WO2022199493A1 - 一种转轴机构及终端设备 - Google Patents

一种转轴机构及终端设备 Download PDF

Info

Publication number
WO2022199493A1
WO2022199493A1 PCT/CN2022/081769 CN2022081769W WO2022199493A1 WO 2022199493 A1 WO2022199493 A1 WO 2022199493A1 CN 2022081769 W CN2022081769 W CN 2022081769W WO 2022199493 A1 WO2022199493 A1 WO 2022199493A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
assembly
sliding
damping
main shaft
Prior art date
Application number
PCT/CN2022/081769
Other languages
English (en)
French (fr)
Inventor
彭乐雄
刘勇
钟鼎
伍文文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22774154.3A priority Critical patent/EP4300254A1/en
Publication of WO2022199493A1 publication Critical patent/WO2022199493A1/zh
Priority to US18/472,399 priority patent/US20240015909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • H04M1/022The hinge comprising two parallel pivoting axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1641Details related to the display arrangement, including those related to the mounting of the display in the housing the display being formed by a plurality of foldable display components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0226Hinges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D3/00Hinges with pins
    • E05D3/06Hinges with pins with two or more pins
    • E05D3/12Hinges with pins with two or more pins with two parallel pins and one arm
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2999/00Subject-matter not otherwise provided for in this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel

Definitions

  • the present application relates to the technical field of terminal equipment, and in particular, to a rotating shaft mechanism and terminal equipment.
  • Foldable terminal products (such as foldable mobile phones, foldable tablets, foldable computers and other electronic devices) need to meet higher reliability and better operating experience before they are easily accepted by consumers.
  • a foldable mobile phone As an example, its flexible screen can be flexibly changed according to different usage scenarios to switch usage modes, which is also the current research and development direction of mobile phone manufacturers.
  • the flexible screen is only a part of the structure of the foldable mobile phone, and the cooperation of the hinge mechanism is also required to realize the foldability of the entire terminal product.
  • the hinge mechanism can also provide sufficient damping force for the entire foldable mobile phone in different folding states, so that the foldable mobile phone has reliable performance during the process of switching the folding state. support.
  • the foldable terminal product has reliable support, which can effectively reduce the risk of damage to the flexible screen. Therefore, the size and stability of the effective damping force that the rotating shaft mechanism can provide for the entire end product has become a key research topic for those skilled in the art at present.
  • the present application provides a rotating shaft mechanism and terminal equipment, so that the rotating shaft mechanism can provide damping force that meets the requirements for the entire terminal equipment.
  • a hinge mechanism in a first aspect, can be applied to a foldable terminal device.
  • the terminal device includes two housings that can be rotated around the hinge mechanism to realize closing and unfolding of the terminal device.
  • the rotating shaft mechanism includes a main shaft assembly and a damping assembly, and the damping assembly is rotatably connected with the main shaft assembly.
  • the damping assembly may include a cam member and a rotating assembly, the cam member is fixed to the main shaft assembly, and the cam member has a cam surface.
  • the rotating assembly includes a rotating member and a sliding member, and the rotating member is rotatably connected with the main shaft assembly to drive the entire rotating assembly to rotate around the main shaft assembly.
  • the sliding member can slide relative to the rotating member in a direction toward or away from the main shaft assembly, and during the rotation of the sliding member relative to the rotating member, the sliding member also elastically abuts against the cam surface, so as to generate a gap between the main shaft assembly and the damping member. damping force.
  • the abutting force formed by the elastic abutment can be converted into a resistance against the relative rotation of the cam member and the rotating component, thereby generating a damping force between the main shaft component and the damping component.
  • the elastic contact force between the slider and the cam surface and the specific shape of the cam surface the comfort of the folding operation experience of the terminal device can be effectively improved, and the service life of the damping component can also be guaranteed.
  • the rotating member can be set to include a main body portion and a connecting portion during specific setting.
  • the connecting part is fixedly connected with the main body part, and the connecting part is used for rotating connection with the main shaft assembly;
  • the rotation connection between the rotating part and the main shaft assembly is realized through a virtual axis.
  • This connection method can be beneficial to realize the thin design of the rotating shaft mechanism.
  • the main body is provided with a chute, and at least part of the sliding piece is accommodated in the chute. This allows at least part of the slider to be accommodated in the chute and slide within the chute.
  • the rotating member may further include a first rotating arm, a second rotating arm and a connecting arm.
  • the first rotating arm and the second rotating arm are respectively rotatably connected with the main shaft assembly, and the ends of the first rotating arm and the second rotating arm facing away from the main shaft assembly are fixedly connected by the connecting arms.
  • the parts of the first rotating arm, the second rotating arm and the connecting part used to enclose the chute can be used as the body part of the rotating member; the ends of the first rotating arm and the second rotating arm used for rotating connection with the spindle assembly The part can be used as the connecting part of the rotating part.
  • a gear structure may be provided at the end of the first rotating arm that is used for rotational connection with the main shaft assembly, and the end of the second rotating arm is used to connect with the main shaft assembly.
  • a gear structure is provided at the end of the main shaft assembly that is rotatably connected. In this way, the gear structure of the first rotating arm of one damping assembly in the paired damping assembly meshes with the gear structure of the first rotating arm or the second rotating arm on the corresponding side of the other damping assembly.
  • the gear structure of the second rotating arm of one damping assembly in the paired damping assemblies meshes with the gear structure of the second rotating arm or the first rotating arm on the corresponding side of the other damping assembly. Therefore, the two damping assemblies can achieve their synchronous movement through the meshing between the gear structures of the rotating arms on the corresponding side.
  • a baffle plate is provided on each side of the two meshing gear structures, and the baffle plates are used to limit the center distance of the two gear structures, so that the two gear structures can be improved The stability of the motion transmission between the gear structures.
  • the sliding member when the sliding member is specifically arranged, the sliding member may include a sliding block, and the sliding block may slide in a direction toward or away from the main shaft assembly in the sliding groove.
  • a first sliding part and a second sliding part may be respectively provided on two opposite groove walls of the The slider is provided with a third sliding part and a fourth sliding part.
  • the third sliding part is slidably matched with the first sliding part
  • the fourth sliding part is slidably matched with the second sliding part.
  • an elastic element is also arranged in the chute, and the sliding block is elastically connected with the elastic element. Since the cam member can be fixed to the main shaft assembly, in the process of sliding the slider relative to the rotating member in the direction toward or away from the main shaft assembly, the elastic element can press the slider towards the cam member, thereby realizing the connection between the slider and the cam member. Elastic abutment.
  • a roller can also be provided on the sliding block, the roller is rotatably connected with the sliding block through the roller shaft, and the roller can Surface elastic contact.
  • the friction between the slider and the cam is rolling friction.
  • the end portion of the slider may further be provided with an abutment portion, and the abutment portion abuts against the cam surface.
  • the surface of the abutting portion can be a circular arc surface or a spherical surface, which can also play the role of reducing the wear between the slider and the cam surface.
  • a rotating shaft mechanism in a second aspect, includes a main shaft assembly and a damping assembly, and the damping assembly is rotatably connected to the main shaft assembly.
  • the damping assembly may include a cam member and a rotating assembly, the cam member is disposed on the rotating assembly, and the cam member has a cam surface.
  • the rotating assembly includes a rotating member and a sliding member, and the rotating member is rotatably connected with the main shaft assembly to drive the entire rotating assembly to rotate around the main shaft assembly.
  • the sliding member can slide relative to the rotating member in a direction toward or away from the main shaft assembly, and during the rotation of the sliding member relative to the rotating member, the sliding member also elastically abuts against the cam surface, so as to generate a gap between the main shaft assembly and the damping member. damping force.
  • the abutting force formed by the elastic abutment can be converted into a resistance against the relative rotation of the cam member and the rotating component, thereby generating a damping force between the main shaft component and the damping component.
  • the elastic contact force between the slider and the cam surface and the specific shape of the cam surface the comfort of the folding operation experience of the terminal device can be effectively improved, and the service life of the damping component can also be guaranteed.
  • the rotating member when the rotating member is specifically arranged, the rotating member includes a body portion and a connecting portion.
  • the connecting part is fixedly connected with the main body part, and the connecting part is used for rotating connection with the main shaft assembly;
  • the rotation connection between the rotating part and the main shaft assembly is realized through a virtual axis.
  • This connection method can be beneficial to realize the thin design of the rotating shaft mechanism.
  • the main body is provided with a chute, and at least part of the sliding piece is accommodated in the chute. This allows at least part of the slider to be accommodated in the chute and slide within the chute.
  • the sliding member may include a sliding block and a rotating part, the rotating part is rotatably connected with the main shaft assembly, and the sliding block is rotatably connected with the rotating part.
  • the axis of rotation of the rotating part around the main shaft assembly is parallel to but not coincident with the axis of rotation of the rotating part around the main shaft assembly. Therefore, during the rotation of the rotating assembly around the main shaft assembly, a phase difference is generated between the movement of the sliding block and the rotating member, so that the sliding block can slide in the direction toward or away from the main shaft assembly in the chute.
  • a gear structure may be provided on the rotating part, and the rotating shaft mechanism may include two damping assemblies arranged in pairs, and the gear structures of the rotating parts of the two damping assemblies are meshed, so as to realize the synchronous rotation of the two damping assemblies, so as to improve the rotation speed of the rotating shaft. Movement stability of the mechanism.
  • a baffle plate is provided on each side of the two meshing gear structures, and the baffle plates are used to limit the center distance of the two gear structures, so that the two gear structures can be improved The stability of the motion transmission between the gear structures.
  • a mounting groove is also provided on the main body of the rotating member.
  • the two installation grooves are respectively arranged on both sides of the chute, and the installation grooves are communicated with the chute through through holes.
  • an elastic element is arranged in the installation groove, and the cam element is elastically connected with the elastic element, so that the elastic element can press the cam element to the slider, so that the slider and the cam surface of the cam element are in elastic contact.
  • the end of the slider facing the cam member may also be provided with an inclined surface.
  • the cam surface of the cam member can abut with the inclined surface, so as to exert a thrust force on the slider away from the main shaft assembly. It can be understood that the damping force provided by the damping component can be adjusted through reasonable design of the cam surface of the cam and the inclined surface of the slider, so as to meet the user's requirements for the operation feel.
  • the cam member may also be provided with a boss, and the slider limits the movement of the boss towards the notch of the installation groove, so as to limit the cam member to the installation groove. Therefore, the cam piece can be prevented from falling off from the installation groove, and the structural stability of the rotating shaft mechanism can be improved.
  • the main shaft assembly when the main shaft assembly is specifically configured, the main shaft assembly may include a main inner shaft and a main outer shaft. Wherein, the main inner shaft and the main outer shaft are fastened together to enclose an accommodating space for accommodating other components of the rotating shaft mechanism. It can be understood that, the part of the above-mentioned rotating assembly for rotatably connecting with the main shaft assembly can also be accommodated in the accommodating space.
  • a terminal device in a third aspect, includes a flexible screen, a first casing, a second casing, and the rotating shaft mechanism of the first aspect or the second aspect.
  • the first casing and the second casing are arranged on both sides of the rotating shaft mechanism, and the first casing and the second casing are respectively connected with the damping components on the corresponding side.
  • the flexible screen can be continuously covered on the first shell, the second shell and the rotating shaft mechanism, and the flexible screen is fixedly connected with the first shell and the second shell.
  • the specific shape of the cam surface of the cam member can be reasonably designed to improve the comfort of the rotating shaft mechanism for the folding operation experience of the terminal device, and to ensure the service life of the damping component.
  • FIG. 1 is a schematic diagram of an exploded structure of a terminal device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a rotating shaft mechanism provided in an embodiment of the application in a flattened state
  • FIG. 3 is a schematic structural diagram of a damping component of a rotating shaft mechanism provided by an embodiment of the application.
  • 4a is a schematic structural diagram of a rotating shaft mechanism provided by an embodiment of the application.
  • Figure 4b is a schematic structural diagram of the rotating shaft mechanism in Figure 4a from another angle;
  • FIG. 5 is a schematic diagram of an exploded structure of a rotating shaft mechanism provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a rotating member provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an exploded structure of a spindle assembly provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a main inner shaft provided by an embodiment of the present application.
  • Fig. 9 is A-A sectional view in Fig. 8.
  • FIG. 10 is a schematic partial structure diagram of a rotating shaft mechanism provided by an embodiment of the application.
  • FIG. 11a to 11d are cross-sectional views of the rotating shaft mechanism provided in an embodiment of the application at different degrees of folding;
  • FIG. 12 is a schematic diagram of the operating force of the rotating shaft mechanism in the process from a flat state to a closed state according to an embodiment of the application;
  • FIG. 13a is a schematic structural diagram of a rotating shaft mechanism provided by another embodiment of the present application.
  • Fig. 13b is a schematic structural diagram of the rotating shaft mechanism in Fig. 13a from another angle;
  • FIG. 14 is a schematic diagram of an exploded structure of a rotating shaft mechanism provided by another embodiment of the present application.
  • 15 is a schematic structural diagram of a slider provided by another embodiment of the present application.
  • 16 is a schematic diagram of the connection relationship between the meshed first rotating arm and the second rotating arm provided by another embodiment of the application;
  • 17 is a schematic structural diagram of a main inner shaft provided by another embodiment of the application.
  • FIG. 18 is a schematic partial structure diagram of a rotating shaft mechanism provided by another embodiment of the present application.
  • 19a to 19c are cross-sectional views of the rotating shaft mechanism provided in another embodiment of the application at different degrees of folding;
  • 20 is a schematic diagram of the operating force of the rotating shaft mechanism in the process from a flat state to a closed state according to an embodiment of the application;
  • FIG. 21a is a schematic structural diagram of a rotating shaft mechanism in a flattened state provided by another embodiment of the present application.
  • Fig. 21b is a schematic structural diagram of the rotating shaft mechanism in Fig. 21a from another angle;
  • 21c is a schematic structural diagram of a rotating shaft mechanism in an intermediate state provided by another embodiment of the present application.
  • FIG. 22 is a schematic diagram of an exploded structure of a rotating shaft mechanism provided by another embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a rotating member provided by another embodiment of the application.
  • 24 is a schematic structural diagram of a cam member provided by another embodiment of the application.
  • 25 is a schematic structural diagram of a rotating part provided by another embodiment of the application.
  • 26 is a schematic exploded view of the exploded structure of two meshing rotating parts provided by another embodiment of the application.
  • FIG. 27 is a schematic diagram of the connection relationship of two meshing rotating parts provided by another embodiment of the application.
  • FIG. 28 is a schematic structural diagram of a slider provided by another embodiment of the present application.
  • FIG. 29 is a schematic diagram of an exploded structure of a spindle assembly provided by another embodiment of the application.
  • FIG. 30 is a schematic structural diagram of a main inner shaft provided by another embodiment of the application.
  • FIG. 31 is a schematic structural diagram of a gland provided by another embodiment of the application.
  • 32a to 32c are schematic structural diagrams of the rotating shaft mechanism provided in another embodiment of the present application in different degrees of folding;
  • FIG. 33 is a schematic diagram of the operating force of the rotating shaft mechanism during the process from the flattened state to the closed state according to another embodiment of the present application.
  • 1012-rotating assembly 10121-rotating part; 101211-body part; 1012111-chute; 10121111-first sliding part;
  • 101224-elastic element 101225-rotating part; 1012251-second shaft; 1012252-gear structure;
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 shows the structure of a foldable terminal device according to a possible embodiment of the present application.
  • the foldable terminal device may generally include a hinge mechanism 10 , a first casing 20 , a second casing 30 and a flexible screen 40 .
  • the first casing 20 and the second casing 30 are respectively disposed on two sides of the rotating shaft mechanism 10 .
  • the flexible screen 40 covers the first casing 20 , the second casing 30 and the rotating shaft mechanism 10 , and can be bonded to the first casing 20 , the second casing 30 and the rotating shaft mechanism 10 .
  • At least one of the first casing 20 and the second casing 30 can be rotatably connected to the rotating shaft mechanism 10, so that the terminal device can be in a flattened state, a closed state, and in a flattened state and closed.
  • Switching between intermediate states (hereinafter referred to as intermediate states) between states.
  • FIG. 2 shows the structure of the terminal device in a flattened state. In the flattened state, the first casing 20 and the second casing 30 are respectively disposed on both sides of the rotating shaft mechanism 10 .
  • the surfaces of the first casing 20 , the second casing 30 and the rotating shaft mechanism 10 for contacting the flexible screen 40 are in approximately the same plane, since the flexible screen 40 and the first casing 20 , the second casing 30 and the rotating shaft are in approximately the same plane.
  • the mechanism 10 is bonded and connected, so at this time, the flexible screen 40 can also be in a flat state under the support of the first casing 20 , the second casing 30 and the rotating shaft mechanism 10 .
  • the terminal device may be an externally folded terminal device, or may be an internally folded terminal device.
  • the flexible screen 40 is always located on the outside of the terminal device during the process from the flattened state to the closed state of the outwardly folded terminal device; while for the inwardly folded electronic device, from the flattened state to the closed state During the process, the flexible screen 40 is always located inside the terminal device.
  • the first casing 20 and the second casing 30 can rotate relative to each other in the directions shown by the arrowed curve shown in FIG. 2 .
  • the flexible screen 40 is bent following the first casing 20 and the second casing 30 .
  • the flexible screen 40 is a key component in the foldable terminal device, in the process of switching the folding mode of the foldable terminal device between the flattened state, the closed state and the intermediate state, if the first shell of the foldable terminal device is The body 20 , the second casing 30 and the rotating shaft mechanism 10 cannot provide a stable support force for the flexible screen 40 , which may cause the flexible screen 40 to display abnormally under the influence of external force pulling or squeezing.
  • a damping component may be generally provided in the hinge mechanism 10 to enable the damping component to provide reliable damping force for the entire terminal device during the process of switching the terminal device to the folding mode, thereby achieving stable support for the flexible screen 40 .
  • the damping force provided by the damping assembly is mostly realized by the friction force generated by the relative motion between the contacting components.
  • a large friction force will be generated between the contacting components, which may cause wear and tear after long-term use, which may lead to the attenuation of the damping force of the damping component.
  • the rotating shaft mechanism provided by the present application aims to solve the above problems, so as to reduce the damping force attenuation degree of the damping component of the rotating shaft mechanism and prolong its service life, thereby providing effective support for the terminal equipment applied with the rotating shaft mechanism.
  • FIG. 3 shows a schematic structural diagram of a damping assembly provided by an embodiment of the present application.
  • the damping assembly includes two parts that can rotate with each other, namely a cam member 1011 and a rotating assembly 1012 .
  • the cam member 1011 is a member with a curvilinear profile.
  • the surface of the cam member 1011 formed by the curvilinear profile is called the cam surface 10111 of the cam member 1011;
  • a slider 101221 that can slide along the slide.
  • the sliding block 101221 can slide in the slideway in a direction toward or away from the rotation center of the rotating assembly 1012 .
  • the damping assembly 101 may also be provided with an elastic element 101224, and the slider 101221 directly or indirectly abuts against the cam surface 10111 of the above-mentioned cam member 1011 under the action of the elastic element 101224 (such as a spring); or the cam member 1011 is in contact with the elastic element Under the action of 101224, it abuts against the slider 101221, so as to realize the elastic contact between the slider 101221 and the cam surface 10111. In this way, when the cam member 1011 and the rotating assembly 1012 rotate relative to each other, the slider 101221 can slide in the slideway under the pushing action of the cam surface 10111, thereby compressing or stretching the elastic element 101224 to different degrees.
  • the elastic element 101224 such as a spring
  • the elastic element 101224 Since the elastic element 101224 is compressed or stretched to a different degree, the elastic force accumulated by the elastic element 101224 is also different, so that the resistance received by the cam member 1011 and the rotating component 1012 during the relative rotation is also different.
  • the damping component 101 of the rotating shaft mechanism 10 provided in the present application can be designed based on this structural principle.
  • the structure thereof will be described in detail below with reference to the accompanying drawings.
  • Figure 4a shows a schematic structural diagram of the rotating shaft mechanism 10 provided by a possible embodiment of the present application
  • Figure 4b shows a structural schematic diagram of the rotating shaft mechanism 10 in Figure 4a from another angle.
  • the shaft mechanism 10 may include a damping assembly 101 and a main shaft assembly 102 .
  • the main shaft assembly 102 can be used as a bearing component of the rotating shaft mechanism 10 for bearing the above-mentioned damping assembly 101 .
  • the damping assembly 101 can be rotatably connected with the main shaft assembly 102 .
  • the axis direction of the rotation axis around which the damping assembly 101 rotates can be defined as the length direction of the main shaft assembly 102 .
  • damping assembly 101 there may be a plurality of damping assemblies 101, and the plurality of damping assemblies 101 are respectively disposed on both sides of the main shaft assembly 102 perpendicular to its length direction.
  • the damping assembly 101 located on one side of the spindle assembly 102 can be fixedly connected with the first housing 20 of the terminal device mentioned in the above-mentioned embodiment shown in FIG.
  • the damping assembly 101 is fixedly connected to the second casing 30 of the terminal device mentioned in the above-mentioned embodiment shown in FIG. 1 , so that the damping force generated by the damping assembly 101 can be transmitted to the corresponding casing, thereby providing the entire terminal device with Reliable support.
  • the damping assembly 101 disposed on the same side and the casing can be directly contacted and fixed, or the damping assembly 101 can be fixed to the casing through other possible structures, so as to realize indirect fixing of the damping assembly 101 and the casing.
  • the number of damping assemblies 101 located on both sides of the main shaft assembly 102 may be the same, so that the damping assemblies 101 can provide almost the same damping force for the two housings of the terminal device, which has It is beneficial to improve the structural stability of the terminal equipment.
  • the damping assemblies 101 on both sides of the main shaft assembly 102 may be arranged in a one-to-one correspondence or staggered, which is not specifically limited in this application.
  • FIG. 5 is an exploded structural diagram of the rotating shaft mechanism 10 according to an embodiment of the application.
  • the damping assembly 101 may include a cam member 1011 and a rotating assembly 1012 .
  • the cam member 1011 can be fixed to the main shaft assembly 102 , and the cam member 1011 has a cam surface 10111 .
  • the rotating assembly 1012 includes a rotating member 10121 and a sliding member 10122 .
  • the rotating member 10121 can rotate around the main shaft assembly 102 , thereby driving the rotating assembly 1012 to rotate around the main shaft assembly 102 .
  • FIG. 6 shows the structure of the rotating member 10121 according to an embodiment of the present application.
  • the rotating member 10121 may include a body portion 101211 and a connecting portion 101212, wherein the connecting portion 101212 is disposed on one side of the body portion 101211, and the connecting portion 101212 is fixedly connected with the body portion 101211.
  • the rotating member can be integrally formed, which can effectively improve the structural reliability of the rotating member 10121 , thereby improving the stability of its movement.
  • the rotating member 10121 can also be a separate structure, and the body portion 101211 and the connecting portion 101212 can be fixedly connected by fasteners 103 such as bolts, but not limited to, which can make the structure of the rotating member 10121 set. more flexible.
  • the connecting portion 101212 can be used to rotatably connect with the spindle assembly 102.
  • the connecting portion 101212 can be configured as an arc shaft.
  • the number of arc shafts may be multiple, so as to improve the reliability of the connection between the connecting portion 101212 and the spindle assembly 102 .
  • the main shaft assembly 102 is provided with arc grooves 10221, and the arc grooves 10221 are arranged in one-to-one correspondence with the arc shafts, so that each arc shaft can be accommodated in the corresponding arc groove 10221, and the arc The arc surface of the shaft can slide along the groove wall of the arc groove 10221 , so as to realize the relative rotation of the connecting part 101212 and the main shaft assembly 102 .
  • the sliding fit of the arc shaft and the arc groove 10221 forms a virtual shaft, so that the rotating member 10121 and the main shaft assembly 102 are rotationally connected through the virtual shaft, which can be used to realize
  • the rotating member 10121 and the main shaft assembly 102 can also be rotatably connected by a solid shaft, which can effectively simplify the structure of the rotating shaft mechanism 10 and reduce the difficulty of controlling the manufacturing process.
  • the body portion 101211 of the rotating member 10121 when the body portion 101211 of the rotating member 10121 is specifically set, the body portion 101211 is provided with a chute 1012111, and at least a part of the sliding member 10122 is accommodated in the sliding slot 1012111, and the sliding member 10122 can be placed in the sliding slot 1012111.
  • the chute 1012111 slides in the direction toward or away from the spindle assembly 102 (the direction indicated by the arrow in FIG. 6 ).
  • one end of the sliding member 10122 can abut with the cam surface 10111 of the cam member 1011. It can be understood that the abutting force between the sliding member 10122 and the cam member 1011 can be converted into the damping force of the damping assembly 101 and output to the outside.
  • the sliding member 10122 When the sliding member 10122 is specifically arranged, the sliding member 10122 includes a sliding block 101221, and the sliding block 101221 is accommodated in the sliding groove 1012111 of the main body portion 101211 of the above-mentioned rotating member 10121, and can be relative to the body of the rotating member 10121 in the sliding groove 1012111 The portion 101211 slides in a direction toward or away from the center of rotation of the rotating member 10121 .
  • the specific shape of the slider 101221 is not limited, and for example, it can be a regular shape such as a rectangle and a trapezoid, and it can also be an irregular shape.
  • the sliding member 10122 can abut with the cam member 1011, in order to reduce the wear of the sliding member 10122, the sliding member 10122 can also be provided with a roller 101222.
  • the roller 101222 can be in contact with the cam member 1011, so that the friction pair between the sliding member 10122 and the cam member 1011 is a rolling friction pair.
  • one end of the slider 101221 is provided with a mounting hole 1012211 , and two ends of the roller shaft 101223 are respectively mounted in one of the mounting holes 1012211 .
  • the roller shaft 101223 can be fixedly connected with the slider 101221 after being installed in the installation hole 1012211, and the roller 101222 can rotate around the roller shaft 101223, thereby realizing the rotational connection between the roller 101222 and the slider 101221.
  • the roller 101222 can also be fixedly connected with the roller shaft 101223, and the roller shaft 101223 can be rotated in the installation hole 1012211 after being installed in the installation hole 1012211, so as to realize the connection between the roller 101222 and the slider.
  • the roller 101222 is located on the side of the slider 101221 facing the spindle assembly 102, and because the sliding member 10122 slides in the sliding groove 1012111 of the main body 101211 of the rotating member 10121, the roller 101222 While in contact with the cam surface 10111 of the cam member 1011 , it also slides in the chute 1012111 along with the slider 101221 .
  • an escape opening 1012112 is provided on the side of the chute 1012111 of the rotating member 10121 facing the spindle assembly 102, and the roller 101222 can pass through the escape opening. 1012112 protrudes to the outside of the chute 1012111 for contact with the cam member 1011 .
  • the elastic element 101224 can be, but not limited to, a spring, an elastic sheet, and the like.
  • the elastic element 101224 can be accommodated in the chute 1012111, and the elastic element 101224 is disposed on the side of the slider 101221 away from the spindle assembly 102, one end of the elastic element 101224 is elastically connected with the slider 101221, and the other end is connected with the slider 101221.
  • the groove walls of the groove 1012111 are elastically connected to press the slider 101221 toward the cam member 1011 .
  • the specific quantity of the elastic elements can be set according to the magnitude of the damping force to be provided by the damping assembly 101 and the space of the chute 101, 2111, and the like.
  • a guide rod 1012212 may be provided on the side of the slider 101221 away from the spindle assembly 102 , so that the elastic element 101224 can be sleeved on the guide rod 1012212 to facilitate elasticity
  • the installation of the element 101224 and the slider 101221 can also avoid problems such as arching of the elastic element 101224 when elastically deformed, thereby helping to improve the reliability of the slider 101221 sliding in the chute 1012111.
  • a hollow area 1012213 may also be provided on the side of the slider 101221 away from the main shaft assembly 102 , and the guide rod 1012212 in the above embodiment may be disposed in the hollow area 1012213 .
  • the structure of the sliding member 10122 can be made more compact, which can make the volume of the rotating assembly 1012 smaller, thereby facilitating the realization of the miniaturized design of the rotating shaft mechanism 10 .
  • at least part of the elastic element 101224 sleeved on the guide rod 1012212 can also be accommodated in the hollow area 1012213, which is beneficial to limit the elastic element 101224 and improve the movement stability of the elastic element 101224.
  • the slider 101221 may be an integrally formed structure, and in this case, the hollow area 1012213 may be a groove formed on the slider 101221 .
  • the sliding block 101221 may also be a split structure, and in this embodiment, the hollow area 1012213 may be an area enclosed by a plurality of blocks for forming a fixed connection.
  • the elastic element 101224 can be a compression spring, which can be compressed and accumulate elastic force during the sliding process of the slider 101221 along the sliding groove 1012111 .
  • the elastic force acts on the slider 101221 to press the slider 101221 to the cam member 1011 , so as to realize the contact between the slider 101221 and the cam member 1011 .
  • the rotating assembly 1012 may further include a cover plate 10123 , the cover plate 10123 covers the opening of the chute 1012111 .
  • the cover plate 10123 and the rotating member 10121 can be threadedly connected by fasteners 103 such as screws, bolts, etc., but not limited to; Bonding, etc. for fixed connection.
  • fasteners 103 such as screws, bolts, etc., but not limited to; Bonding, etc. for fixed connection.
  • a sliding groove cavity can be formed between the cover plate 10123 and the rotating member 10121, and at least part of the sliding member 10122 mentioned in the above embodiment can be accommodated in the sliding groove 10121. In the chute cavity, it can prevent the sliding member 10122 from falling off the rotating member 10121.
  • FIG. 7 is an exploded view of the main shaft assembly 102 according to an embodiment of the present application.
  • the main shaft assembly 102 may include a main outer shaft 1021 and a main inner shaft 1022, wherein the main outer shaft 1021 may be, but not limited to, an integrally formed plate-like structure.
  • the main inner shaft 1022 is fastened with the main outer shaft 1021 , and an accommodation space for accommodating other components of the rotating shaft mechanism 10 can be enclosed between the main inner shaft 1022 and the main outer shaft 1021 .
  • the main outer shaft 1021 and the main inner shaft 1022 may be connected by, but not limited to, fasteners 103 such as bolts, screws or the like, or fixedly connected by snaps.
  • FIG. 8 shows a schematic structural diagram of the main inner shaft 1022 according to a possible embodiment of the present application.
  • the main inner shaft 1022 has a first surface 10222 for supporting the flexible screen 40.
  • the first surface 10222 may be an arc surface. In this way, when the flexible screen 40 shown in FIG. 1 is folded with the rotating shaft mechanism, the first surface 10222 can be used to support the flexible screen 40 .
  • the curvature of the first surface 10222 can be designed according to the curvature of the bending portion of the flexible screen 40, so as to reduce the risk of damage to the flexible screen 40 caused by being squeezed or pulled.
  • FIG. 9 is a cross-sectional view of the main inner shaft 1022 at A-A in FIG. 8 .
  • the cam member 1011 of the rotating assembly 1012 mentioned in the above embodiment can be fixed to the main inner shaft 1022 .
  • the cam member 1011 may also be integrally formed with the main inner shaft 1022 to simplify the structure of the rotating shaft mechanism 10 and improve its structural stability.
  • FIG. 10 shows a partial structural schematic diagram of the rotating shaft mechanism 10 in a flattened state.
  • the sliding member 10122 achieves elastic abutment with the cam surface 10111 of the cam member 1011 under the action of the elastic force of the elastic element 101224.
  • the abutting force formed by the elastic abutment can be converted into the resistance of the relative rotation of the cam member 1011 and the rotating assembly 1012 , thereby generating a damping force between the main shaft assembly 102 and the damping assembly 101 .
  • the rotating shaft mechanism 10 can be maintained in the flattened state, so as to provide sufficient supporting force for the terminal device.
  • FIG. 11a shows a cross-sectional view of the hinge mechanism 10 in a flattened state
  • FIGS. 11b to 11d respectively show a cross-sectional view of the hinge mechanism 10 in an intermediate state with different degrees of folding .
  • FIGS. 11 a to 11 d only illustrate the structure of one side of the rotating shaft mechanism 10 , and the structure of the other side of the rotating shaft mechanism 10 is similar. Therefore, in this embodiment of the present application, only the structure of FIGS. The structure of one side of the rotating shaft mechanism 10 shown in 11d will be described as an example.
  • FIG. 12 shows a schematic diagram of the operating force of the rotating shaft mechanism 10 during the process from the flattened state to the closed state according to an embodiment of the present application. It can be understood that, in FIG. 12 , the abscissa represents the process from the flattened state to the closed state, and the ordinate represents the magnitude of the operating force.
  • the shaft mechanism 10 needs to be able to provide a larger damping force to maintain the flatness of the entire equipment.
  • the rotating member 10121 rotates around the main shaft assembly 102
  • the sliding member 10122 moves along the cam surface 10111 of the cam member 1011 , and compresses the elastic element 101224 under the action of the cam member 1011 . It can be understood that, by reasonably designing the elastic force of the elastic element 101224 and the specific shape of the cam surface 10111, the comfort of the folding operation experience of the terminal device can be effectively improved, and the service life of the damping component can also be guaranteed.
  • FIG. 13a is a schematic structural diagram of a rotating shaft mechanism 10 provided by another embodiment of the application
  • FIG. 13b is a structural schematic diagram of the rotating shaft mechanism 10 in FIG. 13a from another angle.
  • the difference between the rotating shaft mechanism 10 of this embodiment and the rotating shaft mechanism 10 provided in the above-mentioned embodiments mainly lies in the specific arrangement of the damping assembly 101 .
  • FIG. 14 shows an exploded view of the rotating shaft mechanism 10 according to another embodiment of the present application.
  • the damping assembly 101 may also include a cam member 1011 and a rotating assembly 1012 .
  • the cam member 1011 is fixed to the main shaft assembly 102 of the rotating shaft mechanism 10
  • the cam member 1011 has a cam surface 10111 .
  • the rotating assembly 1012 includes a rotating member 10121 and a sliding member 10122 .
  • the rotating member 10121 can rotate around the main shaft assembly 102 , thereby driving the entire rotating assembly 1012 to rotate around the main shaft assembly 102 .
  • the rotating member 10121 includes a first rotating arm 101213 , a second rotating arm 101214 and a connecting arm 101215 .
  • the first rotating arm 101213 and the second rotating arm 101214 are disposed opposite to each other, and are respectively rotatably connected with the spindle assembly 102 .
  • the structures of the first rotating arm 101213 and the second rotating arm 101214 may also be the same.
  • first rotating arm 101213 facing away from the spindle assembly 102 and the end of the second rotating arm 101214 facing away from the spindle assembly 102 are fixedly connected through the connecting arm 101215, so that the rotating member 10121 forms an integral frame structure.
  • first rotating arm 101213 and the second rotating arm 101214 may be fixedly connected to the connecting arm 101215 through, but not limited to, fasteners 103 such as screws and bolts.
  • the first rotating arm 101213 and the second rotating arm 101214 and the connecting arm 101215 can enclose a chute 1012111 after being connected.
  • the part used to enclose the chute 1012111 can be used as the main body of the rotating member 10121.
  • the first rotating arm 101213 and the second rotating arm 101213 The ends of the two rotating arms 101214 for rotational connection with the spindle assembly 102 can be used as the connecting portion of the rotating member 10121 .
  • the sliding member 10122 can be installed in the sliding groove 1012111 and can slide in the sliding groove 1012111 .
  • one end of the sliding member 10122 can abut with the cam surface 10111 of the cam member 1011. It can be understood that the abutting force between the sliding member 10122 and the cam member 1011 can be converted into the damping force of the damping assembly 101 and output to the outside.
  • the sliding member 10122 When the sliding member 10122 is specifically arranged, the sliding member 10122 includes a sliding block 101221, and the sliding block 101221 is accommodated in the sliding groove 1012111 and can slide in the sliding groove 1012111.
  • the specific shape of the slider 101221 is not limited, and for example, it can be a regular shape such as a rectangle and a trapezoid, and it can also be an irregular shape.
  • FIG. 15 shows the structure of the slider 101221 of an embodiment. 14 and 15 together, in this embodiment, a side of the slider 101221 facing the spindle assembly 102 may be provided with an abutting portion 1012214, and the abutting portion 1012214 may be used to connect with the cam surface 10111 of the cam member 1011 butted against each other.
  • the surface of the abutting portion 1012214 can be a circular arc surface or a spherical surface, so that the friction pair between the sliding block 101221 and the cam member 1011 is a rolling friction pair.
  • the sliding block 101221 can be integrally formed, and the abutting portion 1012214 is a part of the sliding block 101221 in this case, so as to simplify the structure of the sliding member 10122 .
  • the abutting portion 1012214 and the slider 101221 may also be of separate structures, and in this case, the abutting portion 1012214 and the slider 101221 may be fixed by means of screw connection or snap connection.
  • the abutting portion 1012214 can also be set as the roller in the above embodiments, and the roller is rotatably connected to the slider through the roller shaft.
  • first sliding portion 10121111 may be provided on the side of the first rotating arm 101213 facing the chute 1012111
  • second sliding portion 10121112 may be provided on the side of the second rotating arm 101214 facing the chute 1012111.
  • a third sliding portion 1012215 is provided on the side of the slider 101221 facing the first rotating arm 101213, and a third sliding portion 1012215 is provided on the side of the slider 101221 facing the second rotating arm 101214 Four rotating parts 101225.
  • the third sliding portion 1012215 is slidingly matched with the first sliding portion 10121111
  • the fourth sliding portion 1012216 is slidingly matched with the second sliding portion 10121112.
  • the first sliding part 10121111 , the second sliding part 10121112 , the third sliding part 1012215 and the fourth sliding part 1012216 can be set in various ways.
  • the first sliding part 10121111 and the second sliding part 10121112 can be set as groove, while the third sliding part 1012215 and the fourth sliding part 1012216 can be set to be convex; or the first sliding part 10121111 and the second sliding part 10121112 can be set to be convex, while the third sliding part 1012215 and the fourth sliding part 1012216 can be set as a groove; alternatively, the first sliding part 10121111 and the fourth sliding part 1012216 can be set as a groove, while the second sliding part 10121112 and the third sliding part 1012215 The sliding fit of the two sliding parts is sufficient.
  • the slider 101221 can also be connected with an elastic element 101224 to realize the reciprocating movement of the slider 10122 in the chute 1012111 in the direction toward and away from the spindle assembly 102 .
  • the elastic element 101224 is a spring
  • a guide rod 1012212 may be provided on the side of the slider 101221 away from the spindle assembly 102, so that the elastic element 101224 can be sleeved on the guide rod 1012212.
  • the side of the slider 101221 facing away from the spindle assembly 102 may also be provided with a hollow area 1012213, and the guide rod 1012212 and the elastic element 101224 may be arranged in the hollow area 1012213.
  • the specific arrangement of the elastic element 101224 , the guide rod 1012212 and the hollow area 1012213 can be referred to the above-mentioned embodiments, which will not be repeated here.
  • the slider 101221 may be an integrally formed structure, and the hollow area 1012213 may be an open groove on the slider 101221.
  • the third sliding portion 1012215 and The fourth sliding portion 1012216 is also a part of the slider 101221 .
  • the hollow area 1012213 can be an area enclosed by a plurality of blocks constituting the slider 101221, and the third sliding part 1012215 and the fourth sliding part 1012216 can be formed on the corresponding side respectively. on the stop.
  • the end of the first rotating arm 101213 close to the main shaft assembly 102 can rotate with the main shaft assembly 102 through the first rotating shaft 101216 connect.
  • a first through hole 1012131 can be opened at one end of the first rotating arm 101213 close to the spindle assembly 102 , the first rotating shaft 101216 can pass through the first through hole 1012131 , and both ends of the first rotating shaft 101216 can be installed on the spindle assembly 102.
  • the axial direction of the first rotating shaft 101216 is the same as the length direction of the main shaft assembly 102 , the first rotating shaft 101216 can be fixed on the main shaft assembly 102 , and the first rotating arm 101213 can rotate around the rotating shaft.
  • the first rotating arm 101213 can also be fixedly connected with the first rotating shaft 101216, and the first rotating shaft 101216 can be rotatably connected with the spindle assembly 102 after being installed on the spindle assembly 102, so as to realize the connection between the first rotating arm 101213 and the first rotating shaft 101216. Rotational connection of the spindle assembly 102 .
  • the rotational connection between the second rotating arm 101214 and the main shaft assembly 102 can be referred to the side of the first rotating arm 101213, which will not be repeated here. It is worth mentioning that the first rotating arm 101213 and the second rotating arm 101214 can be rotatably connected to the spindle assembly 102 through a first rotating shaft 101216 respectively, or can share a first rotating shaft 101216 to simplify the structure of the rotating shaft mechanism 10 .
  • first rotating arm 101213 and the second rotating arm 101214 are rotatably connected to the spindle assembly 102 through the first rotating shaft 101216, so that the rotating member 10121 and the spindle assembly 102 are rotatably connected through a solid shaft.
  • the rotating member 10121 and the main shaft assembly 102 can also be rotatably connected by means of a virtual shaft, so as to realize the miniaturized design of the shaft mechanism 10 .
  • the number of damping assemblies 101 on both sides of the main shaft assembly 102 may be the same, so that the damping assemblies 101 can provide almost the same damping force to the two housings of the terminal device, which is beneficial to improve the structural stability of the terminal device.
  • the damping assemblies 101 located on both sides of the main shaft assembly 102 have the same number, the damping assemblies 101 on both sides of the main shaft assembly 102 can be arranged in a one-to-one correspondence or staggered.
  • the damping assemblies 101 may also be arranged in pairs, and the paired two damping assemblies 101 are respectively arranged on two sides of the main shaft assembly 102 perpendicular to the length direction thereof.
  • a gear structure 1012132 may be provided at the end of the first rotating arm 101213 for rotational connection with the main shaft assembly 102 , and the gear structure 1012132 may be a separate structure, and It is fixedly connected with the first rotating arm 101213.
  • the gear structure 1012132 can also be directly formed on the surface of the end of the first rotating arm 101213, so as to simplify the structure of the first rotating arm 101213.
  • a gear structure 1012132 may also be provided at one end of the second rotating arm 101214 for rotational connection with the main shaft, and the specific setting method can refer to the first rotating arm 101213, which will not be repeated here.
  • the gear structure 1012132 of the first rotating arm 101213 of one damping assembly 101 in the paired damping assembly 101 can mesh with the gear structure 1012132 of the second rotating arm 101214 of the other damping assembly 101 .
  • the structures of the first rotating arm 101213 and the second rotating arm 101214 can be the same, in some possible embodiments, one damping assembly 101 of the two damping assemblies 101 arranged in pairs can also be The gear structure 1012132 of the first rotating arm 101213 meshes with the gear structure 1012132 of the first rotating arm 101213 of the other damping assembly 101 .
  • the gear structure 1012132 of the second rotating arm 101214 of one damping assembly 101 of the two damping assemblies 101 arranged in pairs can be matched with the first rotating arm 101213 or the second rotating arm 101213 of the corresponding side of the other damping assembly 101 .
  • the gear structure 1012132 of the rotating arm 101214 meshes with each other. Therefore, the two damping assemblies 101 arranged in pairs can achieve synchronous rotation through the meshing between the gear structures 1012132 of the rotating arms on the corresponding side.
  • FIG. 16 shows the connection relationship between the first rotating arm 101213 and the second rotating arm 101214 of the two damping assemblies 101 . Therefore, during the rotation of one damping assembly 101 around the main shaft assembly 102 , the other damping assembly 101 can be driven to move in opposite or opposite directions, so as to realize the synchronous movement of the two damping assemblies 101 . It is beneficial to improve the consistency of the damping force on both sides of the rotating shaft mechanism 10 to improve the structural stability of the rotating shaft mechanism 10 .
  • baffle plate 101217 is provided on each side along the length direction of the main shaft assembly 102, and the two baffle plates 101217 can be used for the gear structure 1012132 of the first rotating arm 101213 and the gear structure 1012132 of the second rotating arm 101214 in the main shaft assembly 102.
  • the movement in the length direction is limited, so that the meshing length between the gear structures 1012132 of the first rotating arm 101213 and the second rotating arm 101214 is longer, thereby improving the stability of motion transmission between the two.
  • each baffle plate 101217 is also provided with a second through hole 1012171, so that the first rotating shaft 101216 of each rotating arm can pass through the corresponding second through hole 1012171 in a one-to-one correspondence, so that the two gear structures 1012132 The center distance is limited to help improve the reliability of motion transmission between the two.
  • the main shaft assembly 102 may include a main outer shaft 1021 and a main inner shaft 1022, wherein the main inner shaft 1022 has a first surface 10222 for supporting the flexible screen 40.
  • the first surface 10222 may be an arc surface. In this way, the first surface 10222 can be used to support the flexible screen 40 when the flexible screen 40 shown in FIG. 1 is folded.
  • the curvature of the first surface 10222 can be designed according to the curvature of the bending portion of the flexible screen 40, so as to reduce the risk of damage to the flexible screen 40 caused by being squeezed or pulled.
  • FIG. 17 shows the structure of the main inner shaft according to another embodiment of the present application.
  • the cam member 1011 of the rotating assembly 1012 mentioned in the above embodiment can be fixed to the main inner shaft 1022 .
  • the cam member 1011 may also be integrally formed with the main inner shaft 1022 to simplify the structure of the rotating shaft mechanism 10 and improve its structural stability.
  • a slot 10223 is provided on the main inner shaft 1022, and the ends of the first rotating arm 101213 and the second rotating arm 101214 in the embodiment shown in FIG. Inside.
  • a shaft hole 102231 can be provided on the groove wall of the slot 10223 along the length direction of the main shaft assembly 102.
  • the shaft hole 102231 can be, but is not limited to, a U-shaped hole.
  • the above-mentioned first rotating arm 101213 and second rotating arm Both ends of the first rotating shaft 101216 of the arm 101214 can be installed in a shaft hole 102231 in a one-to-one correspondence.
  • the main outer shaft 1021 can be fastened with the main inner shaft 1022 , and an accommodation space for accommodating other components of the rotating shaft mechanism 10 can be enclosed between the main outer shaft 1021 and the main inner shaft 1022 .
  • the main outer shaft 1021 and the main inner shaft 1022 can be connected by, but not limited to, fasteners 103 such as bolts and screws after being fastened, or fixedly connected by snaps.
  • the main outer shaft 1021 in order to prevent the first rotating shafts 101216 of the first rotating arm 101213 and the second rotating arm 101214 from falling off from the corresponding shaft holes 102231 , the main outer shaft 1021 can be set as a separate structure.
  • the main outer shaft 1021 includes a plurality of mutually independent glands 10211 .
  • the glands 10211 cover the opening of the shaft hole 102231 to limit the end of the first rotating shaft 101216 between the shaft hole 102231 and the gland 10211 .
  • each gland 10211 can be fixedly connected to the main inner shaft 1022 by, but not limited to, fasteners 103 such as bolts, screws, or the like, or by means of snaps.
  • FIG. 18 shows a partial structural schematic diagram of the rotating shaft mechanism 10 according to an embodiment of the present application.
  • the pivot mechanism 10 shown in FIG. 18 is in a flattened state.
  • the sliding member 10122 achieves elastic abutment with the cam surface 10111 of the cam member 1011 under the action of the elastic force of the elastic element 101224 .
  • the abutting force formed by the elastic abutment can be converted into the resistance of the relative rotation of the cam member 1011 and the rotating assembly 1012 , thereby generating a damping force between the main shaft assembly 102 and the damping assembly 101 .
  • the rotating shaft mechanism 10 can be maintained in the flattened state, so as to provide sufficient supporting force for the terminal device.
  • FIG. 19a may also be referred to.
  • FIG. 19a is a view of the rotating shaft mechanism 10 in the direction B of FIG. 18 .
  • the flattened state is a relatively common use state of the terminal equipment. In this state, the rotating shaft mechanism 10 needs to be able to provide a relatively large damping force to maintain the flatness of the entire equipment.
  • FIGS. 19a to 19c show structural schematic diagrams of the rotating shaft mechanism 10 under different folding degrees.
  • the elastic elements 101224 are compressed or stretched to different degrees, so the stored elastic forces are different, so that the rotating assembly
  • the damping force received by 1012 in the process of rotating relative to the cam member 1011 is also different, so as to realize the variable damping effect of the rotating shaft mechanism 10 .
  • FIG. 20 shows a schematic diagram of the operating force of the rotating shaft mechanism 10 during the process from the flattened state to the closed state according to an embodiment of the present application. It can be understood that, in FIG. 20 , the abscissa represents the process from the flattened state to be closed, and the ordinate represents the magnitude of the operating force.
  • the flattened state is a relatively common use state of the terminal equipment. In this state, the rotating shaft mechanism 10 needs to be able to provide a relatively large damping force to maintain the flatness of the entire equipment.
  • the rotating member 10121 rotates around the spindle assembly 102 , the sliding member 10122 moves along the cam surface 10111 of the cam member 1011 , and compresses the elastic element 101224 under the action of the cam member 1011 . Therefore, by reasonably designing the elastic force of the elastic element 101224 and the specific shape of the cam surface 10111, the comfort of the folding operation experience of the terminal device can be effectively improved, and the service life of the damping component can also be guaranteed.
  • FIG. 21a shows a schematic structural diagram of a rotating shaft mechanism 10 according to another embodiment of the present application
  • FIG. 21b shows a structural schematic diagram of the rotating shaft mechanism 10 in FIG. 21a from another angle.
  • the shaft mechanism 10 is in a flattened state.
  • FIG. 21c shows a schematic structural diagram of the rotating shaft mechanism 10 in an intermediate state.
  • the rotating shaft mechanism 10 may also include a main shaft assembly 102 and a damping assembly 101 , and the damping assembly 101 is rotatably connected to the main shaft assembly 102 .
  • There may be a plurality of damping components 101 and the plurality of damping components 101 are arranged on both sides of the main shaft component 102 perpendicular to the longitudinal direction thereof, so as to generate a required damping force on both sides of the rotating shaft mechanism 10 .
  • FIG. 22 is a schematic diagram of an exploded structure of the rotating shaft mechanism shown in FIGS. 21 a to 21 c .
  • the damping assembly 101 may also include a rotating assembly 1012 and a cam member 1011 .
  • the rotating assembly 1012 includes a rotating member 10121 and a sliding member 10122.
  • the rotating member 10121 can rotate around the main shaft assembly 102 to drive the entire rotating assembly 1012 to rotate around the main shaft assembly 102.
  • FIG. 23 shows the structure of the rotating member 10121 .
  • the rotating member 10121 may include a body portion 101211 and a connecting portion 101212, wherein the connecting portion 101212 is disposed on one side of the body portion 101211, and the connecting portion 101212 is fixedly connected with the body portion 101211.
  • the rotating member 10121 can be integrally formed, which can effectively improve the structural reliability of the rotating member 10121, thereby improving the stability of its movement.
  • the rotating member 10121 can also be a separate structure, and the body portion 101211 and the connecting portion 101212 can be fixedly connected by fasteners 103 such as bolts, but not limited to, which can make the structure of the rotating member 10121 set. more flexible.
  • the connecting portion 101212 can be used for rotational connection with the spindle assembly 102 in FIG. 22 , and in the embodiment shown in FIG. 23 , the connecting portion 101212 can be configured as an arc shaft. Wherein, the number of arc shafts may be multiple, so as to improve the reliability of the connection between the connecting portion 101212 and the spindle assembly 102 . In addition, referring to FIG.
  • arc grooves 10221 may be provided on the spindle assembly 102 , and the arc grooves 10221 and the arc shafts are arranged in one-to-one correspondence, so that each arc shaft can be accommodated in the corresponding arc groove 10221 inside, and the arc surface of the arc shaft can slide along the groove wall of the arc groove 10221, so as to realize the relative rotation of the connecting part 101212 and the main shaft assembly 102.
  • the sliding fit of the arc shaft and the arc groove 10221 forms a virtual shaft, so that the rotating member 10121 and the main shaft assembly 102 are rotationally connected through the virtual shaft, which can be used to realize
  • the rotating member 10121 and the main shaft assembly 102 can also be rotatably connected by a solid shaft, which can effectively simplify the structure of the rotating shaft mechanism 10 and reduce the difficulty of controlling the manufacturing process.
  • the body portion 101211 of the rotating member 10121 of this embodiment is also provided with a chute 1012111.
  • a chute 1012111 At least part of the sliding member 10122 is accommodated in the chute 1012111, and can slide Slip inside the groove 1012111.
  • the end of the sliding member 10122 can abut with the cam surface 10111 of the cam member 1011 , and the abutting force of the two abutting forces can be converted into the damping force output of the damping component 101 .
  • the cam member 1011 is disposed on the rotating assembly 1012 .
  • the body portion 101211 of the rotating member 10121 is further provided with two installation grooves 1012113, which are located on both sides of the chute 1012111 along the length direction of the spindle assembly 102, respectively.
  • each mounting slot 1012113 can communicate with the sliding slot 1012111 through a via hole 1012114.
  • FIG. 24 shows a schematic structural diagram of a cam member 1011 according to an embodiment of the present application.
  • One end of the cam member 1011 provided with the cam surface 10111 can extend into the through hole 1012114 and can move in the direction toward or away from the chute 1012111 in the installation groove 1012113 .
  • the cam member 1011 is also connected with an elastic element 101224, and the elastic element 101224 can exert an elastic force on the cam member 1011 toward the sliding groove 1012111, so as to press the cam member 1011 to slide
  • the element 10122, the elastic element 101224 can be set with reference to any of the above-mentioned embodiments, and will not be repeated here.
  • the elastic element 101224 is a spring, and a guide rod 1012212 is provided on the side of the cam member 1011 away from the via hole 1012114 , and the elastic element 101224 can be sleeved on the guide rod 1012212 to facilitate the elastic element 101224
  • the installation with the cam member 1011 can also avoid problems such as arching of the elastic element 101224 when elastic deformation occurs, thereby helping to improve the reliability of the sliding of the cam member 1011 in the installation groove 1012113.
  • one end of the elastic element 101224 is in elastic contact with the groove wall of the installation groove 1012113, and the other end is in elastic contact with the cam member 1011, so as to press the cam member 1011 to the sliding groove 1012111.
  • the sliding member 10122 when the sliding member 10122 is specifically arranged, referring to FIG. 22 , the sliding member 10122 may include a rotating part 101225 and a sliding block 101221 .
  • the slider 101221 is rotatably connected with the rotating part 101225
  • the rotating part 101225 is rotatably connected with the spindle assembly 102 .
  • the extending direction of the axis of rotation of the rotating portion 101225 around the spindle assembly 102 is the same as the longitudinal direction of the spindle assembly 102 .
  • the axis of rotation of the rotating portion 101225 around the spindle assembly 102 is parallel to but not coincident with the axis of rotation of the connecting portion 101212 of the rotating member 10121 around the spindle assembly 102 .
  • there is a phase difference between the sliding member 10122 and the rotating member 10121 during the rotation of the rotating assembly 1012 relative to the main shaft assembly 102 so that the sliding member 10122 can slide relative to the rotating member 10121 .
  • FIG. 25 shows the structure of the rotating part 101225 according to an embodiment of the present application.
  • the rotating part 101225 can be provided with a gear structure 1012252 , and the gear structure 1012252 can be a separate structure and is fixedly connected with the rotating part 101225 .
  • the gear structure 1012252 can also be directly formed on the surface of the end of the rotating part 101225 to simplify the structure of the rotating part 101225 . In this way, the gear structures 1012252 of the rotating parts 101225 of the two damping assemblies 101 arranged in pairs as shown in FIG.
  • damping assemblies 101 can engage with each other, so that when one damping assembly 101 rotates around the main shaft assembly 102, the other can be driven
  • the damping assemblies 101 move in opposite or opposite directions to achieve synchronous movement of the two damping assemblies 101 . It is beneficial to improve the consistency of the damping force on both sides of the rotating shaft mechanism 10 to improve the structural stability of the rotating shaft mechanism 10 .
  • FIG. 26 is a diagram of the connection relationship between the two rotating parts 101225 of the application
  • FIG. 27 is an exploded diagram of the connection relationship of the two rotating parts 101225 of the application.
  • the two meshed rotating parts 101225 can be installed on both sides of the two meshed rotating parts 101225 along the length direction of the spindle assembly 102 shown in FIG. 22 .
  • a baffle 101217 is provided for each, and the two baffles 101217 can be used to limit the movement of the gear structures 1012252 of the two rotating parts 101225 in the length direction of the spindle assembly 102 , so that the gear structures 1012252 of the two rotating parts 101225 The meshing length between them is longer to improve the reliability of motion transmission between the two.
  • each baffle plate 101217 is further provided with a second through hole 1012171, so that the second rotating shaft 1012251 of each rotating part 101225 can pass through the corresponding second through hole 1012171, so that the two engaging The center distance of the gear structures 1012252 is limited, which is beneficial to improve the reliability of the movement of the two gear structures 1012252.
  • the sliding block 101221 can be rotatably connected to the rotating part 101225 through the third rotating shaft 1012217.
  • FIG. 28 shows the structure of the sliding block 101221 according to a possible embodiment of the present application.
  • An installation hole 1012211 may be opened at one end of the slider 101221, and two ends of the third rotating shaft 1012217 are respectively installed in one of the installation holes 1012211.
  • a concave part is opened at the end of the slider 101221, and the mounting hole 1012211 is arranged on the side of the concave part, so that the part of the rotating part 101225 can be inserted into the concave part to realize the rotation with the slider 101221
  • the connection can make the structure composed of the slider 101221 and the rotating part 101225 more compact, thereby facilitating the realization of the miniaturized design of the rotating shaft mechanism 10 .
  • the sliding block 101221 can be accommodated in the sliding groove 1012111 of the rotating member 10121 , and can slide in the chute 1012111.
  • a first sliding portion 10121111 and a second sliding portion 10121112 may be provided on two opposite groove walls of the sliding groove 1012111, respectively.
  • the slider 101221 is provided with a third sliding portion 1012215 and a fourth sliding portion 1012216.
  • the third sliding portion 1012215 is slidingly matched with the first sliding portion 10121111
  • the fourth sliding portion 1012216 is slidingly matched with the second sliding portion 10121112.
  • the first sliding part 10121111 , the second sliding part 10121112 , the third sliding part 1012215 and the fourth sliding part 1012216 can be set in various ways.
  • the first sliding part 10121111 and the second sliding part 10121112 can be set as groove, while the third sliding part 1012215 and the fourth sliding part 1012216 can be set to be convex; or the first sliding part 10121111 and the second sliding part 10121112 can be set to be convex, while the third sliding part 1012215 and the fourth sliding part 1012216 can be set as a groove; alternatively, the first sliding part 10121111 and the fourth sliding part 1012216 can be set as a groove, while the second sliding part 10121112 and the third sliding part 1012215 The sliding fit of the two sliding parts is sufficient.
  • the cam member 1011 is installed in the installation groove 1012113, and the cam member 1011 can extend into the through hole 1012114, and can move in the direction toward or away from the sliding groove 1012111 in the installation groove 1012113.
  • an inclined surface 1012219 may also be provided at the end of the slider 101221 facing the cam member 1011 . 22 and 28 together, the cam surface 10111 of the cam member 1011 abuts against the inclined surface 1012219, so as to apply a thrust force to the slider 101221 in a direction away from the spindle assembly 102. It can be understood that, through reasonable design of the cam surface 10111 and the inclined surface 1012219, the adjustment of the damping force provided by the damping assembly 101 can be realized.
  • the above-mentioned inclined surface 1012219 may be the surface of the convex concave portion.
  • the cam member 1011 in FIG. 24 can also be provided with a boss 10112, and the slider 101221 can adjust the position of the boss 10112 toward the notch direction of the installation groove 1012113 of the rotating member 10121. The movement is limited to limit the cam member 1011 to the installation groove 1012113 to prevent the cam member 1011 from falling off from the installation groove 1012113 .
  • the third sliding part 1012215 and the fourth sliding part 1012216 of the slider 101221 can be set as protrusions, and the protrusions on the corresponding sides are located at the positions of the protrusions 10112 close to the notch of the installation groove 1012113, so as to realize the opposite protrusions.
  • FIG. 29 shows a schematic structural diagram of a spindle assembly 102 according to an embodiment of the present application.
  • the main shaft assembly 102 also includes a main inner shaft 1022 and a main outer shaft 1021 .
  • FIG. 30 is a schematic structural diagram of the main inner shaft 1022 of this embodiment. Similar to the above-mentioned embodiment, the main inner shaft 1022 of this embodiment also has a first surface 10222 for supporting the flexible screen 40 .
  • a slot 10223 is provided on the main inner shaft 1022, wherein the rotating part 101225 of the above-mentioned sliding member 10122 can be installed in the slot 10223.
  • a shaft hole 102231 may be provided on the groove wall of the slot 10223 along the length direction of the spindle assembly 102 , and the shaft hole 102231 may be, but not limited to, a U-shaped hole. Both ends of the second rotating shaft 1012251 of the rotating part 101225 shown in FIG. 27 can be installed in the corresponding shaft holes 102231 .
  • the main outer shaft 1021 can be fastened with the main inner shaft 1022 , and an accommodation space for accommodating other components of the rotating shaft mechanism 10 can be enclosed between the main outer shaft 1021 and the main inner shaft 1022 .
  • the main outer shaft 1021 and the main inner shaft 1022 can be connected by, but not limited to, fasteners such as bolts, screws or the like, or fixedly connected by snaps.
  • the main outer shaft 1021 can be set as a separate structure.
  • the main outer shaft 1021 includes a plurality of mutually independent glands 10211.
  • FIG. 31 is a schematic diagram of the structure of the gland 10211 in this embodiment.
  • Each gland 10211 is fastened with the main outer shaft 1021, and a accommodating space is formed between each gland 10211 and the main outer shaft 1021.
  • the connecting portion 101212 of the rotating member 10121 can be accommodated in the accommodating space, and is connected with the main shaft.
  • the assembly 102 is rotationally connected.
  • the flattened state is a relatively common state of the rotating shaft mechanism 10, it can be understood from the description of the specific structure of the rotating shaft mechanism 10 in the above-mentioned embodiment that for the rotating shaft mechanism 10 in the flattened state shown in the above-mentioned FIGS. 21a and 21b, the elastic element The cam member 101224 can push the cam member 1011 to squeeze the slider 101221, so that the cam member 1011 elastically abuts against the slider 101221, and the elastic element 101224 is pushed by the cam member 1011 away from the slider 101221. In this state, the cam surface 10111 of the cam member 1011 is in contact with the position of the inclined surface 1012219 of the slider 101221 away from the via hole 1012114 .
  • 32a shows the relative positional relationship between the slider 101221 and the rotating member 10121 when the rotating shaft mechanism 10 according to an embodiment of the present application is in a flat state.
  • 32b and 32c respectively show the relative positional relationship between the slider 101221 and the rotating member 10121 when the rotating shaft mechanism 10 is in an intermediate state of different folding degrees.
  • FIG. 33 is a schematic diagram of the operating force of the rotating shaft mechanism 10 during the process from the flattened state to the closed state. Since the flattened state is a relatively common use state of the rotating shaft mechanism 10 , in this state, the rotating shaft mechanism 10 needs to be able to provide a larger damping force to maintain the flatness of the entire device.
  • the slider 101221 can be slid to push the cam member 1011 to press the elastic element 101224 .
  • FIG. 32 a to 32 c the slider 101221 can be slid to push the cam member 1011 to press the elastic element 101224 .
  • the damping assembly 101 may be integrated into other possible structures, for example, a structure for realizing the direct connection between the rotating shaft mechanism 10 and the housing of the terminal device, thereby The structural integration degree of the rotating shaft mechanism 10 can be improved to meet the requirements of its miniaturized design.
  • the setting of the damping assembly 101 can also be independent of the setting of other structures, so as to realize the decoupling between the damping assembly 101 and other structures, so that the setting of the damping assembly 101 is relatively flexible.
  • the multiple damping assemblies 101 can be arranged in the same manner, and the damping assemblies 101 mentioned in any of the above embodiments of the present application can be used.
  • the setting manners of the plurality of damping assemblies 101 may also be different, and the damping assemblies 101 mentioned in the above at least two embodiments of the present application may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种转轴机构(10)和包括转轴机构(10)的终端设备。转轴机构(10)包括主轴组件(102)和阻尼组件(101),阻尼组件(101)与主轴组件(102)转动连接;阻尼组件(101)可以包括凸轮件(1011)和转动组件(1012),凸轮件(1011)固定于主轴组件(102),凸轮件(1011)具有凸轮面(10111);转动组件(1012)包括转动件(10121)和滑动件(10122),转动件(10121)与主轴组件(102)转动连接;滑动件(10122)可相对转动件(10121)沿朝向或者背离主轴组件(102)的方向滑动;滑动件(10122)与凸轮面(10111)弹性抵接,该弹性抵接形成的抵接力可转化为凸轮件(1011)和转动组件(1012)相对转动的阻力,从而在主轴组件(102)与阻尼组件(101)之间产生阻尼力,以能够在终端设备处于展平状态时为其提供足够的支撑力。

Description

一种转轴机构及终端设备
相关申请的交叉引用
本申请要求在2021年03月24日提交中国专利局、申请号为202110312420.3、申请名称为“一种转轴机构及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到终端设备技术领域,尤其涉及到一种转轴机构及终端设备。
背景技术
随着柔性折叠屏技术日趋成熟,促使终端设备的显示方式发生了非常大的变化,可折叠终端产品必将是未来终端产品发展的一大趋势。可折叠终端产品(如折叠手机、折叠平板、折叠电脑等电子设备)需要满足较高的可靠性,较好的操作体验,才容易被消费者所接受。
以可折叠手机为例,其柔性屏可以根据不同的使用场景灵活变化以切换使用模式,这也是当下手机厂商的研发方向。但是,柔性屏只是可折叠手机的结构中的一部分,要实现整个终端产品的可折叠还需要转轴机构的配合。转轴机构除了可用于实现可折叠手机的折叠状态的改变,还可以为整个可折叠手机在不同的折叠状态下提供足够的阻尼力,以使可折叠手机在进行折叠状态切换的过程中具有可靠的支撑力。
可折叠终端产品具有可靠的支撑力,可有效的降低柔性屏损坏的风险。因此,转轴机构能够为整个终端产品提供的有效的阻尼力的大小和稳定性,已成为目前本领域的技术人员重点研究的课题。
发明内容
本申请提供了一种转轴机构及终端设备,以使转轴机构能够为整个终端设备提供满足要求的阻尼力。
第一方面,提供了一种转轴机构,该转轴机构可应用于可折叠的终端设备,终端设备包括两个壳体,两个壳体可分别绕转轴机构转动以实现终端设备的闭合以及展开。转轴机构包括主轴组件和阻尼组件,阻尼组件与主轴组件转动连接。在具体设置阻尼组件时,阻尼组件可以包括凸轮件和转动组件,凸轮件固定于主轴组件,凸轮件具有凸轮面。而转动组件包括转动件和滑动件,转动件与主轴组件转动连接,以带动整个转动组件绕主轴组件的转动。另外,滑动件可相对转动件沿朝向或者背离主轴组件的方向滑动,且在滑动件相对转动件转动的过程中,滑动件还与凸轮面弹性抵接,以在主轴组件与阻尼组件之间产生阻尼力。该弹性抵接形成的抵接力可转化为凸轮件和转动组件相对转动的阻力,从而在主轴组件与阻尼组件之间产生阻尼力。另外,通过合理设计滑动件和凸轮面之间的弹性抵接力以及凸轮面的具体形态,可以有效的提高对终端设备的折叠操作体验的舒适度,另外,还可以使阻尼组件的寿命得到保证。
转动件作为转动组件绕主轴组件转动的关键结构,在具体设置时,可使转动件包括本体部和连接部。其中,连接部与本体部固定连接,连接部用于与主轴组件转动连接,连接部可以设置为圆弧轴,相适应的主轴组件设置有圆弧槽,圆弧轴与圆弧槽滑动配合以使转动件与主轴组件之间通过虚拟轴实现转动连接。该连接方式可以有利于实现转轴机构的薄型化设计。本体部设置有滑槽,滑动件的至少部分容置于滑槽。这样可使滑动件的至少部分容置于滑槽,并在滑槽内滑动。
转动件除了采用上述的设置方式外,在本申请一个可能的实现方式中,转动件还可以包括第一转动臂、第二转动臂和连接臂。其中,第一转动臂和第二转动臂分别与主轴组件转动连接,第一转动臂和第二转动臂的背离主轴组件的端部通过连接臂固定连接。另外,第一转动臂、第二转动臂和连接部的用于围成滑槽的部分可作为转动件的本体部;第一转动臂和第二转动臂的用于与主轴组件转动连接的端部可作为转动件的连接部。
在转轴机构中,可包括成对设置的两个阻尼组件,该两个阻尼组件的同步转动,可提高转轴机构的运动稳定性。为了实现两个阻尼组件的同步转动,在本申请一个可能的实现方式中,可使第一转动臂的用于与主轴组件转动连接的端部设置有齿轮结构,第二转动臂的用于与主轴组件转动连接的端部设置有齿轮结构。这样,该成对设置的两个阻尼组件中一个阻尼组件的第一转动臂的齿轮结构,与另一个阻尼组件的对应侧的第一转动臂或第二转动臂的齿轮结构相啮合。相类似的,该成对设置的两个阻尼组件中一个阻尼组件的第二转动臂的齿轮结构,与另一个阻尼组件的对应侧的第二转动臂或第一转动臂的齿轮结构相啮合。从而使两个阻尼组件通过对应侧的转动臂的齿轮结构之间的啮合来实现其同步运动。
另外,在主轴组件的长度方向上,相啮合的两个齿轮结构的两侧还各设置有一个挡板,该挡板用于对两个齿轮结构的中心距进行限位,从而可提高该两个齿轮结构之间运动传动的稳定性。
在本申请一个可能的实现方式中,在具体设置滑动件时,滑动件可以包括滑块,滑块可在滑槽内沿朝向或者背离主轴组件的方向滑动。为了提高滑块在滑槽内滑动的稳定性,在本申请一个可能的实现方式中,在滑槽的两个相对的槽壁上可分别设置有第一滑动部和第二滑动部,而在滑块上设置有第三滑动部和第四滑动部。其中,第三滑动部与第一滑动部滑动配合,第四滑动部与第二滑动部滑动配合。
另外,在滑槽内还设置有弹性元件,滑块与该弹性元件弹性连接。由于凸轮件可固定于主轴组件,这样,在滑块在相对转动件沿朝向或者背离主轴组件的方向滑动的过程中,弹性元件可将滑块压向凸轮件,从而实现滑块与凸轮件的弹性抵接。
为了减小滑块沿凸轮面运动的过程中造成的磨损,在本申请一个可能的实现方式中,还可以在滑块上设置滚轮,该滚轮通过滚轮轴与滑块转动连接,滚轮可与凸轮面弹性抵接。从而使滑动件与凸轮之间的摩擦为滚动摩擦。
在本申请另一个可能的实现方式中,滑块的端部还可以设置有抵接部,该抵接部与凸轮面相抵接。另外,抵接部的表面可以为圆弧面或者球面,其同样可以起到减小滑块与凸轮面之间的磨损的作用。
第二方面,还提供了一种转轴机构,该转轴机构包括主轴组件和阻尼组件,阻尼组件与主轴组件转动连接。在具体设置阻尼组件时,阻尼组件可以包括凸轮件和转动组件,凸轮件设置于转动组件,凸轮件具有凸轮面。而转动组件包括转动件和滑动件,转动件与主轴组件转动连接,以带动整个转动组件绕主轴组件的转动。另外,滑动件可相对转动件沿 朝向或者背离主轴组件的方向滑动,且在滑动件相对转动件转动的过程中,滑动件还与凸轮面弹性抵接,以在主轴组件与阻尼组件之间产生阻尼力。该弹性抵接形成的抵接力可转化为凸轮件和转动组件相对转动的阻力,从而在主轴组件与阻尼组件之间产生阻尼力。另外,通过合理设计滑动件和凸轮面之间的弹性抵接力以及凸轮面的具体形态,可以有效的提高对终端设备的折叠操作体验的舒适度,另外,还可以使阻尼组件的寿命得到保证。
在本申请一个可能的实现方式中,在具体设置转动件时,转动件包括本体部和连接部。其中,连接部与本体部固定连接,连接部用于与主轴组件转动连接,连接部可以设置为圆弧轴,相适应的主轴组件设置有圆弧槽,圆弧轴与圆弧槽滑动配合以使转动件与主轴组件之间通过虚拟轴实现转动连接。该连接方式可以有利于实现转轴机构的薄型化设计。本体部设置有滑槽,滑动件的至少部分容置于滑槽。这样可使滑动件的至少部分容置于滑槽,并在滑槽内滑动。
在具体设置滑动件时,滑动件可以包括滑块和转动部,转动部与主轴组件转动连接,滑块与转动部转动连接。另外,转动部绕主轴组件转动的轴线,与转动件绕主轴组件转动的轴线相互平行但不重合。从而在转动组件绕主轴组件转动的过程中,使滑块和转动件的运动之间产生相位差,从而实现滑块在滑槽内的沿朝向或者背离主轴组件的方向滑动。
在转动部上可以设置有齿轮结构,而转轴机构可以包括成对设置的两个阻尼组件,两个阻尼组件的转动部的齿轮结构相啮合,从而实现两个阻尼组件的同步转动,以提高转轴机构的运动稳定性。
另外,在主轴组件的长度方向上,相啮合的两个齿轮结构的两侧还各设置有一个挡板,该挡板用于对两个齿轮结构的中心距进行限位,从而可提高该两个齿轮结构之间运动传动的稳定性。
为了将凸轮件设置于转动组件,在转动件的本体部上还设置有安装槽。安装槽为两个,沿主轴组件的长度方向上,两个安装槽分别设置于滑槽的两侧,安装槽通过过孔与滑槽相连通。在将凸轮件安装于安装槽后,凸轮件设置有凸轮面的一端伸入过孔。凸轮件可在安装槽内沿朝向或者背离滑槽的方向运动。
另外,在安装槽内设置有弹性元件,凸轮件与弹性元件弹性连接,这样弹性元件可将凸轮件压向滑块,以使滑块与凸轮件的凸轮面弹性抵接。
在本申请一个可能的实现方式中,还可以使滑块的朝向凸轮件的端部设置有倾斜面。此实现方案中,凸轮件的凸轮面可与倾斜面相抵接,以对滑块施加沿远离主轴组件的推力。可以理解的是,通过对凸轮的凸轮面和滑块的倾斜面的合理设计,可对阻尼组件提供的阻尼力进行调整,从而满足用户对操作手感的要求。
另外,凸轮件还可以设置有凸台,滑块对凸台朝向安装槽的槽口方向的运动进行限位,以将凸轮件限位于安装槽。从而可避免凸轮件从安装槽中脱落,提高转轴机构的结构稳定性。
在本申请一个可能的实现方式中,在具体设置主轴组件时,主轴组件可与包括主内轴和主外轴。其中,主内轴和主外轴相扣合以围成用于容纳转轴机构的其它部件的容纳空间。可以理解的是,上述转动组件的用于与主轴组件转动连接的部分也可容纳于该容纳空间。
第三方面,提供了一种终端设备,终端设备包括柔性屏、第一壳体、第二壳体以及上述第一方面或第二方面的转轴机构。其中,第一壳体和第二壳体分列在转轴机构两侧,且第一壳体和第二壳体分别与对应侧的阻尼组件连接。柔性屏可连续覆盖于第一壳体、第二 壳体以及转轴机构上,且柔性屏与第一壳体和第二壳体固定连接。在本申请技术方案中,通过滑动件与凸轮件的弹性抵接,以在主轴组件与阻尼组件之间产生阻尼力。从而能够为终端设备处于展平状态时提供足够的支撑力。另外,可通对凸轮件的凸轮面的具体形态进行合理设计,来提高转轴机构对终端设备的折叠操作体验的舒适度,并使阻尼组件的寿命得到保证。
附图说明
图1为本申请一实施例提供的终端设备的分解结构示意图;
图2为本申请一实施例提供的转轴机构处于展平状态的结构示意图;
图3为本申请一实施例提供的转轴机构的阻尼组件的结构原理图;
图4a为本申请一实施例提供的转轴机构的结构示意图;
图4b为图4a中转轴机构的另一角度下的结构示意图;
图5为本申请一实施例提供的转轴机构的分解结构示意图;
图6为本申请一实施例提供的转动件的结构示意图;
图7为本申请一实施例提供的主轴组件的分解结构示意图;
图8为本申请一实施例提供的主内轴的结构示意图;
图9为图8中的A-A剖面图;
图10为本申请一实施例提供的转轴机构的局部结构示意图;
图11a至图11d为本申请一实施例提供的转轴机构处于不同折叠程度的剖面图;
图12为本申请一实施例提供的转轴机构从展平状态到闭合状态过程中操作力示意图;
图13a为本申请另一实施例提供的转轴机构的结构示意图;
图13b为图13a中转轴机构的另一角度下的结构示意图;
图14为本申请另一实施例提供的转轴机构的分解结构示意图;
图15为本申请另一实施例提供的滑块的结构示意图;
图16为本申请另一实施例提供的相啮合的第一转动臂和第二转动臂的连接关系示意图;
图17为本申请另一实施例提供的主内轴的结构示意图;
图18为本申请另一实施例提供的转轴机构的局部结构示意图;
图19a至图19c为本申请另一实施例提供的转轴机构处于不同折叠程度的剖面图;
图20为本申请一实施例提供的转轴机构从展平状态到闭合状态过程中操作力示意图;
图21a为本申请另一实施例提供的转轴机构处于展平状态的结构示意图;
图21b为图21a中转轴机构的另一角度下的结构示意图;
图21c为本申请另一实施例提供的转轴机构处于中间状态的结构示意图;
图22为本申请另一实施例提供的转轴机构的分解结构示意图;
图23为本申请另一实施例提供的转动件的结构示意图;
图24为本申请另一实施例提供的凸轮件的结构示意图;
图25为本申请另一实施例提供的转动部的结构示意图;
图26为本申请另一实施例提供的相啮合的两个转动部的分解结构示意图;
图27为本申请另一实施例提供的相啮合的两个转动部的连接关系示意图;
图28为本申请另一实施例提供的滑块的结构示意图;
图29为本申请另一实施例提供的主轴组件的分解结构示意图;
图30为本申请另一实施例提供的主内轴的结构示意图;
图31为本申请另一实施例提供的压盖的结构示意图;
图32a至图32c为本申请另一实施例提供的转轴机构处于不同折叠程度的结构示意图;
图33为本申请另一实施例提供的转轴机构从展平状态到闭合状态过程中操作力示意图。
附图标记:
10-转轴机构;101-阻尼组件;1011-凸轮件;10111-凸轮面;10112-凸台;
1012-转动组件;10121-转动件;101211-本体部;1012111-滑槽;10121111-第一滑动部;
10121112-第二滑动部;1012112-避让口;1012113-安装槽;1012114-过孔;
101212-连接部;101213-第一转动臂;1012131-第一通孔;1012132-齿轮结构;
101214-第二转动臂;101215-连接臂;101216-第一转轴;101217-挡板;
1012171-第二通孔;10122-滑动件;101221-滑块;1012211-安装孔;1012212-导向杆;
1012213-挖空区;1012214-抵接部;1012215-第三滑动部;1012216-第四滑动部;
1012217-第三转轴;1012219-倾斜面;101222-滚轮;101223-滚轮轴;
101224-弹性元件;101225-转动部;1012251-第二转轴;1012252-齿轮结构;
10123-盖板;102-主轴组件;1021-主外轴;10211-压盖;1022-主内轴;10221-圆弧槽;
10222-第一表面;10223-开槽;102231-轴孔;103-紧固件;
20-第一壳体;30-第二壳体;40-柔性屏。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应当理解的是,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其它一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其它方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其它方式另外特别强调。
为了方便理解本申请实施例提供的转轴机构,下面首先说明一下其应用场景。该转轴机构可应用于终端设备,尤其用于可折叠的终端设备,示例性的,可以但不限于为手机、掌上电脑(personal digital assistant,PDA)、笔记本电脑或平板电脑等。参照图1,图1展示了本申请一种可能的实施例的可折叠的终端设备的结构。该可折叠的终端设备通常可以包含转轴机构10、第一壳体20、第二壳体30及柔性屏40。其中,第一壳体20和第二壳体30分设于转轴机构10的两侧。柔性屏40覆盖于第一壳体20、第二壳体30及转轴机构10,并可与第一壳体20、第二壳体30及转轴机构10粘接连接。
在本申请实施例中,第一壳体20和第二壳体30中的至少一个可与转轴机构10转动连接,从而可实现终端设备在展平状态、闭合状态,以及处于展平状态和闭合状态之间的中间状态(以下简称中间状态)之间的切换。具体实施时,可首先参照图2,图2中示出了终端设备处于展平状态下的结构。在该展平状态下,第一壳体20、第二壳体30分设在转轴机构10的两侧。另外,第一壳体20、第二壳体30和转轴机构10的用于与柔性屏40接触的表面处于近似同一平面,由于柔性屏40与第一壳体20、第二壳体30和转轴机构10粘接连接,故此时柔性屏40在第一壳体20、第二壳体30和转轴机构10的支撑作用下也可处于展平的状态。
在本申请中,终端设备可以为外折式的终端设备,也可以为内折式的终端设备。其中,外折式的终端设备在由展平状态到闭合状态的过程中,柔性屏40始终位于终端设备的外侧;而对于内折式的电子设备来说,在其由展平状态到闭合状态的过程中,柔性屏40始终位于终端设备的内侧。以外折式的终端设备为例,在对终端设备进行折叠的过程中,第一壳体20与第二壳体30可沿如图2中所示的带箭头的曲线所示的方向相对转动,柔性屏40跟随第一壳体20和第二壳体30发生折弯。
由于柔性屏40是可折叠的终端设备中的关键部件,可折叠的终端设备在展平状态、闭合状态和中间状态之间进行折叠模式切换的过程中,若可折叠的终端设备的第一壳体20、第二壳体30以及转轴机构10不能为柔性屏40提供稳定的支撑力,可能会使柔性屏40在外力拉扯或者挤压的影响下导致其显示异常。由上述实施例对终端设备的介绍可以理解,整个终端设备要实现可折叠需要依赖于转轴机构10的配合。基于此,通常可在转轴机构10中设置阻尼组件,以在终端设备进行折叠模式切换的过程中,使阻尼组件能够为整个终端设备提供可靠的阻尼力,从而实现对柔性屏40的稳定支撑。
目前,阻尼组件所提供的阻尼力多是通过相接触的部件之间的相对运动产生的摩擦力来实现的。而为了能够提供满足要求的阻尼力,会在相接触的部件之间产生较大的摩擦力,其长期使用易造成磨损,从而可能会导致阻尼组件的阻尼力的衰减。
本申请提供的转轴机构旨在解决上述问题,以减小该转轴机构的阻尼组件的阻尼力衰减程度,延长其使用寿命,从而为应用有该转轴机构的终端设备提供有效的支撑。
由上述实施例的介绍可以知道,阻尼组件的阻尼力的产生可依赖于发生相对运动的部件之间的作用力。参照图3,图3展示了本申请一个实施例提供的阻尼组件的结构原理图。该阻尼组件包括可以相互转动的两个零件,分别为凸轮件1011和转动组件1012。其中,凸轮件1011为具有曲线轮廓的构件,在本申请中,将凸轮件1011的由曲线轮廓构成的表面称为凸轮件1011的凸轮面10111;转动组件1012上设置有滑道,同时设置有一个可以沿滑道滑动的滑块101221。在转动组件1012相对转动的过程中,滑块101221可沿朝向或者背离转动组件1012的转动中心的方向在滑道内滑动。
另外,阻尼组件101还可以设置有弹性元件101224,滑块101221在弹性元件101224(例如弹簧)的作用下直接或者间接的与上述凸轮件1011的凸轮面10111相抵接;或者凸轮件1011在弹性元件101224的作用下与滑块101221相抵接,以实现滑块101221与凸轮面10111之间的弹性抵接。这样,当凸轮件1011和转动组件1012相对转动时,滑块101221可在凸轮面10111的推动作用下在滑道内滑动,从而不同程度的压缩或者拉伸弹性元件101224。由于弹性元件101224被压缩或者拉伸的程度不同,其所积蓄的弹性力也不同,从而使凸轮件1011和转动组件1012在相对转动的过程中所受到的阻力也不同,这样可实 现相对转动的凸轮件1011和转动组件1012之间的变阻尼效果。可以理解的是,凸轮面10111的具体形态对于弹性元件101224被压缩或者拉伸的程度有很大的影响,因此,可通过对凸轮面10111的具体形态的调整来实现对阻尼组件101所提供的阻尼力的调整。
本申请所提供的转轴机构10的阻尼组件101可基于此结构原理进行设计。为方便理解本申请实施例提供的转轴机构10,接下来结合附图对其结构进行详细的说明。
参考图4a和图4b,图4a展示了本申请一个可能的实施例提供的转轴机构10的结构示意图;图4b展示了图4a中的转轴机构10的另一角度下的结构示意图。该转轴机构10可以包括阻尼组件101以及主轴组件102。其中,主轴组件102可作为转轴机构10的承载部件,以用于承载上述的阻尼组件101。阻尼组件101可与主轴组件102转动连接,在本申请中,可将阻尼组件101转动所绕的转轴的轴线方向定义为主轴组件102的长度方向。
可继续参考图4a和图4b,在本申请该实施例中,阻尼组件101可以为多个,且该多个阻尼组件101分设于主轴组件102的垂直于其长度方向的两侧。这样可使位于主轴组件102的一侧的阻尼组件101与上述图1所示实施例中提到的终端设备的第一壳体20固定连接,相类似的,位于主轴组件102的另一侧的阻尼组件101与上述图1所示实施例中提到的终端设备的第二壳体30固定连接,从而可使阻尼组件101产生的阻尼力能够传递到对应的壳体,进而为整个终端设备提供可靠的支撑力。可以理解的是,同侧设置的阻尼组件101与壳体可以直接接触并固定,也可以使阻尼组件101通过其它可能的结构固定于壳体,从而实现阻尼组件101与壳体的间接固定。
在本申请一个可能的实施例中,位于主轴组件102的两侧的阻尼组件101的数量可以相同,这样可使阻尼组件101能够为终端设备的两个壳体提供几乎相同的阻尼力,其有利于提高终端设备的结构稳定性。另外,当位于主轴组件102的两侧的阻尼组件101的数量相同时,可以使主轴组件102的两侧的阻尼组件101一一对应的设置或者交错设置,在本申请中不做具体限定。
参照图5,图5为本申请一实施例提供的转轴机构10的分解结构图。在本申请该实施例中,阻尼组件101可以包括凸轮件1011和转动组件1012。其中,凸轮件1011可固定于主轴组件102,凸轮件1011具有凸轮面10111。转动组件1012包括转动件10121和滑动件10122,转动件10121可绕主轴组件102转动,从而带动转动组件1012绕主轴组件102转动。具体实施时,可参照图6,图6展示了本申请一种实施例的转动件10121的结构。转动件10121可以包括本体部101211和连接部101212,其中,连接部101212设置于本体部101211的一侧,且连接部101212与本体部101211固定连接。可以理解的是,在图6所示的实施例,转动件可为一体成型结构,这样可有效的提高转动件10121的结构可靠性,从而提高其运动的稳定性。在本申请另外一些实施例中,还可以使转动件10121为分体结构,本体部101211与连接部101212可以但不限于通过螺栓等紧固件103固定连接,其可使转动件10121的结构设置较为灵活。
可一并参照图5和图6,连接部101212可用于与主轴组件102转动连接,在该实施例中,连接部101212可设置为圆弧轴。其中,圆弧轴的数量可以为多个,以用于提高连接部101212与主轴组件102连接的可靠性。另外,在主轴组件102上设置有圆弧槽10221,圆弧槽10221与圆弧轴一一对应的设置,这样可使每个圆弧轴容置于对应的圆弧槽10221内,并且圆弧轴的弧形面可沿圆弧槽10221的槽壁滑动,从而实现连接部101212与主轴组件102的相对转动。可以理解的是,在该实施例中,圆弧轴和圆弧槽10221的滑动配合 形成了虚拟轴,从而使转动件10121与主轴组件102之间通过虚拟轴实现转动连接,其可使用于实现转动件10121与主轴组件102转动连接的结构所占用的主轴组件102的空间较小,从而有利于实现转轴机构10的小型化以及薄型化设计。在本申请另外一些可能的实施例中,转动件10121与主轴组件102还可以通过实心轴实现转动连接,其可有效的简化转轴机构10的结构,降低其制备工艺的管控难度。
可继续参照图5和图6,在具体设置转动件10121的本体部101211时,本体部101211设置有滑槽1012111,滑动件10122的至少部分容置于滑槽1012111,并且滑动件10122可在该滑槽1012111内沿朝向或者背离主轴组件102的方向(图6中箭头所示的方向)滑动。另外,滑动件10122的一端可与凸轮件1011的凸轮面10111相抵接,可以理解的是,滑动件10122与凸轮件1011之间的抵接力可转换成阻尼组件101的阻尼力向外输出。
在具体设置滑动件10122时,滑动件10122包括滑块101221,滑块101221容置于上述转动件10121的本体部101211的滑槽1012111内,且可在该滑槽1012111内相对转动件10121的本体部101211沿朝向或者背离转动件10121的转动中心的方向滑动。在本申请各实施例中,不对滑块101221的具体形状进行限定,示例性的,可为矩形、梯形等规则形状,也可为非规则形状。
由于滑动件10122可与凸轮件1011相抵接,为了减小滑动件10122的磨损,还可使滑动件10122设置有滚轮101222,滚轮101222可通过滚轮轴101223与滑块101221的一个端部转动连接,滚轮101222可与凸轮件1011相抵接,从而使滑动件10122与凸轮件1011之间的摩擦副为滚动摩擦副。具体实施时,可参照图5,在滑块101221的一个端部开设有安装孔1012211,滚轮轴101223的两个端部分别安装于一个安装孔1012211。其中,滚轮轴101223在安装于安装孔1012211后可与滑块101221固定连接,滚轮101222可绕滚轮轴101223转动,从而实现滚轮101222与滑块101221的转动连接。在本申请另一个可能的实施例中,滚轮101222还可与滚轮轴101223固定连接,而滚轮轴101223在安装于安装孔1012211后,可在安装孔1012211内转动,以此来实现滚轮101222与滑块101221的转动连接。
由上述对滑动件10122的介绍可知,滚轮101222位于滑块101221的朝向主轴组件102的一侧,又由于滑动件10122在转动件10121的本体部101211的滑槽1012111内滑动的过程中,滚轮101222在与凸轮件1011的凸轮面10111相抵接的同时,还会随滑块101221在滑槽1012111内滑动。可继续参照图5,为了避免对滚轮101222与凸轮件1011的接触造成干涉,在转动件10121的滑槽1012111的朝向主轴组件102的一侧还开设有避让口1012112,滚轮101222可从该避让口1012112伸出至滑槽1012111的外部,以用于与凸轮件1011接触。
为了实现滑动件10122在滑槽1012111内沿朝向和背离主轴组件102的方向的往复运动,参照图5,在本申请一些实施例中,滑块101221还可与一弹性元件101224连接。该弹性元件101224可以但不限于为弹簧、弹片等。具体实施时,弹性元件101224可容置于滑槽1012111内,且弹性元件101224设置于滑块101221的背离主轴组件102的一侧,弹性元件101224的一端与滑块101221弹性连接,另一端与滑槽1012111的槽壁弹性连接,以将滑块101221压向凸轮件1011。在该实施例中,弹性元件的具体数量可以根据阻尼组件101所要提供的阻尼力的大小,以及滑槽1012111的空间等进行设置。
当弹性元件101224为弹簧时,可参照图5,在滑块101221的背离主轴组件102的一 侧还可以设置有导向杆1012212,这样可使弹性元件101224套设于该导向杆1012212,以便于弹性元件101224与滑块101221的安装,还可以避免弹性元件101224在产生弹性形变时出现起拱等问题,从而有利于提高滑块101221在滑槽1012111内滑动的可靠性。
另外,在滑块101221的背离主轴组件102的一侧还可以设置有挖空区1012213,上述实施例中的导向杆1012212可设置于挖空区1012213内。这样,可使滑动件10122的结构较为紧凑,其可使转动组件1012的体积较小,从而有利于实现转轴机构10的小型化设计。另外,套设于导向杆1012212的弹性元件101224的至少部分也可容置于挖空区1012213,其有利于对弹性元件101224进行限位,提高弹性元件101224的运动稳定性。
值得一提的是,在本申请一些实施例中,滑块101221可为一体成型结构,此时挖空区1012213可为滑块101221上开设的凹槽。在本申请另外一些实施例中,滑块101221还可以为分体结构,在该实施例中,挖空区1012213可由用于组成的多个挡块固定连接围成的区域。
可以理解的是,在图5所示的实施例中,弹性元件101224可以为压簧,其可在滑块101221沿滑槽1012111滑动的过程中被压缩并积蓄弹性作用力。而该弹性作用力作用于滑块101221,以将滑块101221压向凸轮件1011,从而实现滑块101221与凸轮件1011的抵接。
可继续参照图5,转动组件1012还可以包括盖板10123,该盖板10123盖设于滑槽1012111的开口处。另外,在本申请实施例中,可以但不限于使盖板10123与转动件10121通过螺钉、螺栓等紧固件103实现螺纹联接;或者通过卡扣等进行卡接;又或者通过粘接剂进行粘接等方式进行固定连接。可以理解的是,盖板10123盖设于滑槽1012111后,可在盖板10123和转动件10121之间形成滑槽腔,上述实施例中提到的滑动件10122的至少部分可容置于该滑槽腔内,其可避免滑动件10122从转动件10121上脱落。
参照图7,图7为本申请一种实施例的主轴组件102的分解图。在本申请中,主轴组件102可以包括主外轴1021和主内轴1022,其中,主外轴1021可以但不限于为一个一体成型的板状结构。主内轴1022与主外轴1021相扣合,在主内轴1022与主外轴1021之间可围成容纳转轴机构10的其它部件的容纳空间。另外,主外轴1021与主内轴1022在扣合后可以但不限于通过螺栓、螺钉等紧固件103连接,或者通过卡扣固定连接。
参照图8,图8展示了本申请一个可能的实施例的主内轴1022的结构示意图。主内轴1022具有用于支撑柔性屏40的第一表面10222,在本申请一个可能的实施例中,第一表面10222可以为弧形面。这样,在图1中所示的柔性屏40随转轴机构进行折叠时,该第一表面10222可用于支撑柔性屏40。另外,该第一表面10222的弧度可根据柔性屏40折弯部分的折弯弧度进行设计,以减小柔性屏40被挤压或者拉扯造成损坏的风险。
可一并参照图8和图9,图9为图8中主内轴1022的A-A处的剖面图。上述实施例中提到的转动组件1012的凸轮件1011可以固定于主内轴1022。在本申请一些可能的实施例中,凸轮件1011还可以与主内轴1022为一体成型的结构,以简化转轴机构10的结构,并提高其结构稳定性。
在对本申请上述实施例的转轴机构10的结构进行了了解之后,接下来结合附图对阻尼组件101相对主轴组件102转动不同角度时,阻尼组件101所产生的阻尼力的情况进行说明。
首先可参照10,图10展示了转轴机构10处于展平状态下的局部结构示意图。在该展 平状态下,滑动件10122在弹性元件101224的弹性力作用下实现与凸轮件1011的凸轮面10111的弹性抵接。该弹性抵接形成的抵接力可转化为凸轮件1011和转动组件1012相对转动的阻力,从而在主轴组件102与阻尼组件101之间产生阻尼力。这样可使转轴机构10能够维持在该展平状态下,以为终端设备提供足够的支撑力。
其次,可一并参照图11a至图11d,图11a展示了转轴机构10处于展平状态下的剖面图,图11b至图11d分别展示了转轴机构10处于不同折叠程度的中间状态时的剖面图。可以理解的是,图11a至图11d中均只示意了转轴机构10一侧的结构,而转轴机构10另一侧的结构与其相类似,故在本申请该实施例中仅以图11a至图11d所示转轴机构10的一侧的结构为例进行说明。
可一并参照图11a至图11d,通过对处于不同折叠程度的转轴机构10的对比可以发现:在转轴机构10处于不同的折叠程度时,弹性元件101224被压缩或者拉伸的程度不同,故其储蓄的弹性力不同,从而使转动组件1012在相对凸轮件1011转动的过程中所受到的阻尼力也不同,从而实现转轴机构10的变阻尼效果。
由上述实施例的介绍可以知道,构成凸轮件1011的凸轮面10111的轮廓曲线的具体形态,可根据转轴机构10在不同折叠程度下所需要的操作力进行设计。可参照图12,图12展示了本申请一种实施例的转轴机构10从展平状态到闭合状态过程中的操作力示意图。可以理解的是,在图12中,横坐标表示从展平状态到闭合状态的过程,纵坐标表示操作力大小。
可结合图10和图12,由于展平状态为终端设备的比较常见的使用状态,在此状态下,需要转轴机构10能够提供较大的阻尼力来保持整个设备的平整度。当对终端设备进行折叠时,转动件10121绕主轴组件102转动,滑动件10122沿着凸轮件1011的凸轮面10111运动,并在凸轮件1011的作用下压缩弹性元件101224。可以理解的是,通过合理设计弹性元件101224的弹性力以及凸轮面10111的具体形态,可以有效的提高对终端设备的折叠操作体验的舒适度,另外,还可以使阻尼组件的寿命得到保证。
参照图13a和图13b,图13a为本申请另一种实施例提供的转轴机构10的结构示意图;图13b为图13a中转轴机构10另一角度下的结构示意图。该实施例的转轴机构10与上述实施例提供的转轴机构10的不同之处主要在于阻尼组件101的具体设置方式。
参照图14,图14展示了本申请另一种实施例的转轴机构10的分解图。在该实施例中,具体设置阻尼组件101时,该阻尼组件101也可以包括凸轮件1011和转动组件1012。其中,凸轮件1011固定于转轴机构10的主轴组件102,凸轮件1011具有凸轮面10111。转动组件1012包括转动件10121和滑动件10122,转动件10121可绕主轴组件102转动,从而带动整个转动组件1012绕主轴组件102转动。具体实施时,转动件10121包括第一转动臂101213、第二转动臂101214和连接臂101215。第一转动臂101213和第二转动臂101214相对设置,且分别与主轴组件102转动连接。在一个可能的实施例中,还可以使第一转动臂101213和第二转动臂101214的结构相同。
另外,第一转动臂101213的背离主轴组件102的端部和第二转动臂101214的背离主轴组件102的端部通过连接臂101215固定连接,以使转动件10121形成一个整体的框架结构。另外,第一转动臂101213和第二转动臂101214可以但不限于通过螺钉、螺栓等紧固件103与连接臂101215固定连接。
可继续参照图14,第一转动臂101213和第二转动臂101214与连接臂101215连接后 可围成一个滑槽1012111。其中,第一转动臂101213和第二转动臂101214与连接臂101215连接后形成的框架结构中,用于围成滑槽1012111的部分可作为转动件10121的本体部,第一转动臂101213和第二转动臂101214的用于与主轴组件102转动连接的端部可作为转动件10121的连接部。滑动件10122可安装于该滑槽1012111,并可在该滑槽1012111内滑动。另外,滑动件10122的一端可与凸轮件1011的凸轮面10111相抵接,可以理解的是,滑动件10122与凸轮件1011之间的抵接力可转换成阻尼组件101的阻尼力向外输出。
在具体设置滑动件10122时,滑动件10122包括滑块101221,滑块101221容置于滑槽1012111,且可在滑槽1012111内滑动。在本申请各实施例中,不对滑块101221的具体形状进行限定,示例性的,可为矩形、梯形等规则形状,也可为非规则形状。
参照图15,图15展示了一种实施例的滑块101221的结构。可一并参照图14和图15,在该实施例中,滑块101221的朝向主轴组件102的一侧可设置有抵接部1012214,该抵接部1012214可用于与凸轮件1011的凸轮面10111相抵接。为了减小滑动件10122的磨损,可以使抵接部1012214的表面为圆弧面或者球面,从而使滑块101221与凸轮件1011之间的摩擦副为滚动摩擦副。另外,滑块101221可为一体成型结构,此时抵接部1012214为滑块101221的一部分,以简化滑动件10122的结构。在一些实施例中,抵接部1012214还可与滑块101221为分体结构,此时可使抵接部1012214与滑块101221通过螺纹联接或者卡接等方式进行固定。在另外一些实施例中,该抵接部1012214也可以设置为上述实施例中的滚轮,并使滚轮通过滚轮轴与滑块转动连接。
继续参照图14,为了实现滑块101221在滑槽1012111内的稳定滑动,在本申请一个实施例中,滑槽1012111的两个相对的槽壁上分别设置有第一滑动部10121111和第二滑动部10121112。具体实施时,可在第一转动臂101213的朝向滑槽1012111的一侧设置第一滑动部10121111,在第二转动臂101214的朝向滑槽1012111的一侧设置第二滑动部10121112。另外,可一并参照图14和图15,在滑块101221的朝向第一转动臂101213的一侧设置有第三滑动部1012215,滑块101221的朝向第二转动臂101214的一侧设置有第四转动部101225。其中,第三滑动部1012215与第一滑动部10121111滑动配合,第四滑动部1012216与第二滑动部10121112滑动配合。
第一滑动部10121111、第二滑动部10121112、第三滑动部1012215和第四滑动部1012216的具体设置方式可以有多种,示例性的,第一滑动部10121111和第二滑动部10121112可设置为凹槽,同时第三滑动部1012215和第四滑动部1012216可设置为凸起;或者第一滑动部10121111和第二滑动部10121112可设置为凸起,同时第三滑动部1012215和第四滑动部1012216可设置为凹槽;又或者,第一滑动部10121111和第四滑动部1012216可设置为凹槽,同时第二滑动部10121112和第三滑动部1012215可设置为凸起,只要实现同侧的两个滑动部的滑动配合即可。
参照图14,在本申请该实施例中,滑块101221也可与一弹性元件101224连接,以实现滑动件10122在滑槽1012111内沿朝向和背离主轴组件102的方向的往复运动。另外,当弹性元件101224为弹簧时,在滑块101221的背离主轴组件102的一侧还可以设置有导向杆1012212,这样可使弹性元件101224套设于该导向杆1012212。在该实施例中,滑块101221的背离主轴组件102的一侧也可以设置有挖空区1012213,导向杆1012212和弹性元件101224可设置于挖空区1012213内。其中,弹性元件101224、导向杆1012212以及挖空区1012213的具体设置方式均可参照上述实施例,在此不进行赘述。
应当说明的是,在图15所示的实施例中,滑块101221可为一体成型结构,此时挖空区1012213可为滑块101221上的开设的凹槽,另外,第三滑动部1012215和第四滑动部1012216也为滑块101221的一部分。当滑块101221为分体结构时,挖空区1012213可由组成滑块101221的多个挡块固定连接围成的区域,而第三滑动部1012215和第四滑动部1012216可分别形成于对应侧的挡块上。
为了实现转动件10121与主轴组件102的转动连接,可继续参照图14,在本申请一个实施例中,第一转动臂101213的靠近主轴组件102的一端可通过第一转轴101216与主轴组件102转动连接。具体实施时,可使第一转动臂101213的靠近主轴组件102的一端开设有第一通孔1012131,第一转轴101216穿设于第一通孔1012131,第一转轴101216的两端安装于主轴组件102。其中,第一转轴101216的轴线方向与主轴组件102的长度方向相同,第一转轴101216可固定于主轴组件102,第一转动臂101213可绕转轴转动。在另外一个实施例中,还可以使第一转动臂101213与第一转轴101216固定连接,而第一转轴101216安装于主轴组件102后可与主轴组件102转动连接,以实现第一转动臂101213与主轴组件102的转动连接。第二转动臂101214与主轴组件102的转动连接可参照第一转动臂101213侧,在此不进行赘述。值得一提的是,第一转动臂101213和第二转动臂101214可分别通过一个第一转轴101216与主轴组件102转动连接,也可以共用一个第一转轴101216,以简化转轴机构10的结构。
可以理解的是,在该实施例中,第一转动臂101213和第二转动臂101214通过第一转轴101216与主轴组件102转动连接,以使转动件10121与主轴组件102通过实心轴实现转动连接。在本申请另外一些实施例中,还可以使转动件10121与主轴组件102采用虚拟轴的方式实现转动连接,以实现转轴机构10的小型化设计。
在该实施例中,阻尼组件101也可以为多个,该多个阻尼组件101分设于主轴组件102的垂直于其长度方向的两侧。位于主轴组件102的两侧的阻尼组件101的数量可以相同,这样可使阻尼组件101能够为终端设备的两个壳体提供几乎相同的阻尼力,其有利于提高终端设备的结构稳定性。
另外,当位于主轴组件102的两侧的阻尼组件101的数量相同时,可以使主轴组件102的两侧的阻尼组件101一一对应的设置或者交错设置。在本申请一个可能的实施例中,阻尼组件101还可以成对设置,该成对设置的两个阻尼组件101分别设置于主轴组件102的垂直于其长度方向上的两侧。
可参照图14,在本申请一个实施例中,还可以使第一转动臂101213的用于与主轴组件102转动连接的端部设置有齿轮结构1012132,该齿轮结构1012132可为单独的结构,并与第一转动臂101213固定连接。或者,该齿轮结构1012132还可以直接形成于第一转动臂101213的端部的表面,以使第一转动臂101213的结构得到简化。第二转动臂101214的用于与主轴转动连接的一端也可以设置有齿轮结构1012132,其具体设置方式可参照第一转动臂101213,在此不进行赘述。这样可使成对设置的两个阻尼组件101中的一个阻尼组件101的第一转动臂101213的齿轮结构1012132,与另一个阻尼组件101的第二转动臂101214的齿轮结构1012132相啮合。由于在本申请中,可使第一转动臂101213和第二转动臂101214的结构相同,在一些可能的实施例中,也可以使成对设置的两个阻尼组件101中的一个阻尼组件101的第一转动臂101213的齿轮结构1012132,与另一个阻尼组件101的第一转动臂101213的齿轮结构1012132相啮合。相类似的,可以使成对设置的两个阻 尼组件101中的一个阻尼组件101的第二转动臂101214的齿轮结构1012132,与另一个阻尼组件101的对应侧的第一转动臂101213或第二转动臂101214的齿轮结构1012132相啮合。从而使该成对设置的两个阻尼组件101通过对应侧的转动臂的齿轮结构1012132之间的啮合来实现同步转动。
可一并参照图14和图16,图16展示了两个阻尼组件101的第一转动臂101213与第二转动臂101214的连接关系。从而在其中一个阻尼组件101绕主轴组件102转动的过程中,可带动另一个阻尼组件101朝相对或者相背的方向运动,以实现两个阻尼组件101的同步运动。其有利于提高转轴机构10两侧的阻尼力的一致性,以提高转轴机构10的结构稳定性。
可继续参照图14和图16,为了提高相啮合的第一转动臂101213和第二转动臂101214之间传动关系的可靠性,可在该相啮合的第一转动臂101213和第二转动臂101214的沿主轴组件102的长度方向的两侧各设置一个挡板101217,该两个挡板101217可用于对第一转动臂101213的齿轮结构1012132和第二转动臂101214的齿轮结构1012132在主轴组件102的长度方向的运动进行限位,从而使第一转动臂101213和第二转动臂101214的齿轮结构1012132之间的啮合长度较长,从而提高二者之间运动传递的稳定性。另外,在各挡板101217上还设置有第二通孔1012171,以使各转动臂的第一转轴101216能够一一对应的穿过对应的第二通孔1012171,从而可对两个齿轮结构1012132的中心距进行限位,以有利于提高二者之间运动传递的可靠性。
为了适应阻尼组件101的结构设计,本申请该实施例的主轴组件102在具体设置时,可参照图14,其中,主轴组件102可以包括主外轴1021和主内轴1022,其中,主内轴1022具有用于支撑柔性屏40的第一表面10222,在本申请一个可能的实施例中,第一表面10222可以为弧形面。这样,在图1中所示的柔性屏40折叠时,该第一表面10222可用于支撑柔性屏40。另外,该第一表面10222的弧度可根据柔性屏40折弯部分的折弯弧度进行设计,以减小柔性屏40被挤压或者拉扯造成损坏的风险。
图17展示了本申请另一实施例的主内轴的结构,上述实施例中提到的转动组件1012的凸轮件1011可以固定于主内轴1022。在本申请一些可能的实施例中,凸轮件1011还可以与主内轴1022为一体成型的结构,以简化转轴机构10的结构,并提高其结构稳定性。
在主内轴1022上设置有开槽10223,图14所示实施例中的第一转动臂101213和第二转动臂101214的用于与主轴组件102转动连接的端部安装于对应的开槽10223内。另外,在开槽10223的沿主轴组件102的长度方向上的槽壁上可以设置有轴孔102231,该轴孔102231可以但不限于为U形孔,上述的第一转动臂101213和第二转动臂101214的第一转轴101216的两端可以一一对应的安装于一个轴孔102231内。
可参照图14,主外轴1021可与主内轴1022相扣合,在主外轴1021可与主内轴1022之间可围成容纳转轴机构10的其它部件的容纳空间。另外,主外轴1021可与主内轴1022在扣合后可以但不限于通过螺栓、螺钉等紧固件103连接,或者通过卡扣固定连接。
在本申请一个实施例中,为了避免第一转动臂101213和第二转动臂101214的第一转轴101216从对应的轴孔102231内脱落,可将主外轴1021设置为分体结构。此时主外轴1021包括多个相互独立的压盖10211,压盖10211盖设于轴孔102231的开口处,以将第一转轴101216的端部限位于轴孔102231与压盖10211之间。另外,每个压盖10211均可以但不限于通过螺栓、螺钉等紧固件103,或者通过卡扣等与主内轴1022固定连接。
参照图18,图18展示了本申请一种实施例的转轴机构10的局部结构示意图。图18中所示的转轴机构10处于展平状态。在该展平状态下,滑动件10122在弹性元件101224的弹性力作用下实现与凸轮件1011的凸轮面10111的弹性抵接。该弹性抵接形成的抵接力可转化为凸轮件1011和转动组件1012相对转动的阻力,从而在主轴组件102与阻尼组件101之间产生阻尼力。这样可使转轴机构10能够维持在该展平状态下,以为终端设备提供足够的支撑力。
另外,可一并参照图19a,图19a为图18中转轴机构10的B向视图。展平状态为终端设备的比较常见的使用状态,在此状态下,需要转轴机构10能够提供较大的阻尼力来保持整个设备的平整度。
一并参照图19a至图19c,图19a至图19c展示了转轴机构10处于不同折叠程度下的结构示意图。通过对处于不同折叠程度的转轴机构10的对比可以发现:在转轴机构10处于不同的折叠程度时,弹性元件101224被压缩或者拉伸的程度不同,故其储蓄的弹性力不同,从而使转动组件1012在相对凸轮件1011转动的过程中所受到的阻尼力也不同,从而实现转轴机构10的变阻尼效果。
由上述对转轴机构10的介绍可以理解,构成凸轮件1011的凸轮面10111的轮廓曲线的具体形态,可根据转轴机构10在不同折叠程度下所需要的操作力进行设计。可参照图20,图20展示了本申请一种实施例的转轴机构10从展平状态到闭合状态过程中的操作力示意图。可以理解的是,在图20中,横坐标表示从展平状态待闭合状态的过程,纵坐标表示操作力大小。
展平状态为终端设备的比较常见的使用状态,在此状态下,需要转轴机构10能够提供较大的阻尼力来保持整个设备的平整度。当对终端设备由展平状态进行折叠时,转动件10121绕主轴组件102转动,滑动件10122沿着凸轮件1011的凸轮面10111运动,并在凸轮件1011的作用下压缩弹性元件101224。因此,通过合理设计弹性元件101224的弹性力以及凸轮面10111的具体形态,可以有效的提高对终端设备的折叠操作体验的舒适度,另外,还可以使阻尼组件的寿命得到保证。
本申请的转轴机构10除了可以采用上述实施例提供的设置方式外,还有其它可能的设置方式。示例性的,参照图21a和图21b,图21a展示了本申请又一种实施例的转轴机构10的结构示意图;图21b展示了图21a中转轴机构10的另一个角度下的结构示意图。在图21a和图21b所示的实施例中,转轴机构10处于展平状态。另外,还可以参照图21c,图21c展示了转轴机构10处于中间状态的结构示意图。在本申请该实施例中,转轴机构10也可以包括主轴组件102和阻尼组件101,阻尼组件101与主轴组件102转动连接。其中,阻尼组件101可以为多个,且该多个阻尼组件101分设于主轴组件102的垂直于其长度方向的两侧,以在转轴机构10的两侧均可产生满足要求的阻尼力。
参照图22,图22为图21a至图21c中所示转轴机构的分解结构示意图。在具体设置阻尼组件101时,阻尼组件101也可以包括转动组件1012和凸轮件1011。其中,转动组件1012包括转动件10121和滑动件10122,转动件10121可绕主轴组件102转动,以带动整个转动组件1012绕主轴组件102的转动。具体实施时,可一并参照图22和图23,图23展示了转动件10121的结构。该转动件10121可以包括本体部101211和连接部101212,其中,连接部101212设置于本体部101211的一侧,且连接部101212与本体部101211固定连接。可以理解的是,在图23所示的实施例,转动件10121可为一体成型结构,这样 可有效的提高转动件10121的结构可靠性,从而提高其运动的稳定性。在本申请另外一些实施例中,还可以使转动件10121为分体结构,本体部101211与连接部101212可以但不限于通过螺栓等紧固件103固定连接,其可使转动件10121的结构设置较为灵活。
连接部101212可用于与图22中的主轴组件102转动连接,在图23所示的实施例中,连接部101212可设置为圆弧轴。其中,圆弧轴的数量可以为多个,以用于提高连接部101212与主轴组件102连接的可靠性。另外,参照图22,在主轴组件102上可设置有圆弧槽10221,圆弧槽10221与圆弧轴一一对应的设置,这样可使每个圆弧轴容置于对应的圆弧槽10221内,并且圆弧轴的弧形面可沿圆弧槽10221的槽壁滑动,从而实现连接部101212与主轴组件102的相对转动。可以理解的是,在该实施例中,圆弧轴和圆弧槽10221的滑动配合形成了虚拟轴,从而使转动件10121与主轴组件102之间通过虚拟轴实现转动连接,其可使用于实现转动件10121与主轴组件102转动连接的结构所占用的主轴组件102的空间较小,从而有利于实现转轴机构10的小型化以及薄型化设计。在本申请另外一些可能的实施例中,转动件10121与主轴组件102还可以通过实心轴实现转动连接,其可有效的简化转轴机构10的结构,降低其制备工艺的管控难度。
可继续参照图23,该实施例的转动件10121的本体部101211也设置有滑槽1012111,一并参照图22和图23,滑动件10122的至少部分容置于滑槽1012111,且可在滑槽1012111内滑动。滑动件10122在滑槽1012111内滑动的过程中,滑动件10122的端部可与凸轮件1011的凸轮面10111相抵接,二者相抵接的抵接力可转换为阻尼组件101的阻尼力输出。
另外,与上述实施例不同的是,在该实施例中,凸轮件1011设置于转动组件1012。具体实施时,参照图23,在转动件10121的本体部101211还设置有两个安装槽1012113,在沿主轴组件102的长度方向上,该两个安装槽1012113分别位于滑槽1012111的两侧。另外,每个安装槽1012113可通过过孔1012114与滑槽1012111相连通。
继续参照图22,凸轮件1011可安装于安装槽1012113。另外,参照图24,图24展示了本申请一种实施例的凸轮件1011的结构示意图。凸轮件1011设置有凸轮面10111的一端可伸入过孔1012114,并可在安装槽1012113内沿朝向或背离滑槽1012111的方向运动。可继续参照图22,在本申请一个实施例中,凸轮件1011还与弹性元件101224连接,该弹性元件101224可对凸轮件1011施加朝向滑槽1012111的弹性力,以将凸轮件1011压向滑动件10122,该弹性元件101224可参照上述任一实施例进行设置,在此不进行赘述。
在图22所示的实施例中,弹性元件101224为弹簧,在凸轮件1011的远离过孔1012114的一侧设置有导向杆1012212,弹性元件101224可套设于导向杆1012212,以便于弹性元件101224与凸轮件1011的安装,还可以避免弹性元件101224在产生弹性形变时出现起拱等问题,从而有利于提高凸轮件1011在安装槽1012113内滑动的可靠性。另外,弹性元件101224的一端与安装槽1012113的槽壁弹性抵接,另一端与凸轮件1011弹性抵接,以将凸轮件1011压向滑槽1012111。
在本申请该实施例中,具体设置滑动件10122时,可参照图22,滑动件10122可以包括转动部101225和滑块101221。其中,滑块101221与转动部101225转动连接,转动部101225与主轴组件102转动连接。另外,转动部101225绕主轴组件102转动的轴线的延伸方向,与主轴组件102的长度方向相同。但是,转动部101225绕主轴组件102转动的轴线,与转动件10121的连接部101212绕主轴组件102转动的轴线相互平行但不重合。这样,可在转动组件1012相对主轴组件102转动的过程中,滑动件10122与转动件10121 之间存在相位差,从而使滑动件10122可以相对转动件10121发生滑动。
参照图25,图25展示了本申请一种实施例的转动部101225的结构。在该实施例中,转动部101225可以设置有齿轮结构1012252,该齿轮结构1012252可为单独的结构,并与转动部101225固定连接。或者,该齿轮结构1012252还可以直接形成于转动部101225的端部的表面,以使转动部101225的结构得到简化。这样可使成对设置的如图22中所示的两个阻尼组件101的转动部101225的齿轮结构1012252相啮合,从而在其中一个阻尼组件101绕主轴组件102转动的过程中,可带动另一个阻尼组件101朝相对或者相背的方向运动,以实现两个阻尼组件101的同步运动。其有利于提高转轴机构10两侧的阻尼力的一致性,以提高转轴机构10的结构稳定性。
图26为本申请两个转动部101225的连接关系图;图27为本申请两个转动部101225的连接关系的分解图。参照图26,为了提高相啮合的两个转动部101225之间传动关系的可靠性,可在该相啮合的两个转动部101225的沿图22中所示的主轴组件102的长度方向的两侧各设置一个挡板101217,该两个挡板101217可用于对该两个转动部101225的齿轮结构1012252在主轴组件102的长度方向的运动进行限位,从而使两个转动部101225的齿轮结构1012252之间的啮合长度较长,以提高二者之间运动传递的可靠性。另外,参照图27,在各挡板101217上还设置有第二通孔1012171,以使各转动部101225的第二转轴1012251能够穿过对应的第二通孔1012171,从而对相啮合的两个齿轮结构1012252的中心距进行限位,其有利于提高两个齿轮结构1012252运动的可靠性。
滑块101221可通过第三转轴1012217与转动部101225转动连接,参照图28,图28展示了本申请一种可能的实施例的滑块101221的结构。在滑块101221的一个端部可开设有安装孔1012211,第三转轴1012217的两个端部分别安装于一个安装孔1012211。另外,在滑块101221的端部开设有凹陷部,安装孔1012211设置于该凹陷部的侧面,这样可使转动部101225的部分伸入到该凹陷部中,以实现其与滑块101221的转动连接,其可使滑块101221和转动部101225组成的结构较为紧凑,从而有利于实现转轴机构10的小型化设计。
由上述对本申请该实施例的滑动件10122与转动件10121之间发生滑动的原理的介绍可以知道,在本申请实施例中,滑块101221的至少部分可容置于转动件10121的滑槽1012111,并可在滑槽1012111内滑动。另外,参照图23,在滑槽1012111的两个相对的槽壁上可以分别设置有第一滑动部10121111和第二滑动部10121112。同时参照图28,在滑块101221上设置有第三滑动部1012215和第四滑动部1012216。其中,第三滑动部1012215与第一滑动部10121111滑动配合,第四滑动部1012216与第二滑动部10121112滑动配合。
第一滑动部10121111、第二滑动部10121112、第三滑动部1012215和第四滑动部1012216的具体设置方式可以有多种,示例性的,第一滑动部10121111和第二滑动部10121112可设置为凹槽,同时第三滑动部1012215和第四滑动部1012216可设置为凸起;或者第一滑动部10121111和第二滑动部10121112可设置为凸起,同时第三滑动部1012215和第四滑动部1012216可设置为凹槽;又或者,第一滑动部10121111和第四滑动部1012216可设置为凹槽,同时第二滑动部10121112和第三滑动部1012215可设置为凸起,只要实现同侧的两个滑动部的滑动配合即可。
由上述对凸轮件1011的介绍可知,凸轮件1011安装于安装槽1012113,且凸轮件1011可伸入过孔1012114,并可在安装槽1012113内沿朝向或背离滑槽1012111的方向运动。 继续参照图28,在本申请中,还可在滑块101221的朝向凸轮件1011的端部设置有倾斜面1012219。一并参照图22和图28,该凸轮件1011的凸轮面10111与倾斜面1012219相抵接,以可对滑块101221施加沿远离主轴组件102的方向的推力。可以理解的是,通过对该凸轮面10111和倾斜面1012219的合理设计,可实现对阻尼组件101提供的阻尼力的调整。
继续参照图28,当滑块101221的第三滑动部1012215和第四滑动部1012216设置为凸起时,上述倾斜面1012219可为开设于凸起的凹陷部的表面。另外,在本申请一个可能的实施例中,还可以使图24中的凸轮件1011设置有凸台10112,滑块101221可对凸台10112的朝向转动件10121的安装槽1012113的槽口方向的运动进行限位,以将凸轮件1011限位于安装槽内1012113,以避免凸轮件1011从安装槽1012113内脱落。具体实施时,可使滑块101221的第三滑动部1012215和第四滑动部1012216设置为凸起,对应侧的凸起位于凸台10112的靠近安装槽1012113的槽口的位置,从而实现对凸台10112的限位。
参照图29,图29展示了本申请一种实施例的主轴组件102的结构示意图。在该实施例中,主轴组件102也包括主内轴1022和主外轴1021。参照图30,图30为该实施例的主内轴1022的结构示意图。与上述实施例相类似,该实施例的主内轴1022也具有用于支撑柔性屏40的第一表面10222,该第一表面10222可参照上述实施例进行设置,在此不进行赘述。
可继续参照图29,在主内轴1022上设置有开槽10223,其中,上述的滑动件10122的转动部101225可安装于开槽10223内。另外,在开槽10223的沿主轴组件102的长度方向上的槽壁上可以设置有轴孔102231,该轴孔102231可以但不限于为U形孔。图27中所示的转动部101225的第二转轴1012251的两端可以安装于对应的轴孔102231。
主外轴1021可与主内轴1022相扣合,在主外轴1021与主内轴1022之间可围成容纳转轴机构10的其它部件的容纳空间。另外,主外轴1021与主内轴1022在扣合后可以但不限于通过螺栓、螺钉等紧固件连接,或者通过卡扣固定连接。
为了避免对转动部101225的运动造成干涉,可继续参照图29,在本申请一个实施例中,可以将主外轴1021设置为分体结构。此时主外轴1021包括多个相互独立的压盖10211,参照图31,图31为该实施例的压盖10211的结构示意图,其中,压盖10211的结构可以但不限于为板状,每个压盖10211与主外轴1021相扣合,并在每个压盖10211与主外轴1021之间形成容纳空间,转动件10121的连接部101212可容置于该容纳空间内,并与主轴组件102转动连接。
由于展平状态为转轴机构10的比较常见的状态,由上述实施例对转轴机构10的具体结构的介绍可以理解,针对上述图21a和图21b所示的展平状态的转轴机构10,弹性元件101224可推动凸轮件1011挤压滑块101221,以使凸轮件1011与滑块101221弹性抵接,同时弹性元件101224受到凸轮件1011所施加的远离滑块101221方向的推力。在此状态下,凸轮件1011的凸轮面10111与滑块101221的倾斜面1012219的远离过孔1012114的位置抵接。通过对倾斜面1012219的倾斜角度的合理设置,可以使其将来自凸轮件1011的挤压力转化为施加于滑块101221的沿远离主轴组件102方向(图21b中箭头所示的方向)的推力,从而在主轴组件102与阻尼组件101之间产生阻尼力。
图32a展示了本申请一实施例的转轴机构10处于展平状态时滑块101221与转动件10121的相对位置关系。当对转轴机构10进行折叠时,可参照图32b和图32c,图32b和 图32c分别展示了转轴机构10处于不同折叠程度的中间状态时滑块101221与转动件10121的相对位置关系。通过对处于不同折叠程度的转轴机构10进行对比可以发现:当转轴机构10由展平状态到闭合状态的过程中,滑块101221相对于转动件10121向靠近主轴组件102的方向滑动;而当转轴机构10由闭合状态到展平状态的过程中,滑块101221相对于转动件10121向背离主轴组件102的方向滑动。由此可知,转轴机构10处于展平状态时,滑块101221所受到的力使其有朝向背离主轴组件102的方向滑动的趋势,以使整个转轴机构10有朝与其折叠方向相反的一侧转动的趋势。由于通常情况下会在转动件10121与主轴组件102之间设置转动限位的结构,该运动趋势可以使整个转轴机构10即便在受到一定外力的情况下仍然可保持在展平状态。
当需要折叠转轴机构10时,由图32b和图32c可知,滑块101221需要沿朝向主轴组件102的方向滑动。通过图21b中展示的滑块101221的倾斜面1012219和凸轮的凸轮面10111之间的配合关系可以知道,当滑块101221朝向主轴组件102运动时,滑块101221的倾斜面1012219会推动凸轮向背离滑槽1012111的方向滑动,以使弹性元件101224的压缩量加大。在此过程中,从转轴机构10来看,其是克服弹性元件101224的弹性力来实现转轴机构10的折叠。而从转轴机构10的操作角度来看,需要对转轴机构10施加一个较大的力才能实现折叠。另外,可以理解的是,在转轴机构10展开到接近展平状态时,凸轮件1011沿倾斜面1012219朝向滑槽1012111运动,弹性元件101224会释放弹性力,其也可为转轴机构10提供一定的展平助力。在本申请中,可将这种随折叠程度变化而变化的操作力也称作操作手感。
图33为转轴机构10从展平状态到闭合状态过程中的操作力示意图。由于展平状态为转轴机构10的比较常见的使用状态,在此状态下,需要转轴机构10能够提供较大的阻尼力来保持整个设备的平整度。当对转轴机构10进行折叠时,可参照图32a至图32c,可使滑块101221滑动,以推动凸轮件1011挤压弹性元件101224。另外,可参照图21b,在本申请该实施例中,可通过合理的设计,在转轴机构10达到一定的折叠程度时,使凸轮的凸轮面10111与滑块101221的接触面由倾斜面滑移到平面区,这样可使之后对于转轴机构10进行折叠的操作力大幅度减小,其仅需克服转轴机构10内部的摩擦力即可实现转轴机构10的进一步折叠,其可以使阻尼组件的寿命得到保证。
可以理解的是,在本申请上述各实施例提供的转轴机构10中,阻尼组件101可以集成于其它可能的结构中,例如用于实现转轴机构10与终端设备的壳体直接连接的结构,从而可提高转轴机构10的结构集成度,满足其小型化设计的要求。另外,当转轴机构10的空间较为充足时,还可以使阻尼组件101的设置不依赖与其它结构的设置,以实现阻尼组件101与其它结构之间的解耦,从而使阻尼组件101的设置较为灵活。
另外,当本申请提供的转轴机构10包括多个阻尼组件101时,该多个阻尼组件101的设置方式可以相同,其可采用本申请上述任一实施例中提到的阻尼组件101。另外,该多个阻尼组件101的设置方式也可以不同,其可以采用本申请上述至少两个实施例中提到的阻尼组件101。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种转轴机构,其特征在于,所述转轴机构包括主轴组件和阻尼组件,所述阻尼组件与所述主轴组件转动连接,其中:
    所述阻尼组件包括凸轮件和转动组件,所述凸轮件固定于所述主轴组件,且所述凸轮件具有凸轮面;所述转动组件包括转动件和滑动件,所述转动件与所述主轴组件转动连接;所述滑动件可相对所述转动件沿朝向或者背离所述主轴组件的方向滑动;
    所述滑动件与所述凸轮面弹性抵接,以在所述主轴组件与所述阻尼组件之间产生阻尼力。
  2. 如权利要求1所述的转轴机构,其特征在于,所述转动件包括本体部和连接部,所述连接部与所述本体部固定连接,所述本体部设置有滑槽,所述滑动件的至少部分容置于所述滑槽;所述连接部用于与所述主轴组件转动连接。
  3. 如权利要求2所述的转轴机构,其特征在于,所述滑动件包括滑块,所述滑块容置于所述滑槽,且在所述滑槽内相对于所述转动件沿朝向或者背离所述主轴组件的方向滑动。
  4. 如权利要求3所述的转轴机构,其特征在于,所述滑动件还包括滚轮,所述滚轮通过滚轮轴与所述滑块转动连接,且所述滚轮与所述凸轮面相抵接。
  5. 如权利要求3所述的转轴机构,其特征在于,所述滑块的端部还设置有抵接部,所述抵接部与所述凸轮面相抵接,且所述抵接部的表面为圆弧面或者球面。
  6. 如权利要求3~5任一项所述的转轴机构,其特征在于,所述连接部设置为圆弧轴,所述主轴组件设置有圆弧槽,所述圆弧轴与所述圆弧槽滑动配合。
  7. 如权利要求3~5任一项所述的转轴机构,其特征在于,所述转动件包括第一转动臂、第二转动臂和连接臂,所述第一转动臂和第二转动臂分别与所述主轴组件转动连接,所述第一转动臂和所述第二转动臂的背离所述主轴组件的端部通过所述连接臂固定连接;
    所述第一转动臂、所述第二转动臂和所述连接臂的用于围成所述滑槽的部分作为所述转动件的所述本体部;所述第一转动臂和所述第二转动臂的用于与所述主轴组件转动连接的端部作为所述转动件的所述连接部。
  8. 如权利要求7所述的转轴机构,其特征在于,所述第一转动臂的用于与所述主轴组件转动连接的端部设置有齿轮结构,所述第二转动臂的用于与所述主轴组件转动连接的端部设置有齿轮结构;
    所述转轴机构包括成对设置的两个所述阻尼组件,其中一个所述阻尼组件的所述第一转动臂的所述齿轮结构,与另一个所述阻尼组件的对应侧的所述第一转动臂或所述第二转动臂的所述齿轮结构相啮合;其中一个所述阻尼组件的所述第二转动臂的所述齿轮结构,与另一个所述阻尼组件的对应侧的所述第二转动臂或所述第一转动臂的所述齿轮结构相啮合。
  9. 如权利要求8所述的转轴机构,其特征在于,在所述主轴组件的长度方向上,相啮合的两个所述齿轮结构的两侧各设置有一个挡板,所述挡板用于对两个所述齿轮结构的中心距进行限位。
  10. 如权利要求3~9任一项所述的转轴机构,其特征在于,所述滑槽的两个相对的槽壁上分别设置有第一滑动部和第二滑动部;所述滑块设置有第三滑动部和第四滑动部,所述第三滑动部与所述第一滑动部滑动配合,所述第四滑动部与所述第二滑动部滑动配合。
  11. 如权利要求3~10任一项所述的转轴机构,其特征在于,在所述滑槽内还设置有弹性元件,所述滑块与所述弹性元件弹性连接;所述弹性元件将所述滑块压向所述凸轮件。
  12. 如权利要求1~11任一项所述的转轴机构,其特征在于,所述主轴组件包括主内轴和主外轴,所述主内轴和所述主外轴相扣合以围成容纳空间;所述凸轮件与所述主内轴为一体成型结构。
  13. 一种终端设备,其特征在于,包括柔性屏、第一壳体、第二壳体以及如权利要求1~12任一项所述的转轴机构,其中:
    所述第一壳体和所述第二壳体分设于所述转轴机构两侧,且所述第一壳体和所述第二壳体分别与对应侧的所述阻尼组件连接;
    所述柔性屏连续覆盖于所述第一壳体、第二壳体以及所述转轴机构上,且所述柔性屏与所述第一壳体和所述第二壳体固定连接。
PCT/CN2022/081769 2021-03-24 2022-03-18 一种转轴机构及终端设备 WO2022199493A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22774154.3A EP4300254A1 (en) 2021-03-24 2022-03-18 Rotating shaft mechanism and terminal device
US18/472,399 US20240015909A1 (en) 2021-03-24 2023-09-22 Rotating shaft mechanism and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110312420.3A CN115126770A (zh) 2021-03-24 2021-03-24 一种转轴机构及终端设备
CN202110312420.3 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,399 Continuation US20240015909A1 (en) 2021-03-24 2023-09-22 Rotating shaft mechanism and terminal device

Publications (1)

Publication Number Publication Date
WO2022199493A1 true WO2022199493A1 (zh) 2022-09-29

Family

ID=83374123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081769 WO2022199493A1 (zh) 2021-03-24 2022-03-18 一种转轴机构及终端设备

Country Status (4)

Country Link
US (1) US20240015909A1 (zh)
EP (1) EP4300254A1 (zh)
CN (1) CN115126770A (zh)
WO (1) WO2022199493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116221266A (zh) * 2023-03-03 2023-06-06 荣耀终端有限公司 一种阻尼转轴机构及可折叠电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318181A1 (en) * 2021-07-20 2024-02-07 Samsung Electronics Co., Ltd. Electronic device including hinge module
CN118283153A (zh) * 2022-12-30 2024-07-02 华为技术有限公司 一种折叠装置及电子设备
CN115978082B (zh) * 2023-02-08 2023-08-11 荣耀终端有限公司 一种转动机构、支撑装置以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190067400A (ko) * 2017-12-07 2019-06-17 주식회사 한빛티앤아이 폴더블 디스플레이 장치의 듀얼힌지장치
US10491725B1 (en) * 2018-09-14 2019-11-26 Motorola Mobility Llc Hinged electronic device with moving support plates for a flexible display and corresponding systems
CN209798368U (zh) * 2019-01-28 2019-12-17 无锡小天鹅电器有限公司 阻尼器、门盖组件及洗衣机
CN111043149A (zh) * 2019-12-20 2020-04-21 深圳市长盈精密技术股份有限公司 折叠铰链及折叠显示装置
CN112243053A (zh) * 2019-07-17 2021-01-19 华为技术有限公司 一种转轴机构及移动终端
CN212643301U (zh) * 2020-07-08 2021-03-02 拓米(成都)应用技术研究院有限公司 一种可搭载小尺寸柔性屏的折叠铰链机构及折叠设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190067400A (ko) * 2017-12-07 2019-06-17 주식회사 한빛티앤아이 폴더블 디스플레이 장치의 듀얼힌지장치
US10491725B1 (en) * 2018-09-14 2019-11-26 Motorola Mobility Llc Hinged electronic device with moving support plates for a flexible display and corresponding systems
CN209798368U (zh) * 2019-01-28 2019-12-17 无锡小天鹅电器有限公司 阻尼器、门盖组件及洗衣机
CN112243053A (zh) * 2019-07-17 2021-01-19 华为技术有限公司 一种转轴机构及移动终端
CN111043149A (zh) * 2019-12-20 2020-04-21 深圳市长盈精密技术股份有限公司 折叠铰链及折叠显示装置
CN212643301U (zh) * 2020-07-08 2021-03-02 拓米(成都)应用技术研究院有限公司 一种可搭载小尺寸柔性屏的折叠铰链机构及折叠设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116221266A (zh) * 2023-03-03 2023-06-06 荣耀终端有限公司 一种阻尼转轴机构及可折叠电子设备
CN116221266B (zh) * 2023-03-03 2023-11-07 荣耀终端有限公司 一种阻尼转轴机构及可折叠电子设备

Also Published As

Publication number Publication date
US20240015909A1 (en) 2024-01-11
EP4300254A1 (en) 2024-01-03
CN115126770A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2022199493A1 (zh) 一种转轴机构及终端设备
US11914433B2 (en) Hinge and mobile terminal
WO2022001833A1 (zh) 柔性屏用折叠装置及移动终端
WO2019223014A1 (zh) 一种框架模组及可弯曲终端
US9310850B2 (en) Synchronous movement device applied to dual-shaft system
WO2023071978A1 (zh) 一种转轴机构及电子设备
CN116201808A (zh) 铰链结构和电子设备
CN114038328A (zh) 转轴机构及可折叠柔性显示装置
WO2024099088A1 (zh) 铰链机构及电子设备
WO2023051469A1 (zh) 支撑组件、保护机构、电机组件及电子设备
WO2023051040A1 (zh) 折叠屏设备及铰链组件
WO2023077756A1 (zh) 铰链部件和电子设备
CN114584638B (zh) 一种转轴机构及移动终端
WO2023001105A1 (zh) 折叠机构及电子设备
CN216241794U (zh) 铰链、柔性显示面板及电子装置
WO2019223012A1 (zh) 联动铰链、连接装置及可弯曲终端
CN215890763U (zh) 铰链、柔性显示面板及电子装置
CN209164356U (zh) 一种铰链结构及笔记本电脑
US20240219978A1 (en) Rotating shaft mechanism and electronic device
CN112901646A (zh) 一种内折叠铰链
WO2024139437A1 (zh) 一种转轴机构及电子设备
US20240248519A1 (en) Rotating shaft mechanism and electronic device
CN215762777U (zh) 转动组件及移动终端
WO2023124460A1 (zh) 扭矩模组、转轴组件以及电子设备
CN217152619U (zh) 一种应用于移动终端的内折叠铰链

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022774154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022774154

Country of ref document: EP

Effective date: 20230927

NENP Non-entry into the national phase

Ref country code: DE