WO2022198673A1 - 一种充电控制装置、方法及电动汽车 - Google Patents

一种充电控制装置、方法及电动汽车 Download PDF

Info

Publication number
WO2022198673A1
WO2022198673A1 PCT/CN2021/083418 CN2021083418W WO2022198673A1 WO 2022198673 A1 WO2022198673 A1 WO 2022198673A1 CN 2021083418 W CN2021083418 W CN 2021083418W WO 2022198673 A1 WO2022198673 A1 WO 2022198673A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
level signal
charging
level
Prior art date
Application number
PCT/CN2021/083418
Other languages
English (en)
French (fr)
Inventor
李海军
樊震
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21932292.2A priority Critical patent/EP4287443A4/en
Priority to PCT/CN2021/083418 priority patent/WO2022198673A1/zh
Priority to CN202180001011.XA priority patent/CN113056387B/zh
Publication of WO2022198673A1 publication Critical patent/WO2022198673A1/zh
Priority to US18/237,514 priority patent/US20230398894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present application relates to the field of electric vehicle charging, and in particular, to a charging control device, method and electric vehicle.
  • the battery management system (BMS) of the electric vehicle will enter a dormant state when the electric vehicle on the market is inserted into the charging gun without charging. After the BMS enters the dormant state, the control pilot (CP) signal sent by the power supply equipment (such as charging piles, etc.) cannot directly wake up the BMS. Only then can the power battery of the electric vehicle be further charged through the BMS.
  • BMS battery management system
  • CP control pilot
  • the present application provides a charging control device, a method and an electric vehicle, which can improve the flexibility of the BMS wake-up of the electric vehicle and realize the remote control of the charging of the electric vehicle.
  • an embodiment of the present application provides a charging control device, which mainly includes: a signal processing module and a wake-up module, wherein the signal processing module is connected to a power supply device, the wake-up module is connected to a battery management system; a signal processing module is used for Receive the first control and guide signal sent by the power supply device, and send a high-level signal of the target duration to the wake-up module according to the first control and guide signal, and the wake-up module is used to wake up after the duration of receiving the high-level signal reaches the target duration battery management system.
  • a power supply device is used to provide a charging function to supplement electric energy from a fixed facility (eg, a building, a power grid) to an electric vehicle, which needs to meet the charging mode and connection method specified by the charging standard.
  • the power supply device can adjust the AC or DC power supply to a calibrated voltage or current to input the power battery, thereby providing power for the power battery of the electric vehicle.
  • the power supply equipment can also provide at least one of the following control and guidance functions to the charging process of the electric vehicle by controlling the guidance signal: the continuous monitoring function of the continuity of the protective grounding conductor, the confirmation function of the correct connection between the electric vehicle and the power supply equipment, and the power supply function. Control function, power-off control function and maximum current information display function, etc.
  • the charging control device after the charging control device receives any type of control pilot signal, it can generate a high-level signal of the target duration according to the control pilot signal, and use the high-level signal of the target duration as a wake-up signal to Wake up the battery management system to achieve a single wake-up function. Moreover, no matter what type of control pilot signal the charging control device receives, the finally generated wake-up signal is a signal with a fixed pulse width and a fixed voltage amplitude. Using the above device, even if the power is cut off and the power is turned on again during the charging process, there is no need to re-plug the charging gun of the electric vehicle or restart the electric vehicle/charging pile. The charging control device only needs to receive any control guidance signal again. Wake up the battery management system with a high level signal for the target duration and continue charging.
  • the charging control device may further include a signal processing module, where the signal processing module includes a signal generation module and a signal control module.
  • the signal generation module is used to receive the first control and guide signal, generate a high-level signal according to the first control and guide signal, and send the high-level signal to the signal control module and the wake-up module; the signal control module is used to receive the signal. After the duration of the high-level signal reaches the target duration, the signal generating module stops sending the high-level signal to the wake-up module.
  • the first control pilot signal can be shaped into a high-level signal, and the high-level signal can be sent to the signal control module and the wake-up module respectively.
  • the signal generation module stops sending the high-level signal to the wake-up module, so that the wake-up module can receive the high-level signal of the target duration, thereby generating A high level signal for the target duration to wake up the battery management system.
  • the signal generation module in the charging control device includes a DC blocking module for receiving the first control pilot signal, removing the DC component in the first control pilot signal, generating a first signal, and sending the first signal to the clamp A bit module; wherein, the first signal is an AC signal; a clamping module is used to keep the top or bottom of the waveform of the first signal at a target level, obtain a second signal, and send the second signal to a filtering module; a filtering module, It is used for filtering the second signal to obtain a high-level signal, and sending the high-level signal to the signal control module and the wake-up module respectively.
  • the charging control device can convert the received first control pilot signal into a unipolar signal for output, thereby generating a stable high-level signal.
  • the DC blocking module adopts the principle of capacitor DC blocking to remove the DC component in the first control pilot signal; the clamping module is used to convert the first signal into a unipolar signal, and the filtering module adopts the RC filtering principle to convert the first signal into a unipolar signal.
  • the second signal is processed as a stable fixed level signal.
  • the signal control module in the charging control device includes a capacitor charging module and a shut-off module; the shut-off module includes a charging capacitor, the shut-off module includes a switch tube, and the first end of the charging capacitor is connected to the output of the signal generating module
  • the second end of the charging capacitor is connected to the ground, the second end of the switching tube is connected between the signal generation module and the wake-up module, the third end of the switching tube is grounded, and the charging capacitor is charged to the target voltage
  • the duration is the target duration;
  • the capacitor charging module is used to charge the charging capacitor in the shutdown module through the high-level signal after receiving the high-level signal; the shutdown module is used when the voltage of the charging capacitor reaches the target voltage , the second end of the switch tube and the third end of the switch tube are turned on, so that the signal generating module stops sending a high-level signal to the wake-up module.
  • the switch tube in the capacitor charging module is an N-type metal-oxide-semiconductor NMOS.
  • the high-level signal is also input to the wake-up module while inputting the capacitor charging module, so that the switch tube can be turned on in an instant to generate a high edge, and the charging capacitor can be charged.
  • the voltage of the gate rises slowly.
  • the channel of the switch tube is opened, and the level of the rear stage is pulled down, so that the switch tube is turned on and the high level input to the wake-up module is grounded.
  • a high-level signal with a target duration can be generated to wake up the battery management system.
  • the charging control device provided by the present application further includes a time determination module, and the time determination module is used to obtain the current time, and when it is determined that the current time is within the set time range
  • the control signal processing module sends a high-level signal of the target duration to the wake-up module according to the first control guide signal.
  • the control signal processing module can send a high-level signal of the target duration to the wake-up module according to the first control guide signal to wake up the battery.
  • the management system is used for charging, thereby reducing the overhead caused by charging.
  • time information can be set in the time determination module, and the time information can indicate the time period for timing charging, and the time information can be the time information that the user can configure for the charging control device according to his own usage habits, usage requirements, and usage scenarios, Specifically, the time information can be calculated according to at least one of the following data to obtain the charging time period to configure the time information: electricity consumption statistics, travel distance data, charging data, and so on. Therefore, the charging time can be determined according to different time information, so as to further reduce the overhead caused by charging.
  • the charging control device provided by the present application further includes an operation module, and the operation module is used to generate an operation instruction according to a user's operation, wherein the operation instruction Time information can be indicated.
  • the operation module may be a touch screen, and the user may perform touch operations on the touch screen, thereby completing the setting of time information.
  • the charging control device provided by the present application further includes a communication module, where the communication module receives time information, and the time information may be sent by the terminal. Therefore, the user can remotely realize the setting of the corresponding charging period, which improves the user experience.
  • the charging control device provided by the present application further includes a second control pilot signal generating module, which is used to obtain the first level signal from the battery management system, and according to the first level signal A level signal generates a second control pilot signal, and the second control pilot signal is sent to the powered device.
  • the power receiving device can be, but is not limited to, an electric vehicle, and can also be other electrical equipment designed in accordance with the "Standard for Conductive Power Supply System for Electric Vehicles", which should be known by those skilled in the art, which is not limited here.
  • the first level signal obtained from the battery management system can be adjusted to obtain a level signal conforming to the voltage standard of the control pilot signal, and the level signal conforming to the voltage standard of the control pilot signal can be shaped and finally output The second control pilot signal, and then the control pilot function is implemented by the second control pilot signal.
  • the charging control device provided by the present application further includes: a switch module for connecting the power supply device with the signal processing module when the battery management system needs to be woken up; when the power receiving device needs to be charged When the power receiving device is connected to the second control pilot signal generating module.
  • the charging control device of the embodiment of the present application can realize the bidirectional charging technology, which can not only receive and supply the electric energy provided by the power supply equipment, but also provide electric energy to the electric power receiving equipment in other periods.
  • the second control pilot signal generating module in the charging control device includes a boosting module, configured to obtain the first level signal from the battery management system, and for the first level signal Step-up processing is performed to obtain a second level signal, and the second level signal is sent to the charge pump module and the comparison module respectively; the charge pump module is used to generate a third level signal according to the second level signal, and the third level signal is The level signal is sent to the comparison module, wherein the level of the third level signal and the level of the second level signal are opposite numbers to each other; the comparison module is used for receiving the second level signal and the third level signal, According to the second level signal and the third level signal, the second control pilot signal is generated according to the target waveform rule, and the second control pilot signal is sent to the power receiving device.
  • a boosting module configured to obtain the first level signal from the battery management system, and for the first level signal Step-up processing is performed to obtain a second level signal, and the second level signal is sent to the charge pump module and the comparison module respectively; the charge pump module is used to
  • the boosting module can boost and stabilize the first level signal to a second level signal, and when the second control pilot signal is a PWM signal, the charge pump module converts the input positive level into an opposite one Negative level, and the comparison module outputs the PWM signal according to the positive and negative level signals input at the same time.
  • the comparison module may further include a triode active amplifier circuit, and the triode active amplifier circuit is used to perform Active amplification reduces the slew time and accelerates the rising and falling turnover rate, so that the waveform can meet the national standard requirements.
  • the charging control device provided by this application further includes a battery power detection module, which is used to detect the current battery power, and when the battery power is lower than a preset value, make the battery management system hibernate, Stop charging the powered device.
  • a battery power detection module which is used to detect the current battery power, and when the battery power is lower than a preset value, make the battery management system hibernate, Stop charging the powered device.
  • the embodiments of the present application further provide a charging control method, which is applied to the charging control device provided in any one of the first aspects.
  • a charging control method which is applied to the charging control device provided in any one of the first aspects.
  • the charging control method provided by the embodiment of the present application mainly includes: receiving a first control pilot signal, generating a high-level signal of a target duration according to the first control pilot signal; sending a high-level signal of the target duration to a battery management system. signal to wake up the battery management system.
  • the charging control device can generate a high-level signal with a target duration according to the control pilot signal, and use the high-level signal of the target duration as a wake-up signal to wake up the battery management system, thereby Implement a single wake-up function.
  • the charging control method provided by the embodiments of the present application may also receive a first control pilot signal, and generate a high-level signal according to the first control pilot signal; and the target is reached when the high-level signal is received. After a period of time, stop sending high-level signals.
  • the charging control method provided in the embodiments of the present application may further receive a first control pilot signal, and remove the DC component in the first control pilot signal to generate a first signal, where the first signal is AC signal; keep the top or bottom of the waveform of the first signal at the target level to obtain a second signal; filter the second signal to obtain a high-level signal.
  • the charging control method provided by the embodiments of the present application may also use a high-level signal to charge the charging capacitor, and the time period for which the charging capacitor is charged to the target voltage is the target time period; when the voltage of the charging capacitor reaches the target voltage When the switch is turned on, the second end of the switch tube and the third end of the switch tube are turned on, and the high-level signal is stopped.
  • the charging control method provided in the embodiments of the present application may further acquire a first level signal from the battery management system, generate a second control pilot signal according to the first level signal, and convert the second control pilot signal sent to the powered device.
  • the charging control method provided by the embodiments of the present application may also obtain a first level signal from a battery management system, and perform boost processing on the first level signal to obtain a second level signal; according to The second level signal generates a third level signal, wherein the level of the third level signal and the level of the second level signal are opposite numbers to each other; receiving the second level signal and the third level signal, according to The second level signal and the third level signal generate the second control pilot signal according to the target waveform rule, and send the second control pilot signal to the power receiving device.
  • the embodiments of the present application further provide an electric vehicle, which includes the charging control device provided in any one of the first aspects.
  • the charging control device provided in any one of the first aspects.
  • an embodiment of the present application further provides a charging control system, the system includes a power supply device, an electric vehicle, and the charging control device provided in any one of the first aspect, the charging control device is respectively connected with the power supply device and the electric vehicle. Car connection.
  • 1 is a schematic structural diagram of an electric vehicle
  • FIG. 2 is a schematic structural diagram of a charging control device
  • FIG. 3 is a schematic structural diagram of a signal processing module
  • FIG. 4 is a schematic structural diagram of a signal generation module
  • FIG. 5 is a schematic diagram of a specific structure of a signal control module
  • FIG. 6 is another schematic structural diagram of a charging control device
  • FIG. 7 is a schematic structural diagram of a charging control device including a switch module
  • FIG. 8 is a schematic structural diagram of a second control pilot signal generation module
  • 9A is a schematic diagram of a specific structure of a charging control device
  • 9B is a schematic diagram of a signal processing transformation
  • 9C is a schematic diagram of another signal processing transformation
  • FIG. 10 is a schematic diagram of a charging control method.
  • Connection confirm (CC) signal It is a functional signal that indicates the state of the vehicle plug being connected to the electric vehicle and/or the power supply plug being connected to the charging device by electronic or mechanical means.
  • Control pilot (CP) signal it is a communication signal between the electric vehicle and the electric vehicle power supply equipment used for interaction and monitoring.
  • Battery management system It is a control system that protects the safety of the power battery in electric vehicles, monitors the use status of the power battery, and relieves the inconsistency of the power battery through necessary measures. use to provide security.
  • Electric vehicles also known as new energy vehicles, are vehicles that use electric energy to drive.
  • the electric vehicle 10 mainly includes a battery management system 11 , a power battery 12 , a motor 13 and wheels 14 .
  • the power battery 12 is a large-capacity, high-power storage battery.
  • the power battery 12 may provide electrical power to some or all of the components of the electric vehicle 10 .
  • power battery 12 may consist of one or more rechargeable lithium-ion or lead-acid batteries.
  • the power battery 12 may also adopt other power source materials and configurations, which are not limited here.
  • the power battery 12 can supply power to the motor 13 through the motor controller (motor control unit, MCU) in the battery management system 11 , and the motor 13 converts the electrical energy provided by the power battery 12 into mechanical energy, thereby driving the wheels 14
  • the electric vehicle 10 can be driven by turning.
  • the charging pile 20 mainly includes a power supply circuit (not shown in FIG. 1 ) and a charging gun 21 .
  • One end of the power circuit is connected to the power grid 30 , and the other end is connected to the charging gun 21 through a cable.
  • the operator can insert the charging gun 21 into the charging socket of the electric vehicle 10 , so that the charging gun 21 is connected to the battery management system 11 in the electric vehicle 10 , and the power supply circuit of the charging pile 20 can then charge the power battery 12 through the charging gun 21 .
  • the CP signal port for transmitting the CP signal
  • the CP signal port for transmitting the CC signal.
  • the CC signal port of the signal is purely resistive, and the CP signal is a PWM wave.
  • the battery management system 11 judges the power supply capability of the charging pile 20 and the connection between the charging pile 20 and the battery management system 11 by comparing the resistance value between the CC signal identification port and the battery management system 11 . The type of charging cable between them; at the same time, the battery management system 11 also determines the output power of the charging pile 20 through the duty cycle of the CP signal. After the battery management system 11 completes the relevant charging configuration according to the power supply capability and output power of the charging pile 20 , the battery management system 11 controls the on-board charger (OBC) inside the electric vehicle 10 to receive the charge from the charging pile 20 . The provided electrical energy charges the power battery 12 .
  • OBC on-board charger
  • the battery management system 11 in the electric vehicle 10 will enter a dormant state, thereby saving power and preventing the power battery 12 from running out of power. Therefore, the battery management system 11 after hibernation cannot maintain a certain voltage to monitor the CC signal, so that the battery management system 11 cannot be woken up again.
  • the present application provides a charging control device, method and electric vehicle.
  • the charging control device can generate a high-level signal of the target duration according to the CP signal, and use the high-level signal of the target duration as a wake-up signal to wake up the battery management system, thereby realizing a single Wake-up function.
  • the finally generated wake-up signal is a signal with a fixed pulse width and a fixed voltage amplitude.
  • the present application provides a charging control device 200, as shown in FIG. 2, comprising: a signal processing module 201 and a wake-up module 202; the signal processing module 201 is configured to receive a first control guidance signal sent by a power supply device, according to the The first control pilot signal sends a high level signal of the target duration to the wake-up module 202 .
  • the wake-up module 202 is configured to wake up the battery management system after the duration of receiving the high-level signal reaches the target duration.
  • the power supply equipment in the embodiment of the present application is a device that provides a charging function for electric vehicles and supplements electric energy from fixed facilities (such as buildings, power grids) to electric vehicles, and needs to meet the charging mode and connection specified by the charging standard.
  • the power supply equipment can be connected to the power frequency power grid, and can receive the electric energy provided by the power frequency power grid, so as to provide a stable output voltage for the electric vehicle.
  • the powered device may be a stand-alone or combined device.
  • the power supply device can adjust the AC or DC power supply to a calibrated voltage or current to input the power battery, thereby providing power for the power battery of the electric vehicle.
  • the power battery can also supply power for the on-board electrical equipment of the electric vehicle (eg, on-board audio, on-board navigator, etc.).
  • the power supply equipment can also provide at least one of the following control and guidance functions to the charging process of the electric vehicle by controlling the pilot signal (CP signal): the continuous monitoring function of the continuity of the protective grounding conductor, the correct connection between the electric vehicle and the power supply equipment. Confirmation function, power supply control function, power-off control function and maximum current information display function, etc.
  • CP signal pilot signal
  • the power supply device simultaneously charges a plurality of electric vehicles, it can be ensured that the above-mentioned control and guidance function can be normally implemented on each of the connected electric vehicles.
  • the power supply device and the charging control device 200 may be connected by a charging cable.
  • the charging cable may be a part of the charging control device 200 or a part of the power supply device.
  • the charging cable may also be a detachable structure, independent of the charging control device 200 .
  • the power supply device those skilled in the art should know that there are no too many limitations here.
  • the continuous monitoring function of the continuity of the protective grounding conductor is used to stop the power supply when the electric vehicle loses the electrical continuity of the protective grounding conductor.
  • the confirmation function of the correct connection between the electric vehicle and the power supply device is used to determine whether the charging cable is correctly inserted into the power supply device and the charging control device 200 through the CC signal.
  • the electric vehicle power supply control function is used to establish the connection between the power supply device and the wake-up battery management system through the control guide signal. After the battery management system completes the relevant charging configuration, the battery management system controls the vehicle charger to receive the charging The electric power provided by the pile, thereby charging the power battery.
  • the signal processing module 201 is configured to adjust the first control pilot signal to a high-level signal of a target duration.
  • the first control pilot signal may be a CP signal sent by a power supply device.
  • the CP signal may be at least one of a discrete input signal and a PWM signal.
  • the CP signal may include at least one of the following:
  • the value range of the D is 0% to 100%
  • the N is a positive integer
  • the power supply device uses different PWM duty cycles of the CP signal and different signal amplitudes to encode, so as to send the signal to the
  • the battery management system indicates parameters such as current, voltage, etc. that the power supply device can use for charging.
  • the wake-up module 202 may be a logic circuit with functions of logic operation and signal identification.
  • the wake-up module 202 may be a processor, a central processing unit (CPU), a system on a chip (SoC), an electronic control unit (ECU), etc., the embodiment of the present application I will not list them one by one.
  • the wake-up module 202 is configured to wake up the battery management system after receiving and recognizing the high-level signal of the target duration.
  • the amplitude of the high-level signal sent by the signal processing module 201 to the wake-up module 202 and the target duration can be freely set by those skilled in the art according to the specific structure supported by the battery management system.
  • the embodiment does not limit much.
  • the amplitude of the high-level signal of the target duration can be set to be more than 12V
  • the said The target duration can be set to more than 1s.
  • the signal processing module 201 includes:
  • the signal generation module 203 is configured to receive the first control pilot signal, generate the high-level signal according to the first control pilot signal, and send the high-level signal to the signal control module and the wake-up module;
  • the signal control module 204 is configured to make the signal generating module stop sending the high-level signal to the wake-up module after the duration of receiving the high-level signal reaches the target duration.
  • the signal generating module 203 may be a circuit for performing signal shaping, for shaping the first control pilot signal into a high-level signal, and sending the high-level signal to the signal The control module 204 and the wake-up module.
  • the signal control module 204 is a circuit capable of timing, and after the duration of receiving the high-level signal reaches a target duration, the signal generation module 203 stops sending the signal to the wake-up module. A high-level signal, so that the wake-up module can receive a high-level signal with a target duration.
  • the signal generation module 203 includes: a DC blocking module 205 , a clamping module 206 and a filtering module 207 ; the DC blocking module 205 is used for Receive the first control pilot signal, remove the DC component in the first control pilot signal, generate a first signal, and send the first signal to the clamping module 206; wherein the first signal is an AC signal ;
  • the clamping module 206 is configured to keep the top or bottom of the waveform of the first signal at the target level, obtain a second signal, and send the second signal to the filtering module 207;
  • the filtering module 207 is configured to filter the second signal to obtain the high-level signal, and send the high-level signal to the signal control module 204 and the wake-up module 202 respectively.
  • the DC blocking module 205 and the clamping module 206 are used to change the first control and pilot signal into a unipolar signal.
  • the DC blocking module 205 adopts the principle of capacitive DC blocking to remove the DC component in the first control and pilot signal; the clamping module 206 is used to convert the first signal into a unipolar signal; the The filtering module 207 adopts the RC filtering principle to process the second signal into a stable fixed-level signal.
  • the DC blocking module 205 may specifically include: a first resistor R1 , a first end of the first resistor R1 is used to input the first control pilot signal, the first resistor R1 The second end of a resistor R1 is coupled with the first end of the first capacitor C1 and the first end of the second capacitor C2; the second end of the first capacitor C1 is coupled with the input end of the clamping module 206, so The second end of the second capacitor C2 is coupled to the input end of the clamping module 206 .
  • the first capacitor C1 and the second capacitor C2 are connected in parallel to form a DC blocking part, so as to filter out the DC component.
  • the clamping module 206 may specifically include: a first diode D1, the first diode D1 is connected in parallel with the DC blocking module 205, and the cathode of the first diode D1 is connected to the DC blocking module 205 is coupled to the input terminal, the anode of the first diode D1 is coupled to the output terminal of the DC blocking module 205; the second diode D2, the cathode of the second diode D2 is coupled to the DC blocking module 205; The output terminal of the module 205 is coupled, the anode of the second diode D2 is grounded; the anode of the third diode D3, the anode of the third diode D3 is coupled to the output terminal of the DC blocking module 205, the The cathode of the third diode D3 is coupled to the input end of the filtering module 207 .
  • the first diode D1 plays a role of discharging and is used to adjust the first signal input by the DC blocking module 205 to a preset amplitude level
  • the tube D3 acts as a clamp for keeping the top or bottom of the waveform of the first signal at the target level.
  • the filter circuit 207 may include a third capacitor C3, the first end of the third capacitor C3 is coupled with the output end of the clamping module 206 to input the second signal, the third capacitor C3 One end is also coupled to the first end of the second resistor R2, the second end of the third capacitor C3 is grounded; the first end of the second resistor R2 is also coupled to the input end of the signal control module 204, so The second end of the second resistor R2 is grounded.
  • the third capacitor C3 and the second resistor R2 together form an RC filter circuit.
  • the RC filter circuit composed of the third capacitor C3 and the second resistor R2 can filter the PWM signal into a PWM signal. output at a stable level.
  • the signal control module 204 includes: a capacitor charging module 208 and a shut-off module 209 ; wherein the capacitive charging module 208 includes a charging capacitor, and the shut-off module 208 includes a charging capacitor.
  • the disconnection module 209 includes a switch tube, the first end of the charging capacitor is connected to the output end of the signal generating module 203 and the first end of the switch tube, the second end of the charging capacitor is grounded, and the switch The second end of the tube is connected between the signal generating module 203 and the wake-up module 202, and the third end of the switch tube is grounded.
  • the capacitor charging module 208 is configured to charge the charging capacitor in the shutdown module 209 through the high-level signal after receiving the high-level signal, based on the high-level signal signal, the duration of charging the charging capacitor to the target voltage is the target duration; the shut-off module 209 is used to make the second end of the switch tube connect to the target voltage when the voltage of the charging capacitor reaches the target voltage The third end of the switch tube is turned on, so that the signal generating module 203 stops sending the high-level signal to the wake-up module 202 .
  • the high-level signal is also input to the wake-up module 202 when the high-level signal is input to the capacitor charging module 208.
  • the high-level signal can turn on the switch in an instant to generate a high edge and charge the The capacitor is charged.
  • the voltage of the gate (first end) of the switch tube rises slowly.
  • the channel of the switch tube is opened, and then The level of the stage is pulled low, thereby turning on the second end of the switch tube and the third end of the switch tube, so that the high level input to the wake-up module 202 is grounded, which is equivalent to the signal generation module 203 Ground, and finally can generate a high-level signal for the target duration.
  • the signal control module 204 may specifically include: a third resistor R3, the first end of the third resistor R3 is coupled to the output end of the signal generation module 203, the The second end of the third resistor R3 is coupled with the first end of the fifth resistor R5; the fourth resistor R4, the first end of the fourth resistor R4 is coupled with the output end of the signal generating module 203, the fourth The second end of the resistor R4 is coupled with the anode of the fourth diode D4; the fifth resistor R5, the first end of the fifth resistor R5 is coupled with the first end of the fourth capacitor C4, the fifth resistor R5 The first end and the first end of the fourth capacitor C4 are connected to the first end of the first switch tube Q1, the first end is the gate, and the second end of the fifth resistor R5 is grounded; the fourth capacitor C4, The second end of the fourth capacitor C4 is grounded; the fourth diode D4, the second end of the fourth diode is coupled to
  • the charging control apparatus 200 further includes: a time determination module, the time determination module is configured to obtain the current time, and when it is determined that the current time is at a set time when the set time range corresponds to the set power rate or the set charging period at least one of.
  • the current time is determined by the time determination module, and the battery management system is woken up within a specific power rate or within a specific time period to complete charging.
  • electricity charges are higher during peak electricity consumption periods.
  • the time determination module can control the signal processing module 201 to send the high value of the target duration to the wake-up module 202 according to the first control pilot signal when it is determined that the current time is in a non-peak power consumption period or the power rate is low. level signal to wake up the battery management system for charging, thereby reducing charging overhead.
  • time information can be set in the time determination module, the time information can indicate the time period for timing charging, and the time information can be used by the user according to his own usage habits, usage requirements, usage scenarios for charging control.
  • the device 200 configures time information. Specifically, the time information can calculate the charging time period according to at least one of the following data to configure the time information: electricity consumption statistics, travel distance data, and charging data.
  • the charging data includes electricity billing standards in different time periods. For example, from 18:00 to 21:00 is the peak electricity consumption period, and the charging standard during this period is 1 yuan/kWh. The charging standard for other time periods is 0.5 yuan/degree, and the time information may indicate that the time period for timing charging is set to other time periods other than 18:00 to 21:00.
  • the charging control apparatus 200 further includes: an operation module, where the operation module is configured to generate an operation instruction according to a user's operation, wherein the operation instruction may indicate time information.
  • the operation module may be a touch screen, and the user may perform touch operations on the touch screen, thereby completing the setting of time information.
  • the charging control apparatus 200 further includes: a communication module, where the communication module receives the time information, and the time information may be sent by the terminal.
  • the user can set the time period for timing charging through the terminal, and send time information to the time determination module.
  • bidirectional charging has been more and more widely used in the field of new energy.
  • the application of bidirectional charging technology can further expand the application scenarios of electric vehicles.
  • An electric vehicle that supports bidirectional charging can not only receive and store the electrical energy provided by the power supply equipment (ie, charge), but also provide electrical energy (ie, power supply) to external devices (other electric vehicles).
  • the power supply equipment ie, charge
  • electrical energy ie, power supply
  • other electric vehicles other electric vehicles.
  • the charging control apparatus 200 further includes: a second control guidance signal generating module 210, configured to obtain the first electric power from the battery management system A level signal is generated, a second control pilot signal is generated according to the first level signal, and the second control pilot signal is sent to the power receiving device.
  • a second control guidance signal generating module 210 configured to obtain the first electric power from the battery management system A level signal is generated, a second control pilot signal is generated according to the first level signal, and the second control pilot signal is sent to the power receiving device.
  • the power receiving device may be, but is not limited to, an electric vehicle, and may also be other power-consuming devices designed in accordance with the Electric Vehicle Conductive Power Supply System Standard, which should be known by those skilled in the art, and is not limited here.
  • the first level signal obtained from the battery management system can be adjusted to obtain a level signal conforming to the voltage standard of the control pilot signal, and the level signal conforming to the voltage standard of the control pilot signal can be shaped, and finally A second control pilot signal is output, and the control pilot function is implemented by the second control pilot signal.
  • the second control pilot signal may be a CP signal, and the CP signal may also be of the type defined in the above embodiment, the same description No longer.
  • the stable level of 5V or 3.3V needs to be raised to a 12V level that meets the voltage standard of the control pilot signal.
  • the general control pilot signal is a PWM signal. Therefore, the 12V level also needs to be shaped and finally output a control pilot signal that conforms to the PWM signal edge standard, so as to reduce the slew time of the control pilot signal, thereby speeding up the transformation speed.
  • the charging control device 200 further includes:
  • the switch module 211 is used to connect the power supply device with the signal processing module 201 when the battery management system needs to be woken up;
  • the second control pilot signal generation module 210 is connected.
  • the switch module 211 may be, but not limited to, a relay switch.
  • the charging control device 200 in this embodiment of the present application can implement a bidirectional charging technology, which can not only receive and supply the power provided by the device, but also can receive and supply power from the device at other time periods. Power can also be supplied to powered devices.
  • the second control pilot signal generating module 210 includes: a boosting module 212, configured to obtain the first level signal from the battery management system, The first level signal is boosted to obtain a second level signal, and the second level signal is sent to the charge pump module 213 and the comparison module 214 respectively; the charge pump module 213 is used for according to the The second level signal generates a third level signal, and the third level signal is sent to the comparison module 214, wherein the level of the third level signal is the same as that of the second level signal.
  • a boosting module 212 configured to obtain the first level signal from the battery management system, The first level signal is boosted to obtain a second level signal, and the second level signal is sent to the charge pump module 213 and the comparison module 214 respectively; the charge pump module 213 is used for according to the The second level signal generates a third level signal, and the third level signal is sent to the comparison module 214, wherein the level of the third level signal is the same as that of the second level signal.
  • the levels are opposite numbers to each other; the comparison module 214 is configured to receive the second level signal and the third level signal, according to the second level signal and the third level signal, according to the target The waveform rule generates the second control pilot signal, and transmits the second control pilot signal to the powered device.
  • the boosting module 212 may be a boost chopper circuit boost to boost and stabilize the first level signal to the second level signal.
  • the charge pump module 213 may be a voltage inverter, and the voltage inverter is essentially a DC-DC DC/DC converter, which converts the input positive level Converted to an opposite negative level, therefore, a third level signal can be generated according to the second level signal.
  • the comparison module 214 may include a comparator, which outputs a PWM signal by inputting positive and negative level signals at the same time.
  • the comparison module 214 may also include a triode active amplifying circuit, and active amplification is performed by the triode active amplifying circuit, thereby reducing the slew time and accelerating the rising and falling inversion rates.
  • the charging control device 200 may further include: a battery power detection module, where the battery power detection module is used to detect the current battery power, when the battery power is lower than When the preset value is used, the battery management system is put to sleep and the charging of the power receiving device is stopped.
  • the preset value may be 50%. It can be understood that the above are only specific examples. Other application scenarios are not listed one by one.
  • the charging control device 200 specifically includes the following modules: a signal processing module 201 , a wake-up module 202 , a second control guidance signal generation module 210 , and The switch module 211, the signal processing module 201 includes a signal generation module 203 and a signal control module 204, the signal generation module 203 includes: a DC blocking module 205, a clamping module 206 and a filtering module 207, the signal control module 207 204 includes a capacitor charging module 208 and a shutdown module 209 , and the second control pilot signal generation module 210 includes a boost module 212 , a charge pump module 213 and a comparison module 214 .
  • the signal processing module 201 includes a signal generation module 203 and a signal control module 204
  • the signal generation module 203 includes: a DC blocking module 205, a clamping module 206 and a filtering module 207
  • the signal control module 207 204 includes a capacitor charging module 208 and a shutdown module 209
  • the charging control device 200 can generate a high-level signal with a target duration according to the CP signal, and use the high-level signal of the target duration as a wake-up signal to wake up the battery management system, thereby realizing a single-shot Wake function.
  • the finally generated wake-up signal is a signal with a fixed pulse width and a fixed voltage amplitude. For example, referring to FIG.
  • the embodiment of the present application also provides a charging control method, which is applied to the charging control device 200.
  • the charging control device can be implemented by software, hardware, or a combination of software and hardware.
  • the charging control method provided by the embodiment of the present application does not limit this in the embodiment of the present application.
  • the charging control method provided by this embodiment of the present application may be implemented by the charging switching device 200 provided by any of the above embodiments, and details are not repeated here.
  • the charging control method provided by the embodiment of the present application may be as shown in FIG. 10 , and mainly includes the following steps:
  • the charging control apparatus 200 receives a first control pilot signal, and the charging control apparatus 200 generates a high-level signal of a target duration according to the first control pilot signal;
  • the charging control apparatus 200 sends the high-level signal of the target duration to the battery management system, so as to wake up the battery management system.
  • the charging control method provided by the embodiments of the present application may also receive a first control pilot signal, and generate a high-level signal according to the first control pilot signal; and the target is reached when the high-level signal is received. After a period of time, stop sending high-level signals.
  • the charging control method provided in the embodiments of the present application may further receive a first control pilot signal, and remove the DC component in the first control pilot signal to generate a first signal, where the first signal is AC signal; keep the top or bottom of the waveform of the first signal at the target level to obtain a second signal; filter the second signal to obtain a high-level signal.
  • the charging control method provided by the embodiments of the present application may also use a high-level signal to charge the charging capacitor, and the time period for which the charging capacitor is charged to the target voltage is the target time period; when the voltage of the charging capacitor reaches the target voltage When the switch is turned on, the second end of the switch tube and the third end of the switch tube are turned on, and the high-level signal is stopped.
  • the charging control method provided in the embodiments of the present application may further acquire a first level signal from the battery management system, generate a second control pilot signal according to the first level signal, and convert the second control pilot signal sent to the powered device.
  • the charging control method provided by the embodiments of the present application may also obtain a first level signal from a battery management system, and perform boost processing on the first level signal to obtain a second level signal; according to The second level signal generates a third level signal, wherein the level of the third level signal and the level of the second level signal are opposite numbers to each other; receiving the second level signal and the third level signal, according to The second level signal and the third level signal generate the second control pilot signal according to the target waveform rule, and send the second control pilot signal to the power receiving device.
  • the embodiments of the present application further provide an electric vehicle, where the electric vehicle includes the charging control device defined in the foregoing embodiments.
  • an embodiment of the present application further provides a charging control system, the charging control system includes a power supply device and a charging control device integrated in an electric vehicle, the charging control device is respectively connected with the power supply device and the charging control device.
  • the charging control system includes a power supply device and a charging control device integrated in an electric vehicle, the charging control device is respectively connected with the power supply device and the charging control device.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种充电控制装置、方法及电动汽车,包括:信号处理模块,用于接收供电设备发送的第一控制引导信号,根据所述第一控制引导信号向唤醒模块发送目标时长的高电平信号;所述唤醒模块,用于在接收到高电平信号的时长达到目标时长之后,唤醒电池管理***。利用上述充电控制装置,即使在充电过程中停电后再次来电,也无需在充电插口重新插拔充电枪或重启电动汽车/充电桩,充电控制装置只要再次接收到任意CP信号后,即可通过目标时长的高电平信号来唤醒电池管理***,继续进行充电。

Description

一种充电控制装置、方法及电动汽车 技术领域
本申请涉及电动汽车充电领域,特别涉及一种充电控制装置、方法及电动汽车。
背景技术
随着经济的发展,电动汽车愈加趋向电子产品化,电动汽车的智能化以及绿色环保的需求越来越高。目前市场上的电动汽车在***充电枪不充电的情况下,电动汽车的电池管理***(battery management system,BMS)会进入休眠状态。而BMS在进入休眠状态后,由供电设备(如充电桩等)发出的控制引导(control pilot,CP)信号不能直接唤醒BMS,必须到现场重新***充电枪或重启电动汽车才能进行重新唤醒BMS,才能进一步通过BMS对电动汽车的动力电池进行充电。
由于需要人工进行现场操作,因此,上述方式无法实现电动汽车的远程控制。如何能够保证对于电动汽车充电的远程控制,是本领域亟待解决的问题。
发明内容
本申请提供一种充电控制装置、方法及电动汽车,能够提高电动汽车BMS唤醒的灵活性,实现电动汽车充电的远程控制。
第一方面,本申请实施例提供一种充电控制装置,其主要包括:信号处理模块,唤醒模块,其中,信号处理模块与供电设备连接,唤醒模块与电池管理***连接;信号处理模块,用于接收供电设备发送的第一控制引导信号,根据第一控制引导信号向唤醒模块发送目标时长的高电平信号,而唤醒模块,用于在接收到高电平信号的时长达到目标时长之后,唤醒电池管理***。可以理解,供电设备用于提供充电功能,将电能从固定设施(如:建筑物、电网)补充给电动汽车,其需要满足充电标准规定的充电模式和连接方式。
基于上述连接关系,供电设备通过充电控制装置成功唤醒电池管理***之后,供电设备可以将交流或直流供电电源调整为校准的电压或电流以输入动力电池,从而为电动汽车的动力电池提供电能。进一步的,供电设备通过控制引导信号,还可以向电动汽车的充电过程提供如下至少一种的控制引导功能:保护接地导体连续性的持续监测功能、电动汽车与供电设备正确连接的确认功能、供电控制功能、断电控制功能以及最大电流信息显示功能等等。采用本申请示例所提供的技术方案,在充电控制装置接收到任意类型的控制引导信号后,根据控制引导信号能生成目标时长的高电平信号,利用目标时长的高电平信号作为唤醒信号来唤醒电池管理***,从而实现单次唤醒功能。并且,无论充电控制装置接收到何种类型的控制引导信号,最终生成的唤醒信号都是一个固定脉宽及固定电压幅值的信号。利用上述装置,即使在充电过程,停电并再次来电,也无需将电动汽车的充电插口重新插拔充电枪或重启电动汽车/充电桩,充电控制装置只要再次接收到任意控制引导信号后,即可通过目标时长的高电平信号来唤醒电池管理***,继续进行充电。
本申请所提供的充电控制装置还可以包括信号处理模块,该信号处理模块包括信号生成模块以及信号控制模块。其中,信号生成模块,用于接收第一控制引导信号,根据第一控制引导信号生成高电平信号,将高电平信号发送到信号控制模块以及唤醒模块;信号控 制模块,用于在接收到高电平信号的时长达到目标时长后,使信号生成模块停止向唤醒模块发送高电平信号。采用该结构,能够将第一控制引导信号整形成为高电平信号,并将高电平信号分别发送到信号控制模块以及唤醒模块。而且,在信号控制模块接收到高电平信号的时长达到目标时长后,使信号生成模块停止向唤醒模块发送高电平信号,从而使得唤醒模块可以接收到目标时长的高电平信号,从而产生目标时长的高电平信号来唤醒电池管理***。
本申请所提供的充电控制装置中的信号生成模块包括隔直模块,用于接收第一控制引导信号,去除第一控制引导信号中的直流分量,生成第一信号,将第一信号发送到钳位模块;其中,第一信号为交流信号;钳位模块,用于将第一信号的波形顶部或底部保持在目标电平,得到第二信号,将第二信号发送到滤波模块;滤波模块,用于对第二信号进行滤波得到高电平信号,将高电平信号分别发送到信号控制模块以及唤醒模块。采用该结构,充电控制装置可以将接收的第一控制引导信号转变为单极性信号进行输出,从而能产生稳定的高电平信号。示例性的,隔直模块采用电容隔直原理,去除第一控制引导信号中的直流分量;钳位模块用于将第一信号转化为单极性信号,而滤波模块采用RC滤波原理,将第二信号处理为稳定的固定电平信号。
本申请所提供的充电控制装置中的信号控制模块包括电容充电模块和关断模块;该关断模块中包含充电电容,关断模块包含开关管,充电电容的第一端与信号生成模块的输出端以及开关管的第一端连接,充电电容的第二端接地,开关管的第二端连接在信号生成模块与唤醒模块之间,开关管的第三端接地,充电电容充电到目标电压的时长为目标时长;电容充电模块,用于在接收到高电平信号之后,通过高电平信号给关断模块中的充电电容充电;关断模块,用于在充电电容的电压达到目标电压时,导通开关管的第二端与开关管的第三端,以使信号生成模块停止向唤醒模块发送高电平信号。在一种可能的实现方式中,电容充电模块中的开关管为N型金属氧化物半导体NMOS。
采用该结构,高电平信号在输入电容充电模块的同时还会输入唤醒模块,从而可以在瞬间打开开关管从而产生一个高边沿,并对充电电容进行充电,而在充电电容充电时,开关管的栅极的电压缓慢升高,在栅极的电压大于目标电压时,开关管的沟道打开,后级的电平拉低,从而导通开关管使输入到唤醒模块的高电平接地,最终可以产生一个目标时长的高电平信号来唤醒电池管理***。
为了实现定时唤醒充电的功能,在一种可能的实现方式中,本申请所提供的充电控制装置中还包括时间确定模块,时间确定模块用于获取当前时间,在确定当前时间在设定时间范围时,控制信号处理模块根据第一控制引导信号向唤醒模块发送目标时长的高电平信号。采用该结构,时间确定模块可以在确定当前时间处于非用电高峰期或功率费率较低时,控制信号处理模块根据第一控制引导信号向唤醒模块发送目标时长的高电平信号,唤醒电池管理***来进行充电,从而降低充电带来的开销。
进一步的,在时间确定模块中可以设置时间信息,该时间信息可以指示进行定时充电的时间段,时间信息可以为用户可以根据自身的使用习惯、使用需求、使用场景为充电控制装置配置时间信息,具体的,该时间信息可以根据以下数据中的至少一种来计算得到充电时间段从而配置时间信息:用电统计数据、行驶路程数据以及收费数据等等。从而能够根据不同时间信息来确定充电时间,以进一步降低充电带来的开销。
为了实现远程设置充电时间的功能,在一种可能的实现方式中,本申请所提供的充电 控制装置中还包括操作模块,该操作模块用于根据用户的操作生成操作指令,其中,该操作指令可以指示时间信息。示例性的,该操作模块可以是触摸屏,用户可以在触摸屏上进行触控操作,从而可以完成设置时间信息。并且,在另一种可能的实现方式中,本申请所提供的充电控制装置中还包括通信模块,该通信模块接收时间信息,该时间信息可以是由终端发送的。从而可以使得用户在远程实现对应充电时段的设置,提升了用户体验。
为了实现双向充电的功能,在一种可能的实现方式中,本申请所提供的充电控制装置中还包括第二控制引导信号生成模块,用于从电池管理***获取第一电平信号,根据第一电平信号生成第二控制引导信号,将该第二控制引导信号发送到受电设备。我们了解,受电设备可以但不限为电动汽车,同样可以为遵循《电动汽车传导供电***标准》设计的其他用电设备,本领域人员应当知晓,这里不做限定。采用该结构,可以对从电池管理***获取的第一电平信号调整,以得到符合控制引导信号电压标准的电平信号,并对符合控制引导信号电压标准的电平信号进行整形处理,最终输出第二控制引导信号,进而通过第二控制引导信号实现控制引导功能。
在一种可能的实现方式中,本申请所提供的充电控制装置中还包括:开关模块,用于在需要唤醒电池管理***时,将供电设备与信号处理模块连接;在需要给受电设备充电时,将受电设备与第二控制引导信号生成模块连接。利用该开关模块,本申请实施例的充电控制装置可以实现双向充电技术,不仅可以接收并供电设备提供的电能,在其他时段还可以向受电设备提供电能。
在一种可能的实现方式中,本申请所提供的充电控制装置中的第二控制引导信号生成模块包括升压模块,用于从电池管理***获取第一电平信号,对第一电平信号进行升压处理,得到第二电平信号,将第二电平信号分别发送到电荷泵模块以及比较模块;电荷泵模块,用于根据第二电平信号生成第三电平信号,将第三电平信号发送到比较模块,其中,第三电平信号的电平与第二电平信号的电平互为相反数;比较模块,用于接收第二电平信号以及第三电平信号,根据第二电平信号以及第三电平信号,按目标波形规则生成第二控制引导信号,将第二控制引导信号发送到受电设备。采用该结构,升压模块可以将第一电平信号升压稳压到第二电平信号,并在第二控制引导信号为PWM信号时,电荷泵模块将输入的正电平转换成相反的负电平,并由比较模块根据同时输入的正负电平信号,输出PWM信号。在另一种可能的实现方式中,为了使得输出第二控制引导信号的波形的上升沿以及下降达到国标要求,该比较模块中还可以包括三极管有源放大电路,通过三极管有源放大电路来进行有源放大,从而减少压摆时间,加快上升下降翻转速率,以使波形达到国标要求。
为了保证电动汽车的正常工作,本申请所提供的充电控制装置中的还包括电池电量检测模块,用于检测当前电池的电量,在电池的电量低于预设值时,使电池管理***休眠,停止给受电设备充电。采用该结构,在支持向其他受电设备供电的前提下,能够保证电动汽车内部的各类用电设备正常工作。
第二方面,本申请实施例还提供一种充电控制方法,该方法应用于如第一方面中任一项所提供的充电控制装置,第二方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
示例性的,本申请实施例所提供的充电控制方法主要包括:接收第一控制引导信号,根据第一控制引导信号生成目标时长的高电平信号;向电池管理***发送目标时长的高电 平信号,以使电池管理***唤醒。采用该方法,在充电控制装置接收到任意类型的控制引导信号后,根据控制引导信号能生成目标时长的高电平信号,利用目标时长的高电平信号作为唤醒信号来唤醒电池管理***,从而实现单次唤醒功能。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以接收第一控制引导信号,根据第一控制引导信号生成高电平信号;在接收到高电平信号的时长达到目标时长后,停止发送高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以接收第一控制引导信号,去除第一控制引导信号中的直流分量,以生成第一信号,其中,第一信号为交流信号;将第一信号的波形顶部或底部保持在目标电平,得到第二信号;对第二信号进行滤波得到高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以利用高电平信号给充电电容充电,充电电容充电到目标电压的时长为目标时长;在充电电容的电压达到目标电压时,导通开关管的第二端与开关管的第三端,停止发送高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以从电池管理***获取第一电平信号,根据第一电平信号生成第二控制引导信号,将第二控制引导信号发送到受电设备。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以从电池管理***获取第一电平信号,对第一电平信号进行升压处理,得到第二电平信号;根据第二电平信号生成第三电平信号,其中,第三电平信号的电平与第二电平信号的电平互为相反数;接收第二电平信号以及第三电平信号,根据第二电平信号以及第三电平信号,按目标波形规则生成第二控制引导信号,将第二控制引导信号发送到受电设备。
第三方面,本申请实施例还提供一种电动汽车,该电动汽车中包括如第一方面中任一项所提供的充电控制装置,第三方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
第四方面,本申请实施例还提供一种充电控制***,该***包括供电设备、电动汽车,以及如第一方面中任一项所提供的充电控制装置,充电控制装置分别与供电设备和电动汽车连接。第四方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种电动汽车的结构示意图;
图2为一种充电控制装置的结构示意图;
图3为一种信号处理模块的结构示意图;
图4为一种信号生成模块的结构示意图;
图5为一种信号控制模块的具体结构示意图;
图6为一种充电控制装置的另一种结构示意图;
图7为一种包含开关模块的充电控制装置的结构示意图;
图8为一种第二控制引导信号生成模块的结构示意图;
图9A为一种充电控制装置的具体结构示意图;
图9B为一种信号处理变换的示意图;
图9C为另一种信号处理变换的示意图;
图10为一种充电控制方法的示意图。
具体实施方式
本申请的方法实施例中的具体操作方法也可以应用于装置实施例或***实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
先对本申请实施例中涉及的部分用语进行解释说明,以便于本领域技术人员容易理解。
(1)连接确认(connection confirm,CC)信号:是通过电子或机械的方式,指示车辆插头连接到电动汽车和/或供电插头连接到充电设备上的状态的功能信号。
(2)控制引导(control pilot,CP)信号:是用于实现交互及监控的电动汽车与电动汽车供电设备之间的通讯信号。
(3)电池管理***(battery management system,BMS):是电动汽车中保护动力电池使用安全的控制***,监控动力电池的使用状态,通过必要的措施来缓解动力电池的不一致性,能为动力电池的使用提供安全保障。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
电动汽车,又可以称为新能源汽车,是一种利用电能驱动的汽车。参阅图1所示,电动汽车10主要包括:电池管理***11、动力电池12、电机13和车轮14。
其中,动力电池12为大容量、高功率的蓄电池。动力电池12可以向电动汽车10的部分或全部组件提供电能。在一些示例中,动力电池12可以由一个或多个可再充电锂离子或铅酸电池组成。此外,动力电池12还可以采用其它的电源材料和配置,这里不做限定。在电动汽车10行驶时,动力电池12可以通过电池管理***11中的电机控制器(motor control unit,MCU)为电机13供电,电机13将动力电池12提供的电能转换为机械能,从而驱动车轮14转动,实现电动汽车10的行驶。
而在电动汽车10充电时,一般可以通过充电桩20为电动汽车10的动力电池12充电。继续如图1所示,充电桩20主要包括电源电路(图1中未示出)和充电枪21。电源电路的一端与电网30连接,另一端通过线缆与充电枪21连接。操作人员可以将充电枪21***电动汽车10的充电插口,使充电枪21与电动汽车10内的电池管理***11实现连接,充电桩20的电源电路进而可以通过充电枪21为动力电池12充电。
根据国标《电动汽车传导供电***标准》的规定,充电桩20与充电插口除了存在交流电连接之外,还存在两个信号端口,分别为用于传输CP信号的CP信号端口,和用于传输CC信号的CC信号端口。其中,充电插口的CC信号端口与电池管理***11之间为纯 电阻性,而CP信号为PWM波。
在充电枪21***充电插口后,电池管理***11通过对比CC信号识别端口与电池管理***11之间的电阻值,来判断出充电桩20的供电能力以及连接充电桩20与电池管理***11之间的充电电缆类型;同时电池管理***11还通过CP信号的占空比来确定该充电桩20的输出功率。在所述电池管理***11根据充电桩20的供电能力和输出功率完成相关充电配置之后,所述电池管理***11控制电动汽车10内部的车载充电器(on board charger,OBC)接收由充电桩20提供的电能,从而为动力电池12充电。
当充电桩20不向电动汽车10提供电能时,电动汽车10中的电池管理***11会进入休眠状态,从而节省电能,防止动力电池12亏电。因此,休眠后的电池管理***11无法保持一定的电压来监测CC信号,从而无法再次唤醒电池管理***11。
此时,若需对充电电池12继续充电,必须有人到现场在电动汽车10的充电插口上重新插拔充电枪21或重启电动汽车10/充电桩20才能唤醒电池管理***11。
由于目前唤醒电池管理***11需要人工参与,导致用户体验较差。因此,亟待提出一种新的电池管理***111唤醒方法,以实现电动汽车10充电的远程控制,提高用户体验。
有鉴于此,本申请提供的一种充电控制装置、方法及电动汽车。本方案中,在充电控制装置接收到任意类型的CP信号后,根据CP信号能生成目标时长的高电平信号,利用目标时长的高电平信号作为唤醒信号来唤醒电池管理***,从而实现单次唤醒功能。并且,无论充电控制装置接收到何种类型的CP信号,最终生成的唤醒信号都是一个固定脉宽及固定电压幅值的信号。利用上述装置,即使在充电过程中停电后再次来电,也无需在电动汽车的充电插口重新插拔充电枪或重启电动汽车/充电桩,充电控制装置只要再次接收到任意CP信号后,即可通过目标时长的高电平信号来唤醒电池管理***,继续进行充电。
下面将结合附图,对本申请实施例进行详细描述。
本申请提供一种充电控制装置200,参阅图2所示,包括:信号处理模块201和唤醒模块202;所述信号处理模块201,用于接收供电设备发送的第一控制引导信号,根据所述第一控制引导信号向唤醒模块202发送目标时长的高电平信号。
所述唤醒模块202,用于在接收到所述高电平信号的时长达到所述目标时长之后,唤醒电池管理***。
其中,本申请实施例中的供电设备,是为电动汽车提供充电功能,将电能从固定设施(如:建筑物、电网)补充给电动汽车的设备,其需要满足充电标准规定的充电模式和连接方式。例如,供电设备可以连接工频电网,可以接收工频电网提供的电能,从而为电动汽车提供稳定的输出电压。在一些示例中,供电设备可以为独立式或组合式的设备。
供电设备通过充电控制装置200成功唤醒电池管理***之后,供电设备可以将交流或直流供电电源调整为校准的电压或电流以输入动力电池,从而为电动汽车的动力电池提供电能。所述动力电池还可以为电动汽车的车载电气设备(如车载音响、车载导航器等)进行供电。进一步的,供电设备通过控制引导信号(CP信号),还可以向电动汽车的充电过程提供如下至少一种的控制引导功能:保护接地导体连续性的持续监测功能、电动汽车与供电设备正确连接的确认功能、供电控制功能、断电控制功能以及最大电流信息显示功能等等。并且,当所述供电设备同时给多辆电动汽车充电时,能确保上述控制引导功能在每个连接的电动汽车上都可以正常实施。
而所述供电设备和所述充电控制装置200可以使用充电电缆进行连接。其中,充电线 缆既可以为所述充电控制装置200的一部分,还可以为所述供电设备的一部分,此外,所述充电线缆还可以为可拆卸的结构,独立于所述充电控制装置200以及所述供电设备之外,本领域技术人员应当知晓,这里不做过多限定。
其中,所述保护接地导体连续性的持续监测功能,用于在电动汽车失去保护接地导体电气连续性的情况下,停止供电。电动汽车与供电设备正确连接的确认功能,用于通过CC信号确定所述充电线缆是否正确的***到所述供电设备以及所述充电控制装置200上。电动汽车供电控制功能,用于通过控制引导信号建立所述供电设备与唤醒电池管理***的联系,在所述电池管理***完成相关充电配置完成之后,所述电池管理***控制车载充电器接收由充电桩提供的电能,从而为动力电池充电。
信号处理模块201用于将所述第一控制引导信号调整为目标时长的高电平信号,上述实施例中所述第一控制引导信号可以为由供电设备发送的CP信号。其中,所述CP信号可以为离散输入信号、PWM信号中的至少一种。在一些示例中,所述CP信号可以包括以下至少一种:
幅值为0~NV的阶跃信号、占空比为D的且幅值为0~NV的PWM信号、占空比为D的且幅值为-N~NV的PWM信号。其中,所述D的取值范围为0%~100%,所述N为正整数,所述供电设备利用CP信号不同的PWM占空比,以及不同的信号幅值来编码,从而向所述电池管理***指示供电设备可用于充电的电流、电压等参数。在一些示例中,国标要求N的取值可以为6V、9V或12V,所述电池管理***可以根据所述CP信号的占空比以及信号幅值获取供电设备提供的用于充电的电流、电压等参数。例如,当占空比D处于10%~85%时,所述供电设备能提供的最大充电电流为I=D*100*0.6;而在占空比D=0%时,表明所述供电设备不可用。
在本申请实施例中,唤醒模块202可以是具备逻辑运算及信号识别功能的逻辑电路。示例性的,唤醒模块202可以是处理器、中央处理单元(central processing unit,CPU)、片上***(system on chip,SoC)、电子控制单元(electronic control unit,ECU)等等,本申请实施例对此不再一一列举。唤醒模块202用于在接收并识别到所述目标时长的高电平信号之后唤醒电池管理***。
需要指出的是,由信号处理模块201向唤醒模块202发送的高电平信号的幅值以及所述目标时长可以由本领域技术人员根据电池管理***内部支持的具体结构进行自由设定,本申请是实施例并不多做限制。例如,在电池管理***的内部存在能够识别1s以上且幅值在12V以上信号的电路结构或模块时,则所述目标时长的高电平信号的幅值则可以设定为12V以上,所述目标时长可以设定为1s以上。
在一种可能的实现方式中,参阅图3所示,所述信号处理模块201中包括:
所述信号生成模块203,用于接收所述第一控制引导信号,根据所述第一控制引导信号生成所述高电平信号,将所述高电平信号分别发送到所述信号控制模块以及所述唤醒模块;
所述信号控制模块204,用于在接收到所述高电平信号的时长达到所述目标时长后,使所述信号生成模块停止向所述唤醒模块发送所述高电平信号。
在一个示例中,所述信号生成模块203可以为用于进行信号整形的电路,用于将所述第一控制引导信号整形成为高电平信号,并将所述高电平信号分别发送到信号控制模块204以及所述唤醒模块。
在一个示例中,所述信号控制模块204为可以进行计时的电路,在接收到所述高电平信号的时长达到目标时长后,使所述信号生成模块203停止向所述唤醒模块发送所述高电平信号,从而使得所述唤醒模块可以接收到目标时长的高电平信号。
进一步的,在一种可能的实现方式中,参阅图4所示,所述信号生成模块203中包括:隔直模块205、钳位模块206以及滤波模块207;所述隔直模块205,用于接收所述第一控制引导信号,去除所述第一控制引导信号中的直流分量,生成第一信号,将所述第一信号发送到钳位模块206;其中,所述第一信号为交流信号;
所述钳位模块206,用于将所述第一信号的波形顶部或底部保持在目标电平,得到第二信号,将所述第二信号发送到滤波模块207;
所述滤波模块207,用于对所述第二信号进行滤波得到所述高电平信号,将所述高电平信号分别发送到信号控制模块204以及所述唤醒模块202。
具体的,所述隔直模块205以及所述钳位模块206用于将所述第一控制引导信号变为单极性信号。其中,所述隔直模块205采用电容隔直原理,去除所述第一控制引导信号中的直流分量;所述钳位模块206用于将所述第一信号转化为单极性信号;所述滤波模块207采用RC滤波原理,将所述第二信号处理为稳定的固定电平信号。
继续参阅图4所示,示例性的,所述隔直模块205具体可以包括:第一电阻R1,所述第一电阻R1的第一端用于输入所述第一控制引导信号,所述第一电阻R1的第二端与第一电容C1的第一端以及第二电容C2的第一端耦合;所述第一电容C1的第二端与所述钳位模块206的输入端耦合,所述第二电容C2的第二端与所述钳位模块206输入端耦合。所述第一控制引导信号在经过第一电阻R1之后,通过第一电容C1和第二电容C2并联组成隔直部分,以滤除直流分量。
所述钳位模块206具体可以包括:第一二极管D1,所述第一二极管D1与所述隔直模块205并联,所述第一二极管D1的负极与所述隔直模块205的输入端耦合,所述第一二极管D1的正极与所述隔直模块205的输出端耦合;第二二极管D2,所述第二二极管D2的负极与所述隔直模块205的输出端耦合,所述第二二极管D2的正极接地;第三二极管D3,所述第三二极管D3的正极与所述隔直模块205的输出端耦合,所述第三二极管D3的负极与所述滤波模块207的输入端耦合。其中,所述第一二极管D1起到泄放作用,用于将所述隔直模块205输入的第一信号调整到预设的幅值水平,第二二极管D2以及第三二极管D3起到钳位作用,用于将所述第一信号的波形的顶部或底部保持在目标电平。
所述滤波电路207可以包括第三电容C3,所述第三电容C3的第一端与所述钳位模块206的输出端耦合,以输入所述第二信号,所述第三电容C3的第一端还与第二电阻R2的第一端耦合,所述第三电容C3的第二端接地;所述第二电阻R2的第一端还与所述信号控制模块204的输入端耦合,所述第二电阻R2的第二端接地。其中,第三电容C3以及第二电阻R2共同构成RC滤波电路,当所述第一控制引导信号为PWM信号时,第三电容C3以及第二电阻R2组成的RC滤波电路可以将PWM信号滤波成稳定的电平进行输出。
在一种可能的实现方式中,参阅图5所示,所述信号控制模块204,包括:电容充电模块208和关断模块209;其中,所述电容充电模块208中包含充电电容,所述关断模块209中包含开关管,所述充电电容的第一端与所述信号生成模块203的输出端以及所述开关管的第一端连接,所述充电电容的第二端接地,所述开关管的第二端连接在所述信号生成模块203与所述唤醒模块202之间,所述开关管的第三端接地。其中,所述电容充电模 块208,用于在接收到所述高电平信号之后,通过所述高电平信号给所述关断模块209中的所述充电电容充电,基于所述高电平信号,所述充电电容充电到目标电压的时长为目标时长;所述关断模块209,用于在所述充电电容的电压达到目标电压时,从而使得所述开关管的第二端与所述开关管的第三端导通,以使所述信号生成模块203停止向所述唤醒模块202发送所述高电平信号。
其中,所述高电平信号在输入所述电容充电模块208的同时还会输入所述唤醒模块202,所述高电平信号可以在瞬间打开开关管从而产生一个高边沿,并对所述充电电容进行充电,在所述充电电容充电时,所述开关管的栅极(第一端)的电压缓慢升高,当栅极的电压大于目标电压时,所述开关管的沟道打开,后级的电平拉低,从而导通所述开关管的第二端与所述开关管的第三端,以使输入到唤醒模块202的高电平接地,从而相当于所述信号生成模块203接地,最终可以产生一个目标时长的高电平信号。
继续参阅图5所示,示例性的,所述信号控制模块204具体可以包括:第三电阻R3,所述第三电阻R3的第一端与所述信号生成模块203的输出端耦合,所述第三电阻R3的第二端与第五电阻R5的第一端耦合;第四电阻R4,所述第四电阻R4的第一端与所述信号生成模块203的输出端耦合,所述第四电阻R4的第二端与第四二极管D4的正极耦合;第五电阻R5,所述第五电阻R5的第一端与第四电容C4的第一端耦合,所述第五电阻R5的第一端与第四电容C4的第一端与第一开关管Q1的第一端连接,所述第一端为栅极,所述第五电阻R5的第二端接地;第四电容C4,所述第四电容C4的第二端接地;第四二极管D4,所述第四二极管的第二端与所述唤醒模块202耦合;第一开关管Q1,所述第一开关管Q1的第二端耦合在所述第四电阻R4的第二端与所述第四二极管D4之间,所述第一开关管Q1的第三端接地,其中,高电平信号会瞬间到达所述唤醒模块202,同时同样经过高电平信号的所述第五电阻R5会给所述第四电容C4充电,在所述第四电容C4到达目标电压后,会导通所述第一开关管Q1的第二端和第三端,从而最终向所述唤醒模块202发送目标时长的高电平信号。
为了实现定时唤醒充电的功能,在一些可能的实施方式中,所述充电控制装置200还包括:时间确定模块,所述时间确定模块用于获取当前时间,在确定所述当前时间在设定时间范围时,控制所述信号处理模块201根据第一控制引导信号向唤醒模块202发送目标时长的高电平信号,其中,所述设定时间范围对应于设定功率费率或设定充电时段中的至少一个。通过时间确定模块来判断当前时间,并在特定的功率费率或特定时段内唤醒所述电池管理***来完成充电,在目前工频电网收费标准中,用电高峰期内电费较高。有鉴于此,所述时间确定模块可以在确定当前时间处于非用电高峰期或功率费率较低时,控制所述信号处理模块201根据第一控制引导信号向唤醒模块202发送目标时长的高电平信号,唤醒所述电池管理***来进行充电,从而降低充电开销。
进一步的,在所述时间确定模块中可以设置时间信息,所述时间信息可以指示进行定时充电的时间段,所述时间信息可以为用户可以根据自身的使用习惯、使用需求、使用场景为充电控制装置200配置时间信息,具体的,该时间信息可以根据以下数据中的至少一种来计算得到充电时间段从而配置时间信息:用电统计数据、行驶路程数据以及收费数据等等。示例性的,在收费数据中包括了在不同时间段内的电量计费标准,例如,在18:00至21:00为用电高峰期,此时段内计费标准为1元/度,在其它时间段的计费标准为0.5元/ 度,所述时间信息可以指示将定时充电的时间段设置在18:00至21:00之外的其他时段。
在一种可能的实现方式中,所述充电控制装置200还包括:操作模块,所述操作模块用于根据用户的操作生成操作指令,其中,该操作指令可以指示时间信息。示例性的,该操作模块可以是触摸屏,用户可以在触摸屏上进行触控操作,从而可以完成设置时间信息。在另一种可能的实现方式中,所述充电控制装置200还包括:通信模块,所述通信模块接收所述时间信息,该时间信息可以是由终端发送的。示例性的,用户可以通过终端设置定时充电的时间段,并向时间确定模块发送时间信息。
此外,随着新能源技术的快速发展,双向充电的技术在新能源领域得到了越来越广泛的应用。尤其是在电动汽车中,双向充电技术的应用能进一步扩大电动汽车的应用场景。支持双向充电功能的电动汽车,不仅可以接收并存储电源设备提供的电能(即充电),还可以向外部设备(其他电动汽车)提供电能(即供电)。而在电动汽车向其他车辆充电时,依据国标要求,同样需要通过控制引导信号确定充电功率及实时监控充电情况。
有鉴于此,在一种可能的实现方式中,参阅图6所示,所述充电控制装置200,还包括:第二控制引导信号生成模块210,用于从所述电池管理***获取第一电平信号,根据所述第一电平信号生成第二控制引导信号,将所述第二控制引导信号发送到受电设备。
其中,所述受电设备可以但不限为电动汽车,同样可以为遵循《电动汽车传导供电***标准》设计的其他用电设备,本领域人员应当知晓,这里不做限定。
通常在电动汽车上没有符合控制引导信号电压标准的稳定电压源,从而无法向所述受电设备发送所述第二控制引导信号。因此可以对所述从电池管理***获取的所述第一电平信号调整,以得到符合控制引导信号电压标准的电平信号,并对符合控制引导信号电压标准的电平信号进行整形处理,最终输出第二控制引导信号,进而通过所述第二控制引导信号实现控制引导功能,所述第二控制引导信号可以为CP信号,所述CP信号同样可以为上述实施例限定的类型,相同的描述不再赘述。示例性的,电动汽车上通常只有5V或者3.3V的稳定电源,需要将5V或者3.3V的稳定电平升高到符合控制引导信号电压标准的12V电平,此外,一般控制引导信号为PWM信号,因此,还需要对12V电平进行整形处理,最终输出符合PWM信号边沿标准的控制引导信号,以减少控制引导信号的压摆时间,从而加快变压反转速率。
在一种可能的实现方式中,参阅图7所示,所述充电控制装置200,还包括:
开关模块211,用于在需要唤醒所述电池管理***时,将所述供电设备与所述信号处理模块201连接;在需要给所述受电设备充电时,将所述受电设备与所述第二控制引导信号生成模块210连接。其中,所述开关模块211可以但不限于继电器开关等,利用所述开关模块211,本申请实施例的充电控制装置200可以实现双向充电技术,不仅可以接收并供电设备提供的电能,在其他时段还可以向受电设备提供电能。
在一种可能的实现方式中,参阅图8所示,所述第二控制引导信号生成模块210,包括:升压模块212,用于从所述电池管理***获取所述第一电平信号,对所述第一电平信号进行升压处理,得到第二电平信号,将所述第二电平信号分别发送到电荷泵模块213以及比较模块214;所述电荷泵模块213,用于根据所述第二电平信号生成第三电平信号,将所述第三电平信号发送到比较模块214,其中,所述第三电平信号的电平与所述第二电 平信号的电平互为相反数;所述比较模块214,用于接收所述第二电平信号以及所述第三电平信号,根据所述第二电平信号以及所述第三电平信号,按目标波形规则生成所述第二控制引导信号,将所述第二控制引导信号发送到所述受电设备。
其中,所述升压模块212可以为升压斩波电路boost来实现将所述第一电平信号升压稳压到所述第二电平信号。在所述第二控制引导信号为PWM信号时,所述电荷泵模块213可以为电压反转器,所述电压反转器实质是直流-直流DC/DC变换器,它将输入的正电平转换成相反的负电平,因此,可以根据所述第二电平信号生成第三电平信号。而所述比较模块214可以包括比较器,通过同时输入的正负电平信号,输出PWM信号,此外,为了使得输出第二控制引导信号的波形的上升沿以及下降达到国标要求,所述比较模块214还可以包括三极管有源放大电路,通过所述三极管有源放大电路来进行有源放大,从而减少压摆时间,加快上升下降翻转速率。
进一步的,在一种可能的实现方式中,所述充电控制装置200,还可以包括:电池电量检测模块,所述电池电量检测模块用于检测当前电池的电量,在所述电池的电量低于预设值时,使所述电池管理***休眠,停止给受电设备充电,在本实施方式中,所述预设值可以为50%。可以理解,以上仅为具体实例。其它应用场景不再一一列举。
参阅图9A所示,本申请示例提供一种充电控制装置200具体结构图,所述充电控制装置200中具体包括如下模块:信号处理模块201、唤醒模块202、第二控制引导信号生成模块210以及开关模块211,所述信号处理模块201中包括信号生成模块203以及信号控制模块204,所述信号生成模块203中包括:隔直模块205、钳位模块206以及滤波模块207,所述信号控制模块204包括电容充电模块208以及关断模块209,所述第二控制引导信号生成模块210包括:升压模块212、电荷泵模块213以及比较模块214。本申请实施例的具体实施方式以及对应的有益效果可以参照上述实施例的描述,此处不再重复赘述。
在所述充电控制装置200接收到任意类型的CP信号后,根据CP信号能生成目标时长的高电平信号,利用目标时长的高电平信号作为唤醒信号来唤醒电池管理***,从而实现单次唤醒功能。并且,无论充电控制装置接收到何种类型的CP信号,最终生成的唤醒信号都是一个固定脉宽及固定电压幅值的信号。例如,参阅图9B所示,在供电设备输出的所述CP信号为0-12V的PWM脉冲时,经过所述充电控制装置200处理后,会向所述电池管理***输出目标时长的12V脉冲信号;参阅图9C所示,在所述CP信号为12-12VPWM的脉冲时,经过所述充电控制装置200处理后,同样会向所述电池管理***输出目标时长的12V脉冲信号。
基于相同的技术构思,本申请实施例还提供一种充电控制方法,应用于充电控制装置200,具体来说,该充电控制装置可以通过软件、或硬件、或软件与硬件相结合的实现方式实现本申请实施例所提供的充电控制方法,本申请实施例对此并不多作限制。
示例性的,本申请实施例所提供的充电控制方法可以由上述任一实施例所提供的充电切换装置200实现,具体不再赘述。示例性的,以图2所示的充电控制装置200为例,本申请实施例所提供的充电控制方法可以如图10所示,主要包括以下步骤:
S1001:充电控制装置200接收第一控制引导信号,充电控制装置200根据所述第一控制引导信号生成目标时长的高电平信号;
S1002:充电控制装置200向电池管理***发送目标时长的所述高电平信号,以使所述电池管理***唤醒。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以接收第一控制引导信号,根据第一控制引导信号生成高电平信号;在接收到高电平信号的时长达到目标时长后,停止发送高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以接收第一控制引导信号,去除第一控制引导信号中的直流分量,以生成第一信号,其中,第一信号为交流信号;将第一信号的波形顶部或底部保持在目标电平,得到第二信号;对第二信号进行滤波得到高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以利用高电平信号给充电电容充电,充电电容充电到目标电压的时长为目标时长;在充电电容的电压达到目标电压时,导通开关管的第二端与开关管的第三端,停止发送高电平信号。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以从电池管理***获取第一电平信号,根据第一电平信号生成第二控制引导信号,将第二控制引导信号发送到受电设备。
在一些可能的实施方式中,本申请实施例所提供的充电控制方法还可以从电池管理***获取第一电平信号,对第一电平信号进行升压处理,得到第二电平信号;根据第二电平信号生成第三电平信号,其中,第三电平信号的电平与第二电平信号的电平互为相反数;接收第二电平信号以及第三电平信号,根据第二电平信号以及第三电平信号,按目标波形规则生成第二控制引导信号,将第二控制引导信号发送到受电设备。
基于相同的技术构思,本申请实施例还提供一种电动汽车,所述电动汽车包括上述实施例限定的充电控制装置。
基于相同的技术构思,本申请实施例还提供一种充电控制***,所述充电控制***包括供电设备、集成在电动汽车中的充电控制装置,所述充电控制装置分别与所述供电设备和所述电动汽车中的电池管理***连接。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种充电控制装置,其特征在于,包括:信号处理模块和唤醒模块;
    所述信号处理模块,用于接收供电设备发送的第一控制引导信号,根据所述第一控制引导信号向所述唤醒模块发送目标时长的高电平信号;
    所述唤醒模块,用于在接收到所述高电平信号的时长达到所述目标时长之后,唤醒电池管理***。
  2. 根据权利要求1所述的装置,其特征在于,所述信号处理模块,包括:信号生成模块和信号控制模块;
    所述信号生成模块,用于接收所述第一控制引导信号,根据所述第一控制引导信号生成所述高电平信号,将所述高电平信号分别发送到所述信号控制模块以及所述唤醒模块;
    所述信号控制模块,用于在接收到所述高电平信号的时长达到所述目标时长后,使所述信号生成模块停止向所述唤醒模块发送所述高电平信号。
  3. 根据权利要求2所述的装置,其特征在于,所述信号生成模块,包括:隔直模块、钳位模块和滤波模块;
    所述隔直模块,用于接收所述第一控制引导信号,去除所述第一控制引导信号中的直流分量,以生成第一信号,将所述第一信号发送到所述钳位模块,其中,所述第一信号为交流信号;
    所述钳位模块,用于将所述第一信号的波形顶部或底部保持在目标电平,得到第二信号,将所述第二信号发送到所述滤波模块;
    所述滤波模块,用于对所述第二信号进行滤波得到所述高电平信号,将所述高电平信号分别发送到所述信号控制模块以及所述唤醒模块。
  4. 根据权利要求2或3所述的装置,其特征在于,所述信号控制模块,包括:电容充电模块和关断模块,其中,所述电容充电模块包括充电电容,所述关断模块包括开关管,所述充电电容的第一端与所述信号生成模块的输出端以及所述开关管的第一端连接,所述充电电容的第二端接地,所述开关管的第二端连接在所述信号生成模块与所述唤醒模块之间,所述开关管的第三端接地;
    所述电容充电模块,用于在接收到所述高电平信号之后,通过所述高电平信号给所述关断模块中的所述充电电容充电,所述充电电容充电到目标电压的时长为所述目标时长;
    所述关断模块,用于在所述充电电容的电压达到所述目标电压时,导通所述开关管的第二端与所述开关管的第三端,以使所述信号生成模块停止向所述唤醒模块发送所述高电平信号。
  5. 根据权利要求4所述的装置,其特征在于,所述开关管为N型金属氧化物半导体NMOS。
  6. 根据权利要求1-5任一所述的装置,其特征在于,所述充电控制装置,还包括:
    第二控制引导信号生成模块,用于从所述电池管理***获取第一电平信号,根据所述第一电平信号生成第二控制引导信号,将所述第二控制引导信号发送到受电设备。
  7. 根据权利要求6所述的装置,其特征在于,所述充电控制装置,还包括:
    开关模块,用于在需要唤醒所述电池管理***时,将所述供电设备与所述信号处理模块连接;在需要给所述受电设备充电时,将所述受电设备与所述第二控制引导信号生成模 块连接。
  8. 根据权利要求6所述的装置,其特征在于,所述第二控制引导信号生成模块,包括:升压模块、电荷泵模块和比较模块;
    所述升压模块,用于从所述电池管理***获取所述第一电平信号,对所述第一电平信号进行升压处理,得到第二电平信号,将所述第二电平信号分别发送到所述电荷泵模块以及所述比较模块;
    所述电荷泵模块,用于根据所述第二电平信号生成第三电平信号,将所述第三电平信号发送到所述比较模块,其中,所述第三电平信号的电平与所述第二电平信号的电平互为相反数;
    所述比较模块,用于接收所述第二电平信号以及所述第三电平信号,根据所述第二电平信号以及所述第三电平信号,按目标波形规则生成所述第二控制引导信号,将所述第二控制引导信号发送到所述受电设备。
  9. 一种充电控制方法,其特征在于,应用于充电控制装置,所述方法包括:
    接收第一控制引导信号,根据所述第一控制引导信号生成目标时长的高电平信号;
    向电池管理***发送目标时长的所述高电平信号,以使所述电池管理***唤醒。
  10. 根据权利要求9所述的方法,其特征在于,所述接收第一控制引导信号,根据所述第一控制引导信号生成目标时长的高电平信号,包括:
    接收所述第一控制引导信号,根据所述第一控制引导信号生成所述高电平信号;
    在接收到所述高电平信号的时长达到所述目标时长后,停止发送所述高电平信号。
  11. 根据权利要求10所述的方法,其特征在于,所述接收所述第一控制引导信号,根据所述第一控制引导信号生成所述高电平信号,包括:
    接收所述第一控制引导信号,去除所述第一控制引导信号中的直流分量,以生成第一信号,其中,所述第一信号为交流信号;
    将所述第一信号的波形顶部或底部保持在目标电平,得到第二信号;
    对所述第二信号进行滤波得到所述高电平信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述在接收到所述高电平信号的时长达到所述目标时长后,使所述信号生成模块停止向所述唤醒模块发送所述高电平信号,包括:
    所述高电平信号给充电电容充电,所述充电电容充电到目标电压的时长为所述目标时长;
    在所述充电电容的电压达到所述目标电压时,导通开关管的第二端与所述开关管的第三端,停止发送所述高电平信号。
  13. 根据权利要求9-12任一所述的方法,其特征在于,所述方法还包括:
    从所述电池管理***获取第一电平信号,根据所述第一电平信号生成第二控制引导信号,将所述第二控制引导信号发送到受电设备。
  14. 根据权利要求13所述的方法,其特征在于,所述从所述电池管理***获取第一电平信号,根据所述第一电平信号生成第二控制引导信号,将所述第二控制引导信号发送到受电设备,包括:
    从所述电池管理***获取所述第一电平信号,对所述第一电平信号进行升压处理,得到第二电平信号;
    根据所述第二电平信号生成第三电平信号,其中,所述第三电平信号的电平与所述第二电平信号的电平互为相反数;
    接收所述第二电平信号以及所述第三电平信号,根据所述第二电平信号以及所述第三电平信号,按目标波形规则生成所述第二控制引导信号,将所述第二控制引导信号发送到所述受电设备。
  15. 一种电动汽车,其特征在于,包括如权利要求1-8任一项所述的充电控制装置。
  16. 一种充电控制***,其特征在于,包括供电设备、电动汽车以及如权利要求1-8任一项所述的充电控制装置,所述充电控制装置分别与所述供电设备和所述电动汽车连接。
PCT/CN2021/083418 2021-03-26 2021-03-26 一种充电控制装置、方法及电动汽车 WO2022198673A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21932292.2A EP4287443A4 (en) 2021-03-26 2021-03-26 CHARGING CONTROL DEVICE AND METHOD AND ELECTRIC VEHICLE
PCT/CN2021/083418 WO2022198673A1 (zh) 2021-03-26 2021-03-26 一种充电控制装置、方法及电动汽车
CN202180001011.XA CN113056387B (zh) 2021-03-26 2021-03-26 一种充电控制装置、方法及电动汽车
US18/237,514 US20230398894A1 (en) 2021-03-26 2023-08-24 Charging control apparatus and method, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083418 WO2022198673A1 (zh) 2021-03-26 2021-03-26 一种充电控制装置、方法及电动汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/237,514 Continuation US20230398894A1 (en) 2021-03-26 2023-08-24 Charging control apparatus and method, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2022198673A1 true WO2022198673A1 (zh) 2022-09-29

Family

ID=76518640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083418 WO2022198673A1 (zh) 2021-03-26 2021-03-26 一种充电控制装置、方法及电动汽车

Country Status (4)

Country Link
US (1) US20230398894A1 (zh)
EP (1) EP4287443A4 (zh)
CN (1) CN113056387B (zh)
WO (1) WO2022198673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109359A1 (zh) * 2022-11-24 2024-05-30 宁德时代新能源科技股份有限公司 Bms休眠唤醒电路、方法、bms和用电设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198673A1 (zh) * 2021-03-26 2022-09-29 华为技术有限公司 一种充电控制装置、方法及电动汽车
CN115065574B (zh) * 2022-05-25 2024-01-23 阿波罗智能技术(北京)有限公司 车辆控制器的唤醒方法、装置、电子设备和自动驾驶车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107567A (zh) * 2011-11-10 2013-05-15 李尔公司 控制导频探测电路
US20150165924A1 (en) * 2013-12-18 2015-06-18 Hyundai Motor Company Charging method of green car
CN106553636A (zh) * 2015-09-29 2017-04-05 福特全球技术公司 用于在非行驶周期期间充电的电动车辆方法和***
CN113056387A (zh) * 2021-03-26 2021-06-29 华为技术有限公司 一种充电控制装置、方法及电动汽车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969547B2 (ja) * 2008-10-14 2012-07-04 トヨタ自動車株式会社 制御装置及び充電制御方法
CN102263500B (zh) * 2010-05-27 2015-07-22 上海华虹宏力半导体制造有限公司 电荷泵电路
US9333864B2 (en) * 2012-05-31 2016-05-10 Lear Corporation Wake-by-control pilot circuit for onboard battery charger
JP6299738B2 (ja) * 2015-12-24 2018-03-28 トヨタ自動車株式会社 非接触送電装置及び電力伝送システム
CN107306043B (zh) * 2016-04-25 2021-02-09 华为技术有限公司 充电唤醒装置及充电唤醒装置的控制方法
DE102017000714A1 (de) * 2017-01-26 2018-07-26 Borgward Trademark Holdings Gmbh Verfahren, Batteriemanagementsystem und Fahrzeug für Auflade-Aufwachmodus
CN107239842A (zh) * 2017-06-07 2017-10-10 李兵 一种充电桩的预约方法
CN109962508B (zh) * 2017-12-22 2023-11-10 蔚来控股有限公司 电动汽车低功耗充电控制方法和装置
CN209634315U (zh) * 2019-03-08 2019-11-15 上海度普新能源科技有限公司 一种充电唤醒电路
CN112242722B (zh) * 2019-07-16 2024-04-12 北京京东尚科信息技术有限公司 充馈电调度方法、装置及存储介质
CN210912030U (zh) * 2019-08-12 2020-07-03 宁德时代新能源科技股份有限公司 唤醒电路与可充电设备
CN110861512A (zh) * 2019-11-27 2020-03-06 上海元城汽车技术有限公司 充电控制装置、充电机和车辆
CN111555377A (zh) * 2020-04-09 2020-08-18 宁波吉利汽车研究开发有限公司 一种电动汽车放电***、放电控制方法及电动汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107567A (zh) * 2011-11-10 2013-05-15 李尔公司 控制导频探测电路
US20150165924A1 (en) * 2013-12-18 2015-06-18 Hyundai Motor Company Charging method of green car
CN106553636A (zh) * 2015-09-29 2017-04-05 福特全球技术公司 用于在非行驶周期期间充电的电动车辆方法和***
CN113056387A (zh) * 2021-03-26 2021-06-29 华为技术有限公司 一种充电控制装置、方法及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4287443A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109359A1 (zh) * 2022-11-24 2024-05-30 宁德时代新能源科技股份有限公司 Bms休眠唤醒电路、方法、bms和用电设备

Also Published As

Publication number Publication date
EP4287443A1 (en) 2023-12-06
CN113056387B (zh) 2022-10-18
US20230398894A1 (en) 2023-12-14
CN113056387A (zh) 2021-06-29
EP4287443A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022198673A1 (zh) 一种充电控制装置、方法及电动汽车
US9333864B2 (en) Wake-by-control pilot circuit for onboard battery charger
CN108288735B (zh) 电动汽车的电源唤醒控制电路
CN102673421B (zh) 一种实现电动车整车控制器休眠和唤醒模式切换的方法及其实现电路
CN105515094A (zh) 一种电池管理***充电唤醒电路
CN203522260U (zh) 电池供电控制电路和双电源供电设备
CN112440775A (zh) 电动汽车的充电唤醒***及方法
CN105048613A (zh) 一种电动车智能充电器
CN113525124B (zh) 一种ac唤醒电路
CN210554268U (zh) 一种车载二合一充电机控制电路
CN205004818U (zh) 一种电动车智能充电器
CN110797946A (zh) 电池包充放电保护***
CN206850457U (zh) 一种应用于电池管理***的充电唤醒电路及***
CN110797945A (zh) 一种用cp唤醒obc的控制电路的充电机
CN207106201U (zh) 一种电动汽车的供电***
CN115402148B (zh) Cp信号处理电路
CN110843531A (zh) 一种控制evcc休眠的装置、方法、***及电动汽车
CN105322625A (zh) 供电电路和电动车
CN113103884B (zh) 一种唤醒信号发生电路以及车辆充电***
CN212210543U (zh) 一种防锁死bms电源***
CN210724292U (zh) 一种具有多模式充电功能的锂电池充电器
CN210430980U (zh) 可充电电池供电装置
CN220022372U (zh) Cp唤醒电路及可充电设备
CN111077980A (zh) 一种应用于笔记本电脑上的自锁电路
CN204046252U (zh) 供电电路和电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021932292

Country of ref document: EP

Effective date: 20230831

NENP Non-entry into the national phase

Ref country code: DE