6)中のXは、式(1)について前述したものと同じである。)
 このようなシリル基含有イソシアネート化合物の具体例としては、(3-イソシアネートプロピル)トリメトキシシラン、(3-イソシアネートプロピル)トリエトキシシラン等が挙げられる。
 ウレタン化反応は、ウレタン化触媒を使用せずに実施してもよいが、反応速度を向上させたり反応率を向上させる目的で、ウレタン化触媒の存在下で実施してもよい。このようなウレタン化触媒としては、例えば、Polyurethanes: Chemistry and Technology,Part I,Table 30,Chapter 4,Saunders and Frisch,Interscience Publishers,New York,1963に列挙されている触媒など、従来公知のウレタン化触媒を使用できる。具体的には、有機錫化合物、ビスマス化合物、有機アミン等の塩基触媒等が挙げられるが、これらに限定されない。
 ウレタン化触媒としては、活性が高いことから、有機錫化合物が好ましい。具体的には、オクチル酸スズ、ステアリン酸スズ、ジブチルスズジオクトエート、ジブチルスズジオレイルマレート、ジブチルスズジブチルマレート、ジブチルスズジラウレート、1,1,3,3-テトラブチル-1,3-ジラウリルオキシカルボニルジスタノキサン、ジブチルスズジアセテート、ジブチルスズジアセチルアセトナート、ジブチルスズビス(o-フェニルフェノキサイド)、ジブチルスズオキサイド、ジブチルスズビス(トリエトキシシリケート)、ジブチルスズジステアレート、ジブチルスズビス(イソノニル-3-メルカプトプロピオネート)、ジブチルスズビス(イソオクチルメルカプトプロピオネート)、ジブチルスズビス(イソオクチルチオグリコレート)、ジオクチルスズオキサイド、ジオクチルスズジラウレート、ジオクチルスズジアセテート、ジオクチルスズジバーサテート等が挙げられる。さらに、加水分解性シリル基に対して活性の低いウレタン化触媒が好ましく、この観点から、硫黄原子を含有する有機錫化合物が好ましく、なかでも、ジブチルスズビス(イソノニル-3-メルカプトプロピオネート)、ジブチルスズビス(イソオクチルメルカプトプロピオネート)、ジブチルスズビス(イソオクチルチオグリコレート)が特に好ましい。
 ウレタン化触媒としては、活性が良好であり、シリル基含有有機重合体貯蔵安定性を良好に保つ点で、有機ビスマス化合物が好ましい。ビスマス含有触媒は、例えば、ボルチャーズ有限会社(Borchers GmbH)製の商品名Borchi(R) Kat 22、Borchi(R) Kat 24、Borchi(R) Kat 320、Borchi(R) Kat 315EU、Borchi(R) Kat VP 0243、Borchi(R) Kat VP 0244を有する触媒、富士フイルム和光純薬株式会社製の商品名2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)、2-エチルヘキサン酸ビスマス(III), 70-75% in xylenes (~24% Bi) (99.99+%-Bi) PURATREMなどが挙げられるが、ウレタン化反応を促進させるものであれば特に限定されない。
 ウレタン化触媒の添加量は当業者が適宜設定できるが、反応活性の点から、前記有機重合体100重量部に対して1~1000ppmが好ましく、10~100ppmがより好ましい。この範囲では、十分な反応活性が得られることに加えて、製造されるシラン架橋性ポリマーの物性を良好に保持することができる。
 前記ウレタン化反応は、溶媒を使用せずに実施することができるが、有機重合体、シリル基含有イソシアネート化合物、及び、ウレタン化触媒を均一に溶解させる目的で、また、反応系の温度制御や、ウレタン化触媒の添加を容易に実現するため、有機溶媒を添加して実施してもよい。
 有機溶媒を使用する場合、その種類としては特に限定されず、適宜選択すればよいが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロオクタン、シクロデカン、シクロドデカン、石油エーテル等の脂肪族炭化水素や、ジクロロエタン、クロロホルム等の脂肪族ハロゲン化炭化水素や、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン等の芳香族炭化水素や、クロロベンゼン、クロロトルエン等の芳香族ハロゲン化炭化水素、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)等のエーテル溶媒等が挙げられる。有機溶媒としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
 ウレタン化反応時の温度は、当業者が適宜設定できるが、50℃以上120℃以下であることが好ましく、70℃以上100℃以下がより好ましい。反応時間も適宜設定すればよいが、意図しない重合体間の縮合反応が進行しないように、温度条件とともに反応時間を調整することが好ましい。具体的には、反応時間は、15分以上5時間以下であることが好ましく、30分以上3時間以下がより好ましい。
 [工程(III)]
 <ヒドロシリル化反応を含む工程>
 シラン架橋性ポリマー(B)は、水酸基を有する有機重合体の水酸基(有機重合体が有する水酸基、とも記す)の一部を、アルカリ金属塩と反応させた後に、炭素-炭素不飽和結合含有ハロゲン化物と反応させ、炭素-炭素不飽和結合含有基に変換した後、炭素-炭素不飽和結合に、加水分解性シリル基含有ヒドロシラン化合物をヒドロシリル化反応させて得ることもできる。
 工程(III)を用いて得られるシラン架橋性ポリマー(B)のシリル基は、特に限定はされないが、以下の式(4)で表されるものであることが特に好ましい。
-O-(CH-SiX  (4)
(式(4)中のXは、式(1)について前述したものと同じである。)
 このようなシリル基は、上記炭素-炭素不飽和結合含有ハロゲン化物として塩化アリル等を使用し、さらに、加水分解性シリル基含有ヒドロシラン化合物として、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリイソプロペニロキシシラン等を使用することで形成できる。
 (アルカリ金属塩との反応)
 有機重合体が有する水酸基を、炭素-炭素不飽和結合含有基に変換するにあたっては、まず、水酸基含有有機重合体に対しアルカリ金属塩を作用させて、有機重合体が有する水酸基をメタルオキシ基に変換することが好ましい。また、アルカリ金属塩の代わりに、複合金属シアン化物錯体触媒を用いることもできる。以上によって、メタルオキシ基含有有機重合体が形成される。
 前記アルカリ金属塩としては特に限定されないが、例えば、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、セシウムアルコキシド等が挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシドが好ましく、ナトリウムメトキシド、ナトリウムtert-ブトキシドがより好ましい。入手性の点で、ナトリウムメトキシドが、反応性の点で、ナトリウムtert-ブトキシドが、それぞれ特に好ましい。アルカリ金属塩は溶剤に溶解した状態で反応に供してもよい。
 前記アルカリ金属塩の使用量は、特に限定されないが、反応率を高めるために、有機重合体が有する水酸基に対するモル比が、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましく、0.8以上がより更に好ましい。前記モル比は1.2以下が好ましく、1.1以下がより好ましい。
 有機重合体が有する水酸基をメタルオキシ基に変換する反応を効率的に進行させるために、水分や、有機重合体以外の水酸基を有する物質を予め反応系中から除去しておくことが好ましい。除去するためには、公知の方法を利用すれば良く、例えば加熱蒸発、減圧脱揮、噴霧気化、薄膜蒸発、共沸脱揮等を利用できる。
 アルカリ金属塩を作用させる際の温度は、当業者が適宜設定できるが、50℃以上150℃以下が好ましく、110℃以上145℃以下がより好ましい。アルカリ金属塩を作用させる際の時間としては、10分以上5時間以下が好ましく、30分以上3時間以下がより好ましい。
 (炭素-炭素不飽和結合含有ハロゲン化物との反応)
 前記メタルオキシ基含有有機重合体に対し、炭素-炭素不飽和結合含有ハロゲン化物を作用させることで、前記メタルオキシ基含有有機重合体が有するメタルオキシ基を、炭素-炭素不飽和結合含有基に変換することができる。該ハロゲン化物は、ハロゲンの置換反応によって前記メタルオキシ基と反応してエーテル結合を形成する。これによって、炭素-炭素不飽和結合を有する有機重合体が形成される。
 炭素-炭素不飽和結合含有ハロゲン化物の具体例としては、特に限定されないが、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリル等が挙げられる。取り扱いの容易さから、塩化アリル、塩化メタリルが好ましい。
 炭素-炭素不飽和結合含有ハロゲン化物の添加量は、特に制限はないが、有機重合体が有するメタルオキシ基に対する有機ハロゲン化物のモル比として、0.7以上であることが好ましく、1.0以上がより好ましい。また、当該モル比は、5.0以下が好ましく、2.0以下がより好ましい。
 メタルオキシ基含有有機重合体に対し、炭素-炭素不飽和結合含有ハロゲン化物を反応させる際の温度は、50℃以上150℃以下であることが好ましく、110℃以上140℃以下がより好ましい。反応時間は、10分以上5時間以下であることが好ましく、30分以上3時間以下がより好ましい。
 (加水分解性シリル基含有ヒドロシラン化合物との反応)
 加水分解性シリル基含有ヒドロシラン化合物の具体例としては、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、ジクロロフェニルシラン、(クロロメチル)ジクロロシラン、(ジクロロメチル)ジクロロシラン、ビス(クロロメチル)クロロシラン、(メトキシメチル)ジクロロシラン、(ジメトキシメチル)ジクロロシラン、ビス(メトキシメチル)クロロシランなどのハロシラン類;トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフェニルシラン、エチルジメトキシシラン、メトキシジメチルシラン、エトキシジメチルシラン、(クロロメチル)メチルメトキシシラン、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、ビス(クロロメチル)メトキシシラン、(メトキシメチル)メチルメトキシシラン、(メトキシメチル)ジメトキシシラン、ビス(メトキシメチル)メトキシシラン、(メトキシメチル)ジエトキシシラン、(エトキシメチル)ジエトキシシラン、(3,3,3-トリフルオロプロピル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジエトキシシラン、[(クロロメチル)ジメトキシシリルオキシ]ジメチルシラン、[(クロロメチル)ジエトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジメトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジエメトキシシリルオキシ]ジメチルシラン、[(ジエチルアミノメチル)ジメトキシシリルオキシ]ジメチルシラン、[(3,3,3-トリフルオロプロピル)ジメトキシシリルオキシ]ジメチルシラン等のアルコキシシラン類;ジアセトキシメチルシラン、ジアセトキシフェニルシラン等のアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランなどのケトキシメートシラン類、トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシラン等のイソプロペニロキシシラン類(脱アセトン型)等が挙げられる。
 前記加水分解性シリル基含有ヒドロシラン化合物の使用量は、特に制限はないが、有機重合体が有する炭素-炭素不飽和結合に対する有機ハロゲン化物のモル比として、0.6以上であることが好ましく、0.8以上がより好ましい。また、当該モル比は、5.0以下が好ましく、2.0以下がより好ましい。
 ヒドロシリル化反応は、反応促進のため、ヒドロシリル化触媒の存在下で実施することが好ましい。ヒドロシリル化触媒としては、コバルト、ニッケル、イリジウム、白金、パラジウム、ロジウム、ルテニウム等の金属や、その錯体等を用いることができる。具体的には、アルミナ、シリカ、カーボンブラック等の担体に白金を担持させたもの;塩化白金酸;塩化白金酸とアルコールやアルデヒドやケトン等とからなる塩化白金酸錯体;白金-オレフィン錯体[例えばPt(CH=CH(PPh)、Pt(CH=CHCl];白金-ビニルシロキサン錯体[例えばPt{(vinyl)MeSiOSiMe(vinyl)}、Pt{Me(vinyl)SiO}];白金-ホスフィン錯体[例えばPh(PPh、Pt(PBu];白金-ホスファイト錯体[例えばPt{P(OPh)]等が挙げられる。反応効率の点から、塩化白金酸、白金ビニルシロキサン錯体等の白金触媒が好ましい。
 ヒドロシリル化反応は、溶媒を使用せずに実施することができるが、有機重合体、ヒドロシラン化合物、及び、ヒドロシリル化触媒を均一に溶解させる目的で、また、反応系の温度制御や、ヒドロシリル化触媒の添加を容易に実現するため、有機溶媒を添加して実施してもよい。
 ヒドロシリル化反応時の温度は、特に限定されず、当業者が適宜設定できるが、反応系の粘度を下げたり反応性を向上させる目的で、加熱条件が好ましく、具体的には、50℃~150℃であることがより好ましく、70℃~120℃がさらに好ましい。反応時間も適宜設定すればよいが、意図しない重合体間の縮合反応が進行しないように、温度条件とともに反応時間を調整することが好ましい。具体的には、反応時間は、30分以上5時間以下であることが好ましく、3時間以下がより好ましい。
 <<シラン架橋性ポリマー(A)及びシラン架橋性ポリマー(B)を含む組成物>>
 本実施形態によると、シラン架橋性ポリマー(A)及びシラン架橋性ポリマー(B)を含む組成物を提供することができる。該組成物は、シラン架橋性ポリマー(A)を1種のみを使用してもよく、2種以上を併用してもよい。また、該組成物は、シラン架橋性ポリマー(B)を1種のみを使用してもよく、2種以上を併用してもよい。
 また、該組成物は、該組成物を硬化させてなる硬化物を得ることが出来る場合、該組成物を硬化性組成物と呼ぶことがある。
 該組成物は、シラン架橋性ポリマー(B)がシラン架橋性ポリマー(A)の末端の一部と反応することにより、硬化物のモジュラスを低減することができ、シーリング材用途に適した物性に調整することができる。
 該組成物において、シラン架橋性ポリマー(A)を100重量部としたとき、シラン架橋性ポリマー(B)の含有量は、目的とするモジュラス、硬化性、復元性に応じて適宜決定することができるが、5~200重量部が好ましく、10~150重量部がより好ましく、20~100重量部が特に好ましい。
 <<アミノシラン化合物(C)>>
 シラン架橋性ポリマー(A)は活性が高い加水分解性シリル基を有するため、アミノ基含有シランカップリング剤であるアミノシラン化合物(C)を硬化触媒として使用することもできる。アミノシラン化合物(C)は通常接着性付与剤として添加することが多いため、アミノシラン化合物(C)を硬化触媒として利用する場合には、通常使われる硬化触媒を使用しない組成物を作製できる点で好ましい。そのため、アミノシラン化合物(C)を利用する場合は、他の硬化触媒を添加しないほうが好ましい。
 前記アミノシランの具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類等が挙げられる。アミノシラン化合物(C)は1種類のみを使用してもよいし、2種類以上を併用してもよい。
 アミノシラン化合物(C)の配合量としては、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1重量部以上20重量部以下であることが好ましく、0.5重量部以上15重量部以下がより好ましく、1重量部以上10重量部以下がさらに好ましい。
 <<その他の添加剤>>
 本実施形態に係る組成物には、その他の添加剤として、硬化触媒、シリコン化合物、接着性付与剤、可塑剤、溶剤、希釈剤、シリケート、充填剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、粘着付与樹脂、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、表面性改良剤、エポキシ樹脂、その他の樹脂、難燃剤、発泡剤を添加しても良い。また、本実施形態に係る組成物には、該組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤等が挙げられる。
 <硬化触媒>
 本実施形態に係る組成物は、加水分解性シリル基を加水分解・縮合させる反応、即ち硬化反応を促進する目的で、上記に記載のアミノシラン化合物(C)、及び/または、その他の硬化触媒を含有することが好ましい。
 その他の硬化触媒としては、従来公知のものを使用することができ、具体的には、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、無機酸等を使用することができる。
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジステアレート、ジオクチル錫オキサイド、ジオクチル錫オキサイドとシリケート化合物との反応物などが挙げられる。近年の環境への関心の高まりから、ジオクチル錫化合物が好ましい。しかし、シラン架橋性ポリマー(A)は速硬化性を示し得るため、本実施形態に係る組成物は有機錫化合物を含有せず、有機錫化合物よりも一般的に活性が低いとされる硬化触媒(特に、アミン系化合物等)を含有するものとすることができる。本実施形態に係る組成物はアミン系化合物を含有するものであっても、良好な硬化性を示すことができる。
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸カリウム、カルボン酸カルシウムなどが挙げられる。カルボン酸基としては下記のカルボン酸と各種金属を組み合わせることができる。
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;ケチミン化合物などが挙げられる。
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。
 アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。
 その他の硬化触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。
 硬化触媒は、異なる2種類以上の触媒を併用して使用してもよく、例えば、前記のアミン化合物とカルボン酸や、アミン化合物とアルコキシ金属を併用することで、反応性が向上する効果が得られる可能性がある。
 硬化触媒の配合量としては、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.001~20重量部が好ましく、0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。硬化触媒の配合量が0.001重量部を下回ると反応速度が不十分となる可能性がある。一方、硬化触媒の配合量が20重量部を上回ると反応速度が速すぎるため組成物の使用可能な時間が短くなることにより作業性が悪くなったり、貯蔵安定性が悪くなる傾向がある。さらに、硬化触媒の中には、組成物が硬化した後で、硬化物の表面に染み出したり、硬化物表面を汚染する場合がある。このような場合には、硬化触媒の使用量を0.01~3.0重量部とすることで、硬化性を確保しながら、硬化物の表面状態を良好に保てる。
 <充填剤>
 本実施形態に係る組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。
 充填剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、1~300重量部が好ましく、10~250重量部がより好ましい。
 組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料が挙げられる。
 バルーンの使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~100重量部が好ましく、1~20重量部がより好ましい。
 <接着性付与剤>
 本実施形態に係る組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類等が挙げられる。また、アミノ基含有シランの縮合物、アミノ基含有シランと他のアルコキシシランとの縮合物、等の各種シランカップリング剤の縮合物;アミノ基含有シランとエポキシ基含有シランの反応物、アミノ基含有シランと(メタ)アクリル基含有シランの反応物、等の各種シランカップリング剤の反応物も使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。
 シランカップリング剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。
 上記のアミノ基含有シラン類は、硬化触媒であるアミノシラン化合物(C)としても用いることができるため、他の硬化触媒を使用しない場合には、アミノ基含有シラン類(アミノシラン化合物(C))は硬化触媒と、接着性付与剤の両方を兼ね備えた添加剤となる。
 <可塑剤>
 本実施形態に係る組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤等が挙げられる。
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。
 可塑剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、5~150重量部が好ましく、10~120重量部がより好ましく、20~100重量部がさらに好ましい。
 <溶剤、希釈剤>
 本実施形態に係る組成物には溶剤または希釈剤を添加することができる。溶剤及び希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
 <タレ防止剤>
 本実施形態に係る組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
 タレ防止剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~20重量部が好ましい。
 <酸化防止剤>
 本実施形態に係る組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
 酸化防止剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
 <光安定剤>
 本実施形態に係る組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
 光安定剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
 <紫外線吸収剤>
 本実施形態に係る組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換アクリロニトリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571、チヌビン1600、チヌビンB75(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~10重量部が好ましく、0.2~5重量部がより好ましい。
 <物性調整剤>
 本実施形態に係る組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本実施形態に係る組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により、分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。
 物性調整剤の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。
 <粘着付与樹脂>
 本実施形態に係る組成物には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことが出来る。
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。
 粘着付与樹脂の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30重量部であることがさらに好ましい。
 <エポキシ基を含有する化合物>
 本実施形態に係る組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレート、エポキシブチルステアレート等が挙げられる。エポキシ化合物は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.5~50重量部の範囲で使用するのがよい。
 <光硬化性物質>
 本実施形態に係る組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
 光硬化性物質の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。
 <酸素硬化性物質>
 本実施形態に係る組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 酸素硬化性物質の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
 <エポキシ樹脂>
 本実施形態に係る組成物にはエポキシ樹脂を併用することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
 エポキシ樹脂の使用量は、シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、1~10000重量部の範囲であることが好ましい。エポキシ樹脂が1重量部未満になると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られがたくなり、エポキシ樹脂が10000重量部を超えると、重合体硬化物の強度が不十分となる。
 エポキシ樹脂を添加する場合、本実施形態に係る組成物には、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。
 エポキシ樹脂の硬化剤を使用する場合、その使用量は、エポキシ樹脂100重量部に対して0.1~300重量部の範囲であることが好ましい。
 <<組成物の調製>>
 本実施形態に係る組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途、硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と有機重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
 前記組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えて、メチルトリメトキシシラン、フェニルトリメトキシシラン、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。
 <<用途>>
 本実施形態に係る組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、防水材、塗膜防水材、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材として使用することができる。本実施形態に係る組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、シーリング材または接着剤として好適に使用することができる。
 また本実施形態に係る組成物は、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気・電子部品、装置の電気絶縁材料、音響学的絶縁材料、弾性接着剤、バインダー、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、アスファルト防水材用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療用粘着シート、医療機器シール材、歯科印象材料、食品包装材、サイジングボードなどの外装材の目地用シーリング材、コーティング材、防滑被覆材、緩衝材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、コンクリート補強材、仮止め用接着剤、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。自動車を例にすると、プラスチックカバー、トリム、フランジ、バンパー、ウインドウ取付、内装部材、外装部品などの接着取付など多種多様に使用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本実施形態に係る組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、皮革、繊維製品、布地、紙、板およびゴムを結合するための接着剤、反応性後架橋感圧性接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、土木用、橋梁用材料としても使用可能である。さらに、粘着テープや粘着シートなどの粘着材料としても使用可能である。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8220GPC
  カラム:東ソー製TSK-GEL Hタイプ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
 (合成例1)
 数平均分子量が約4,500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する分岐型の数平均分子量23,300のポリオキシプロピレン(C-1)を得た。
 続いて、90℃で、重合体(C-1)100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(イソシアネートメチル)ジメトキシメチルシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施した。以上により、分岐状のシリル基含有ポリオキシプロピレン(A-1)を得た。これは、シラン架橋性ポリマー(A)に該当する。
 (合成例2)
 数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量15,000のポリオキシプロピレン(C-2)を得た。
 重合体(C-2)100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(イソシアネートメチル)ジメトキシメチルシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施して、分岐点を有しない直鎖状のシリル基含有ポリオキシプロピレン(A-2)を得た。
 (合成例3)
 数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900のポリオキシプロピレン(C-3)を得た。
 重合体(C-3)100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(イソシアネートメチル)ジメトキシメチルシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施して、分岐点を有しない直鎖状のシリル基含有ポリオキシプロピレン(A-3)を得た。
 (合成例4)
 ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、片方の末端に水酸基を有する数平均分子量7,800のポリオキシプロピレン(C-4)を得た。
 次いで、90℃で、重合体(C-4)100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(イソシアネートメチル)ジメトキシメチルシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施した。以上により、片方の末端にアルコキシシリル基を有する、分岐点を有しないポリオキシプロピレン(B-1)を得た。
 (合成例5)
 90℃で、参考例1で得た重合体(C-4)100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(3-イソシアネートプロピル)トリメトキシシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施した。以上により、片方の末端にアルコキシシリル基を有する、分岐点を有しないポリオキシプロピレン(B-2)を得た。
 (合成例6)
 合成例4で得た水酸基末端ポリオキシプロピレン(C-4)の水酸基に対して0.75モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。減圧留去によりメタノールを留去した後、重合体(C-4)の水酸基に対して1.1モル当量の塩化アリルを添加して130℃で1時間反応を行った後、塩化アリルを留去した。その後、重合体(C-4)の水酸基に対して0.47モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。130℃で減圧留去によりメタノールを留去した後、重合体(C-4)の水酸基に対して2.1モル当量の塩化アリルを添加して130℃で2時間反応を行った後、塩化アリルを留去した。得られた未精製のアリル末端ポリオキシプロピレンをn-ヘキサン及び水と混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧留去することでポリマー中の金属塩を除去した。以上により、片方の末端に炭素-炭素不飽和結合(アリル基)を有するポリオキシプロピレン(D-1)を得た。
 次いで、90℃で、重合体(D-1)100重量部に対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)50ppm、及び、トリメトキシシラン2.07重量部を添加し、重合体(D-1)が有するアリル基に対しヒドロシリル化反応を実施した。90℃でトリメトキシシランが完全に消費されるまで反応させた後、揮発成分を留去した。以上により、片方の末端にトリメトキシシリル基を有する、分岐点を有しないポリオキシプロピレン(B-3)を得た。
 (実施例1~3、比較例1~6、参考例1)
 表1~3に記載の重合体合計100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)90重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)160重量部、ホワイトン SB(白石カルシウム(株)製:重質炭酸カルシウム)54重量部、タイペークR820((株)石原産業製:酸化チタン)5重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、及び、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部を添加し混合した。A-1120(前記アミノシラン)は、加水分解性シリル基の縮合を促進させ、重合体の硬化を促進させる。
 (皮張り時間)
 得られた組成物を厚さ約5mmの型枠に充填し、表面を平面状に整えた時間を硬化開始時間とし、表面をスパチュラで触り、スパチュラに評価用組成物が付着しなくなった時間を皮張り時間として硬化時間の測定を行った。結果を各表に示す。
 (ダンベル引張り物性)
 得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い、50%又は100%伸張時のモジュラス、破断時の強度および伸びを測定した。測定は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を各表に示す。
 (復元率)
 得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を7号ダンベル型に打ち抜き、ダンベル型を引張り10mm伸張させた状態で両端をクリップで固定し、その状態で70℃50%RHで24時間静置した。その後クリップを外して、変形を起こさせる力を取り除いた状態で滑らかなガラス板上に静置し、24時間後どの程度元の形状に戻っているか確認した。24時間後のダンベルの伸びをx(mm)として、復元率を以下のように計算した。
復元率(%)=(10-x)÷10×100
 結果を各表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、分岐点を有するシラン架橋性ポリマー(A)とシラン架橋性ポリマー(B)を含む実施例1の組成物は、分岐点を有するシラン架橋性ポリマー(A)を含み、シラン架橋性ポリマー(B)を含まない参考例1の組成物に比べ低モジュラス化した。このように、分岐点を有するシラン架橋性ポリマー(A)と片方の末端にのみシリル基を有するシラン架橋性ポリマー(B)との組み合わせによって低モジュラス化が達成できる。
 実施例1の組成物は、分岐点を有さない直鎖状の架橋性ポリマーとシラン架橋性ポリマー(B)を含む比較例1及び2の組成物に比べて、より良好な硬化性と復元性を示した。比較例1、比較例2に含まれる分岐点を有さないシラン架橋性ポリマーは分子量が異なっており、分子量が大きいほど導入可能なシリル末端数が少なくなるため、比較例2の組成物は比較例1の組成物に比べてモジュラスが低く、さらにシリル基同士の架橋密度の低下により、硬化性、復元性も低下している。一般的にシーリング材用途では柔軟性のある低モジュラスの硬化物を与える組成物が望まれるが、このようにモジュラスを低下させると、硬化性、復元性は不利になる傾向にある。ところが、実施例1はモジュラスが比較例1と比較例2の間にあるのにもかかわらず、硬化性、復元性は最も良好な結果であった。
 さらに表2、3から明らかなように、分岐点を有するシラン架橋性ポリマー(A)と特定のシリル基を有するシラン架橋性ポリマー(B)を含む実施例2、3の組成物は、分岐点を有さない直鎖状のシラン架橋性ポリマーと特定のシリル基を有するシラン架橋性ポリマー(B)を含む比較例3~6(実施例2は比較例3、4と比較し、実施例3は比較例5、6と比較する)の組成物と比べて、特に良好な硬化性と復元性を示した。
 

Claims (7)

  1.  以下の式(1)で表されるシラン架橋性ポリマー(A)
    (HO)-Y-[O-CO-NH-CR -SiR3-ap-x  (1)
    (式(1)中、Yは少なくとも一か所以上の分岐点を有するポリマー鎖であり、Rは、それぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Rはそれぞれ独立に、水素原子、または炭素原子数1から20の置換あるいは非置換の炭化水素基であり、Xは水酸基または加水分解性基であり、pは3から10の整数であり、xは0からp-1の整数であり、aは同一または異なっていてもよく、0、1または2である。)
     及び、以下の式(2)で表されるシリル基末端を1分子中に1個のみ有する、分岐点を有しないシラン架橋性ポリマー(B)
    -SiR 3-c  (2)
    (式(2)中、Xは前記記載と同じであり、Rはそれぞれ独立に、炭素原子数1から20の置換あるいは非置換の炭化水素基であり、cは0、1または2である。)
     を含む組成物であり、前記シラン架橋性ポリマー(A)を100重量部としたとき、前記シラン架橋性ポリマー(B)の含有量が5重量部以上200重量部以下である、組成物。
  2.  前記式(1)で表されるシラン架橋性ポリマー(A)の式(1)中のpが3である、請求項1に記載の組成物。
  3.  シラン架橋性ポリマー(A)及び(B)の重合体骨格が、ポリオキシアルキレン系重合体である、請求項1又は2に記載の組成物。
  4.  前記シラン架橋性ポリマー(B)のシリル基が以下の式(3)で表される、請求項1~3のいずれか一項に記載の組成物。
    -O-CO-NH-(CH-SiX  (3)
    (Xは前記請求項1の記載と同じである。)
  5.  前記シラン架橋性ポリマー(B)のシリル基が以下の式(4)で表される、請求項1~3のいずれか一項に記載の組成物。
    -O-(CH-SiX  (4)
    (Xは前記請求項1の記載と同じである。)
  6.  前記シラン架橋性ポリマー(B)の含有量が、前記シラン架橋性ポリマー(A)を100重量部としたとき5重量部以上100重量部以下である、請求項1~5のいずれか一項に記載の組成物。
  7.  前記シラン架橋性ポリマー(A)と前記シラン架橋性ポリマー(B)の総和を100重量部としたとき、さらにアミノシラン化合物(C)を0.1重量部以上20重量部以下含む、請求項1~6のいずれか一項に記載の組成物。
     
PCT/JP2022/008396 2021-03-26 2022-02-28 シラン架橋性ポリマー含有組成物 WO2022202132A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508856A JPWO2022202132A1 (ja) 2021-03-26 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052790 2021-03-26
JP2021-052790 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202132A1 true WO2022202132A1 (ja) 2022-09-29

Family

ID=83395515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008396 WO2022202132A1 (ja) 2021-03-26 2022-02-28 シラン架橋性ポリマー含有組成物

Country Status (2)

Country Link
JP (1) JPWO2022202132A1 (ja)
WO (1) WO2022202132A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514504A (ja) * 2002-01-17 2005-05-19 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシランを末端基とするポリマーを含有している架橋性ポリマーブレンド
WO2012020560A1 (ja) * 2010-08-10 2012-02-16 株式会社カネカ 硬化性組成物
JP2013076094A (ja) * 2013-01-28 2013-04-25 Asahi Glass Co Ltd 硬化性組成物
JP2016534192A (ja) * 2013-08-23 2016-11-04 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG オルガニル−オキシシラン末端ポリマーに基づく架橋性組成物
JP2019182885A (ja) * 2018-03-30 2019-10-24 株式会社カネカ 硬化性組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514504A (ja) * 2002-01-17 2005-05-19 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング アルコキシシランを末端基とするポリマーを含有している架橋性ポリマーブレンド
WO2012020560A1 (ja) * 2010-08-10 2012-02-16 株式会社カネカ 硬化性組成物
JP2013076094A (ja) * 2013-01-28 2013-04-25 Asahi Glass Co Ltd 硬化性組成物
JP2016534192A (ja) * 2013-08-23 2016-11-04 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG オルガニル−オキシシラン末端ポリマーに基づく架橋性組成物
JP2019182885A (ja) * 2018-03-30 2019-10-24 株式会社カネカ 硬化性組成物

Also Published As

Publication number Publication date
JPWO2022202132A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP4101632B2 (ja) 硬化性組成物および復元性、クリープ性改善方法
JP4814733B2 (ja) 硬化性組成物
JP6714515B2 (ja) 硬化性組成物およびその硬化物
JP5485932B2 (ja) 硬化性組成物
US10072132B2 (en) Curable composition
JP6682227B2 (ja) 硬化性組成物
EP2894199A1 (en) Curable composition
JP7285247B2 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP2024009271A (ja) ポリオキシアルキレン系重合体及び硬化性組成物
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
JP2019073680A (ja) 硬化性組成物
WO2022181545A1 (ja) 加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物
JP6818540B2 (ja) 硬化性組成物
WO2018199270A1 (ja) 硬化性組成物
WO2022163563A1 (ja) ポリオキシアルキレン系重合体及びその混合物
WO2022163562A1 (ja) ポリオキシアルキレン系重合体の混合物及び硬化性組成物
JP7356247B2 (ja) 硬化性組成物、及び硬化物
WO2022202132A1 (ja) シラン架橋性ポリマー含有組成物
CN113795547B (zh) 固化性组合物及固化物
JP2022143083A (ja) 有機重合体の製造方法、並びに、有機重合体、硬化性組成物、及び硬化物
JP2022135365A (ja) 有機重合体の製造方法、並びに、有機重合体、硬化性組成物、及び硬化物
JP2023149911A (ja) 加水分解性シリル基含有ポリオキシアルキレン系重合体及びその製造方法、並びにその組成物
JP6839542B2 (ja) 硬化性組成物
WO2023171425A1 (ja) ポリオキシアルキレン系重合体の混合物および硬化性組成物
WO2023162664A1 (ja) 硬化性組成物およびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774930

Country of ref document: EP

Kind code of ref document: A1