WO2022196205A1 - 車両制御装置および車両制御方法 - Google Patents

車両制御装置および車両制御方法 Download PDF

Info

Publication number
WO2022196205A1
WO2022196205A1 PCT/JP2022/005609 JP2022005609W WO2022196205A1 WO 2022196205 A1 WO2022196205 A1 WO 2022196205A1 JP 2022005609 W JP2022005609 W JP 2022005609W WO 2022196205 A1 WO2022196205 A1 WO 2022196205A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
condition
sailing
time
control
Prior art date
Application number
PCT/JP2022/005609
Other languages
English (en)
French (fr)
Inventor
有樹 小澤
Original Assignee
株式会社デンソー
株式会社J-QuAD DYNAMICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社J-QuAD DYNAMICS filed Critical 株式会社デンソー
Publication of WO2022196205A1 publication Critical patent/WO2022196205A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes

Definitions

  • It relates to a vehicle control device and a vehicle control method, and particularly to a device and method for performing sailing control.
  • a control called sailing control or coasting control is known.
  • Sailing control is control that interrupts the power transmission path between the engine and the wheels while the vehicle is running.
  • the vehicle runs by inertia by executing the sailing control.
  • the engine brake does not operate, and when the motor is provided as the prime mover, the regenerative brake does not operate.
  • the coasting mode which is sailing control
  • the device described in Patent Document 1 has a rapid deceleration mode and a normal deceleration mode as deceleration modes.
  • the normal deceleration mode is a mode in which only the engine and regenerative generator are operated to decelerate.
  • the rapid deceleration mode is a mode that operates the friction brake.
  • sailing control can be terminated early when the vehicle in front begins to decelerate rapidly, it will be possible to achieve gradual deceleration through engine braking and regenerative braking, which is desirable.
  • the present disclosure has been made based on this situation, and its object is to provide a vehicle control device and a vehicle control method that can terminate sailing control early when a preceding vehicle starts to decelerate rapidly. to do.
  • One disclosure related to a vehicle control device for achieving the above object is a sailing control unit that performs sailing control to cut off a power transmission path between a prime mover mounted on a vehicle and wheels;
  • a vehicle control device comprising a sailing determination unit that determines the start and end of sailing control and outputs the determination result to the sailing control unit, The sailing determination unit determines that the sailing control should be terminated as a termination condition, Established when the relative time determined by the inter-vehicle distance between the vehicle using the vehicle control device and the preceding vehicle and the speed or relative speed of the vehicle is shorter than a preset time threshold. a first condition; and a second condition that is satisfied based on the fact that the relative time change speed exceeds a preset change speed threshold, A vehicle control device that determines to end sailing control when at least one of a first condition and a second condition is satisfied.
  • One disclosure relating to a vehicle control method for achieving the above object is performing sailing control to cut off a power transmission path between a prime mover mounted on a vehicle and wheels; determining the start and end of sailing control;
  • the end condition for judging to end the sailing control is A first condition that the inter-vehicle distance between the vehicle and the preceding vehicle and the relative time determined by the speed or relative speed of the vehicle is shorter than a preset time threshold; and a second condition that is satisfied based on the relative time change speed exceeding a preset change speed threshold,
  • the vehicle control method determines that the sailing control is terminated when at least one of a first condition and a second condition is satisfied.
  • the vehicle control device and the vehicle control method described above can determine that the sailing control should be terminated when the relative time becomes shorter.
  • a second condition is provided as an end condition.
  • FIG. 1 is a configuration diagram of a vehicle provided with a vehicle control device;
  • FIG. 4 is a diagram showing processing executed by a sailing control unit 12 and a sailing determination unit 13;
  • FIG. 1 is a configuration diagram of a vehicle 1 provided with a vehicle control device (hereinafter referred to as control device) 100 of this embodiment.
  • the vehicle 1 includes a controller 10, wheels 2, a transmission 3, an engine 4, a brake device 5, a sensor 6, and the like.
  • the wheels 2 are connected to the transmission 3 via axles 7.
  • the transmission 3 rotates the axle 7 and the wheel 2 connected to the axle 7 by the power generated by the engine 4 which is the prime mover.
  • the transmission 3 and axles 7 form a power transmission path between the engine 4 and the wheels 2 .
  • the transmission 3 has a clutch inside. When the clutch is disengaged, the power transmission path is cut off.
  • the engine 4 generates power to drive the vehicle 1. Power generated by the engine 4 is transmitted to the wheels 2 via the transmission 3 and the axles 7 . The engine 4 produces no power when no fuel is supplied. When the engine 4 does not generate power and the engine 4 and the wheels 2 are connected by the power transmission path, the engine brake is activated.
  • the brake device 5 is a device that reduces the rotation speed of the wheel 2, and is configured with a friction material and a mechanism that operates the friction material.
  • a plurality of sensors 6 are provided on the vehicle 1 .
  • the sensors 6 include a vehicle speed sensor, an inter-vehicle distance sensor for measuring the inter-vehicle distance from the preceding vehicle, an accelerator opening sensor, a brake pedal sensor, and the like.
  • the vehicle speed sensor detects the vehicle speed of the vehicle 1, which is the own vehicle.
  • the inter-vehicle distance sensor can use one or more of radar, lidar, and camera.
  • the preceding vehicle is another vehicle located in front of the vehicle 1 and closest to the vehicle 1 in the same lane as the vehicle 1 .
  • a plurality of inter-vehicle distance sensors may be provided in order to calculate the inter-vehicle distance to the preceding vehicle.
  • the accelerator opening sensor detects the depression amount of an accelerator pedal provided in the vehicle 1 .
  • a brake pedal sensor detects whether the brake pedal is depressed.
  • the control device 10 can be realized by a configuration including at least one processor.
  • the control device 10 can be implemented by a computer including a processor, nonvolatile memory, RAM, I/O, bus lines connecting these components, and the like.
  • a program for operating a general-purpose computer as the control device 10 is stored in the nonvolatile memory.
  • the control device 10 controls the transmission 3 , the engine 4 , and the braking device 5 by the processor executing the program stored in the nonvolatile memory while using the temporary storage function of the RAM.
  • the control device 10 also operates as an ACC control unit 11, a sailing control unit 12, and a sailing judgment unit 13, as shown in FIG. Execution of these operations means execution of the vehicle control method corresponding to the program.
  • the control device 10 may be composed of a plurality of devices such as a device that controls the engine 4, a device that controls the transmission 3, a device that controls the brake device 5, and the like.
  • the ACC control unit 11 executes adaptive cruise control.
  • Adaptive cruise control is control that follows the vehicle in front while maintaining a constant inter-vehicle distance from the vehicle in front.
  • Adaptive cruise control maintains the speed of vehicle 1 at a preset speed when there is no vehicle ahead.
  • the ACC control unit 11 starts and ends adaptive cruise control according to a driver's switch operation.
  • the ACC control unit 11 also temporarily or completely terminates the adaptive cruise control when various termination conditions such as depression of the accelerator pedal or the brake pedal are satisfied.
  • the sailing control unit 12 performs sailing control based on the determination by the sailing determination unit 13.
  • Sailing control is control that blocks the power transmission path between the engine 4 and the wheels 2 .
  • the engine 4 may be in a state where the fuel supply is stopped or in an idling state.
  • the sailing determination unit 13 determines the start and end of sailing control.
  • the sailing determination unit 13 outputs the determination result to the sailing control unit 12 .
  • Sailing control initiation conditions may be one or more independent conditions.
  • Sailing control start conditions can include a condition that the headway time THW becomes shorter than the start time threshold while following the preceding vehicle.
  • the headway time THW is the headway distance/the speed of the vehicle 1 .
  • the headway time THW is an example of relative time.
  • Sailing control can be executed even when the vehicle is not following.
  • An example of a condition for starting sailing control when the vehicle is not following is a condition that the difference between the vehicle speed of the vehicle 1 and the target vehicle speed is equal to or less than a certain value.
  • Sailing control can also be performed during manual sailing.
  • An example of conditions for starting sailing control during manual travel is that the speed of the vehicle 1 is within a preset sailing execution speed range, the accelerator pedal and brake pedal are not operated, and the shift position is the D position. is the condition.
  • the first condition is that the headway time THW is less than or equal to the first time threshold THt1.
  • the first condition is satisfied when the headway time THW is shorter than the first time threshold THt1.
  • the first condition is also satisfied when the headway time THW is equal to the first time threshold THt1.
  • the second condition has two conditions. Let the first condition be the 2-1 condition, and let the second condition be the 2-2 condition. The second condition is met when both the 2-1 condition and the 2-2 condition are met.
  • the second-1 condition is that the magnitude of the time differential value of the time to collision TTC is greater than or equal to the changing speed threshold THa.
  • the time to collision TTC can be calculated from the inter-vehicle distance/relative speed.
  • the time to collision TTC is also an example of the relative time because it is determined by the distance between the vehicles and the relative speed. The relative speed is positive when the speed of the host vehicle is high.
  • Condition 2-1 is also established when the magnitude of the time differential value of the time to collision TTC is equal to the change speed threshold value THa.
  • the 2-2 condition is that the headway time THW is equal to or less than the second time threshold THt2. If the headway time THW is shorter than the second time threshold THt2, the 2-2 condition is met. Condition 2-2 is also satisfied when the headway time THW is equal to the second time threshold THt2.
  • the second time threshold THt2 is greater than the first time threshold THt1.
  • the range of time headway THW in which the first condition is satisfied and the range of time headway THW in which condition 2-2 is satisfied have the relationship shown in FIG.
  • the condition 2-1 in order to satisfy the second condition, the condition 2-1 must also be satisfied, whereas the first condition is only the headway time THW. Therefore, the second condition is meaningful in that the headway time THW is satisfied between the first time threshold THt1 and the second time threshold THt2.
  • the 2-1 condition determines the magnitude of the time differential value of the collision margin time TTC.
  • the time differential value of the time to collision TTC can also be said to be the rate of change of the time to collision TTC or relative acceleration. Since the time to collision TTC is the inter-vehicle distance/relative speed, when the preceding vehicle suddenly decelerates, the time differential value of the time to collision TTC changes greatly.
  • the second condition is a condition for terminating the sailing control when the preceding vehicle suddenly decelerates even if the headway time THW is between the first time threshold THt1 and the second time threshold THt2.
  • the changing speed threshold THa is set to a value that allows it to be determined that the vehicle in front has suddenly decelerated. Also, if the vehicle in front is far away, there is no need to decelerate the vehicle even if the vehicle in front suddenly decelerates.
  • the second time threshold THt2 is set from the viewpoint of whether or not the host vehicle needs to decelerate when the preceding vehicle suddenly decelerates.
  • An example of the second time threshold THt2 is 20 seconds.
  • a first time threshold THt1 shorter than the second time threshold THt2 is, for example, 10 seconds.
  • the third condition is that the accelerator pedal is depressed, the brake pedal is depressed, etc., and one or more conditions are set.
  • the third condition includes the same condition as the adaptive cruise control end condition.
  • the sailing determination unit 13 outputs to the sailing control unit 12 that the conditions for terminating the sailing control are satisfied when any one of the first condition, the second condition, and the third condition is satisfied during the execution of the sailing control. do.
  • FIG. 4 shows a flowchart of the processing executed by the sailing control unit 12 and the sailing determination unit 13.
  • the processing shown in FIG. 4 is periodically executed while the vehicle 1 is running.
  • step (hereinafter, step is omitted) S1 the sailing determination unit 13 acquires a sensor signal for determining the conditions for starting sailing control.
  • the sensor signal acquired in S1 is, for example, a signal detected by an inter-vehicle distance sensor and a signal detected by a vehicle speed sensor.
  • the sailing determination unit 13 determines whether or not the conditions for starting sailing control are satisfied based on the sensor signal acquired in S1. If the determination result of S2 is NO, the process shown in FIG. 4 is terminated. If the determination result of S2 is YES, the process proceeds to S3. In S3, the sailing determination unit 13 outputs to the sailing control unit 12 a signal indicating that the conditions for starting sailing control are met. The sailing control unit 12 starts sailing control when it acquires the signal.
  • the sailing determination unit 13 acquires a sensor signal for determining conditions for ending sailing control.
  • the sensor signal acquired in S4 is, for example, the signal detected by the inter-vehicle distance sensor and the signal detected by the vehicle speed sensor.
  • the sailing determination unit 13 determines whether or not the conditions for terminating the sailing control are satisfied based on the signal acquired in S4.
  • Sailing control termination conditions include a condition regarding the time to collision TTC.
  • a relative velocity is required to calculate the time to collision TTC. The relative speed is calculated from the change in inter-vehicle distance over time. If the judgment result of S5 is NO, the process returns to S4. If the determination result of S5 is YES, the process proceeds to S6.
  • the sailing determination unit 13 outputs to the sailing control unit 12 a signal indicating that the conditions for terminating the sailing control are satisfied.
  • the sailing control unit 12 ends the sailing control when it acquires the signal.
  • the control device 10 of the present embodiment has the first condition as a condition for ending the sailing control, and thus ends the sailing control when the headway time THW becomes short.
  • a second condition is provided as an end condition.
  • the sailing control can be terminated early when the preceding vehicle suddenly decelerates.
  • the second condition includes the 2-2 condition that the headway time THW is equal to or less than the second time threshold THt2. Therefore, it is possible to prevent the vehicle 1 from decelerating by ending the sailing control even when the headway time THW is large and deceleration is unnecessary.
  • the time to collision TTC is used as the relative time to be time-differentiated. Since the denominator of the time to collision TTC is the relative speed, the value reflects the rapid deceleration of the preceding vehicle rather than the headway time THW, the denominator of which is the speed of the host vehicle. Therefore, the sailing control can be terminated more quickly than when the headway time THW is used as the time-differentiated relative time when the preceding vehicle suddenly decelerates.
  • the headway time THW is used as the relative time.
  • the time headway THW is short, if the timing of deceleration control is determined based on the time headway THW, the deceleration control can be started at a deceleration timing close to the deceleration timing when the driver operates the brake by himself/herself. Therefore, the sense of discomfort given to the driver can be reduced.
  • the headway time THW is used in the first condition.
  • the time to collision TTC may be used instead of the headway time THW.
  • the time to headway TTC may be used instead of the headway time THW for condition 2-2.
  • the time to collision TTC is time-differentiated under the 2-1 condition.
  • the headway time THW may be time-differentiated.
  • the case where the headway time THW is equal to the first time threshold THt1 may be excluded. That is, the first condition may be that the headway time THW is smaller than the first time threshold THt1. Also, in the 2-1 condition, the case where the change speed threshold value THa is equal may be excluded. In condition 2-2, the case where headway time THW is equal to second time threshold THt2 may be excluded.
  • the 2-1 condition compares the magnitude of the time differential value of the time to collision TTC, that is, the absolute value, with the changing speed threshold THa.
  • the time differential value of the time to collision TTC may be compared with the changing speed threshold THa.
  • the collision margin time TTC becomes shorter. Therefore, the time differential value of the time to collision TTC when the preceding vehicle decelerates becomes negative.
  • the change speed threshold THa to be compared with the time differential value of the collision time to collision TTC is a negative value, and when the preceding vehicle suddenly decelerates, the time differential value of the collision time to collision TTC changes to be smaller than the change speed threshold THa. exceeds the speed threshold THa.
  • the embodiment has disclosed the vehicle 1 having the engine 4 as the prime mover.
  • the technology disclosed in the embodiments can be applied to a vehicle having a motor as a prime mover, or a vehicle having both an engine and a motor as prime movers.
  • the controller and techniques described in this disclosure may be implemented by a special purpose computer comprising a processor programmed to perform one or more functions embodied by a computer program.
  • the controller and techniques described in this disclosure may be implemented by dedicated hardware logic circuitry.
  • the controller and techniques described in this disclosure may be implemented by one or more dedicated computers configured by a combination of a processor executing a computer program and one or more hardware logic circuits.
  • Hardware logic circuits are, for example, ASICs and FPGAs.
  • the storage medium for storing the computer program is not limited to the ROM, and may be stored in a computer-readable, non-transitional tangible recording medium as instructions executed by the computer.
  • the program may be stored in a flash memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両(1)に搭載されたエンジン(4)と車輪(2)との間の動力伝達経路を遮断するセーリング制御を行うセーリング制御部(12)と、セーリング制御の開始および終了を判断し、判断結果をセーリング制御部に出力するセーリング判断部(13)とを備え、セーリング判断部(13)は、セーリング制御を終了すると判断する終了条件として、自車両と前車との間の車間距離と、自車両の速度または相対速度により定まる相対時間が、事前に設定されている時間閾値(THt1)よりも短い場合に成立する第1条件と、相対時間の変化速度が、事前に設定されている変化速度閾値(THa)を超えていることに基づいて条件成立となる第2条件とを備え、第1条件および第2条件の少なくとも一方が成立した場合、セーリング制御を終了すると判断する。

Description

車両制御装置および車両制御方法 関連出願の相互参照
 この出願は、2021年3月18日に日本に出願された特許出願第2021-44925号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 車両制御装置および車両制御方法に関し、特に、セーリング制御を行う装置および方法に関する。
 セーリング制御あるいはコースティング制御と呼ばれる制御が知られている。セーリング制御は、車両の走行中に、原動機と車輪との間の動力伝達経路を遮断する制御である。セーリング制御が実行されることにより、車両が惰性で走行する。原動機としてエンジンを備える場合には、エンジンブレーキが作動しないことになり、原動機としてモータを備える場合には、回生ブレーキが作動しないことになる。
 特許文献1に記載されている装置では、車間時間が短くなると、減速モードに移るために、セーリング制御である惰行モードを終了する。特許文献1に記載されている装置は、減速モードとして急減速モードと通常減速モードとを備える。通常減速モードは、エンジンと回生発電機のみを作動させて減速するモードである。急減速モードは、摩擦ブレーキを作動させるモードである。車間時間が相対的に長いときは通常減速モードとなる。車間時間が相対的に短いときは急減速モードになる。
特開2018-34597号公報
 特許文献1に記載された装置では、前車が急減速を開始したとしても、車間時間がある閾値よりも小さくなるまでは、セーリング制御が継続されることになる。したがって、減速開始が十分に早いとは言えない。減速開始が遅くなると、摩擦ブレーキを使用して急減速する必要が生じるので、乗り心地が悪化する。さらに、回生ブレーキが使用できる車両であれば、減速開始が遅れると、回生により発電できる電力量が減ることになる。
 前車が急減速を開始したときに、早期にセーリング制御を終了できれば、エンジンブレーキ、回生ブレーキによる緩やかな減速が可能になり、好ましい。
 本開示は、この事情に基づいて成されたものであり、その目的とするところは、前車が急減速を開始したときに、早期にセーリング制御を終了できる車両制御装置および車両制御方法を提供することにある。
 上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は更なる有利な具体例を規定する。請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的態様との対応関係を示すものであって、開示した技術的範囲を限定するものではない。
 上記目的を達成するための車両制御装置に係る1つの開示は、
 車両に搭載された原動機と車輪との間の動力伝達経路を遮断するセーリング制御を行うセーリング制御部と、
 セーリング制御の開始および終了を判断し、判断結果をセーリング制御部に出力するセーリング判断部と、を備えた車両制御装置であって、
 セーリング判断部は、セーリング制御を終了すると判断する終了条件として、
 車両制御装置が用いられる車両である自車両と前車との間の車間距離と、自車両の速度または相対速度により定まる相対時間が、事前に設定されている時間閾値よりも短い場合に成立する第1条件と、
 相対時間の変化速度が、事前に設定されている変化速度閾値を超えていることに基づいて条件成立となる第2条件とを備え、
 第1条件および第2条件の少なくとも一方が成立した場合、セーリング制御を終了すると判断する、車両制御装置である。
 上記目的を達成するための車両制御方法に係る1つの開示は、
 車両に搭載された原動機と車輪との間の動力伝達経路を遮断するセーリング制御を行うことと、
 セーリング制御の開始および終了を判断することとを含み、
 セーリング制御を終了すると判断する終了条件に、
 車両と前車との間の車間距離、および、車両の速度または相対速度により定まる相対時間が、事前に設定されている時間閾値よりも短いという第1条件と、
 相対時間の変化速度が、事前に設定されている変化速度閾値を超えていることに基づいて条件成立となる第2条件とが含まれ、
 第1条件および第2条件の少なくとも一方が成立した場合、セーリング制御を終了すると判断する、車両制御方法である。
 上記車両制御装置および車両制御方法は、セーリング制御を終了すると判断する終了条件として、第1条件を備えることで、相対時間が短くなればセーリング制御を終了すると判断できる。加えて、終了条件として第2条件を備えている。
 前車が急減速した場合、相対時間よりも相対時間の変化速度のほうが、変化が大きい。したがって、第2条件を備えることで、前車が急減速した場合に、早期にセーリング制御を終了できる。
車両制御装置を備えた車両の構成図。 セーリング制御の終了条件を示す図。 第2時間閾値THt2と第1時間閾値THt1の大きさを示す図。 セーリング制御部12とセーリング判断部13が実行する処理を示す図。
 以下、実施形態を図面に基づいて説明する。図1は、本実施形態の車両制御装置(以下、制御装置)100を備えた車両1の構成図である。車両1は、制御装置10の他、車輪2、変速機3、エンジン4、ブレーキ装置5、センサ6などを備えている。
 車輪2は、車軸7を介して変速機3に連結されている。変速機3は、原動機であるエンジン4が発生する動力により、車軸7および車軸7に連結された車輪2を回転させる。変速機3と車軸7は、エンジン4と車輪2との間の動力伝達経路になっている。変速機3は、内部にクラッチを備えている。クラッチが切断されると、動力伝達経路が遮断された状態になる。
 エンジン4は、車両1を駆動させる動力を発生させる。エンジン4が発生した動力は、変速機3及び車軸7を介して車輪2に伝達される。エンジン4は、燃料が供給されないときは動力を発生しない。エンジン4が動力を発生しない状態で、動力伝達経路によりエンジン4と車輪2が連結されていると、エンジンブレーキが作動する。
 ブレーキ装置5は、車輪2の回転速度を低下させる装置であり、摩擦材と、その摩擦材を作動させる機構とを備えた構成である。
 センサ6は、車両1に複数備えられる。センサ6には、車速センサ、前車との車間距離を測定する車間距離センサ、アクセル開度センサ、ブレーキペダルセンサなどが含まれる。車速センサは、自車両である車両1の車速を検出する。車間距離センサは、レーダ、Lidar、カメラのうちの1つ以上を用いることができる。前車は、車両1と同じ車線において、車両1の前方であって車両1に最も近い他車両である。前車との車間距離を算出するために、複数の車間距離センサを備えていてもよい。アクセル開度センサは、車両1に備えられたアクセルペダルの踏み込み量を検出する。ブレーキペダルセンサは、ブレーキペダルが踏み込まれているか否かを検出する。
 制御装置10は、少なくとも1つのプロセッサを備えた構成により実現できる。たとえば、制御装置10は、プロセッサ、不揮発性メモリ、RAM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータにより実現できる。不揮発性メモリには、汎用的なコンピュータを制御装置10として作動させるためのプログラムが格納されている。プロセッサが、RAMの一時記憶機能を利用しつつ、不揮発性メモリに記憶されたプログラムを実行することで、制御装置10は、変速機3、エンジン4、ブレーキ装置5を制御する。
 また、制御装置10は、図1に示すように、ACC制御部11、セーリング制御部12、セーリング判断部13としても作動する。これらの作動が実行されることは、プログラムに対応する車両制御方法が実行されることを意味する。なお、制御装置10は、エンジン4を制御する装置、変速機3を制御する装置、ブレーキ装置5を制御する装置など、複数の装置から構成されていてもよい。
 ACC制御部11は、アダプティブクルーズ制御を実行する。アダプティブクルーズ制御は、前車が存在している場合、前車との車間距離を一定に保ちつつ、前車に追従する制御である。アダプティブクルーズ制御は、前車が存在していない場合には、車両1の速度を、事前に設定された速度に維持する。ACC制御部11は、運転者のスイッチ操作により、アダプティブクルーズ制御を開始および終了する。また、ACC制御部11は、アクセルペダルあるいはブレーキペダルの踏み込みなど、種々の終了条件が成立した場合にも、アダプティブクルーズ制御を一時的に、あるいは、完全に終了する。
 セーリング制御部12は、セーリング判断部13による判断に基づいて、セーリング制御を行う。セーリング制御は、エンジン4と車輪2との間の動力伝達経路を遮断する制御である。セーリング制御において、エンジン4は、燃料供給が停止される状態でもよいし、アイドル運転状態でもよい。
 セーリング判断部13は、セーリング制御の開始および終了を判断する。セーリング判断部13は、その判断の結果をセーリング制御部12に出力する。セーリング制御の開始条件は、1つ以上の互いに独立した条件とすることができる。セーリング制御の開始条件には、前車に追従して走行している時に、車間時間THWが開始時間閾値よりも短くなったという条件を含ませることができる。車間時間THWは、車間距離/車両1の速度である。車間時間THWは相対時間の一例である。
 セーリング制御は、追従走行をしていないときにも実行できる。追従走行をしていないときのセーリング制御の開始条件の一例は、車両1の車速と目標車速との差が一定値以下であるという条件である。セーリング制御は、手動走行のときにも実行できる。手動走行時のセーリング制御の開始条件の一例は、車両1の速度が、事前に設定されたセーリング実行速度範囲にあり、かつ、アクセルペダルおよびブレーキペダルが操作されておらず、シフトポジションがDポジションである、という条件である。
 次に、セーリング制御の終了条件を説明する。本実施形態では、セーリング制御の終了条件として、図2に示す第1条件、第2条件、第3条件を備える。第1条件は、車間時間THWが第1時間閾値THt1以下であるという条件である。車間時間THWが第1時間閾値THt1よりも短い場合、第1条件は成立する。また、車間時間THWが第1時間閾値THt1と等しい場合も第1条件は成立する。
 第2条件は、2つの条件を備える。1つ目の条件を第2-1条件とし、2つ目の条件を第2-2条件とする。第2条件は、第2-1条件と第2-2条件が両方とも成立したときに成立する。第2-1条件は、衝突余裕時間TTCの時間微分値の大きさが、変化速度閾値THa以上であるという条件である。衝突余裕時間TTCは、車間距離/相対速度により算出できる。これら車間距離と相対速度により定まるので、衝突余裕時間TTCも相対時間の一例である。相対速度は、自車両の速度が大きい場合を正とする。衝突余裕時間TTCの時間微分値の大きさが変化速度閾値THaを超えている場合、すなわち、衝突余裕時間TTCの時間微分値の大きさが変化速度閾値THaよりも大きい場合には第2-1条件は成立する。また、衝突余裕時間TTCの時間微分値の大きさが変化速度閾値THaと等しい場合も第2-1条件は成立する。
 第2-2条件は、車間時間THWが第2時間閾値THt2以下であるという条件である。車間時間THWが第2時間閾値THt2よりも短い場合、第2-2条件は成立する。また、車間時間THWが第2時間閾値THt2と等しい場合も第2-2条件は成立する。
 第2時間閾値THt2は第1時間閾値THt1よりも大きい。第1条件が成立する車間時間THWの範囲と、第2-2条件が成立する車間時間THWの範囲は、図3に示す関係になる。ただし、第2条件が成立するには、第2-1条件も成立する必要があるのに対して、第1条件は車間時間THWの条件のみである。したがって、第2条件は、車間時間THWが第1時間閾値THt1から第2時間閾値THt2までの間で成立する点に意味がある条件である。
 第2-1条件は、衝突余裕時間TTCの時間微分値の大きさを判断する。衝突余裕時間TTCの時間微分値は、衝突余裕時間TTCの変化速度、あるいは、相対加速度と言うこともできる。衝突余裕時間TTCは車間距離/相対速度であるから、前車が急減速すると、衝突余裕時間TTCの時間微分値は大きく変化する。第2条件は、車間時間THWが第1時間閾値THt1から第2時間閾値THt2までの間であっても、前車が急減速した場合には、セーリング制御を終了するための条件である。
 変化速度閾値THaは、前車が急減速したことを判断できる値に設定されている。また、前車が遠くに存在していれば、前車が急減速しても自車両が減速する必要がない。第2時間閾値THt2は、前車が急減速したときに、自車両が減速する必要があるかどうかという観点で設定される。第2時間閾値THt2の一例は20秒である。第2時間閾値THt2よりも短い第1時間閾値THt1は、たとえば10秒である。
 第3条件は、アクセルペダルが踏み込まれた、ブレーキペダルが踏み込まれたなどであり、1つ以上の条件が設定される。第3条件は、アダプティブクルーズ制御の終了条件と同一の条件を含んでいる。
 セーリング判断部13は、セーリング制御実行中に、第1条件、第2条件、第3条件のい ずれか1つが成立した場合、セーリング制御の終了条件が成立したことを、セーリング制御部12に出力する。
 図4に、セーリング制御部12およびセーリング判断部13が実行する処理をフローチャートにして示す。図4に示す処理は、車両1が走行している間、周期的に実行する。ステップ(以下、ステップを省略)S1では、セーリング判断部13が、セーリング制御の開始条件を判断するためのセンサ信号を取得する。S1で取得するセンサ信号は、たとえば、車間距離センサが検出した信号、車速センサが検出した信号である。
 S2では、セーリング判断部13が、S1で取得したセンサ信号をもとに、セーリング制御の開始条件が成立したか否かを判断する。S2の判断結果がNOであれば図4に示す処理を終了する。S2の判断結果がYESであればS3に進む。S3では、セーリング判断部13がセーリング制御部12に、セーリング制御の開始条件が成立したこと示す信号を出力する。セーリング制御部12は、その信号を取得した場合に、セーリング制御を開始する。
 S4では、セーリング判断部13が、セーリング制御の終了条件を判断するためのセンサ信号を取得する。S4で取得するセンサ信号は、たとえば、車間距離センサが検出した信号、車速センサが検出した信号である。
 S5では、セーリング判断部13が、S4で取得した信号をもとに、セーリング制御の終了条件が成立したか否かを判断する。セーリング制御の終了条件には、衝突余裕時間TTCに関する条件が含まれる。衝突余裕時間TTCを算出するためには、相対速度が必要になる。相対速度は、車間距離の時間変化から算出する。S5の判断結果がNOであればS4に戻る。S5の判断結果がYESであればS6に進む。
 S6では、セーリング判断部13がセーリング制御部12に、セーリング制御の終了条件が成立したことを示す信号を出力する。セーリング制御部12は、その信号を取得した場合に、セーリング制御を終了する。
 〔実施形態のまとめ〕
 以上、説明した本実施形態の制御装置10は、セーリング制御の終了条件として、第1条件を備えることで、車間時間THWが短くなればセーリング制御を終了する。加えて、終了条件として第2条件を備えている。
 前車が急減速した場合、車間時間THWよりも衝突余裕時間TTCの変化速度のほうが、変化が大きい。したがって、第2条件を備えることで、前車が急減速した場合に、早期にセーリング制御を終了できる。
 第2条件は、車間時間THWが第2時間閾値THt2以下であるという第2-2条件を含んでいる。したがって、車間時間THWが大きく、減速の必要がないときにまで、セーリング制御を終了して車両1を減速させてしまうことを抑制できる。
 本実施形態では、第2条件において、時間微分する相対時間として衝突余裕時間TTCを用いている。衝突余裕時間TTCは分母が相対速度であるので、分母が自車両の速度である車間時間THWよりも前車の急減速が反映された値になる。したがって、時間微分する相対時間を車間時間THWとするよりも迅速に、前車が急減速した場合にセーリング制御を終了できる。
 一方、第1条件では、相対時間として車間時間THWを用いている。車間時間THWが短い場合には、車間時間THWをもとに減速制御のタイミングを決定すると、運転者が自分でブレーキ操作するときの減速タイミングに近い減速タイミングで減速制御を開始できる。したがって、運転者に与える違和感を軽減できる。
 以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。なお、以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
 <変形例1>
 実施形態では、第1条件において車間時間THWを用いていた。しかし、第1条件において、車間時間THWに代えて衝突余裕時間TTCを用いてもよい。また、第2-2条件も、車間時間THWに代えて衝突余裕時間TTCを用いてもよい。
 <変形例2>
 実施形態では、第2-1条件において、衝突余裕時間TTCを時間微分していた。しかし、衝突余裕時間TTCに代えて車間時間THWを時間微分してもよい。
 <変形例3>
 第1条件において、車間時間THWが第1時間閾値THt1と等しい場合を除外してもよい。すなわち、車間時間THWが第1時間閾値THt1よりも小さいことを第1条件としてもよい。また、第2-1条件において、変化速度閾値THaと等しい場合を除外してもよい。第2-2条件において、車間時間THWが第2時間閾値THt2と等しい場合を除外してもよい。
 <変形例4>
 第2-1条件は、衝突余裕時間TTCの時間微分値の大きさ、すなわち、絶対値を、変化速度閾値THaと比較していた。しかし、衝突余裕時間TTCの時間微分値を変化速度閾値THaと比較してもよい。前車が減速すると衝突余裕時間TTCは短くなる。したがって、前車が減速するときの衝突余裕時間TTCの時間微分値は負になる。衝突余裕時間TTCの時間微分値と比較する変化速度閾値THaはマイナスの値であり、前車が急減速すると、衝突余裕時間TTCの時間微分値は、変化速度閾値THaよりも小さくなる側に変化速度閾値THaを超える。
 <変形例5>
 実施形態では原動機としてエンジン4を備えた車両1を開示した。しかし、原動機としてモータを備えた車両、または、原動機としてエンジンおよびモータを備えた車両にも、実施形態で開示下技術は適用できる。
 <変形例6>
 本開示に記載の制御部およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部およびその手法は、専用ハードウエア論理回路により、実現されてもよい。もしくは、本開示に記載の制御部およびその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウエア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。ハードウエア論理回路は、たとえば、ASIC、FPGAである。
 また、コンピュータプログラムを記憶する記憶媒体はROMに限られず、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていればよい。たとえば、フラッシュメモリに上記プログラムが記憶されていてもよい。

Claims (5)

  1.  車両(1)に搭載された原動機(4)と車輪(2)との間の動力伝達経路を遮断するセーリング制御を行うセーリング制御部(12)と、
     前記セーリング制御の開始および終了を判断し、判断結果を前記セーリング制御部に出力するセーリング判断部(13)と、を備えた車両制御装置であって、
     前記セーリング判断部は、前記セーリング制御を終了すると判断する終了条件として、
     前記車両制御装置が用いられる車両である自車両と前車との間の車間距離と、前記自車両の速度または相対速度により定まる相対時間が、事前に設定されている時間閾値(THt1)よりも短い場合に成立する第1条件と、
     前記相対時間の変化速度が、事前に設定されている変化速度閾値(THa)を超えていることに基づいて条件成立となる第2条件とを備え、
     前記第1条件および前記第2条件の少なくとも一方が成立した場合、前記セーリング制御を終了すると判断する、車両制御装置。
  2.  請求項1に記載の車両制御装置であって、
     前記第1条件に含まれている前記時間閾値を第1時間閾値とし、
     前記第2条件は、前記相対時間の変化速度が前記変化速度閾値を超えていることに加えて、前記相対時間が第2時間閾値(THt2)よりも小さい場合に条件成立となり、前記第2時間閾値は前記第1時間閾値よりも大きい、車両制御装置。
  3.  請求項2に記載の車両制御装置であって、
     前記第2条件における前記相対時間の変化速度は、衝突余裕時間の変化速度である、車両制御装置。
  4.  請求項1~3のいずれか1項に記載の車両制御装置であって、
     前記第1条件に含まれている前記相対時間は、前記車間距離を前記自車両の速度で割った車間時間である、車両制御装置。
  5.  車両(1)に搭載された原動機(4)と車輪(2)との間の動力伝達経路を遮断するセーリング制御を行うことと、
     前記セーリング制御の開始および終了を判断することとを含み、
     前記セーリング制御を終了すると判断する終了条件に、
     車両と前車との間の車間距離、および、前記車両の速度または相対速度により定まる相対時間が、事前に設定されている時間閾値(THt1)よりも短いという第1条件と、
     前記相対時間の変化速度が、事前に設定されている変化速度閾値(THa)を超えていることに基づいて条件成立となる第2条件とが含まれ、
     前記第1条件および前記第2条件の少なくとも一方が成立した場合、前記セーリング制御を終了すると判断する、車両制御方法。
PCT/JP2022/005609 2021-03-18 2022-02-14 車両制御装置および車両制御方法 WO2022196205A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021044925A JP7471248B2 (ja) 2021-03-18 2021-03-18 車両制御装置および車両制御方法
JP2021-044925 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196205A1 true WO2022196205A1 (ja) 2022-09-22

Family

ID=83322222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005609 WO2022196205A1 (ja) 2021-03-18 2022-02-14 車両制御装置および車両制御方法

Country Status (2)

Country Link
JP (1) JP7471248B2 (ja)
WO (1) WO2022196205A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016853A (ja) * 2014-07-11 2016-02-01 トヨタ自動車株式会社 運転支援システム及び運転支援方法
JP2016114209A (ja) * 2014-12-17 2016-06-23 株式会社デンソー 車両制御装置および車両制御プログラム
JP2019055622A (ja) * 2017-09-20 2019-04-11 日産自動車株式会社 運転支援表示方法及び運転支援表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792914B2 (ja) 2005-10-20 2011-10-12 日産自動車株式会社 車両用運転操作補助装置
JP7180077B2 (ja) 2018-02-16 2022-11-30 マツダ株式会社 車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016853A (ja) * 2014-07-11 2016-02-01 トヨタ自動車株式会社 運転支援システム及び運転支援方法
JP2016114209A (ja) * 2014-12-17 2016-06-23 株式会社デンソー 車両制御装置および車両制御プログラム
JP2019055622A (ja) * 2017-09-20 2019-04-11 日産自動車株式会社 運転支援表示方法及び運転支援表示装置

Also Published As

Publication number Publication date
JP2022144077A (ja) 2022-10-03
JP7471248B2 (ja) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6670901B2 (ja) 車両の運転補助を行うための方法及び装置
US8452514B2 (en) Device for executing preceding vehicle following driving control
JP3646660B2 (ja) 車両用追従走行制御装置
US8321117B2 (en) Vehicle control system
EP3521594B1 (en) Vehicle control device
US8103424B2 (en) Inter-vehicle distance control apparatus and method for controlling inter-vehicle distance
US8954256B2 (en) Vehicle-use speed control apparatus
JP7103422B2 (ja) 車両制御方法及び車両制御装置
JP6253646B2 (ja) 車両制御装置
JP2022137732A (ja) 車両の走行制御装置
JP4163844B2 (ja) 車両の追突回避装置
JP4734067B2 (ja) 車速制御装置
JP5100362B2 (ja) シフトダウン制御装置
JP3486083B2 (ja) 車間距離制御装置
WO2022196205A1 (ja) 車両制御装置および車両制御方法
JP2008030678A (ja) 車両用走行制御装置
JP2021100362A (ja) 車両用制御装置
JP3375270B2 (ja) 車間距離制御装置
JP3951781B2 (ja) 車両走行制御装置
JP2020128106A (ja) 車両の制動力制御装置
JPWO2019142357A1 (ja) 車両制御方法及び車両制御装置
JP2020192920A (ja) 制動制御装置
JP4583320B2 (ja) 大型車両のクルーズコントロール装置
JP7497679B2 (ja) 車両運転支援装置
JP2014172456A (ja) アイドルストップ車の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770964

Country of ref document: EP

Kind code of ref document: A1