WO2022199191A1 - 光配向装置及光配向方法 - Google Patents

光配向装置及光配向方法 Download PDF

Info

Publication number
WO2022199191A1
WO2022199191A1 PCT/CN2021/143354 CN2021143354W WO2022199191A1 WO 2022199191 A1 WO2022199191 A1 WO 2022199191A1 CN 2021143354 W CN2021143354 W CN 2021143354W WO 2022199191 A1 WO2022199191 A1 WO 2022199191A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
polarized light
aligned
plate glass
large plate
Prior art date
Application number
PCT/CN2021/143354
Other languages
English (en)
French (fr)
Inventor
何静
余思慧
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US18/002,161 priority Critical patent/US11966123B2/en
Publication of WO2022199191A1 publication Critical patent/WO2022199191A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • the present application belongs to the field of display technology, and in particular, relates to an optical alignment device and an optical alignment method.
  • the liquid crystal display panel usually includes an array substrate (Thin Film Transistor, TFT), a color filter substrate (Color Filter, CF), a liquid crystal (Liquid Crystal, LC) sandwiched between the array substrate and the color filter substrate (Liquid Crystal, LC) and a frame sealant, etc. .
  • the alignment film has the ability to make the liquid crystal molecules follow a uniform direction at a certain pre-tilt angle. ability to rank.
  • the above is only applicable to the case where the alignment directions are uniform.
  • the process difficulty of rubbing alignment increases and is no longer applicable.
  • the embodiments of the present application provide a photo-alignment device and a photo-alignment method, which can realize the simultaneous alignment of multiple array substrates or multiple color filter substrates requiring different liquid crystal alignment directions, with simple process and short time.
  • an optical alignment device comprising: a bearing platform, a linearly polarized light source located on one side of the bearing platform, and a control assembly located between the bearing platform and the linearly polarized light source, wherein The side of the bearing platform close to the control assembly is used for placing a large plate glass to be aligned including a plurality of alignment regions; the linearly polarized light source is used to provide the control assembly with first polarized light; the control assembly , used to adjust the polarization direction of the first polarized light and provide the second polarized light to the plurality of alignment regions included in the large plate glass to be aligned; wherein, at least two alignment regions corresponding to the second polarized light respectively The polarization directions of light are different.
  • the control assembly is arranged between the linearly polarized light source and the bearing platform, so that after the large plate glass to be aligned is placed on the side of the bearing platform close to the control component, the control component can adjust the emission of the linearly polarized light source.
  • the polarization direction of the first polarized light so as to provide the second polarized light to the plurality of alignment regions included in the large plate glass to be aligned. Since the polarization directions of the second polarized light corresponding to the at least two alignment regions are different, alignment regions corresponding to different alignment directions can be generated, and thus, the control component can be used to simultaneously perform alignment in multiple directions.
  • the process is simple, the time is short, the precision is high, and the work efficiency is also high.
  • the side of the large plate glass to be aligned close to the control component is coated with an alignment film; the second polarized light is used for The alignment film in the alignment region is aligned.
  • the alignment films in the corresponding alignment regions are aligned by the provided second polarized light, so that the alignment films in different alignment regions have alignment capabilities in different directions.
  • a plurality of array substrates are arranged on the large plate glass to be aligned, and each array substrate includes at least one of the alignment regions; or, on the large plate glass to be aligned
  • a plurality of color filter substrates are arranged, and each color filter substrate includes at least one of the alignment regions. In this implementation, regardless of the number of alignment regions, alignment in different directions can be performed.
  • the control assembly includes a plurality of control modules, and the control modules are in one-to-one correspondence with the alignment areas on the large plate glass to be aligned; the control modules are used for The polarization direction of the first polarized light corresponding to the alignment region is adjusted to form the second polarized light.
  • each control module adjusts the alignment direction of one alignment area.
  • the control module includes: a first substrate and a second substrate disposed opposite to each other, and an alignment liquid crystal layer located between the first substrate and the second substrate, so The first substrate is parallel to the stage; an alignment electrode layer is provided on the side of the first substrate close to the alignment liquid crystal layer, or on the side of the second substrate close to the alignment liquid crystal layer, The alignment electrode layer is used for supplying a voltage to the alignment liquid crystal layer, the voltage is used for controlling the liquid crystal in the alignment liquid crystal layer to rotate, and the rotated liquid crystal is used for adjusting the polarization direction of the first polarized light.
  • the liquid crystal in the alignment liquid crystal layer is controlled by voltage to rotate, and the rotated liquid crystal adjusts the polarization direction of the first polarized light.
  • the alignment electrode layer includes: a first electrode and a second electrode arranged at intervals, the first electrode and the second electrode are both parallel to the bearing platform; the The first electrode is used for providing a first voltage to the alignment liquid crystal layer, and the second electrode is used for providing a second voltage to the alignment liquid crystal layer.
  • the voltage difference between the first voltage and the second voltage controls the rotation angle of the liquid crystal, so that the polarization direction of the first polarized light can be adjusted.
  • the linearly polarized light source includes: an ultraviolet light source, a filter, and a polarizer that are stacked in sequence, and the polarizer is located at the ultraviolet light source close to the control assembly
  • the filter is used to filter the ultraviolet light of the preset wavelength in the ultraviolet light provided by the ultraviolet light source
  • the polarizer is used to convert the filtered ultraviolet light into the first polarized light.
  • control assembly is parallel to the carrying table and the large plate glass to be aligned, and the side length of the control assembly in any direction is greater than or equal to the same direction The side length of the large plate glass to be aligned.
  • the projection of the linearly polarized light source on the control assembly is located at the center of the control assembly.
  • a photosensitive agent is coated on a side of the alignment film close to the control component.
  • a photo-alignment method wherein a large plate glass to be aligned including a plurality of alignment regions is placed on a side of a bearing platform close to a control assembly; a linearly polarized light source provides first polarized light to the control assembly; the control assembly After adjusting the polarization direction of the first polarized light, the second polarized light is provided to the plurality of alignment regions included in the large plate glass to be aligned; wherein, the polarization of the second polarized light corresponding to at least two alignment regions respectively The directions are different.
  • an alignment film is coated on the side of the large plate glass to be aligned close to the control component; the second polarized light is located on the large plate glass to be aligned on the The alignment film in the alignment region is aligned.
  • the alignment films in the corresponding alignment regions are aligned by the provided second polarized light, so that the alignment films in different alignment regions have alignment capabilities in different directions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer reads and executes the computer program or instruction, the computer executes the above-mentioned second aspect. Or the photo-alignment method in any possible implementation manner of the second aspect.
  • the embodiments of the present application provide an optical alignment device and an optical alignment method.
  • a control assembly By arranging a control assembly between a linearly polarized light source and a carrying table, after placing a large plate glass to be aligned on the side of the carrying table close to the control assembly, the control assembly
  • the polarization direction of the first polarized light emitted by the linearly polarized light source can be adjusted, so as to provide the second polarized light to the plurality of alignment regions included in the large plate glass to be aligned. Since the polarization directions of the second polarized light corresponding to the at least two alignment regions are different, alignment regions corresponding to different alignment directions can be generated, and thus, the control component can be used to simultaneously perform alignment in multiple directions.
  • the process is simple, the time is short, the precision is high, and the work efficiency is also high.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display device
  • Figure 2 is a schematic structural diagram of a first large plate glass and a second large plate glass
  • FIG. 3 is a schematic diagram of the arrangement of several array substrates with different alignment directions arranged on a first large plate glass;
  • FIG. 4 is a schematic diagram of the arrangement of several array substrates with different alignment directions arranged on another first large plate glass;
  • FIG. 5 is a schematic structural diagram of an optical alignment device provided by an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of the photo-alignment device in FIG. 5 along the AA' direction;
  • Fig. 7 is a partial enlarged view of region P1 in Fig. 6;
  • FIG. 8 is a schematic structural diagram of an optical alignment device provided by an embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional view of the photo-alignment device in FIG. 8 along the BB' direction;
  • FIG. 10 is a partial enlarged view of the region P2 in FIG. 9 .
  • FIGS. 8 to 10 are schematic diagrams of the arrangement of alignment regions in several different alignment directions on the large plate glass to be aligned in FIGS. 8 to 10;
  • FIG. 12 is a schematic flowchart of a photo-alignment method provided by an embodiment of the present application.
  • Orientation terms such as “left”, “right”, “upper” and “lower” are defined relative to the orientation in which the display components are schematically placed in the drawings, and it should be understood that these directional terms are relative For the description and clarification of the relative, it can be changed accordingly according to the change of the orientation of the array substrate or the display device.
  • the embodiments of the present application provide a liquid crystal display device, and the liquid crystal display device can be various electronic devices or the liquid crystal display device can be applied to various electronic devices.
  • the electronic devices may be various types of electronic devices such as smart phones, tablet computers, electronic readers, in-vehicle computers, navigators, digital cameras, smart TVs, and smart wearable devices.
  • This embodiment of the present application does not impose any limitation on this.
  • FIG. 1 shows a schematic structural diagram of a backlight type liquid crystal display device.
  • the main structure of the liquid crystal display device includes a frame 1 , a cover plate 2 , a liquid crystal display panel 3 , a backlight module 4 , a circuit board 5 and other electronic accessories including a camera.
  • the liquid crystal display panel 3 includes an array substrate 31, an opposite substrate, and a liquid crystal layer 33 disposed between the array substrate 31 and the opposite substrate.
  • the array substrate 31 and the opposite substrate are joined together by a frame sealant, so as to seal the liquid crystal layer 33 Limited to the area enclosed by the frame sealant.
  • the color filter layer is usually disposed on the opposite substrate, and the opposite substrate is referred to as the color filter substrate 32 .
  • the liquid crystal display panel 3 , the backlight module 4 , the circuit board 5 and other electronic accessories including cameras are arranged in the frame 1 , and the backlight module 4 is located in the frame 1 .
  • the circuit board 5 is located between the backlight module 4 and the frame 1
  • the cover plate 2 is located on the side of the liquid crystal display panel 3 away from the backlight module 4 .
  • the cover plate 2 may be, for example, transparent glass.
  • the propagation sequence of the light path is as follows: the backlight module 4 emits light and passes through the array substrate 31 , the liquid crystal layer 33 , the color filter substrate 32 , and the emission cover 2 in sequence.
  • the structure of the existing liquid crystal display device is described in detail above. However, when preparing the liquid crystal display panel 3 in the liquid crystal display device with this structure, the color filter substrate 32 and the array substrate 31 need to be prepared separately, and then The liquid crystal cell 30 is formed by coating the frame sealant and assembling the cells.
  • FIG. 2 shows a schematic structural diagram of the first large plate glass and the second large plate glass provided in the example technology.
  • the alignment film 40 On this basis, before coating the frame sealant on the array substrate 31 and the color filter substrate 32 , it is usually necessary to coat a layer of alignment film 40 on the array substrate 31 and the color filter substrate 32 respectively. In order to simplify the process, generally, a whole layer of the alignment film 40 is coated on the first large plate glass 51 on which several array substrates 31 are arranged and the second large glass 52 on which several color filter substrates 32 are arranged.
  • the rubbing alignment using the cloth on the outside of the drum to rub the alignment film 40 according to the mechanical principle
  • the alignment film 40 is in contact with the liquid crystal in the liquid crystal layer 33, so that the liquid crystal can generate a pretilt angle in a certain direction, thereby providing an angle to the liquid crystal molecules.
  • the size of the pretilt angle has an important influence on the driving voltage, contrast, response time, viewing angle, etc. of the liquid crystal display panel 3 .
  • the above method is only applicable to the case where the alignment directions of the liquid crystals corresponding to the plurality of array substrates 31 or the color filter substrates 32 are the same. During the process, multiple rubbing alignments in different directions will need to be performed, and during the rubbing alignment, the surrounding area may be disturbed. Therefore, when different alignment directions are required, the technological difficulty of friction alignment is greatly increased, and the friction alignment is no longer applicable.
  • FIG. 3 shows a schematic diagram of the arrangement of several array substrates 31 with different alignment directions arranged on a first large plate glass 51 .
  • the liquid crystals in the plurality of array substrates 31 in the first row and the third row need to be aligned along the row direction
  • the liquid crystals in the plurality of array substrates 31 in the second row and the fourth row need to be aligned in the column direction.
  • the first row may be affected.
  • the array substrate 31 of the row corresponds to the alignment film 40 that has been aligned in the region.
  • FIG. 4 shows another schematic diagram of the arrangement of several array substrates 31 with different alignment directions on the first large plate glass 51 .
  • the positions of the array substrates 31 in the second row and the array substrates 31 in the third row in FIG. 3 are exchanged, so that the array substrates 31 in the first row and the second row in FIG. 4 correspond to the alignment directions Both are horizontal directions, which can form one alignment area, and the corresponding alignment directions of the array substrates 31 in the third row and the fourth row are both vertical directions, which can form another alignment area.
  • the alignment films 40 in the alignment regions corresponding to the array substrates 31 in the first row and the second row can be aligned in the horizontal direction at the same time, and then the alignment films in the alignment regions corresponding to the array substrates 31 in the third row and the fourth row can be aligned.
  • the alignment film 40 is aligned in the vertical direction at the same time.
  • the difficulty of rubbing alignment can be reduced by changing the arrangement of the array substrates 31 as described above, when there are more than two alignment directions, the arrangement is more complicated, and the arrangement may not necessarily be simplified, so the rubbing alignment is still inapplicable.
  • the alignment film 40 is irradiated with linearly polarized light to form an alignment microstructure with a certain tilt angle on the surface of the alignment film 40, and the alignment microstructure can induce the liquid crystal molecules to be aligned in the same direction at a certain pretilt angle, that is, In other words, by irradiating the alignment film 40 with linearly polarized light, the irradiated alignment film 40 can have the alignment ability of a specific alignment direction, so that the liquid crystal molecules can be aligned in a corresponding direction subsequently.
  • the polarization direction of the linearly polarized light irradiated on each array substrate 31 of the first large plate glass 51 or on each color filter substrate 32 of the second large plate glass 52 is usually the same Therefore, when the liquid crystal molecules corresponding to several array substrates 31 or color filter substrates 32 need different alignment directions, the existing photo-alignment process is still inapplicable.
  • an embodiment of the present application provides an optical alignment device.
  • the optical alignment device arranges a control assembly between the linearly polarized light source and the bearing platform, so that after the large plate glass to be aligned is placed on the side of the bearing platform close to the control component and the control component can adjust the polarization direction of the first polarized light emitted by the linearly polarized light source, so as to provide the second polarized light to the plurality of alignment regions included in the large plate glass to be aligned. Since the polarization directions of the second polarized light corresponding to the at least two alignment regions are different, alignment regions corresponding to different alignment directions can be generated, and thus, the control component can be used to simultaneously perform alignment in multiple directions.
  • FIG. 5 is a schematic structural diagram of an optical alignment device provided by an embodiment of the present application
  • FIG. 6 is a schematic cross-sectional view of the optical alignment device in FIG. 5 along the AA' direction.
  • FIG. 7 is a partial enlarged view of the area P1 in FIG. 6 .
  • the optical alignment device 100 includes: a bearing platform 110 , a linearly polarized light source 130 located on one side of the bearing platform 110 , and a control assembly located between the bearing platform 110 and the linearly polarized light source 130 120.
  • the side of the support table 110 close to the control assembly 120 is used for placing the large plate glass 200 to be aligned including a plurality of alignment regions 210 .
  • the linearly polarized light source 130 is used for providing the first polarized light to the control component 120 .
  • the control component 120 is used to adjust the polarization direction of the first polarized light, and provide the second polarized light to the plurality of alignment regions 210 included in the large plate glass 200 to be aligned.
  • the polarization directions of the second polarized lights corresponding to the at least two alignment regions 210 respectively are different.
  • the optical alignment device 100 is sequentially arranged with a linearly polarized light source 130 , a control assembly 120 and a carrying platform 110 from top to bottom.
  • the linearly polarized light source 130 in order to enable the linearly polarized light source 130 to illuminate all the control components 120, there is a first preset distance between the linearly polarized light source 130 and the control component 120, and the first preset distance can be set as required.
  • the embodiment does not impose any limitation on this.
  • the second preset distance between the carrying table 110 and the control assembly 120, and the second predetermined distance should be greater than the large plate glass to be aligned The height of the plate glass 200.
  • the second preset distance may be set as required, which is not limited in this embodiment of the present application.
  • the control elements 120 can be arranged parallel to each other.
  • the side length of the support table 110 is greater than or equal to the side length of the large plate glass 200 to be aligned parallel to the support table 110 .
  • the control assembly 120 can be set parallel to the carrier 110 and the large plate glass 200 to be aligned, and the side length of the control assembly 120 in any direction is greater than or equal to the side length of the large plate glass to be aligned in the same direction.
  • the side length of the control component 120 parallel to the carrier 110 and parallel to the first direction x is greater than or equal to the side length of the large plate glass 200 to be aligned parallel to the carrier 110 in the same direction.
  • the length of the side of the control assembly 120 parallel to the carrying platform 110 can be set as required, which is not limited in this embodiment of the present application.
  • the optical alignment device 100 may further include a bracket for suspending the linearly polarized light source 130 , and the linearly polarized light source 130 is suspended at the center of the control assembly 120 parallel to the plane of the carrying table 110 by the bracket. That is, the projection of the linearly polarized light source 130 on the control assembly 120 is located at the center of the control assembly 120 .
  • the supporting table 110 can also be set as a movable supporting table 110, which is convenient for placing the large plate glass 200 to be aligned and taking out the large plate glass 200 to be aligned after being aligned.
  • the large plate glass 200 to be aligned is the first large plate glass 51 or the second large plate glass 52 shown in FIG. 2 .
  • the liquid crystal molecules corresponding to each of the array substrates 31 need different alignment directions, or, a plurality of color filter substrates 32 are arranged on the second large glass 52 , when the liquid crystal molecules corresponding to the plurality of color filter substrates 32 need different alignment directions , the control component 120 can adjust the polarization direction of the incident first polarized light as required, and generate second polarized light with different polarization directions to align the large plate glass 200 to be aligned.
  • the corresponding second polarized light may have the same polarization direction as the first polarized light, or may also have a different polarization direction from the first polarized light.
  • the polarization directions of the second polarized lights corresponding to at least two alignment regions 210 should be different, so that alignment regions 210 corresponding to different alignment directions can be generated.
  • the size of one alignment region 210 on the large plate glass 200 to be aligned may be greater than, equal to or smaller than the size of one array substrate 31 or the size of the color filter substrate 32 .
  • the space between the array substrates 31 can be ignored.
  • the gap, or the gap between the color filter substrates 32 can be considered to have several alignment regions arranged in an array on the large plate glass 200 to be aligned.
  • An embodiment of the present application provides an optical alignment device, in which a control assembly is arranged between a linearly polarized light source and a bearing platform, so that after a large plate glass to be aligned is placed on the side of the bearing platform close to the control component, the control component
  • the polarization direction of the first polarized light emitted by the linearly polarized light source can be adjusted, so as to provide the second polarized light to the plurality of alignment regions included in the large plate glass to be aligned. Since the polarization directions of the second polarized light corresponding to the at least two alignment regions are different, alignment regions corresponding to different alignment directions can be generated, and thus, the control component can be used to simultaneously perform alignment in multiple directions.
  • the process is simple, the time is short, the precision is high, and the work efficiency is also high.
  • the side of the large plate glass 200 to be aligned close to the control assembly 120 is coated with an alignment film 40 .
  • the second polarized light is used to align the alignment film 40 located in the alignment region 210 on the large plate glass 200 to be aligned.
  • the polarization directions of the second polarized light corresponding to at least two alignment regions are different, alignment films 40 corresponding to different alignment directions can be generated at different alignment regions, and the alignment films 40 with different alignment directions can perform different effects on the liquid crystal molecules. Therefore, by using the control assembly, the purpose of aligning multiple directions at the same time can be achieved.
  • a photosensitive agent is coated on the side of the alignment film 40 close to the control assembly 120 .
  • the photosensitive agent is used to react with the second polarized light to complete the alignment of the alignment film 40 .
  • a plurality of array substrates 31 are arranged on the large plate glass 200 to be aligned, and each array substrate 31 includes at least one alignment region 210; or, the large plate glass 200 to be aligned is arranged on the top
  • a plurality of color filter substrates 32 are arranged, and each color filter substrate 32 includes at least one alignment region 210 .
  • the large plate glass 200 to be aligned is the first large plate glass 51 , and six array substrates 31 are arranged on the large plate glass 200 to be aligned, and each array substrate 31 serves as a One alignment region 210 is not aligned.
  • the control component 120 can adjust the polarization direction of the first polarized light and provide the second polarized light to the six alignment regions 210 included in the large plate glass 200 to be aligned.
  • at least two alignment regions 210 that is, at least two regions where the array substrates 31 are located have different polarization directions of the second polarized light.
  • the large plate glass 200 to be aligned can also be the second large plate glass 52 .
  • Six color filter substrates 32 are arranged on the large plate glass 200 to be aligned.
  • the regions are not aligned, and accordingly, the control component 120 can adjust the polarization direction of the first polarized light, and provide the second polarized light to the six alignment regions 210 included in the large plate glass 200 to be aligned.
  • at least two alignment regions 210 that is, at least two regions where the color filter substrates 32 are located have different polarization directions of the second polarized light.
  • FIG. 8 is a schematic structural diagram of an optical alignment device provided by an embodiment of the present application
  • FIG. 9 is a schematic cross-sectional view of the optical alignment device in FIG. 8 along the direction BB′;
  • the large plate glass 200 to be aligned is the first large plate glass 51 , and six array substrates 31 are arranged on the large plate glass 200 to be aligned, and each array substrate 31 includes The 6 alignment regions 210 arranged in the array are arranged in an array, and the remaining regions are not aligned.
  • the control component 120 can adjust the polarization direction of the first polarized light, and provide the second polarized light to the 36 alignment regions 210 included in the large plate glass 200 to be aligned.
  • at least two alignment regions 210 that is, one alignment region 210 included in at least two array substrates 31 respectively, or at least two alignment regions 210 included in one array substrate 31, correspond to the polarization of the second polarized light different directions.
  • the large plate glass 200 to be aligned can also be the second large plate glass 52 , and six color filter substrates 32 are arranged on the large plate glass 200 to be aligned, and each color filter substrate 32 includes six color filter substrates arranged in an array. Alignment area 210 and other areas are not aligned.
  • the control component 120 can adjust the polarization direction of the first polarized light and provide the second polarized light to the 36 alignment areas 210 included in the large plate glass 200 to be aligned.
  • at least two alignment regions 210 that is, one alignment region 210 included in at least two array substrates 31 respectively, or at least two alignment regions 210 included in one array substrate 31, correspond to the polarization of the second polarized light different directions.
  • control assembly 120 includes a plurality of control modules 121 , and the control modules 121 are in one-to-one correspondence with the alignment regions 210 on the large plate glass 200 to be aligned.
  • the control assembly 120 may include 6 control modules 121 , and each control module 121 corresponds to one alignment area area 210 , wherein each control module 121 is disposed directly above the corresponding alignment area 210 .
  • the length of the side of the control module 121 parallel to the carrying table 110 is greater than or equal to the length of the side of the alignment region 210 parallel to the carrying table 110 .
  • the control assembly 120 may include 36 control modules 121 , and each control module 121 corresponds to one alignment area area 210 , wherein each control module 121 is disposed directly above the corresponding alignment area 210 .
  • the number, shape, size and position of the alignment regions 210 can be set as required, and accordingly, the number, shape, size and position of the control modules 121 are changed accordingly, which is not performed in this embodiment of the present application. any restrictions.
  • the control module 121 is configured to adjust the polarization direction of the first polarized light in the corresponding alignment region 210 to form the second polarized light. That is, each control module 121 adjusts the alignment direction of one alignment area 210 . Thus, by adjusting the polarization directions of the first polarized light in the corresponding alignment regions 210 through different control modules 121 , the second polarized light with different polarization directions can be generated.
  • each control module 121 can precisely control the polarization direction of the first polarized light irradiated on one alignment region 210 on the large plate glass 200 to be aligned, the plurality of control modules 121 can be adjusted to achieve the large size to be aligned.
  • the regions corresponding to several array substrates 31 or color filter substrates 32 arranged on the plate glass 200 are required to configure different liquid crystal alignment directions.
  • control accuracy can be improved by reducing the size of the control modules 121 and increasing the number of the control modules 121 , thereby whether it can meet the alignment requirements of the mixed arrangement of various substrates in various complex situations.
  • each control module 121 adjusts the alignment direction of one alignment area 210 , all the control modules 121 included in the control assembly 120 can adjust the alignment directions of all the alignment areas 210 at the same time, which will not increase compared to the prior art. Additional crafting time.
  • the control module 121 includes: a first substrate 1210 and a second substrate 1220 arranged opposite to each other, and a first substrate 1210 and a second substrate 1220 located on the first substrate 1210 and the second substrate 1220
  • the alignment liquid crystal layer 1230 between the first substrate 1210 is parallel to the stage 110 .
  • first substrate 1210 and the second substrate 1220 are disposed opposite to each other, when the first substrate 1210 is parallel to the carrier table 110 , the second substrate 1220 is also parallel to the carrier table 110 . Moreover, both the first substrate 1210 and the second substrate 1220 are parallel to the large plate glass 200 to be aligned and the alignment film 40 coated on the large plate glass 200 to be aligned.
  • the positions of the first substrate 1210 and the second substrate 1220 in the control module 121 can be interchanged, that is, the first substrate 1210 can be disposed on the side close to the bearing table 110, and the second substrate 1220 can be disposed close to the linearly polarized light source 130 , or, the first substrate 1210 may be disposed on the side close to the linearly polarized light source 130 , and the second substrate 1220 may be disposed on the side close to the support table 110 .
  • An alignment electrode layer 1240 is provided on the side of the first substrate 1210 close to the alignment liquid crystal layer 1230, or on the side of the second substrate 1210 close to the alignment liquid crystal layer 1230, and the alignment electrode layer 1240 is used to supply voltage to the alignment liquid crystal layer 1230, The voltage is used to control the liquid crystal in the alignment liquid crystal layer 1230 to rotate, and the rotated liquid crystal is used to adjust the polarization direction of the first polarized light.
  • the alignment electrode layer 1240 is disposed on the side of the first substrate 1210 close to the alignment liquid crystal layer 1230, and the arrangement sequence in the control module 121 from top to bottom or from bottom to top is: the first substrate 1210, the alignment The electrode layer 1240 , the alignment liquid crystal layer 1230 and the second substrate 1220 .
  • An alignment electrode layer 1240 is disposed on the side of the second substrate 1220 close to the alignment liquid crystal layer 1230 , and the order in the control module 121 from top to bottom or bottom to top is: the first substrate 1210 , the alignment liquid crystal layer 1230 , the alignment electrode layer 1240 and the second substrate 1220 .
  • the alignment electrode layer 1240 includes: a first electrode 1241 and a second electrode 1242 arranged at intervals;
  • the first electrode 1241 is used for supplying a first voltage to the alignment liquid crystal layer 1230
  • the second electrode 1242 is used for supplying a second voltage to the alignment liquid crystal layer 1230 .
  • the voltage difference between the first voltage provided by the first electrode 1241 and the second voltage provided by the second electrode 1242 can change the degree of rotation of the liquid crystal in the alignment liquid crystal layer, thereby changing the polarization direction of the first polarization.
  • FIG. 11 is a schematic diagram of the arrangement of alignment regions in different alignment directions on the large plate glass to be aligned in FIGS. 8 to 10 .
  • the large plate glass 200 to be aligned is provided with two rows and three columns of array substrates 31 , and the area where each array substrate 31 is located corresponds to two rows and three columns of alignment regions 210 .
  • the long axis of the liquid crystal in the alignment liquid crystal layer 1240 extends along the x direction. Based on this, if no voltage is applied to the first electrodes 1241 and the second electrodes 1242 disposed at the positions of the alignment regions 210 corresponding to the array substrates 31 in the first row, the first column, and the second row and the second column, the corresponding liquid crystal will not be applied. Rotation occurs, and at this time, the polarization direction of the second polarized light emitted is the same as the polarization direction of the first polarized light, which is the x-direction.
  • first electrodes 1241 and 1242 are disposed at the positions of the alignment regions 210 corresponding to the first row, second column, first row, third column, second row, first column, and second row and third column of the array substrate 31 A voltage is applied to the liquid crystal, and the corresponding liquid crystal rotates. Suppose a 90-degree rotation occurs. At this time, the polarization direction of the second polarized light and the polarization direction of the first polarized light are perpendicular to each other, which is the y direction.
  • first electrode 1241 and the second electrode 1242 can also be arranged in layers.
  • first electrode 1241 is similar to the common electrode in the array substrate 31 and can be laid in a whole layer, while the second electrode 1242 is arranged on the first electrode 1241
  • the side close to the liquid crystal layer, similar to the pixel electrodes in the array substrate 31, is arranged at intervals.
  • the alignment electrode layer may also include other leads connected to the first electrode 1241 and the second electrode 1242 for transmitting the external voltage to the corresponding first electrode 1241 and the second electrode 1242 at each alignment region position .
  • the linearly polarized light source 130 includes: an ultraviolet light source 131 , a filter 132 and a polarizer 133 that are stacked in sequence.
  • the polarizer 132 is located on the side of the ultraviolet light source 131 close to the control assembly 120 .
  • the ultraviolet light source 131 the filter 132 and the polarizer 133 are arranged in order from top to bottom.
  • the filter 132 is used to filter the ultraviolet light of a preset wavelength in the ultraviolet light provided by the ultraviolet light source 131 , and the polarizer is used to convert the filtered ultraviolet light into the first polarized light.
  • the filter 132 filters out some unwanted light, and leaves light with a specified wavelength to meet actual alignment requirements.
  • the preset wavelength of the filtered ultraviolet light can be set as required, which is not limited in this embodiment of the present application.
  • the filter 132 can filter out ultraviolet light with wavelengths other than 240-370 nm.
  • linearly polarized light source 130 other devices such as a lampshade, a light guide plate and the like may also be provided to make full use of the first polarized light.
  • FIG. 12 is a schematic flowchart of a photo-alignment method provided by an embodiment of the present application.
  • the photo-alignment method 1200 includes the following S110 to S130.
  • bearing table is large, multiple pieces of large plate glass to be aligned can be placed on the bearing table at the same time, and the alignment is performed at the same time, so as to improve the work efficiency.
  • the linearly polarized light source provides the first polarized light to the control component.
  • the control component adjusts the polarization direction of the first polarized light
  • the second polarized light is provided to a plurality of alignment regions included in the large plate glass to be aligned.
  • the polarization directions of the second polarized light corresponding to the at least two alignment regions are different.
  • each control module can be adjusted to change the polarization direction of the first polarized light at the corresponding position of the alignment region.
  • a second polarized light with a different polarization direction is formed.
  • the embodiment of the present application provides an optical alignment method.
  • the control component By arranging a control component between the linearly polarized light source and the bearing platform, after placing a large plate glass to be aligned on the side of the bearing platform close to the control component, the control component can adjust the linearly polarized light.
  • the polarization direction of the first polarized light emitted by the light source so as to provide the second polarized light with different polarization directions to the plurality of alignment regions included in the large plate glass to be aligned. Since the polarization directions of the second polarized light corresponding to the at least two alignment regions are different, alignment regions corresponding to different alignment directions can be generated, and thus, the control component can be used to simultaneously perform alignment in multiple directions.
  • the process is simple, the time is short, the precision is high, and the work efficiency is also high.
  • the side of the large plate glass to be aligned close to the control assembly is coated with an alignment film.
  • the second polarized light aligns the alignment film located in the alignment region on the large plate glass to be aligned.
  • the control component can be used to realize simultaneous multi-directional control. the purpose of the alignment.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when a computer reads and executes the computer program or instructions, the computer executes the optical Alignment method 1200 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

光配向装置(100)、光配向方法及计算机可读存储介质,涉及显示技术领域,光配向装置(100)包括:承载台(110)、位于承载台(110)一侧的线偏振光光源(130)、及位于承载台(110)与线偏振光光源(130)之间的控制组件(120),承载台(110)靠近控制组件(120)的一侧用于放置包括多个配向区(210)的待配向大板玻璃(200);线偏振光光源(130),用于向控制组件(120)提供第一偏振光(1001);控制组件(120),用于调整第一偏振光(1001)的偏振方向,并向待配向大板玻璃(200)包括的多个配向区(210)提供第二偏振光(1002);其中,至少两个配向区(210)对应的第二偏振光(1002)的偏振方向不同。光配向方法应用于光配向装置(100)。计算机可读存储介质中存储有计算机程序或指令。光配向装置(100)可以实现对需要不同液晶配向方向的多个阵列基板(31)或多个彩膜基板(32)同时进行配向,工艺简单、时间短。

Description

光配向装置及光配向方法
本申请要求于2021年03月22日在中华人民共和国国家知识产权局专利局提交的、申请号为202110302205.5、申请名称为“光配向装置及光配向方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于显示技术领域,尤其涉及一种光配向装置及光配向方法。
背景技术
液晶显示面板(Liquid Crystal Display,LCD)具有低辐射、体积小及低耗能等优点,被广泛的应用于笔记本电脑、电视等各种电子设备中。其中,液晶显示面板通常包括阵列基板(Thin Film Transistor,TFT)、彩膜基板(Color Filter,CF)、夹在阵列基板和彩膜基板之间的液晶(Liquid Crystal,LC)以及封框胶等。
在制备过程中,通常先制备数个排布于第一大板玻璃上的阵列基板以及数个排布于第二大板玻璃上的彩膜基板,然后,将两个大板玻璃上的阵列基板和彩膜基板对盒以制成液晶显示面板。
通常在对盒之前,需要分别在阵列基板和彩膜基板上涂布上配向膜,再利用摩擦配向(rubbing)工艺处理配向膜,使配向膜具有让液晶分子以某一个预倾角沿着统一方向排列的能力。但是,上述仅适用于配向方向统一的情况,当大板玻璃上排布的数个阵列基板对应的液晶分子需要不同的配向方向时,摩擦配向的工艺难度增加,将不再适用。
由此,亟待一种实施简单、可精确控制液晶配向方向的装置。
技术问题
本申请实施例提供了一种光配向装置及光配向方法,可以实现对需要不同液晶配向方向的多个阵列基板或多个彩膜基板同时进行配向,工艺简单、时间短。
技术解决方案
第一方面,提供了一种光配向装置,包括:承载台、位于所述承载台一侧的线偏振光光源、及位于所述承载台与所述线偏振光光源之间的控制组件,所述承载台靠近所述控制组件的一侧用于放置包括多个配向区的待配向大板玻璃;所述线偏振光光源,用于向所述控制组件提供第一偏振光;所述控制组件,用于调整所述第一偏振光的偏振方向,并向所述待配向大板玻璃包括的多个配向区提供第二偏振光;其中,至少两个配向区分别对应的所述第二偏振光的偏振方向不同。
第一方面提供的光配向装置,通过在线偏振光光源和承载台之间设置控制组件,使得在承载台靠近控制组件的一侧放置待配向大板玻璃之后,控制组件能调整线偏振光光源发射的第一偏振光的偏振方向,从而向待配向大板玻璃包括的多个配向区提供第二偏振光。由于至少两个配向区分别对应的第二偏振光的偏振方向不同,所以可以生成对应不同配向方向的配向区,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
此外,相对于现有技术,本申请实施例提供的光配向装置用于配向时,工艺简单、时间短、精度高、工作效率也高。
在第一方面一种可能的实现方式中,所述待配向大板玻璃靠近控制组件的一侧涂覆有配向膜;所述第二偏振光用于对所述待配向大板玻璃上位于所述配向区内的所述配向膜进行配向。在该实现方式中,通过提供的第二偏振光对对应配向区中的配向膜进行配向,从而使得不同配向区的配向膜具有不同方向的配向能力。
在第一方面一种可能的实现方式中,所述待配向大板玻璃上排布有多个阵列基板,每个阵列基板包括至少一个所述配向区;或者,所述待配向大板玻璃上排布有多个彩膜基板,每个彩膜基板包括至少一个所述配向区。在该实现方式中,无论配向区的数量有多少,都可以进行不同方向的配向。
在第一方面一种可能的实现方式中,所述控制组件包括多个控制模块,所述控制模块与所述待配向大板玻璃上的所述配向区一一对应;所述控制模块用于调整对应所述配向区内的所述第一偏振光的偏振方向,形成所述第二偏振光。在该实现方式中,每个控制模块调整一个配向区的配向方向。由此,通过不同的控制模块调整相应的配向区的第一偏振光的偏振方向,即可生成不同偏振方向的第二偏振光。
在第一方面一种可能的实现方式中,所述控制模块包括:相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的配向液晶层,所述第一基板平行于所述承载台;在所述第一基板靠近所述配向液晶层的一侧,或者,在所述第二基板靠近所述配向液晶层的一侧设置有配向电极层,所述配向电极层用于向所述配向液晶层提供电压,所述电压用于控制所述配向液晶层中的液晶进行旋转,旋转的液晶用于调整所述第一偏振光的偏振方向。在该实现方式中,通过电压控制配向液晶层中的液晶进行旋转,旋转的液晶调整第一偏振光的偏振方向。
在第一方面一种可能的实现方式中,所述配向电极层包括:间隔设置的第一电极和第二电极,所述第一电极和所述第二电极均平行所述承载台;所述第一电极用于向所述配向液晶层提供第一电压,所述第二电极用于向所述配向液晶层提供第二电压。在该实现方式中,第一电压和第二电压的电压差控制液晶旋转角度的大小,从而可以调整第一偏振光的偏振方向。
在第一方面一种可能的实现方式中,所述线偏振光光源包括:依次层叠设置的紫外光光源、滤光片和偏光片,所述偏光片位于所述紫外光光源靠近所述控制组件的一侧;所述滤光片用于对所述紫外光光源提供的紫外光中预设波长的所述紫外光进行过滤,所述偏光片用于将过滤后的所述紫外光转化为所述第一偏振光。
在第一方面一种可能的实现方式中,所述线偏振光光源和所述控制组件之间具有第一预设距离。
在第一方面一种可能的实现方式中,所述承载台和所述控制组件之间具有第二预设距离。
在第一方面一种可能的实现方式中,所述控制组件与所述承载台、所述待配向大板玻璃均平行,且所述控制组件沿任一方向的边长大于或等于同一方向上所述待配向大板玻璃的边长。
在第一方面一种可能的实现方式中,所述线偏振光光源在所述控制组件上的投影位于所述控制组件的中心。
在第一方面一种可能的实现方式中,在所述配向膜靠近所述控制组件的一侧涂覆有感光剂。
第二方面,提供一种光配向方法,在承载台靠近控制组件的一侧放置包括多个配向区的待配向大板玻璃;线偏振光光源向所述控制组件提供第一偏振光;控制组件调整所述第一偏振光的偏振方向后,向所述待配向大板玻璃包括的多个配向区提供第二偏振光;其中,至少两个配向区分别对应的所述第二偏振光的偏振方向不同。
在第二方面一种可能的实现方式中,所述待配向大板玻璃靠近所述控制组件一侧涂覆有配向膜;所述第二偏振光对所述待配向大板玻璃上位于所述配向区内的所述配向膜进行配向。在该实现方式中,通过提供的第二偏振光对对应配向区中的配向膜进行配向,从而使得不同配向区的配向膜具有不同方向的配向能力。
第三方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如以上第二方面或第二方面的任意可能的实现方式中的光配向方法。
有益效果
本申请实施例提供了一种光配向装置及光配向方法,通过在线偏振光光源和承载台之间设置控制组件,使得在承载台靠近控制组件的一侧放置待配向大板玻璃之后,控制组件能调整线偏振光光源发射的第一偏振光的偏振方向,从而向待配向大板玻璃包括的多个配向区提供第二偏振光。由于至少两个配向区分别对应的第二偏振光的偏振方向不同,所以可以生成对应不同配向方向的配向区,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
此外,相对于现有技术,本申请实施例提供的光配向装置用于配向时,工艺简单、时间短、精度高、工作效率也高。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种液晶显示装置的结构示意图;
图2是一种第一大板玻璃和第二大板玻璃的结构示意图;
图3是一种第一大板玻璃上排布数个不同配向方向的阵列基板的排列示意图;
图4是另一种第一大板玻璃上排布数个不同配向方向的阵列基板的排列示意图;
图5是本申请实施例提供的一种光配向装置的结构示意图;
图6是图5中的光配向装置沿AA'方向的截面示意图;
图7是图6中区域P1的局部放大图;
图8是本申请实施例提供的一种光配向装置的结构示意图;
图9是图8中的光配向装置沿BB'方向的截面示意图;
图10是图9中区域P2的局部放大图。
图11是图8~图10中待配向大板玻璃上数个不同配向方向的配向区的排列示意图;
图12是本申请实施例提供的一种光配向方法的流程示意图。
附图标记:
1-框架;2-盖板;3-液晶显示面板;4-背光模组;5-电路板;10-显示区;20-周边区;30-液晶盒;31-阵列基板;32-彩膜基板;33-液晶层;40-配向膜;51-第一大板玻璃;52-第二大板玻璃;100-光配向装置;110-承载台;120-控制组件;121-控制模块;130-线偏振光光源;131-紫外光光源;132-滤光片;133-偏光片;1001-第一偏振光;1002-第二偏振光;1210-第一基板;1220-第二基板;1230-配向液晶层;1240-配向电极层;1241-第一电极;1242-第二电极;200-待配向大板玻璃;210-配向区。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另作定义,本申请使用的技术术语或者科学术语应当为本领域技术人员所理解的通常意义。本申请说明书以及权利要求书中使用的术语“第一”、“第二”、“第三”、“第四”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。由此,限定有“第一”、“第二”、 “第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“左”、“右”、“上”以及“下”等方位术语是相对于附图中的显示组件示意放置的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据阵列基板或显示装置所放置的方位的变化而相应地发生变化。
本申请实施例提供一种液晶显示装置,该液晶显示装置可以为各种电子设备或者该液晶显示装置可以应用于各种电子设备中。
其中,电子设备可以为智能手机、平板电脑、电子阅读器、车载电脑、导航仪、数码相机、智能电视机以及智能可穿戴设备等多种不同类型的电子设备。本申请实施例对此不进行任何限制。
在现有技术中,液晶显示装置大部分为背光型液晶显示装置,图1示出了一种背光型液晶显示装置的结构示意图。如图1所示,该液晶显示装置的主要结构包括框架1、盖板2、液晶显示面板3、背光模组4、电路板5以及包括摄像头等的其他电子配件。液晶显示面板3包括阵列基板31、对置基板、设置于阵列基板31和对置基板之间的液晶层33,阵列基板31和对置基板通过封框胶对合在一起,从而将液晶层33限定在封框胶围成的区域内。其中,通常彩色滤光层设置于对置基板上,并将此对置基板称为彩膜基板32。
如图1所示,以框架1的纵截面呈U型为例,液晶显示面板3、背光模组4、电路板5以及包括摄像头等的其他电子配件设置于框架1内,背光模组4位于液晶显示面板3的下方,电路板5位于背光模组4和框架1之间,盖板2位于液晶显示面板3远离背光模组4的一侧。盖板2,例如可以是透明玻璃。
基于图1所示的液晶显示装置,在图1中,光路的传播顺序为:背光模组4射出,依次透过阵列基板31、液晶层33、彩膜基板32、射出盖板2。
上述对现有的液晶显示装置的结构进行了详细描述,然而,制备这种结构的液晶显示装置中的液晶显示面板3时,需要先将彩膜基板32和阵列基板31分别制备好,然后再涂布封框胶对盒起来,形成液晶盒30。
图2示出了范例技术中提供的第一大板玻璃和第二大板玻璃的结构示意图。
如图2所示,在液晶显示面板3的制造过程中,首先,先在整面的第一大板玻璃51上制备出数个阵列基板31(图2中以6个为例),在另一整面的第二大板玻璃52上制备出数个彩膜基板32(图2中以6个为例)。然后,在其中一个大板玻璃的数个基板(即阵列基板31或彩膜基板32)中的每个基板的显示区10***的周边区20中,利用涂布设备涂布一圈封框胶;在封框胶围成的区域内灌注液晶;再将第一大板玻璃51和第二大板玻璃52对合,从而利用封框胶将对应的一组阵列基板31和彩膜基板32粘结在一起形成一个液晶盒30;再沿第一大板玻璃51和第二大板玻璃52上预设的切割线位置,切割出多个液晶显示面板3。
在此基础上,在阵列基板31和彩膜基板32涂布封框胶之前,通常还需要分别在阵列基板31和彩膜基板32上涂布一层配向膜40。为了工艺简单,一般是在排布数个阵列基板31的第一大板玻璃51和排布数个彩膜基板32的第二大板玻璃52上涂布整层的配向膜40,然后,利用摩擦配向(利用滚筒外侧的布料,根据力学原理产生摩擦进行配向)工艺处理配向膜40,使配向膜40具有让液晶分子以某一个预倾角沿着统一方向排列的能力。这样,在阵列基板31和彩膜基板32对盒之后,配向膜40与液晶层33中的液晶接触,就能够使液晶产生一定方向的预倾角,从而给液晶分子提供一个角度。其中,该预倾角的大小对液晶显示面板3的驱动电压、对比度、响应时间、视角等具有重要的影响。
但是,上述方法仅适用于数个阵列基板31或彩膜基板32对应的液晶配向方向统一的情况,当数个阵列基板31或彩膜基板所对应的液晶分子需要不同的配向方向时,在制备过程中,将需要进行多次不同方向的摩擦配向,且在摩擦配向时有可能对周边区域产生干扰。由此,当需要不同配向方向时,摩擦配向的工艺难度大大增加,摩擦配向将不再适用。
示例性的,图3示出了一种第一大板玻璃51上排布数个不同配向方向的阵列基板31的排列示意图。如图3所示,以如图3中所示的x方向为行方向,y方向为列方向为例,第一行和第三行的多个阵列基板31中的液晶需要沿行方向的配向,第二行和第四行的多个阵列基板31中的液晶需要沿列方向的配向。例如,若先对第一行的阵列基板31对应区域中的配向膜40进行摩擦配向,再对第二行的阵列基板31对应区域中的配向膜40进行摩擦配向,则有可能影响到第一行的阵列基板31对应区域中已经配向过的配向膜40。同理,对第二大板玻璃52上排布的数个彩膜基板32进行不同配向方向的摩擦配向时,也会出现互相影响。
为此,有人提出在进行设计时,将相同配向方向的阵列基板31或彩膜基板32排布在一起,这样就可以将第一大板玻璃51和第二大板玻璃52分区进行摩擦配向。
示例性的,图4示出了另一种第一大板玻璃51上排布数个不同配向方向的阵列基板31的排列示意图。如图4所示,将图3中第二行的阵列基板31和第三行的阵列基板31的位置进行交换,由此,图4中的第一行和第二行阵列基板31对应配向方向均为水平方向,可以组成一个配向区,第三行和第四行阵列基板31对应配向方向均为垂直方向,可以组成另一个配向区。这样,可以对第一行和第二行阵列基板31对应的配向区中的配向膜40同时进行水平方向的配向,然后,再对第三行和第四行阵列基板31对应的配向区中的配向膜40同时进行垂直方向的配向。
虽然上述通过改变阵列基板31的排列方式可以降低一点摩擦配向难度,但是,当出现两种以上配向方向时,排布情况更加复杂,并不一定能简化排列方式,所以摩擦配向还是无法适用。
除此之外,在现有技术中,还有一种光配向(photo alignment)工艺。具体为:利用线偏振光照射到配向膜40上,在配向膜40表面形成一定倾斜角度的配向微结构,该配向微结构可以诱导液晶分子实现以某一预倾角沿着同一方向排列,也就是说,利用线偏振光照射配向膜40,可以使得照射后的配向膜40具有特定配向方向的配向能力,从而后续可以对液晶分子可以进行对应方向的配向。
但是,现有技术中,照射到第一大板玻璃51的每个阵列基板31上或照射到第二大板玻璃52的每个彩膜基板32上的线偏振光的偏振方向通常都是相同的,所以在数个阵列基板31或彩膜基板32所对应的液晶分子需要不同的配向方向时,现有的光配向工艺还是无法适用。
有鉴于此,本申请实施例提供一种光配向装置,该光配向装置通过在线偏振光光源和承载台之间设置控制组件,使得在承载台靠近控制组件的一侧放置待配向大板玻璃之后,控制组件能调整线偏振光光源发射的第一偏振光的偏振方向,从而向待配向大板玻璃包括的多个配向区提供第二偏振光。由于至少两个配向区对应的第二偏振光的偏振方向不同,所以可以生成对应不同配向方向的配向区,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
下面结合图5~图10对本申请实施例提供的光配向装置的结构进行详细说明。图5是本申请实施例提供的一种光配向装置的结构示意图;图6是图5中的光配向装置沿AA'方向的截面示意图。图7是图6中区域P1的局部放大图。
如图5和图6所示,该光配向装置100,包括:承载台110、位于承载台110一侧的线偏振光光源130、及位于承载台110与线偏振光光源130之间的控制组件120。承载台110靠近控制组件120的一侧用于放置包括多个配向区210的待配向大板玻璃200。
线偏振光光源130,用于向控制组件120提供第一偏振光。
控制组件120,用于调整第一偏振光的偏振方向,并向待配向大板玻璃200包括的多个配向区210提供第二偏振光。
其中,至少两个配向区210分别对应的第二偏振光的偏振方向不同。
应理解,如图5和图6所示,该光配向装置100从上到下依次排布着线偏振光光源130、控制组件120和承载台110。
其中,为了能使得线偏振光光源130照射到所有控制组件120上,线偏振光光源130和控制组件120之间具有第一预设距离,该第一预设距离可以根据需要进行设置,本申请实施例对此不进行任何限制。
为了将待配向大板玻璃200放置在承载台110靠近控制组件120的一侧,因此,承载台110和控制组件120之间具有第二预设距离,该第二预设距离应该大于待配向大板玻璃200的高度。该第二预设距离可以根据需要进行设置,本申请实施例对此不进行任何限制。
由于一些配向区210可能设置在待配向大板玻璃200的边界处,为了让控制组件120能向待配向大板玻璃200的所有配向区210提供第二偏振光,因此,可以设置控制组件120平行于承载台110的边长大于或者等于待配向大板玻璃200平行于承载台110的边长。换句话说,可以设置控制组件120与承载台110、待配向大板玻璃200均平行,且控制组件120沿任一方向的边长大于或等于同一方向上待配向大板玻璃的边长。例如,控制组件120平行于承载台110且平行于第一方向x的边长,大于或等于待配向大板玻璃200平行于承载台110的同一方向上的边长。该控制组件120平行于承载台110的边长长度可以根据需要进行设置,本申请实施例对此不进行任何限制。
此外,光配向装置100还可以包括用于悬挂线偏振光光源130的支架,利用该支架将线偏振光光源130悬挂于控制组件120平行于承载台110的平面的中心。也即,线偏振光光源130在控制组件120上的投影位于控制组件120的中心。承载台110还可以设置成可移动的承载台110,便于放置待配向大板玻璃200和取出配向后的待配向大板玻璃200。
应理解,待配向大板玻璃200即为图2中所示的第一大板玻璃51或第二大板玻璃52,由于第一大板玻璃51上排布有多个阵列基板31,当多个阵列基板31对应的液晶分子需要不同的配向方向,或者,第二大板玻璃52上排布有多个彩膜基板32,当多个彩膜基板32对应的液晶分子需要不同的配向方向时,控制组件120可以根据需要调整入射的第一偏振光的偏振方向,生成不同偏振方向的第二偏振光对待配向大板玻璃200进行配向。
其中,针对每个配向区210,对应的第二偏振光可以与第一偏振光的偏振方向相同,也可以与第一偏振光的偏振方向不同。而多个配向区210对应的第二偏振光之间,至少有两个配向区210分别对应的第二偏振光的偏振方向应不同,从而可以生成对应不同配向方向的配向区210。
应理解,待配向大板玻璃上200的一个配向区210的尺寸可以大于、等于或者小于一个阵列基板31的尺寸或彩膜基板32的尺寸。
当第一大板玻璃51上的数个阵列基板31,或者第二大板玻璃52上的数个彩膜基板32排布的较为紧密时,为了简化配向设计,可以忽略阵列基板31之间的间隙,或者彩膜基板32之间的间隙,可认为待配向大板玻璃200上具有阵列排布的数个配向区。
本申请实施例提供了一种光配向装置,该光配向装置通过在线偏振光光源和承载台之间设置控制组件,使得在承载台靠近控制组件的一侧放置待配向大板玻璃之后,控制组件能调整线偏振光光源发射的第一偏振光的偏振方向,从而向待配向大板玻璃包括的多个配向区提供第二偏振光。由于至少两个配向区对应的第二偏振光的偏振方向不同,所以可以生成对应不同配向方向的配向区,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
此外,相对于现有技术,本申请实施例提供的光配向装置用于配向时,工艺简单、时间短、精度高、工作效率也高。
可选地,作为一种可能的实现方式,待配向大板玻璃200靠近控制组件120一侧涂覆有配向膜40。第二偏振光用于对待配向大板玻璃200上位于配向区210内的配向膜40进行配向。
由于至少两个配向区对应的第二偏振光的偏振方向不同,所以在不同配向区位置处,可以生成对应不同配向方向的配向膜40,不同配向方向的配向膜40就可以对液晶分子进行不同方向的配向,由此,通过利用控制组件即可实现同时进行多种方向的配向的目的。
可选地,作为一种可能的实现方式,在配向膜40靠近控制组件120的一侧涂覆有感光剂。该感光剂用于与第二偏振光发生反应以完成配向膜40的配向。
可选地,作为一种可能实现的方式,待配向大板玻璃200上排布有多个阵列基板31,每个阵列基板31包括至少一个配向区210;或者,待配向大板玻璃200上排布有多个彩膜基板32,每个彩膜基板32包括至少一个配向区210。
如图5~图7所示,示例性一,待配向大板玻璃200为第一大板玻璃51,该待配向大板玻璃200上排布有6个阵列基板31,每个阵列基板31作为一个配向区210,其余区域不作配向,相应的,控制组件120可以调整第一偏振光的偏振方向,并向待配向大板玻璃200包括的6个配向区210提供第二偏振光。其中,至少两个配向区210,也就是说,至少两个阵列基板31所在区域对应的第二偏振光的偏振方向不同。
同理,待配向大板玻璃200还可以为第二大板玻璃52,该待配向大板玻璃200上排布有6个彩膜基板32,每个彩膜基板32作为一个配向区210,其余区域不作配向,相应的,控制组件120可以调整第一偏振光的偏振方向,并向待配向大板玻璃200包括的6个配向区210提供第二偏振光。其中,至少两个配向区210,也就是说,至少两个彩膜基板32所在区域对应的第二偏振光的偏振方向不同。
图8是本申请实施例提供的一种光配向装置的结构示意图;图9是图8中的光配向装置沿BB'方向的截面示意图;图10是图9中区域P2的局部放大图。
如图8~图10所示,示例性二,待配向大板玻璃200为第一大板玻璃51,该待配向大板玻璃200上排布有6个阵列基板31,每个阵列基板31包括阵列排布的6个配向区210,其余区域不作配向,相应的,控制组件120可以调整第一偏振光的偏振方向,并向待配向大板玻璃200包括的36个配向区210提供第二偏振光。其中,至少两个配向区210,也就是说,至少两个阵列基板31分别包括的一个配向区210,或者,一个阵列基板31包括的至少两个配向区210,对应的第二偏振光的偏振方向不同。
同理,待配向大板玻璃200还可以为第二大板玻璃52,该待配向大板玻璃200上排布有6个彩膜基板32,每个彩膜基板32包括阵列排布的6个配向区210,其余区域不作配向,相应的,控制组件120可以调整第一偏振光的偏振方向,并向待配向大板玻璃200包括的36个配向区210提供第二偏振光。其中,至少两个配向区210,也就是说,至少两个阵列基板31分别包括的一个配向区210,或者,一个阵列基板31包括的至少两个配向区210,对应的第二偏振光的偏振方向不同。
可选地,作为一种可能实现的方式,控制组件120包括多个控制模块121,控制模块121与待配向大板玻璃200上的配向区210一一对应。
如图5~图7所示,示例性一,当待配向大板玻璃200包括6个配向区210时,相应的,控制组件120可以包括6个控制模块121,每个控制模块121对应一个配向区210,其中,每个控制模块121设置于对应配向区210的正上方。其中,控制模块121平行于承载台110的边长大于或等于配向区210平行于承载台110的边长。
如图8~图10所示,示例性二,当待配向大板玻璃200包括36个配向区210时,相应的,控制组件120可以包括36个控制模块121,每个控制模块121对应一个配向区210,其中,每个控制模块121设置于对应配向区210的正上方。
应理解,配向区210的个数、形状、尺寸和位置均可以根据需要进行设置,相应的,控制模块121的个数、形状、尺寸和位置均随之变化,本申请实施例对此不进行任何限制。
控制模块121用于调整对应配向区210内的第一偏振光的偏振方向,形成第二偏振光。也就是说,每个控制模块121调整一个配向区210的配向方向。由此,通过不同的控制模块121调整相应的配向区210的第一偏振光的偏振方向,即可生成不同偏振方向的第二偏振光。
应理解,由于每个控制模块121都可以精确控制照射到待配向大板玻璃200上的一个配向区210的第一偏振光的偏振方向,从而可以通过调整多个控制模块121以达成待配向大板玻璃200上排布的数个阵列基板31或彩膜基板32对应的区域配置不同的液晶配向方向的需求。
基于此,可以通过减小控制模块121的尺寸,增加控制模块121的数量来提高控制精度,由此,能否满足多种基板各种复杂形势混排的配向需求。
还应理解,由于每个控制模块121调整一个配向区210的配向方向,所以,控制组件120包括的所有控制模块121可以同时调整所有配向区210的配向方向,相对于现有技术,不会增加额外的工艺时间。
可选地,作为一种可能实现的方式,如图7和图10所示,控制模块121包括:相对设置的第一基板1210和第二基板1220,以及位于第一基板1210和第二基板1220之间的配向液晶层1230,第一基板1210平行于承载台110。
应理解,由于第一基板1210和第二基板1220相对设置,所以第一基板1210平行于承载台110时,第二基板1220也平行于承载台110。并且,第一基板1210和第二基板1220均平行于待配向大板玻璃200以及待配向大板玻璃200上涂覆的配向膜40。
其中,控制模块121中的第一基板1210和第二基板1220的位置可以互换,即,第一基板1210可以设置于靠近承载台110的一侧,第二基板1220设置于靠近线偏振光光源130的一侧,或者,第一基板1210可以设置于靠近线偏振光光源130的一侧,第二基板1220设置于靠近承载台110的一侧。
在第一基板1210靠近配向液晶层1230的一侧,或者,在第二基板1210靠近配向液晶层1230的一侧设置有配向电极层1240,配向电极层1240用于向配向液晶层1230提供电压,电压用于控制配向液晶层1230中的液晶进行旋转,旋转的液晶用于调整第一偏振光的偏振方向。
应理解,在第一基板1210靠近配向液晶层1230的一侧设置有配向电极层1240,则从上到下或者从下到上,在控制模块121中的排列顺序为:第一基板1210、配向电极层1240、配向液晶层1230和第二基板1220。
在第二基板1220靠近配向液晶层1230的一侧设置有配向电极层1240,则从上到下或者从下到上,在控制模块121中的排列顺序为:第一基板1210、配向液晶层1230、配向电极层1240和第二基板1220。
可选地,作为一种可能的实现方式,配向电极层1240包括:间隔设置的第一电极1241和第二电极1242;第一电极1241和第二电极1242均平行承载台110。
第一电极1241用于向配向液晶层1230提供第一电压,第二电极1242用于向配向液晶层1230提供第二电压。
应理解,第一电极1241提供的第一电压和第二电极1242提供的第二电压的电压差可以改变配向液晶层中液晶的旋转程度,从而改变第一偏振的偏振方向。
示例性的,图11是图8~图10中待配向大板玻璃上数个不同配向方向的配向区的排列示意图。待配向大板玻璃200设置有两行三列阵列基板31,每个阵列基板31所在区域对应两行三列配向区210。
如图11所示,假设第一偏振光的偏振方向是沿x方向的,配向液晶层1240中的液晶的长轴沿x方向延伸。基于此,若设置于第一行第一列、第二行第二列阵列基板31对应的配向区210位置处的第一电极1241和第二电极1242上均未施加电压,则相应的液晶不会发生旋转,此时,出射的第二偏振光的偏振方向与第一偏振光的偏振方向相同,为x方向。若设置于第一行第二列、第一行第三列、第二行第一列、第二行第三列阵列基板31对应的配向区210位置处的第一电极1241和第二电极1242上施加有电压,则相应的液晶发生旋转,假设发生了90度旋转,此时,出射的第二偏振光的偏振方向与第一偏振光的偏振方向相互垂直,为y方向。
应理解,第一电极1241和第二电极1242还可以分层设置,例如,第一电极1241类似于阵列基板31中的公共电极,可以整层铺设,而第二电极1242设置于第一电极1241靠近液晶层的一侧,类似于阵列基板31中的像素电极,间隔设置。
应理解,配向电极层还可以包括其他与第一电极1241、第二电极1242连接的引线,用于将外界的电压传输至每个配向区位置处对应的第一电极1241、第二电极1242上。
可选地,作为一种可能的实现方式,线偏振光光源130包括:依次层叠设置的紫外光光源131、滤光片132和偏光片133。偏光片132位于紫外光光源131靠近控制组件120的一侧。
也就是说,如图5和图8所示,在线偏振光光源130中,从上到下,依次排列着紫外光光源131、滤光片132和偏光片133。
滤光片132用于对紫外光光源131提供的紫外光中预设波长的紫外光进行过滤,偏光片用于将过滤后的紫外光转化为第一偏振光。
滤光片132过滤掉一些不需要的光线,留下指定波长的光线以配合实际配向需求。过滤掉的紫外光的预设波长可以根据需要进行设置,本申请实施例对此不进行任何限制。例如,滤光片132可以过滤掉波长为240~370nm以外的紫外光。
在线偏振光光源130中,还可以设置灯罩,导光板等其他器件,用于充分利用第一偏振光。
上述对本申请实施例提供的光配向装置100的结构进行了说明,下面基于光配向装置,对光配向装置对应的光配向方法进行说明。图12为本申请实施例提供的光配向方法的流程示意图。
如图12所示,该光配向方法1200包括以下S110~S130。
S110、在承载台靠近控制组件的一侧放置包括多个配向区的待配向大板玻璃。
若承载台较大,可以同时在承载台上同时放置多片待配向大板玻璃,同时进行配向,以提高工作效率。
S120、线偏振光光源向控制组件提供第一偏振光。
S130、控制组件调整第一偏振光的偏振方向后,向待配向大板玻璃包括的多个配向区提供第二偏振光。
其中,至少两个配向区对应的第二偏振光的偏振方向不同。
当控制组件包括多个控制模块时,由于控制模块与待配向大板玻璃上的配向区一一对应,因此,可以调整每个控制模块以改变配向区对应位置处第一偏振光的偏振方向,形成不同偏振方向的第二偏振光。
本申请实施例提供一种光配向方法,通过在线偏振光光源和承载台之间设置控制组件,使得在承载台靠近控制组件的一侧放置待配向大板玻璃之后,控制组件能调整线偏振光光源发射的第一偏振光的偏振方向,从而向待配向大板玻璃包括的多个配向区提供不同偏振方向的第二偏振光。由于至少两个配向区对应的第二偏振光的偏振方向不同,所以可以生成对应不同配向方向的配向区,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
此外,相对于现有技术,本申请实施例提供的光配向装置用于配向时,工艺简单、时间短、精度高、工作效率也高。
可选地,作为一种可能的实现方法,待配向大板玻璃靠近控制组件一侧涂覆有配向膜。第二偏振光对待配向大板玻璃上位于配向区内的配向膜进行配向。
由于至少两个配向区对应的第二偏振光的偏振方向不同,所以对应于不同的配向区位置处,可以生成对应不同配向方向的配向膜,由此,可以利用控制组件实现同时进行多种方向的配向的目的。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行所述的光配向方法1200。
本申请实施例提供的计算机可读存储介质的有益效果与上述光配向方法1200对应的有益效果相同,在此不再赘述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种光配向装置(100),其中,包括:承载台(110)、位于所述承载台(110)一侧的线偏振光光源(130)、及位于所述承载台(110)与所述线偏振光光源(130)之间的控制组件(120),所述承载台(110)靠近所述控制组件(120)的一侧用于放置包括多个配向区(210)的待配向大板玻璃(200);
    所述线偏振光光源(130),用于向所述控制组件(120)提供第一偏振光(1001);
    所述控制组件(120),用于调整所述第一偏振光(1001)的偏振方向,并向所述待配向大板玻璃(200)包括的所述多个配向区(210)提供第二偏振光(1002);
    其中,至少两个配向区(210)分别对应的所述第二偏振光(1002)的偏振方向不同。
  2. 根据权利要求1所述的光配向装置(100),其中,所述待配向大板玻璃(200)靠近所述控制组件(120)的一侧涂覆有配向膜(40);
    所述第二偏振光(1002)用于对所述待配向大板玻璃(200)上位于所述配向区(210)内的所述配向膜(40)进行配向。
  3. 根据权利要求1所述的光配向装置(100),其中,所述待配向大板玻璃(200)上排布有多个阵列基板(31),每个阵列基板(31)包括至少一个所述配向区(210);或者,
    所述待配向大板玻璃(200)上排布有多个彩膜基板(32),每个彩膜基板(32)包括至少一个所述配向区(210)。
  4. 根据权利要求1所述的光配向装置(100),其中,所述控制组件(120)包括多个控制模块(121),所述控制模块(121)与所述待配向大板玻璃(200)上的所述配向区(210)一一对应;
    所述控制模块(121)用于调整对应所述配向区(210)内的所述第一偏振光(1001)的偏振方向,形成所述第二偏振光(1002)。
  5. 根据权利要求4所述的光配向装置(100),其中,所述控制模块(121)包括:相对设置的第一基板(1210)和第二基板(1220),以及位于所述第一基板(1210)和所述第二基板(1220)之间的配向液晶层(1230),所述第一基板(1210)平行于所述承载台(110);
    在所述第一基板(1210)靠近所述配向液晶层(1230)的一侧,或者,在所述第二基板(1220)靠近所述配向液晶层(1230)的一侧设置有配向电极层(1240),所述配向电极层(1240)用于向所述配向液晶层(1230)提供电压,所述电压用于控制所述配向液晶层(1230)中的液晶进行旋转,旋转的液晶用于调整所述第一偏振光(1001)的偏振方向。
  6. 根据权利要求5所述的光配向装置(100),其中,所述配向电极层(1240)包括:
    间隔设置的第一电极(1241)和第二电极(1242),所述第一电极(1241)和所述第二电极(1242)均平行所述承载台(110);
    所述第一电极(1241)用于向所述配向液晶层(1230)提供第一电压,所述第二电极(1242)用于向所述配向液晶层(1230)提供第二电压。
  7. 根据权利要求1所述的光配向装置(100),其中,所述线偏振光光源(130)包括:依次层叠设置的紫外光光源(131)、滤光片(132)和偏光片(133),所述偏光片(133)位于所述紫外光光源(131)靠近所述控制组件(120)的一侧;
    所述滤光片(132)用于对所述紫外光光源(131)提供的紫外光中预设波长的所述紫外光进行过滤,所述偏光片(133)用于将过滤后的所述紫外光转化为所述第一偏振光(1001)。
  8. 根据权利要求1所述的光配向装置(100),其中,所述线偏振光光源(130)和所述控制组件(120)之间具有第一预设距离。
  9. 根据权利要求1所述的光配向装置(100),其中,所述承载台(110)和所述控制组件(120)之间具有第二预设距离。
  10. 根据权利要求1所述的光配向装置(100),其中,所述控制组件(120)与所述承载台(110)、所述待配向大板玻璃(200)均平行,且所述控制组件(120)沿任一方向的边长大于或等于同一方向上所述待配向大板玻璃(200)的边长。
  11. 根据权利要求1所述的光配向装置(100),其中,所述线偏振光光源(130)在所述控制组件(120)上的投影位于所述控制组件(120)的中心。
  12. 根据权利要求2所述的光配向装置(100),其中,在所述配向膜(40)靠近所述控制组件(120)的一侧涂覆有感光剂。
  13. 一种光配向方法,其中,应用于如权利要求1所述光配向装置(100),所述光配向方法包括:
    在承载台(110)靠近控制组件(120)的一侧放置包括多个配向区(210)的待配向大板玻璃(200);
    线偏振光光源(130)向所述控制组件(120)提供第一偏振光(1001);
    所述控制组件(120)调整所述第一偏振光(1001)的偏振方向后,向所述待配向大板玻璃(200)包括的所述多个配向区(210)提供第二偏振光(1002);
    其中,至少两个配向区(210)分别对应的所述第二偏振光(1002)的偏振方向不同。
  14. 根据权利要求13所述的光配向方法,其中,所述待配向大板玻璃(200)靠近所述控制组件(120)一侧涂覆有配向膜(40);
    所述第二偏振光(1002)对所述待配向大板玻璃(200)上位于所述配向区(210)内的所述配向膜(40)进行配向。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求13所述的光配向方法。
PCT/CN2021/143354 2021-03-22 2021-12-30 光配向装置及光配向方法 WO2022199191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/002,161 US11966123B2 (en) 2021-03-22 2021-12-30 Device and method for photo alignment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110302205.5A CN113031349B (zh) 2021-03-22 2021-03-22 光配向装置及光配向方法
CN202110302205.5 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022199191A1 true WO2022199191A1 (zh) 2022-09-29

Family

ID=76472408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143354 WO2022199191A1 (zh) 2021-03-22 2021-12-30 光配向装置及光配向方法

Country Status (3)

Country Link
US (1) US11966123B2 (zh)
CN (1) CN113031349B (zh)
WO (1) WO2022199191A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031349B (zh) * 2021-03-22 2021-12-31 惠科股份有限公司 光配向装置及光配向方法
CN113568223A (zh) * 2021-07-06 2021-10-29 信利(仁寿)高端显示科技有限公司 一种液晶面板的多角度同时配向装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091906A (ja) * 2008-10-10 2010-04-22 Seiko Epson Corp 電気光学装置の製造方法
US20120086893A1 (en) * 2010-10-07 2012-04-12 Chimei Innolux Corporation Photo alignment process and liquid crystal display using the same
CN103403614A (zh) * 2010-10-01 2013-11-20 株式会社Fk光实验室 光取向曝光装置及光取向曝光方法
CN107255891A (zh) * 2017-08-08 2017-10-17 惠科股份有限公司 一种显示装置的制作方法
JP2017215613A (ja) * 2017-08-30 2017-12-07 東芝ライテック株式会社 偏光光照射装置
CN108761927A (zh) * 2018-05-24 2018-11-06 昆山龙腾光电有限公司 光配向***及光配向方法
CN111552124A (zh) * 2020-05-26 2020-08-18 武汉京东方光电科技有限公司 光配向设备及方法
CN113031349A (zh) * 2021-03-22 2021-06-25 惠科股份有限公司 光配向装置及光配向方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69841083D1 (de) * 1997-06-12 2009-10-01 Sharp Kk Anzeigevorrichtung mit vertikal ausgerichtetem Flüssigkristall
JP2001066602A (ja) * 1999-08-27 2001-03-16 Mitsubishi Electric Corp 配向膜形成方法及び配向膜形成装置
US6874899B2 (en) * 2002-07-12 2005-04-05 Eastman Kodak Company Apparatus and method for irradiating a substrate
CN103728780A (zh) * 2013-12-31 2014-04-16 深圳市华星光电技术有限公司 一种液晶显示装置及其制造方法
WO2016037061A1 (en) * 2014-09-05 2016-03-10 Massachusetts Institute Of Technology Methods and apparatus for liquid crystal photoalignment
KR102387205B1 (ko) * 2015-07-31 2022-04-15 엘지디스플레이 주식회사 광배향 장치 및 이를 이용한 광배향 방법
CN105372879A (zh) * 2015-12-25 2016-03-02 深圳市华星光电技术有限公司 液晶面板及其配向膜的制作方法
CN108873489A (zh) * 2018-08-16 2018-11-23 惠科股份有限公司 显示面板的制造方法及制造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091906A (ja) * 2008-10-10 2010-04-22 Seiko Epson Corp 電気光学装置の製造方法
CN103403614A (zh) * 2010-10-01 2013-11-20 株式会社Fk光实验室 光取向曝光装置及光取向曝光方法
US20120086893A1 (en) * 2010-10-07 2012-04-12 Chimei Innolux Corporation Photo alignment process and liquid crystal display using the same
CN107255891A (zh) * 2017-08-08 2017-10-17 惠科股份有限公司 一种显示装置的制作方法
JP2017215613A (ja) * 2017-08-30 2017-12-07 東芝ライテック株式会社 偏光光照射装置
CN108761927A (zh) * 2018-05-24 2018-11-06 昆山龙腾光电有限公司 光配向***及光配向方法
CN111552124A (zh) * 2020-05-26 2020-08-18 武汉京东方光电科技有限公司 光配向设备及方法
CN113031349A (zh) * 2021-03-22 2021-06-25 惠科股份有限公司 光配向装置及光配向方法

Also Published As

Publication number Publication date
CN113031349A (zh) 2021-06-25
CN113031349B (zh) 2021-12-31
US11966123B2 (en) 2024-04-23
US20230314878A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US10678086B2 (en) Display panel, display device, and driving method
US10747062B2 (en) Liquid crystal display panel, liquid crystal display panel manufacturing method, and liquid crystal display panel manufacturing device
JP4666417B2 (ja) 液晶表示装置の製造方法及び配向処理用露光装置
US9897840B2 (en) Seamless splicing multi-panel display devices
WO2022199191A1 (zh) 光配向装置及光配向方法
WO2019127756A1 (zh) 液晶模组以及液晶显示装置
US20140055716A1 (en) Liquid-crystal-lens type light-modulating apparatus and liquid crystal display having the same
CN102113041A (zh) 显示装置
CN102687078A (zh) 曝光装置、液晶显示装置及其制造方法
CN108983515B (zh) 一种液晶显示器件及其制备方法和显示装置
JP2009237229A (ja) 液晶表示装置及び電子機器
KR20160106105A (ko) 액정 표시장치 및 그 제조방법
WO2015021622A1 (zh) 玻璃基板支撑装置以及液晶面板加工工艺
US11175538B2 (en) Liquid crystal display panel and method for manufacturing liquid crystal display panel
US20190107753A1 (en) Display panel
CN106681058B (zh) 光配向设备
WO2024099145A1 (zh) 一种显示面板及其制备方法
JPH11183915A (ja) アクティブマトリクス型液晶表示装置
CN105629679A (zh) 边缘曝光机及边缘曝光区域打码方法
KR20120067021A (ko) 배향막을 배향하는 방법 및 장치, 및 이를 이용한 액정표시장치의 제조방법
CN108803150B (zh) 光照装置及对mmg面板进行配向的方法
KR20170140852A (ko) 표시 장치 및 표시 장치의 제조 방법
KR20130106219A (ko) 표시 패널 및 이의 제조 방법
WO2019057218A1 (zh) 显示面板的制造方法及其制造装置
CN113031348B (zh) 背光模组及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.02.2024)