WO2022196182A1 - Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device - Google Patents

Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device Download PDF

Info

Publication number
WO2022196182A1
WO2022196182A1 PCT/JP2022/004741 JP2022004741W WO2022196182A1 WO 2022196182 A1 WO2022196182 A1 WO 2022196182A1 JP 2022004741 W JP2022004741 W JP 2022004741W WO 2022196182 A1 WO2022196182 A1 WO 2022196182A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
film
exposure
support frame
substrate
Prior art date
Application number
PCT/JP2022/004741
Other languages
French (fr)
Japanese (ja)
Inventor
敦 大久保
陽介 小野
比佐子 石川
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2022196182A1 publication Critical patent/WO2022196182A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present disclosure relates to a pellicle, an exposure original plate, an exposure apparatus, a method for manufacturing a pellicle, and a method for manufacturing a semiconductor device.
  • a pattern is formed on one side called a photomask in the technology (photolithography) that forms a pattern by applying a photosensitive substance to the surface of an object such as an electronic component, printed circuit board, or display panel and exposing it in a pattern.
  • a transparent substrate is used.
  • DUV Deep ultraviolet
  • EUV Extreme Ultra Violet
  • the amount of gas released in a vacuum after standing for 10 minutes in an atmosphere of 1 ⁇ 10 ⁇ 3 Pa or less at 23° C. is 1 ⁇ 10 ⁇ 3 Pa ⁇ L/s or less in a water system per pellicle.
  • hydrocarbon-based 1 ⁇ 10 ⁇ 5 Pa ⁇ L/s or less with a measured mass number range of 45 to 100 amu, and hydrocarbon-based 4 ⁇ 10 ⁇ 7 Pa ⁇ L with a measured mass number range of 101 to 200 amu /s or less is disclosed.
  • Patent Document 1 JP-A-2020-091310
  • An object to be solved by an embodiment of the present disclosure is to provide a pellicle including a pellicle film with suppressed sag, an exposure original plate including the pellicle, an exposure apparatus, a method for manufacturing the pellicle, and a method for manufacturing a semiconductor device. is.
  • a pellicle comprising a pellicle membrane containing carbon nanotubes and satisfying the following formula (1), and a support frame supporting the pellicle membrane.
  • E0/D>0.75 (1) E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.
  • An exposure original plate comprising an original plate and the pellicle according to ⁇ 1> or ⁇ 2> attached to the original plate.
  • An exposure apparatus including the exposure master plate according to ⁇ 3>.
  • Step (2) is a step of heating the pellicle film to 600° C. or more and 1500° C.
  • a step of attaching the heated pellicle film to a support frame in a stretched state It is a step including ⁇ 7>
  • ⁇ 8> The method for manufacturing a pellicle according to ⁇ 6> or ⁇ 7>, including the step (2).
  • ⁇ 9> a step of irradiating the original plate with exposure light emitted from a light source, passing through the pellicle film of the exposure original plate according to ⁇ 3>, and reflecting the exposure light from the original plate; and exposing the sensitive substrate in a pattern by irradiating the sensitive substrate with exposure light reflected by the original plate through the pellicle film.
  • a pellicle including a pellicle film with suppressed sag, an exposure original plate including the pellicle, an exposure apparatus, a method for manufacturing the pellicle, and a method for manufacturing a semiconductor device.
  • FIG. 1 A schematic diagram showing a state in which CNT fibers in a pellicle membrane are bent.
  • B is a schematic diagram showing a state in which CNT fibers in a pellicle film are stretched.
  • 4 is a graph showing the relationship between stress (that is, differential pressure) and displacement D;
  • FIG. 4 is a schematic diagram showing a state in which a pellicle film, which is cut out to a size of 1 cm ⁇ 1 cm at the center, is attached to a frame.
  • FIG. 2 is an explanatory diagram for explaining a state before a self-supporting film region of a pellicle film 11 according to the embodiment of the present disclosure is transferred onto a silicon substrate 20;
  • FIG. 1 A schematic diagram showing a state in which CNT fibers in a pellicle membrane are bent.
  • B is a schematic diagram showing a state in which CNT fibers in a pellicle film are stretched.
  • 4 is a graph showing the relationship between stress (that is, differential
  • FIG. 4 is an explanatory diagram for explaining a state after a self-supporting film region of the pellicle film 11 according to the embodiment of the present disclosure has been transferred onto the silicon substrate 20;
  • FIG. 2 is a schematic diagram showing a model of air layer/layer of CNT film/silicon substrate; It is the graph which plotted the relationship between the reflectance and the film thickness when the reflectance and the film thickness were measured at a wavelength of 285 nm.
  • 1 is a schematic cross-sectional view of an EUV exposure apparatus, which is an example of an exposure apparatus of the present disclosure; FIG. It is the schematic which shows the measuring apparatus in a bulge test.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the amount of each component means the total amount of the multiple types of substances unless otherwise specified when there are multiple types of substances corresponding to each component.
  • the term “step” is not only an independent step, but even if it cannot be clearly distinguished from other steps, if the intended purpose of the step is achieved, the term included.
  • a pellicle of the present disclosure includes a pellicle membrane containing carbon nanotubes (also referred to as CNTs in the present disclosure) and satisfying the following formula (1), and a support frame that supports the pellicle membrane.
  • E0/D>0.75 (1) E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.
  • the stress-displacement properties of films containing carbon nanotubes exhibit the characteristic property of initially having a plastically deformed region if no treatment is performed.
  • the CNT film is used without any treatment, even if it initially has a constant tension, the tension may decrease and become loose over time. Therefore, the present inventor thought that by manufacturing a film in which the property of having a plastically deformed region at the initial stage is suppressed, the relaxation can be reduced and the sagging of the pellicle film can be suppressed.
  • FIG. 1(A) is a schematic diagram showing a state in which CNT fibers in a pellicle membrane are bent.
  • FIG. 1B is a schematic diagram showing a state in which CNT fibers in a pellicle membrane are stretched. The present inventors found that immediately after forming a CNT film, the CNT fibers are in a bent state as shown in FIG. It was presumed that the CNT film stretched exponentially and the pellicle film as a whole sagged.
  • the pellicle of the present disclosure includes a pellicle membrane that contains CNTs and satisfies formula (1), and a support frame that supports the pellicle membrane, so that CNT fibers are stretched as shown in FIG. Since the pellicle film can be kept in a flat state, the sagging of the entire pellicle film can be suppressed.
  • the pellicle film in the present disclosure contains carbon nanotubes and satisfies the following formula (1).
  • E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test
  • D represents the displacement at 2 Pa.
  • the pellicle film in the present disclosure can suppress sagging of the pellicle film by including the above configuration.
  • a pellicle film in the present disclosure satisfies the following formula (1).
  • E0/D>0.75 (1) E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.
  • FIG. 2 is a graph showing the relationship between stress (that is, differential pressure) and displacement D. As shown in FIG. In FIG.
  • the vertical axis is displacement (mm) and the horizontal axis is stress [differential pressure] (Pa).
  • the stress-displacement line obtained from the data of the displacement D (unit: mm) and stress (unit: Pa) when pressure is applied from 0 Pa to 2 Pa is the displacement D at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm). indicates that the pellicle film theoretically has almost no elongation before and after applying pressure.
  • the stress-displacement line does not show a linear proportional relationship and draws a curve that swells above the straight line connecting the displacement D at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm) (for example, as in the present disclosure (which can be the stress-displacement line of a pellicle film containing a small amount of CNTs), representing the stretching of the film after applying pressure relative to before applying pressure.
  • the stress-displacement line of a general pellicle film shows a straight line connecting the displacement at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm). often come to show displacement of the lateral region.
  • the displacement energy E0 in the present disclosure is the area of the region surrounded by the vertical axis, a straight line parallel to the horizontal axis and passing through the displacement D at 2 Pa, and the stress-displacement line. Represents the area of the upper region.
  • FIG. 3 is a schematic diagram showing a state in which a pellicle film with a size of 1 cm ⁇ 1 cm is cut from the central portion and attached to a frame.
  • the outermost frame represents the inside of the pellicle support frame.
  • the displacement energy is measured by applying a differential pressure to the pellicle film, the central portion of which is cut to a size of 1 cm ⁇ 1 cm, and is attached to the frame.
  • the displacement D is measured at the point where the displacement is greatest when pressure is applied to the membrane. If it is difficult to find the point of greatest displacement, measure the displacement at the center of the cut membrane.
  • the film displacement D can be measured using a laser displacement meter (device name: LJ-V7200, manufacturer name: KEYENS).
  • the pellicle membrane of the present disclosure has E0>0.75 ⁇ (2Pa ⁇ D) ⁇ 1/2, That is, E0/D>0.75 (1) meet.
  • E0/D>X means that E0 divided by D is greater than X.
  • the pellicle membrane in the present disclosure preferably satisfies E0/D>0.80, more preferably satisfies E0/D>0.85, and E0/D >0.90 is more preferred.
  • the pellicle membrane in the present disclosure may satisfy E0/D ⁇ 1.00, may satisfy E0/D ⁇ 0.99, or may satisfy E0/D ⁇ 0.95.
  • Displacement energy E0 when pressure is applied from 0 Pa to 2 Pa in the bulge test is not limited as long as it satisfies Equation 1, but is, for example, 0.8 ⁇ 10 ⁇ 5 kg ⁇ s ⁇ 2 or more and 4.0 ⁇ 10 ⁇ 3 kg ⁇ s ⁇ 2 , preferably 1.0 ⁇ 10 ⁇ 5 kg ⁇ s ⁇ 2 or more and 1.0 ⁇ 10 ⁇ 3 kg ⁇ s ⁇ 2 , and 8.0 ⁇ 10 ⁇ 4 It is more preferable to be 4.0 ⁇ 10 ⁇ 4 kg ⁇ s ⁇ 2 to 4.0 ⁇ 10 ⁇ 4 kg ⁇ s ⁇ 2 .
  • the displacement D at 2 Pa when pressure is applied from 0 Pa to 2 Pa in the bulge test can be adjusted by the ease of deformation of the pellicle membrane and the tension applied to the pellicle membrane.
  • the displacement D may be 5.0 mm or less, preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, particularly 0.3 mm or less. preferable.
  • the displacement D may be greater than 0 mm, 0.01 mm or more, or 0.1 mm or more.
  • the pellicle film in the present disclosure preferably has a transmittance dispersion 3 ⁇ of 0.70 or less. Since the pellicle film has a transmittance dispersion 3 ⁇ of 0.70 or less, it is possible to suppress variations in transmittance. From the same viewpoint as above, the pellicle film preferably has a transmittance dispersion 3 ⁇ of 0.50 or less, more preferably 0.30 or less. The pellicle film may have a transmittance dispersion 3 ⁇ of greater than 0 or 0.01 or more.
  • Transmittance dispersion 3 ⁇ is measured by the following method. EUV light narrowed down to 1 mm 2 is vertically incident on the sample, and the amount of transmitted light is measured by a light receiving element. Transmittance is determined by comparing the value obtained with no sample. A sample is obtained by spreading a pellicle film on a Si substrate whose center is hollowed out. The self-standing surface is 1 cm 2 (length 1 cm ⁇ width 1 cm), and EUV light narrowed down to 1 mm 2 is applied to a central portion of 25 mm 2 (length 5 mm ⁇ width 5 mm) excluding the edge of the frame.
  • Irradiation points are 5 points each in length and width (25 points in total) obtained by dividing the central portion of 25 mm 2 into a grid pattern in units of 1 mm 2 (1 mm in length ⁇ 1 mm in width).
  • Transmittance dispersion 3 ⁇ is calculated from the standard deviation of transmittance at 25 points in total.
  • a pellicle membrane in the present disclosure is a membrane containing CNTs.
  • the pellicle membrane in the present disclosure exhibits good strength by containing CNTs.
  • the diameter of the CNT tube in the CNT film is preferably 0.8 nm or more and 400 nm or less, more preferably 2 nm or more and 100 nm or less, and further preferably 4 nm or more and 100 nm or less.
  • the tube diameter of the carbon nanotube refers to the diameter of a single fiber when present as a single fiber in the pellicle membrane, and refers to the diameter of a bundle when present as a CNT bundle (that is, a bundle).
  • the CNTs are not particularly limited, and may be single-wall CNTs or multi-wall CNTs.
  • the bundle diameter of the single-walled CNTs is preferably 4 nm to 400 nm, more preferably 4 nm to 40 nm, from the viewpoint of improving light transmittance.
  • the multi-wall CNT single fiber diameter or bundle diameter is preferably 4 nm to 400 nm, more preferably 4 nm to 100 nm. preferable.
  • the CNTs preferably form a non-woven fabric. Since the shape of the CNTs contained in the pellicle membrane of the present disclosure is usually fibrous, the pellicle membrane of the present disclosure as a whole can form a non-woven fabric shape. Since the CNTs contained in the pellicle membrane form a non-woven fabric, the pellicle membrane can be ensured with air permeability. For example, when performing exposure using EUV light with an exposure apparatus having a pellicle, it is required to irradiate the pellicle with EUV light under vacuum or reduced pressure conditions. In the pellicle membrane of the present disclosure, the CNTs form a nonwoven fabric shape, so that air permeability can be secured by the nonwoven fabric shape, and a vacuum or reduced pressure environment can be easily created.
  • the pellicle film of the present disclosure may further include an antioxidant layer on at least one side. Since the pellicle film further includes an antioxidant layer, it is possible to suppress oxidation of the pellicle film during light irradiation or storage of the pellicle.
  • the type of the anti-oxidation layer is not particularly limited as long as it is a layer made of a material that is stable against light (preferably EUV light).
  • a material that is stable against light preferably EUV light.
  • SiON, Y 2 O 3 , YN, Mo, Ru, Rb, Sr, Y, Zr, Nb or a layer made of Rh, or the like.
  • the thickness of the antioxidant layer is preferably about 1 nm to 10 nm, more preferably about 2 nm to 5 nm.
  • the ratio of the thickness of the antioxidant layer to the thickness of the pellicle film is preferably in the range of 0.03 to 1.0. If it is the said numerical range, it can suppress that light is absorbed by an antioxidant layer, and can suppress the fall of the transmittance
  • the thickness of the anti-oxidation layer is preferably an optimum thickness within the range of suppressing a decrease in light transmittance due to absorption and a decrease in light transmittance due to reflection and having anti-oxidation performance.
  • the thickness uniformity and surface roughness of the antioxidant layer are not particularly limited.
  • the anti-oxidation layer may be either a continuous layer or a sea-island layer as long as there is no problem due to non-uniform thickness, non-uniform transmittance due to surface roughness, or light scattering. Also, the thickness may be non-uniform and the surface may be rough.
  • the average refractive index of the pellicle film including the pellicle film and the antioxidant layer is preferably in the range of 1.9 to 5.0.
  • the refractive index can be measured by a technique such as spectroscopic ellipsometry.
  • the average density of the pellicle film including the pellicle film and the antioxidant layer is preferably in the range of 1.5 g/cm 3 to 5.0 g/cm 3 . Density can be measured by techniques such as X-ray reflectometry.
  • the thickness of the pellicle film (the total thickness when it consists of two or more layers) can be, for example, 2 nm or more and 200 nm or less, or can be 4 nm or more and 200 nm or less.
  • the thickness of the pellicle film (the total thickness when it consists of two or more layers) is preferably 4 nm or more, more preferably 6 nm or more, and 8 nm or more. It is more preferably 10 nm or more, particularly preferably 10 nm or more, and even more preferably 50 nm or more.
  • the thickness of the pellicle film (the total thickness if it consists of two or more layers) is preferably 100 nm or less, more preferably 80 nm or less, and 60 nm or less. More preferably, it is particularly preferably 40 nm or less. From these points of view, the thickness of the pellicle film (the total thickness when it consists of two or more layers) is preferably 2 nm or more and 100 nm or less, preferably 4 nm or more and 100 nm or less, and 6 nm or more and 100 nm or less. is preferably 8 nm or more and 80 nm or less, more preferably 10 nm or more and 60 nm or less, and particularly preferably 10 nm or more and 40 nm or less.
  • FIG. 4A is an explanatory diagram for explaining a state before the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure is transferred onto the silicon substrate 120.
  • FIG. 4B is an explanatory diagram for explaining a state after the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure has been transferred onto the silicon substrate 120.
  • FIG. 4A is an explanatory diagram for explaining a state before the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure is transferred onto the silicon substrate 120.
  • FIG. 4B is an explanatory diagram for explaining a state after the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure has been transferred onto the silicon substrate 120.
  • the thickness of the pellicle film is measured by transferring only a portion 1110 of the pellicle film 111 corresponding to the self-supporting film region (hereinafter also referred to as “self-supporting film portion 1110”) to the silicon substrate 120 and measuring the thickness of the self-supporting film using a film thickness measuring device. It is obtained by measuring the thickness of a specific portion of the film portion 1110 .
  • a solvent is dropped onto a silicon substrate 120 to form a solvent layer 121 on the silicon substrate 120, as shown in FIG. 4A.
  • the pellicle is placed on the silicon substrate 120 with the pellicle film 111 of the pellicle facing the silicon substrate 120 .
  • a solvent layer 121 is interposed between the silicon substrate 120 and the pellicle film 111 .
  • the silicon substrate 120 may be larger than the size of the self-supporting film region of the pellicle film 111, and it is preferable to use a silicon wafer with a size of 4 inches or more. Water, an organic solvent, etc. are mentioned as a solvent.
  • the pellicle film 111 is closely attached to the silicon substrate 120 without gaps. Then, when the silicon substrate 120 is fixed and the pellicle support frame 112 is lifted, the self-supporting film region separates from the pellicle film 111 and remains on the silicon substrate 120, as shown in FIG. 4B. In other words, the self-supporting film portion 1110 is transferred to the silicon substrate 120 .
  • the contour of the self-supporting film portion 1110 follows the contour of the opening H112 of the support frame 112 . A portion of the pellicle film 111 corresponding to the region to be supported remains attached to the support frame 112 .
  • ⁇ measurement ⁇ First, nine arbitrary measurement positions are selected on the pellicle film. For each measurement position, a reflectance spectrum is acquired in a wavelength range of 200 nm to 600 nm with a wavelength interval of 1 nm to 2 nm. However, the reflectance measurement conditions are as follows. ⁇ Condition> Measuring point diameter: 20 ⁇ m Measurement wavelength: wavelength 200 nm to 600 nm (wavelength interval: 1.3 to 1.5 nm) Number of measurement points: 121 points Distance between center points of adjacent measurement points: 40 ⁇ m
  • the thickness at each measurement position is calculated by analyzing the reflectance spectrum in the range of 225 to 500 nm by the method of least squares.
  • the thickness of the pellicle film is the average value of the thicknesses at each measurement position.
  • FIG. 5 is a schematic diagram showing a model of air layer/layer of CNT film/silicon substrate.
  • the reflectance Rs is represented by the following formula (a) using the amplitude reflectance rs .
  • r01 represents the amplitude reflectance from the interface between the air layer and the CNT film layer
  • r12 represents the amplitude reflectance from the interface between the CNT film layer and the silicon substrate layer
  • i represents an imaginary unit.
  • is the phase difference that occurs when light of wavelength ⁇ makes one round trip in the film, and is expressed by the following formula (c).
  • d represents the thickness
  • represents the angle of incidence
  • i represents an imaginary unit.
  • the thickness is obtained by calculating the thickness d with respect to the reflectance Rs in the wavelength range of 225 to 500 nm by the method of least squares using the relational expressions of the above formulas (a) to (c).
  • FIG. 6 is a graph plotting the relationship between reflectance and thickness when the reflectance and thickness at a wavelength of 285 nm are measured by the above-described method for a sample in which a non-uniform CNT film is transferred onto a silicon substrate. be. As shown in FIG. 6, the difference in thickness can be obtained with high accuracy from the reflectance value by the above-described method.
  • a pellicle of the present disclosure includes a support frame that supports a pellicle membrane.
  • the support frame is for supporting the pellicle membrane.
  • the support frame may have a region surrounded by the pellicle and the original, and a vent hole for maintaining a constant air pressure in the EUV exposure apparatus.
  • the pellicle membrane of the present disclosure is in the form of a non-woven fabric and has air permeability, so it is possible to create a vacuum environment and a reduced pressure environment.
  • a pellicle membrane made of carbon nanotubes is given as an example of a pellicle membrane having a non-woven fabric shape and air permeability. Since exposure to EUV light is performed in a vacuum environment (reduced pressure environment), the pellicle film may expand, contract or break due to the pressure difference during decompression and pressure recovery.
  • a filter is preferably provided in the ventilation hole so that foreign matter does not enter the area surrounded by the pellicle and the master.
  • filters include ULPA (Ultra Low Penetration Air) filters and metal meshes.
  • the support frame 14 may be colored within a range that does not interfere with exposure so as to facilitate inspection.
  • the material, shape, etc. of the support frame are not particularly limited as long as the frame can support the pellicle membrane of the present disclosure.
  • the material of the support frame may include aluminum, titanium, stainless steel, ceramic materials (eg, silicon, glass, etc.), carbon, resin such as polyethylene, and the like.
  • the support frame preferably contains aluminum, titanium, stainless steel, silicon, glass, or carbon as a material from the viewpoint of suppressing the amount of outgassing without having a large water content. It is more preferable to contain silicon or carbon.
  • the support frame may include a first support frame that supports the pellicle membrane and a second support frame that is connected to the first support frame.
  • the first support frame and the second support frame may be adhered via an adhesive layer.
  • a pellicle comprising a support frame having a configuration for connecting a second support frame to a first support frame is provided by a person who manufactures the first support frame that supports the pellicle membrane and a person who manufactures the first support frame. A plurality of persons who connect the second support frame to the second support frame may cooperate in manufacturing.
  • the pellicle of the present disclosure also includes a configuration including a pellicle membrane and a first support frame in a stage prior to being connected to the second support frame.
  • the support frame is preferably treated to make the surface hydrophobic, and it is also preferable to coat the surface with a material that does not contain much water (for example, inorganic material, ceramic material, etc.).
  • the procedure and method for fixing the pellicle membrane to the support frame are not particularly limited.
  • the pellicle membrane may be in direct contact with the support frame, or the support frame and the pellicle membrane may be fixed via an adhesive layer.
  • the pellicle film being in contact with the support frame means that the pellicle film is attached without an adhesive layer interposed therebetween.
  • the pellicle membrane and/or the support frame are provided with a different layer, such as a coating layer, using some material to bond the pellicle membrane to the support frame.
  • an etched substrate may be used as part of the support frame.
  • a pellicle film may be laminated on a substrate that can be removed by a specific treatment method, such as a metal, silicon substrate, glass, resin, or salt, and then, on the surface of the substrate opposite to the surface on which the pellicle film is placed, A mask may be applied according to the size of the frame and etched or dissolved leaving the mask shape. As a result, a pellicle using part of the substrate as a support frame can be obtained.
  • a specific treatment method such as a metal, silicon substrate, glass, resin, or salt
  • the trimming method for matching the substrate shape with the frame shape is not particularly limited.
  • a method of mechanically dividing the wafer or a method of laser trimming can be used.
  • a pellicle of the present disclosure may include an adhesive layer containing an adhesive.
  • aspects of the adhesive layer include the following (a) to (c).
  • (c) Adhesive layer for bonding the pellicle membrane and the support frame also referred to as a membrane adhesive layer.
  • the pellicle of the present disclosure may not include a membrane adhesive layer).
  • the adhesive contained in the adhesive layer is not particularly limited.
  • adhesives include acrylic resin adhesives, epoxy resin adhesives, polyimide resin adhesives, silicone resin adhesives, inorganic adhesives, double-sided adhesive tapes, polyolefin adhesives, and hydrogenated styrene adhesives. be done.
  • the adhesive is selected from the group consisting of silicone resin adhesives, acrylic resin adhesives, hydrogenated styrene adhesives, and epoxy resin adhesives, from the viewpoint of ease of application processing and ease of curing processing. At least one is preferably selected.
  • an adhesive is a concept that includes not only adhesives but also adhesives.
  • the thickness of the adhesive layer may be 1 ⁇ m or more and 1 mm or less, preferably 5 ⁇ m to 500 ⁇ m, more preferably 10 to 300 ⁇ m, particularly It is preferably 10-250.
  • the pellicle membrane forming the pellicle may include an antioxidant layer on both sides of the membrane.
  • the antioxidant layer By including the antioxidant layer in the pellicle film, oxidation of the pellicle film can be suppressed during EUV light irradiation or pellicle storage.
  • the pellicle film may include an antioxidant layer only on one side of the pellicle film.
  • the pellicle of the present disclosure is used not only as a protective member for suppressing foreign matter from adhering to the original in the EUV exposure apparatus, but also as a protective member for protecting the original during storage and transportation of the original. good too.
  • the pellicle is attached to the master plate (exposure master plate), it can be stored as it is after being removed from the EUV exposure apparatus.
  • Methods for mounting the pellicle on the master plate include a method of pasting with an adhesive, an electrostatic adsorption method, a method of mechanically fixing the pellicle, and the like.
  • the pellicle of the present disclosure is suitably used for exposure using exposure light with a short wavelength (eg, EUV light, light with a shorter wavelength than EUV light, etc.).
  • a short wavelength eg, EUV light, light with a shorter wavelength than EUV light, etc.
  • EUV light e.g., EUV light, light with a shorter wavelength than EUV light, etc.
  • EUV light e.g., EUV light, light with a shorter wavelength than EUV light, etc.
  • EUV (Extreme Ultra Violet) light refers to light with a wavelength of 1 nm or more and 30 nm or less.
  • the wavelength of EUV light is preferably 5 nm or more and 13.5 nm or less.
  • EUV light and light with a shorter wavelength than EUV light may be collectively referred to as "EUV light, etc.”.
  • a method for manufacturing a pellicle of the present disclosure is a method of manufacturing a pellicle of the present disclosure, comprising a step of preparing a pellicle film containing carbon nanotubes, and at least one of the following steps (1) and (2). ,including.
  • Step (1) is a step of applying a pressure of 2 Pa or more and 20 Pa or less to the film surface of the pellicle film; affixing the pellicle membrane with pressure applied to the pellicle membrane to the support frame.
  • Step (2) is a step of heating the pellicle film to 600° C. or more and 1500° C. or less; a step of attaching the heated pellicle membrane to a support frame in a stretched state; It is a step including
  • the method for manufacturing the pellicle of the present disclosure may include step (1), may include step (2), or may include both steps (1) and (2).
  • a method for manufacturing a pellicle of the present disclosure including step (1) includes Embodiment A below.
  • a method for manufacturing a pellicle of the present disclosure including step (2) includes Embodiment B below.
  • the method for manufacturing a pellicle according to Embodiment A is a method for manufacturing a pellicle according to the present disclosure, comprising a step of preparing a pellicle film containing carbon nanotubes (also referred to as a preparation step), and It includes the following steps of applying pressure (also referred to as a pressurizing step) and a step of attaching the pellicle membrane to a support frame while the pressure is applied to the pellicle film (also referred to as an attaching step).
  • the pellicle of the present disclosure described above can be manufactured by attaching the pellicle membrane prepared in the preparation step to the support frame in the pressing step and the attaching step.
  • the preparation step is a step of preparing a pellicle film containing CNTs.
  • CNT may be prepared by obtaining a commercially available product, or may be prepared by manufacturing.
  • the CNT those formed on a substrate for chemical vapor deposition by a CVD (Chemical Vapor Deposition) method in which a metal catalyst is present in the reaction system and an oxidizing agent is added to the reaction atmosphere are used.
  • CVD method for example, a plasma CVD method is used, but a low-pressure CVD method or a thermal CVD method may also be used.
  • water vapor is used as the oxidizing agent.
  • the concentration of water vapor may be 10 ppm or more and 10000 ppm or less, and water vapor may be added in a temperature environment of 600° C. or more and 1000° C. or less.
  • CNTs may be synthesized by arranging or patterning a metal catalyst on a substrate for chemical vapor deposition.
  • the obtained CNTs may be single-layered or multi-layered, and may be CNTs erected in a direction perpendicular to the surface of the substrate for chemical vapor deposition.
  • it can be manufactured with reference to, for example, International Publication No. 2006/011655.
  • Commercially available products of such CNTs include, for example, CNTs produced by the super-growth method sold by Zeon Corporation.
  • CNTs which may be CNT bulk structures
  • e-DIPS method direct injection pyrolytic synthesis method
  • DIPS method Direct injection pyrolysis synthesis method
  • the e-DIPS method which is an improvement of the DIPS method, focuses on the particle formation process in which the ferrocene used in the catalyst has different particle sizes on the upstream and downstream sides in the reactor, and uses only an organic solvent as a carbon source.
  • it is relatively easy to decompose in the carrier gas. That is, it is a method in which the growth point of single-walled CNTs is controlled by mixing a second carbon source that tends to be a carbon source.
  • a second carbon source that tends to be a carbon source.
  • a method of forming a sheet of carbon nanotubes into a film to manufacture the pellicle film for example, a method of forming a sheet of carbon nanotubes into a film to manufacture the pellicle film can be mentioned.
  • the method of forming a sheet of CNTs is not particularly limited, but for example, a method of forming a sheet of CNTs on a substrate may be used. A specific description will be given below.
  • CNTs (or CNT bulk structures) obtained by the CVD method, e-DIPS method, etc. can be used in a state of being dispersed in a solvent.
  • a CNT film is formed on the substrate by applying a liquid (dispersion) in which CNTs (or CNT bulk structures) are dispersed on the substrate and removing the solvent by evaporation.
  • a film in which the CNTs are substantially parallel to the surface of the substrate 110 is obtained by removing the solvent used in the dispersion.
  • the coating method is not particularly limited, and for example, spin coating, dip coating, bar coating, spray coating, electrospray coating, etc. may be used.
  • the metal catalyst used for CNT formation may cause a decrease in EUV transmittance, but when the CNTs are peeled off from the chemical vapor deposition substrate, there is almost no metal catalyst in the CNTs, so there is no effect. do not have.
  • An inorganic material may be used as the substrate.
  • silicon (Si) may be used for the substrate.
  • the substrate is not limited to silicon (Si), and may be a semiconductor material such as germanium (Ge), silicon germanium (SiGe), silicon carbide (SiC), gallium arsenide (GaAs), or a quartz glass substrate (silicon oxide). (SiO 2 )), glass substrates such as soda glass substrates, borosilicate glass substrates, sapphire substrates, silicon nitride (SiN), aluminum nitride (AlN) substrates, zirconia (ZrO 2 ) substrates, aluminum oxide (Al 2 O 3 ) etc.
  • the substrate preferably contains at least one of silicon, sapphire, and silicon carbide, which have a coefficient of linear thermal expansion close to that of the pellicle film.
  • silicon (Si) may be any of single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon, but single crystal silicon is highly versatile and inexpensive from the viewpoint of etching efficiency. It is preferable from the point of view.
  • the shape of the substrate may be circular or rectangular.
  • the thickness of the substrate is not particularly limited, but is preferably 100 ⁇ m or more and 1000 ⁇ m or less, preferably 200 ⁇ m or more and 1000 ⁇ m or less from the viewpoint of handling.
  • the method for manufacturing a pellicle according to Embodiment A includes a step of applying a pressure of 2 Pa or more and 20 Pa or less to the surface of the pellicle membrane (also referred to as a pressurization step).
  • the pellicle manufacturing method of Embodiment A includes a pressurizing step, so that the CNT fibers in the pellicle membrane can be stretched from a bent state.
  • the pellicle membrane can be prevented from sagging by performing the later-described attaching step while the CNT fibers are kept stretched.
  • the pressure applied to the membrane surface of the pellicle membrane is 2 Pa or more, the CNT fibers in the pellicle membrane can be stretched more satisfactorily.
  • the pressure applied to the surface of the pellicle membrane is preferably 3 Pa or more.
  • the pressure applied to the surface of the pellicle membrane is 20 Pa or less, damage to the pellicle membrane can be prevented.
  • the pressure applied to the surface of the pellicle membrane is preferably 15 Pa or less, more preferably 10 Pa or less, and even more preferably 7 Pa or less.
  • a differential pressure applying device is applied to the rectangular frame to which the pellicle membrane is attached.
  • the method of manufacturing a pellicle according to Embodiment A includes a step of attaching the pellicle membrane to a support frame while the pressure is applied to the pellicle membrane (also referred to as an attaching step).
  • the attaching step is a step of connecting the pellicle film to the support frame so as to cover the opening of the support frame having the opening.
  • the attaching step after the pellicle film and the substrate are separated, the separated pellicle film may be connected to a support frame (that is, a pellicle frame).
  • the method for separating the pellicle film and the substrate is not particularly limited, but the following manufacturing examples are given.
  • a self-supporting film can be obtained by laminating a sacrificial layer on a substrate, forming a pellicle film thereon, and removing the sacrificial layer later.
  • the sacrificial layer can be metals, oxides, resins, salts, etc. that can be removed by a particular treatment method.
  • the sacrificial layer can be a metal such as aluminum that dissolves in acidic solutions.
  • a metal layer is laminated on the surface of a glass substrate or a silicon substrate by vapor deposition or sputtering, and a pellicle film is further laminated on the metal layer, and then immersed in a solution such as an acid solution that can dissolve the metal layer. By doing so, the film can be separated from the substrate.
  • the natural oxide film or silicon oxide layer on the silicon substrate is coated with a pellicle film and then immersed in an aqueous hydrofluoric acid solution for natural oxidation. It is also possible to remove the membrane or silicon oxide layer and peel the pellicle membrane from the substrate.
  • the sacrificial layer laminated on the substrate may be a water-soluble material such as a partially saponified polyvinyl alcohol resin or a salt such as sodium chloride. After laminating the pellicle film over the sacrificial layer, the film can be peeled off from the substrate by immersing the laminate in water.
  • the most suitable method should be selected depending on the process resistance of the pellicle film, film strength, removal rate of the sacrificial layer, thickness uniformity of the sacrificial layer, and surface roughness. Any suitable technique can be chosen.
  • the material of the substrate is metal, oxide film, resin, salt, or the like, which can be removed by a specific processing method, by etching or dissolving the substrate after laminating a pellicle film on the substrate, membranes can be obtained.
  • the copper foil substrate is etched by immersing it in a cupric chloride etchant to remove the substrate and obtain a film. can be done.
  • the substrate is a glass substrate
  • the substrate after laminating a pellicle film on the glass substrate, the substrate can be removed by etching the glass substrate using hydrofluoric acid to obtain the film.
  • the silicon substrate is etched by wet etching or dry etching to remove the silicon substrate, whereby the film can be obtained.
  • Wet etching can use an etchant such as KOH, TMAH, or hydrazine. Dry etching is performed using fluorine-based (SF 6 , CF 4 , NF 3 , PF 5 , BF 3 , CHF 3 , XeF 2 , F 2 +NO), chlorine-based (Cl 2 , SiCl 4 ), bromine-based (IBr), and the like.
  • An etching gas can be used. Since the wet etching rate varies depending on the temperature, it is preferable to lower the liquid temperature and lower the etching rate in order to etch without damaging the thin film containing CNTs on the silicon substrate.
  • a layer such as an etching stop layer may be provided in advance on the surface of the silicon substrate.
  • the etching stop layer include layers made of SiO 2 and SiN.
  • the etching stop layer is preferably composed of a film in which tensile stress is generated. Residual stress acting parallel to the surface of the substrate and thin film includes tensile stress and compressive stress. When a force that tries to expand the thin film acts inside the thin film, it becomes a tensile stress. These stresses are mainly generated during the thin film formation process. One factor that causes residual stress is the difference in coefficient of thermal expansion between the substrate and the thin film.
  • both the substrate and the thin film shrink, but the rate differs depending on the coefficient of thermal expansion. It is preferable because the film in which tensile stress is generated exerts tension on the pellicle film provided on the film, and a wrinkle-free film can be obtained. Since the layer made of SiN generates tensile stress, the pellicle film obtained by dry etching the silicon substrate can be a wrinkle-free film. By removing the etching stop layer after the dry etching of the silicon substrate is completed, the desired self-supporting film can be obtained.
  • the substrate is made of a salt such as sodium chloride
  • the substrate is immersed in water to etch and remove the substrate, thereby obtaining a film.
  • the plastic substrate can be dissolved by immersing the plastic substrate in a soluble solvent to obtain a film.
  • a surface treatment method using a silane coupling agent there is a surface treatment method using a silane coupling agent.
  • Other methods include cleaning the substrate surface with water, an organic solvent, a piranha solution, sulfuric acid, UV ozone treatment, and the like.
  • a mixed solution of hydrogen peroxide and ammonium hydroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, and the like, which are used in the RCA cleaning method can be used.
  • the deposition of the sacrificial layer and the surface treatment on the substrate may be performed by combining methods of etching or dissolving the substrate. It is preferable that the material used for the formation of the sacrificial layer or the surface treatment does not easily remain on the surface or inside of the pellicle membrane, and if the material remains, it can be easily removed. For example, etching with gas, vaporization with heat, cleaning with a solvent, decomposition removal with light, etc. may be performed, and removal may be performed by combining them.
  • the adhesive layer forming step is a step of forming an adhesive layer by applying an adhesive to the surface of the support frame at the opening on the side opposite to the side to which the pellicle film is connected.
  • the original plate such as the photomask and the support frame can be adhered via the adhesive layer.
  • a separator may be arranged so as to contact the surface of the formed adhesive layer opposite to the support frame.
  • a method for manufacturing a pellicle according to Embodiment B is a method for manufacturing a pellicle according to the present disclosure, comprising: a step of preparing a pellicle film containing the carbon nanotubes (also referred to as a preparation step); The following steps include a heating step (also referred to as a heating step) and a step of attaching the pellicle membrane in a stretched state to a support frame (also referred to as an attaching step).
  • the pellicle of the present disclosure described above can be manufactured by attaching the pellicle membrane prepared in the preparation step to the support frame in the heating step and the attaching step.
  • the sticking step in Embodiment B is a step of sticking the pellicle membrane in a stretched state to the support frame.
  • the sticking step in the embodiment B is a step of connecting the pellicle film to the support frame so as to cover the opening of the support frame having the opening, similarly to the sticking step in the embodiment A.
  • the attaching step in Embodiment B after the pellicle film and the substrate are separated, the separated pellicle film may be connected to the support frame (that is, the pellicle frame).
  • Details such as specific aspects and preferred aspects of the method for separating the pellicle film and the substrate are the same as the details of the specific aspects and preferred aspects of the method for separating the pellicle film and the substrate in Embodiment A.
  • the pellicle manufacturing method of Embodiment B includes a step of heating the pellicle film to 600° C. or more and 1500° C. or less.
  • the pellicle manufacturing method of Embodiment B includes a heating step, so that the CNT fibers in the pellicle membrane can be easily stretched.
  • the heating temperature is preferably 700° C. or higher.
  • the heating temperature is preferably 1300° C. or lower, more preferably 1000° C. or lower, and even more preferably 800° C. or lower.
  • An exposure master of the present disclosure includes a master and a pellicle of the present disclosure attached to the master. Since the exposure original plate of the present disclosure includes the pellicle of the present disclosure, it has the same effects as the pellicle of the present disclosure.
  • the method of mounting the original on the pellicle of the present disclosure is not particularly limited.
  • the original may be attached directly to the support frame, or may be attached via an adhesive layer for the original on one end face of the support frame.
  • the support frame may be fixed.
  • an original including a supporting substrate, a reflective layer laminated on the supporting substrate, and an absorber layer formed on the reflective layer can be used.
  • a pellicle is mounted on the side of the original on which the reflective layer and the absorber layer are provided.
  • the absorber layer partially absorbs light (eg, EUV light) to form a desired image on a sensitive substrate (eg, a semiconductor substrate with a photoresist film).
  • the reflective layer may be a multilayer film of molybdenum (Mo) and silicon (Si).
  • the absorber layer can be a material that is highly absorptive of EUV light, such as chromium (Cr) or tantalum nitride.
  • the exposure apparatus of the present disclosure includes the exposure master plate described above. More specifically, the exposure apparatus of the present disclosure includes a light source that emits exposure light, an exposure original plate of the present disclosure, and an optical system that guides the exposure light emitted from the light source to the exposure original plate.
  • the exposure original plate is arranged so that the exposure light emitted from the light source passes through the pellicle film and is irradiated onto the original plate. Therefore, the exposure apparatus of the present disclosure has the same effects as the exposure original plate of the present disclosure.
  • the exposure apparatus of the present disclosure includes a light source that emits exposure light, an exposure master plate of the present disclosure, and an optical system that guides the exposure light emitted from the light source to the exposure master plate, and the exposure master plate is the light source. It is preferable that the exposure light emitted from the pellicle film passes through the pellicle film and is irradiated onto the original plate. According to this aspect, in addition to being able to form a fine pattern (for example, a line width of 32 nm or less) by EUV light or the like, even when using EUV light, which tends to cause a problem of poor resolution due to foreign matter, Pattern exposure can be performed with reduced resolution defects.
  • a fine pattern for example, a line width of 32 nm or less
  • the exposure light in the present disclosure is EUV light.
  • the method for manufacturing a semiconductor device comprises a step of transmitting exposure light emitted from a light source through the pellicle film of the exposure master plate of the present disclosure, irradiating the master plate, and reflecting the exposure light from the master plate; exposing the sensitive substrate in a pattern by irradiating the sensitive substrate with the exposed light that passes through the pellicle film.
  • the method of manufacturing a semiconductor device of the present disclosure it is possible to manufacture a semiconductor device in which poor resolution due to foreign matter is reduced even when using EUV light, in which poor resolution due to foreign matter is likely to be a problem.
  • FIG. 7 is a schematic cross-sectional view of an EUV exposure apparatus 800, which is an example of the exposure apparatus of the present disclosure.
  • the EUV exposure apparatus 800 includes a light source 831 that emits EUV light, an exposure master plate 850 that is an example of the exposure master plate of the present disclosure, and the EUV light emitted from the light source 831 onto the exposure master plate 850. and illumination optics 837 for guiding.
  • the exposure original plate 850 includes a pellicle 810 including a pellicle film 812 and a support frame 814 and an original plate 833 .
  • This exposure master plate 850 is arranged so that the EUV light emitted from the light source 831 passes through the pellicle film 812 and irradiates the master plate 833 .
  • the original plate 833 reflects the irradiated EUV light in a pattern.
  • Support frame 814 and pellicle 810 are examples of the support frame and pellicle of the present disclosure, respectively.
  • filter windows 820 and 825 are installed between the light source 831 and the illumination optical system 837 and between the illumination optical system 837 and the original plate 833, respectively.
  • the EUV exposure apparatus 800 also includes a projection optical system 838 that guides the EUV light reflected by the master 833 to the sensitive substrate 834 .
  • the EUV light reflected by the original plate 833 is guided onto the sensitive substrate 834 through the projection optical system 838, and the sensitive substrate 834 is exposed in a pattern.
  • the EUV exposure is performed under reduced pressure conditions.
  • EUV light source 831 emits EUV light toward illumination optics 837 .
  • the EUV light source 831 includes a target material, a pulse laser irradiation section, and the like. EUV is obtained by irradiating this target material with a pulse laser to generate plasma. If the target material is Sn, EUV with a wavelength of 13 nm to 14 nm can be obtained.
  • the wavelength of the light emitted by the EUV light source is not limited to 13 nm to 14 nm, and may be light having a wavelength suitable for the purpose within the wavelength range of 5 nm to 30 nm.
  • the illumination optical system 837 collects the light emitted from the EUV light source 831 , uniforms the illuminance, and irradiates the master 833 with the light.
  • the illumination optical system 837 includes a plurality of multilayer film mirrors 832 for adjusting the EUV optical path, an optical coupler (optical integrator), and the like.
  • the multilayer mirror is a multilayer film or the like in which molybdenum (Mo) and silicon (Si) are alternately laminated.
  • the mounting method of the filter windows 820 and 825 is not particularly limited, and includes a method of sticking them via an adhesive or the like, a method of mechanically fixing them in the EUV exposure apparatus, and the like.
  • a filter window 820 placed between the light source 831 and the illumination optical system 837 traps the scattered particles (debris) generated from the light source, and the scattered particles (debris) reach the elements inside the illumination optical system 837 (for example, a multilayer film). Avoid sticking to the mirror 832).
  • a filter window 825 arranged between the illumination optical system 837 and the master 833 catches particles (debris) scattered from the light source 831 side and prevents the scattered particles (debris) from adhering to the master 833. .
  • the pellicle 810 is mounted so as to cover the EUV light irradiation area of the master 833 .
  • the EUV light passes through the pellicle film 812 and irradiates the original plate 833 .
  • the EUV light reflected by the original plate 833 passes through the pellicle film 812 and is irradiated onto the sensitive substrate 834 through the projection optical system 838 .
  • a projection optical system 838 collects the light reflected by the original 833 and irradiates it onto the sensitive substrate 834 .
  • a projection optical system 838 includes a plurality of multilayer film mirrors 835, 836 and the like for adjusting the EUV optical path.
  • the sensitive substrate 834 is a substrate or the like in which a resist is applied on a semiconductor wafer, and the EUV reflected by the original plate 833 cures the resist in a pattern. By developing the resist and etching the semiconductor wafer, a desired pattern is formed on the semiconductor wafer.
  • the pellicle 810 is attached to the original plate 833 via an adhesive layer for the original plate or the like. Foreign matter adhering to the original absorbs or scatters EUV, causing poor resolution on the wafer. Therefore, the pellicle 810 is mounted so as to cover the EUV light irradiation area of the master 833 , and the EUV passes through the pellicle film 812 and irradiates the master 833 .
  • any method can be used as long as it can be installed on the original plate so that foreign matter does not adhere to the surface of the original plate.
  • method, mechanical fixing method, and the like but are not particularly limited.
  • a method of sticking with an adhesive is used.
  • a pellicle comprising a pellicle membrane containing carbon nanotubes and satisfying the following formula (1A), and a support frame supporting the pellicle membrane.
  • Example 1 Single-wall CNTs (also referred to as SWCNTs, manufactured by Meijo Nanocarbon Co., Ltd.) dispersed in a solvent are spin-coated on a Si substrate and dried to form an ultra-thin film of CNTs (hereinafter also referred to as a CNT film) on the Si substrate. formed.
  • the Si substrate was gently submerged in a slightly alkaline water bath to dissolve the surface of the Si substrate, and the CNT film was separated from the Si substrate as a single film and floated on the surface of the water.
  • a stainless steel rectangular frame having an opening with a size of 1 cm ⁇ 1 cm is temporarily submerged in the water tank, the CNT film is placed on the rectangular frame, and then the rectangular frame is slowly lifted to form a CNT film ( That is, a pellicle rectangular frame was obtained by stretching the pellicle film) as a self-supporting film into a rectangular frame.
  • FIG. 8 is a schematic diagram showing a measuring device in the bulge test.
  • a pellicle rectangular frame body including a CNT film (that is, a pellicle film) 12 and a rectangular frame 14 was fixed to the chamber 24 .
  • the CNT film 12 was placed on the inner side of the chamber 24 .
  • Air was flowed into the chamber 24 at an acceleration of 5 sccm/sec to pressurize the inside of the chamber 24 .
  • the displacement D of the membrane increased.
  • the pressure applied to the CNT film was the difference ⁇ P between the pressure P1 outside the chamber and the pressure P2 inside the chamber, and was measured using a differential pressure gauge 20 .
  • the pellicle was obtained by scooping the pellicle film from the inside of the rectangular frame in the pellicle rectangular frame with the support frame and attaching the pellicle film to the support frame.
  • the support frame is one size smaller than the rectangular frame, and is a support frame made of silicon in which a through hole of ⁇ 4 mm is opened by anisotropic dry etching.
  • the thickness of the CNT film was measured using the method described above, the thickness of the pellicle film was 20 nm.
  • Example 2 After obtaining a rectangular pellicle frame in the same manner as in Example 1, the rectangular pellicle frame including the pellicle film was placed in an infrared heating device, heated to 700° C. in an inert environment, and left for 10 minutes. After that, the pellicle film was held in a stretched state from the inside of the rectangular frame in the pellicle rectangular frame body, and the pellicle film was scooped up with a support frame, thereby affixing the pellicle film to the support frame to obtain a pellicle.
  • the pellicle rectangular frame including the pellicle film was placed in an infrared heating device, heated to 700° C. in an inert environment, and left for 10 minutes.
  • Example 3 A pellicle was obtained in the same manner as in Example 2, except that in the heating step, the temperature was raised to 500° C. in an inert environment and left for 10 minutes.
  • Example 1 A pellicle was obtained in the same manner as in Example 1, except that the pressing step was not performed. Specifically, in the sheet manufacturing process, the pellicle membrane is attached to the support frame by scooping the pellicle membrane floating on the liquid surface of the water without fabricating the pellicle rectangular frame with the support frame. obtained a pellicle.
  • the examples using a pellicle containing a pellicle membrane that contains CNTs and that satisfies formula (1) and a support frame that supports the pellicle membrane have a high E0/D and a pressure applied to the pellicle membrane. It was found that the elongation of the film decreased before and after the addition of In addition, the value of transmittance dispersion 3 ⁇ was small in the example. Therefore, the pellicle according to the example was able to suppress sagging and suppress variations in the transmittance of EUV light within the pellicle film. On the other hand, in Comparative Example 1 in which E0/D was 0.75 or less, sagging could not be suppressed.
  • Example 2 in which the heating process was performed, was comparable in E0/D to Example 1, but the value of displacement D was smaller. That is, in Example 2, when pressure is applied from 0 Pa to 2 Pa in the bulge test, the swelling of the pellicle film can be suppressed to a smaller extent. It is thought that it can be used satisfactorily without
  • Pellicle film (CNT film) 14 Rectangular frame 20 Differential pressure gauge 24 Chamber 111 Pellicle film 112 Support frame 120 Silicon substrate 121 Solvent layer H112 Opening 1110 Self-supporting film part 800 EUV exposure device 810 Pellicle 812 Pellicle film 814 Support frame 820, 825 Filter window 831 Light source 832, 835 , 836 multilayer film mirror 833 original plate 834 sensitive substrate 837 illumination optical system 838 projection optical system 850 exposure original plate

Abstract

This pellicle contains a pellicle film containing carbon nanotubes and satisfying formula (1) below, and a support frame supporting the pellicle film. E0/D > 0.75 (1) (E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in a bulge test, and D represents the displacement at 2 Pa.)

Description

ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法Pellicle, original exposure plate, exposure apparatus, method for manufacturing pellicle, and method for manufacturing semiconductor device
 本開示は、ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法に関する。 The present disclosure relates to a pellicle, an exposure original plate, an exposure apparatus, a method for manufacturing a pellicle, and a method for manufacturing a semiconductor device.
 電子部品、プリント基板、ディスプレイパネル等の物体の表面に感光性の物質を塗布し、パターン状に露光してパターンを形成する技術(フォトリソグラフィー)では、フォトマスクと呼ばれる片面にパターンが形成された透明基板が使用されている。
 近年、露光パターンの高精細化が進むにつれて、露光の光源として、DUV(Deep
 Ultra Violet:遠紫外)光に代えて、より短波長のEUV(Extreme Ultra Violet:極端紫外)光の利用が拡大している。
 EUV光を用いる露光方法において使用されるペリクルについても、様々な検討がされている。
A pattern is formed on one side called a photomask in the technology (photolithography) that forms a pattern by applying a photosensitive substance to the surface of an object such as an electronic component, printed circuit board, or display panel and exposing it in a pattern. A transparent substrate is used.
In recent years, as exposure patterns have become higher definition, DUV (Deep
The use of EUV (Extreme Ultra Violet) light with shorter wavelengths is expanding in place of Ultra Violet (deep ultraviolet) light.
Various studies have also been made on pellicles used in exposure methods using EUV light.
 例えば、特許文献1には、23℃で1×10-3Pa以下の雰囲気下で10分放置後の真空時ガス放出量が、ペリクル1個あたり水系1×10-3Pa・L/s以下、測定質量数の範囲が45~100amuである炭化水素系1×10-5Pa・L/s以下、及び測定質量数の範囲が101~200amuである炭化水素系4×10-7Pa・L/s以下であることを特徴とするペリクルが開示されている。 For example, in Patent Document 1, the amount of gas released in a vacuum after standing for 10 minutes in an atmosphere of 1×10 −3 Pa or less at 23° C. is 1×10 −3 Pa·L/s or less in a water system per pellicle. , hydrocarbon-based 1×10 −5 Pa・L/s or less with a measured mass number range of 45 to 100 amu, and hydrocarbon-based 4×10 −7 Pa・L with a measured mass number range of 101 to 200 amu /s or less is disclosed.
   特許文献1:特開2020-091310号公報    Patent Document 1: JP-A-2020-091310
 一般にEUVによる露光は真空状態にて行われるため、脱気、ベンドなどを行う。
 脱気、ベンドなどを行うことで、ペリクル膜に張力が加わり、ペリクル膜が伸びてしまう場合がある。伸びたペリクルは、張力が加わっていない状態では弛緩しているため、ペリクル膜のたるみが発生する。
 ペリクル膜がたるむことで、ペリクル膜内でEUV光の透過率にばらつきが生じる等の不具合が発生しやすくなる。
Since EUV exposure is generally performed in a vacuum state, degassing, bending, and the like are performed.
By performing degassing, bending, or the like, tension is applied to the pellicle film, and the pellicle film may be stretched. Since the stretched pellicle is relaxed when no tension is applied, the pellicle membrane sag.
The slackening of the pellicle film tends to cause problems such as variations in the transmittance of EUV light within the pellicle film.
 本開示の一実施形態が解決しようとする課題は、たるみが抑制されたペリクル膜を含むペリクル、上記ペリクルを含む露光原版、露光装置、上記ペリクルの製造方法及び半導体装置の製造方法を提供することである。 An object to be solved by an embodiment of the present disclosure is to provide a pellicle including a pellicle film with suppressed sag, an exposure original plate including the pellicle, an exposure apparatus, a method for manufacturing the pellicle, and a method for manufacturing a semiconductor device. is.
 上記課題を解決するための具体的手段は以下の態様を含む。
<1> カーボンナノチューブを含みかつ以下の式(1)を満足するペリクル膜と、前記ペリクル膜を支持する支持枠と、を含むペリクル。
 E0/D>0.75  (1)
(E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
<2> 前記式(1)は、E0/D>0.80を満たす<1>に記載のペリクル。
<3> 原版と、前記原版に装着された<1>又は<2>に記載のペリクルと、を含む露光原版。
<4> <3>に記載の露光原版を含む露光装置。
<5> 露光光を放出する光源と、<3>に記載の露光原版と、前記光源から放出された前記露光光を前記露光原版に導く光学系と、を有し、前記露光原版は、前記光源から放出された前記露光光が前記ペリクル膜を透過して前記原版に照射されるように配置されている露光装置。
<6> <1>又は<2>に記載のペリクルを製造する方法であって、前記カーボンナノチューブを含むペリクル膜を準備する工程と、下記工程(1)及び下記工程(2)の少なくとも一方の工程と、を含むペリクルの製造方法。
 工程(1)は、
 前記ペリクル膜の膜面に2Pa以上20Pa以下の圧力を加える工程と、
 前記ペリクル膜に前記圧力を加えられた状態のペリクル膜を支持枠に張り付ける工程と、を含む工程である。
 工程(2)は、
 前記ペリクル膜を600℃以上1500℃以下に加熱する工程と、
 前記加熱後の前記ペリクル膜を伸ばした状態で支持枠に張り付ける工程と、
を含む工程である。
<7> 前記工程(1)を含む<6>に記載のペリクルの製造方法。
<8> 前記工程(2)を含む<6>又は<7>に記載のペリクルの製造方法。
<9> 光源から放出された露光光を、<3>に記載の露光原版の前記ペリクル膜を透過させて前記原版に照射し、前記原版で反射させる工程と、
 前記原版によって反射された露光光を、前記ペリクル膜を透過させて感応基板に照射することにより、前記感応基板をパターン状に露光する工程と、を含む半導体装置の製造方法。
Specific means for solving the above problems include the following aspects.
<1> A pellicle comprising a pellicle membrane containing carbon nanotubes and satisfying the following formula (1), and a support frame supporting the pellicle membrane.
E0/D>0.75 (1)
(E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
<2> The pellicle according to <1>, wherein the formula (1) satisfies E0/D>0.80.
<3> An exposure original plate comprising an original plate and the pellicle according to <1> or <2> attached to the original plate.
<4> An exposure apparatus including the exposure master plate according to <3>.
<5> A light source that emits exposure light, an exposure master plate according to <3>, and an optical system that guides the exposure light emitted from the light source to the exposure master plate, wherein the exposure master plate comprises: An exposure apparatus arranged so that the exposure light emitted from a light source passes through the pellicle film and is irradiated onto the original.
<6> A method for manufacturing a pellicle according to <1> or <2>, comprising: preparing a pellicle film containing the carbon nanotubes; A method of manufacturing a pellicle, comprising:
Step (1) is
a step of applying a pressure of 2 Pa or more and 20 Pa or less to the film surface of the pellicle film;
and a step of attaching the pellicle membrane in a state where the pressure is applied to the pellicle membrane to a support frame.
Step (2) is
a step of heating the pellicle film to 600° C. or more and 1500° C. or less;
a step of attaching the heated pellicle film to a support frame in a stretched state;
It is a step including
<7> The method for manufacturing a pellicle according to <6>, including the step (1).
<8> The method for manufacturing a pellicle according to <6> or <7>, including the step (2).
<9> a step of irradiating the original plate with exposure light emitted from a light source, passing through the pellicle film of the exposure original plate according to <3>, and reflecting the exposure light from the original plate;
and exposing the sensitive substrate in a pattern by irradiating the sensitive substrate with exposure light reflected by the original plate through the pellicle film.
 本開示の一実施形態によれば、たるみが抑制されたペリクル膜を含むペリクル、上記ペリクルを含む露光原版、露光装置、上記ペリクルの製造方法及び半導体装置の製造方法を提供することができる。 According to an embodiment of the present disclosure, it is possible to provide a pellicle including a pellicle film with suppressed sag, an exposure original plate including the pellicle, an exposure apparatus, a method for manufacturing the pellicle, and a method for manufacturing a semiconductor device.
(A)ペリクル膜中のCNTの繊維が曲がっている状態を表す概略図である。(B)ペリクル膜中のCNTの繊維が伸びている状態を表す概略図である。(A) A schematic diagram showing a state in which CNT fibers in a pellicle membrane are bent. (B) is a schematic diagram showing a state in which CNT fibers in a pellicle film are stretched. 応力(即ち差圧)と変位Dとの関係を表すグラフである。4 is a graph showing the relationship between stress (that is, differential pressure) and displacement D; 中央部を1cm×1cmのサイズに切り取ったペリクル膜を枠に張り付けた状態を表す概略図である。FIG. 4 is a schematic diagram showing a state in which a pellicle film, which is cut out to a size of 1 cm×1 cm at the center, is attached to a frame. 本開示の実施形態に係るペリクル膜11の自立膜領域をシリコン基板20上に転写する前の状態を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a state before a self-supporting film region of a pellicle film 11 according to the embodiment of the present disclosure is transferred onto a silicon substrate 20; 本開示の実施形態に係るペリクル膜11の自立膜領域をシリコン基板20上に転写した後の状態を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a state after a self-supporting film region of the pellicle film 11 according to the embodiment of the present disclosure has been transferred onto the silicon substrate 20; 空気層/CNT膜の層/シリコン基板のモデルを示す概略図である。FIG. 2 is a schematic diagram showing a model of air layer/layer of CNT film/silicon substrate; 波長285nmの反射率及び膜厚みを測定した場合の、反射率と膜厚みとの関係をプロットしたグラフである。It is the graph which plotted the relationship between the reflectance and the film thickness when the reflectance and the film thickness were measured at a wavelength of 285 nm. 本開示の露光装置の一例である、EUV露光装置の概略断面図である。1 is a schematic cross-sectional view of an EUV exposure apparatus, which is an example of an exposure apparatus of the present disclosure; FIG. バルジ試験における測定装置を示す概略図である。It is the schematic which shows the measuring apparatus in a bulge test.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
In the present disclosure, a numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
In the present disclosure, the amount of each component means the total amount of the multiple types of substances unless otherwise specified when there are multiple types of substances corresponding to each component.
In this specification, the term "step" is not only an independent step, but even if it cannot be clearly distinguished from other steps, if the intended purpose of the step is achieved, the term included.
≪ペリクル≫
 本開示のペリクルは、カーボンナノチューブ(本開示中、CNTともいう)を含みかつ以下の式(1)を満足するペリクル膜と、前記ペリクル膜を支持する支持枠と、を含む。
 E0/D>0.75  (1)
(E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
≪Pellicle≫
A pellicle of the present disclosure includes a pellicle membrane containing carbon nanotubes (also referred to as CNTs in the present disclosure) and satisfying the following formula (1), and a support frame that supports the pellicle membrane.
E0/D>0.75 (1)
(E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
 カーボンナノチューブを含む膜(本開示中、CNT膜ともいう)の応力-変位特性は、何ら処理を行わない場合、初期に塑性変形領域を有するという特徴的な性状を示す。
 しかし、CNT膜を、何ら処理を行わずに使用すると、初期に一定の張力をもっていたとしても、経時的に張力が低下して弛緩してしまうことがある。
 そこで、本発明者は、上記初期に塑性変形領域を有するという性状が抑制された膜を作製することで、上記弛緩を低減し、ペリクル膜のたるみを抑制することができると考えた。
The stress-displacement properties of films containing carbon nanotubes (also referred to as CNT films in this disclosure) exhibit the characteristic property of initially having a plastically deformed region if no treatment is performed.
However, if the CNT film is used without any treatment, even if it initially has a constant tension, the tension may decrease and become loose over time.
Therefore, the present inventor thought that by manufacturing a film in which the property of having a plastically deformed region at the initial stage is suppressed, the relaxation can be reduced and the sagging of the pellicle film can be suppressed.
 この点について、図1を参照して説明する。
 図1(A)は、ペリクル膜中のCNTの繊維が曲がっている状態を表す概略図である。
 図1(B)は、ペリクル膜中のCNTの繊維が伸びている状態を表す概略図である。
 本発明者は、CNT膜を成膜した直後は、図1(A)のようにCNTの繊維が曲がっている状態であり、繊維が曲がっている状態で張力が加わると繊維が伸長し、結果的にCNT膜が伸びて、ペリクル膜全体としてたるみが生じると推測した。
This point will be described with reference to FIG.
FIG. 1(A) is a schematic diagram showing a state in which CNT fibers in a pellicle membrane are bent.
FIG. 1B is a schematic diagram showing a state in which CNT fibers in a pellicle membrane are stretched.
The present inventors found that immediately after forming a CNT film, the CNT fibers are in a bent state as shown in FIG. It was presumed that the CNT film stretched exponentially and the pellicle film as a whole sagged.
 本開示のペリクルは、CNTを含みかつ式(1)を満足するペリクル膜と、前記ペリクル膜を支持する支持枠と、を含むことで、図1(B)のようにCNTの繊維を伸ばされた状態に保つことができるため、ペリクル膜全体のたるみを抑制することができる。 The pellicle of the present disclosure includes a pellicle membrane that contains CNTs and satisfies formula (1), and a support frame that supports the pellicle membrane, so that CNT fibers are stretched as shown in FIG. Since the pellicle film can be kept in a flat state, the sagging of the entire pellicle film can be suppressed.
<ペリクル膜>
 本開示におけるペリクル膜は、カーボンナノチューブを含みかつ以下の式(1)を満足する。
 E0/D>0.75  (1)
(E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
 本開示におけるペリクル膜は、上記構成を含むことで、ペリクル膜のたるみを抑制することができる。
<Pellicle film>
The pellicle film in the present disclosure contains carbon nanotubes and satisfies the following formula (1).
E0/D>0.75 (1)
(E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
The pellicle film in the present disclosure can suppress sagging of the pellicle film by including the above configuration.
(式(1))
 本開示におけるペリクル膜は、以下の式(1)を満足する。
 E0/D>0.75  (1)
(E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
(Formula (1))
A pellicle film in the present disclosure satisfies the following formula (1).
E0/D>0.75 (1)
(E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
 バルジ試験にて0Paから2Paまで圧力を加えて圧力を開放した場合(即ち、差圧2Paの圧力を加えた場合)、CNTを含まない一般的なペリクル膜は圧力を加える前後で膜の伸びがほとんど確認されない。
 一方、本開示のペリクル膜のように、CNTを含むペリクル膜は圧力を加える前に対して圧力を加えた後の膜が伸びた状態となるため、圧力開放後に膜面がたわむ。この点について、図2を参照して説明する。
 図2は、応力(即ち差圧)と変位Dとの関係を表すグラフである。
 図2において、縦軸は変位(mm)、横軸は応力〔差圧〕(Pa)である。
 0Paから2Paまで圧力を加えた際の変位D(単位はmm)及び応力(単位はPa)のデータから得られる応力-変位線が、2Paにおける変位Dと原点(差圧0Pa、変位0mm)とを結ぶ直線を示す場合、理論上ペリクル膜は圧力を加える前後で膜の伸びがほとんどないことを表す。
 一方、応力-変位線が、直線的な比例関係を示さず、2Paにおける変位Dと原点(差圧0Pa、変位0mm)とを結ぶ直線の上方に膨らむ曲線を描く場合(例えば、本開示のようなCNTを含むペリクル膜の応力-変位線であり得る)、圧力を加える前に対して圧力を加えた後の膜が伸びていることを表す。
When pressure is applied from 0 Pa to 2 Pa in the bulge test and the pressure is released (i.e., when pressure with a differential pressure of 2 Pa is applied), a general pellicle film that does not contain CNTs shows film elongation before and after applying pressure. hardly confirmed.
On the other hand, like the pellicle membrane of the present disclosure, the pellicle membrane containing CNTs is stretched after the pressure is applied compared to before the pressure is applied, so the membrane surface is bent after the pressure is released. This point will be described with reference to FIG.
FIG. 2 is a graph showing the relationship between stress (that is, differential pressure) and displacement D. As shown in FIG.
In FIG. 2, the vertical axis is displacement (mm) and the horizontal axis is stress [differential pressure] (Pa).
The stress-displacement line obtained from the data of the displacement D (unit: mm) and stress (unit: Pa) when pressure is applied from 0 Pa to 2 Pa is the displacement D at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm). indicates that the pellicle film theoretically has almost no elongation before and after applying pressure.
On the other hand, when the stress-displacement line does not show a linear proportional relationship and draws a curve that swells above the straight line connecting the displacement D at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm) (for example, as in the present disclosure (which can be the stress-displacement line of a pellicle film containing a small amount of CNTs), representing the stretching of the film after applying pressure relative to before applying pressure.
 例えば、一般的なペリクル膜の応力-変位線は、2Paにおける変位と原点(差圧0Pa、変位0mm)とを結ぶ直線を示した後、2Paを超えて応力を加えた場合に上記直線の下側の領域の変位を示すようになることが多い。 For example, the stress-displacement line of a general pellicle film shows a straight line connecting the displacement at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm). often come to show displacement of the lateral region.
 本開示における変位エネルギーE0は、縦軸と、横軸に平行な直線であって2Paにおける変位Dを通る直線と、応力-変位線と、で囲まれる領域の面積のうち、応力―変位線の上側の領域の面積を表す。
 例えば、圧力を加えた後にペリクル膜が伸びていない場合、応力-変位線が2Paにおける変位Dと原点(差圧0Pa、変位0mm)とを結ぶ直線を示すため、変位エネルギーE0は、E0=(2×D)×1/2である。
The displacement energy E0 in the present disclosure is the area of the region surrounded by the vertical axis, a straight line parallel to the horizontal axis and passing through the displacement D at 2 Pa, and the stress-displacement line. Represents the area of the upper region.
For example, when the pellicle film is not stretched after applying pressure, the stress-displacement line shows a straight line connecting the displacement D at 2 Pa and the origin (differential pressure 0 Pa, displacement 0 mm), so the displacement energy E0 is E0 = ( 2*D)*1/2.
 なお、変位Dの測定は以下ように測定する。
 図3は、中央部を1cm×1cmのサイズに切り取ったペリクル膜を枠に張り付けた状態を表す概略図である。図3において、最も外側の外枠がペリクルの支持枠の内側を表す。
 図3のように、中央部を1cm×1cmのサイズに切り取ったペリクル膜を枠に張り付けた状態で、差圧を加えて変位エネルギーを測定する。変位Dの測定は、膜に圧力を加えた際に最も変位が大きい点に対して測定する。
 最も変位が大きい点が分かりにくい場合は、切り取った膜の中央部の変位を測定する。膜の変位Dの測定は、レーザー変位計(機器名:LJ-V7200、メーカー名:KEYENS)を用いて測定できる。
In addition, the measurement of the displacement D is measured as follows.
FIG. 3 is a schematic diagram showing a state in which a pellicle film with a size of 1 cm×1 cm is cut from the central portion and attached to a frame. In FIG. 3, the outermost frame represents the inside of the pellicle support frame.
As shown in FIG. 3, the displacement energy is measured by applying a differential pressure to the pellicle film, the central portion of which is cut to a size of 1 cm×1 cm, and is attached to the frame. The displacement D is measured at the point where the displacement is greatest when pressure is applied to the membrane.
If it is difficult to find the point of greatest displacement, measure the displacement at the center of the cut membrane. The film displacement D can be measured using a laser displacement meter (device name: LJ-V7200, manufacturer name: KEYENS).
 本開示のペリクル膜は、E0>0.75×(2Pa×D)×1/2、
即ち、E0/D>0.75  (1)
を満たす。
 本開示において、E0/D>Xは、E0をDで除した値がX超であることを意味する。
 これによって、EUV露光において行われる脱気、ベンドなどによってペリクル膜に対して圧力を加わった場合でも、ペリクル膜の膜面の膨らみを抑制することができる。そのため、ペリクル膜のたるみを抑制することができる。
The pellicle membrane of the present disclosure has E0>0.75×(2Pa×D)×1/2,
That is, E0/D>0.75 (1)
meet.
In this disclosure, E0/D>X means that E0 divided by D is greater than X.
As a result, even when pressure is applied to the pellicle film due to degassing, bending, or the like performed in EUV exposure, swelling of the film surface of the pellicle film can be suppressed. Therefore, sagging of the pellicle film can be suppressed.
 本開示におけるペリクル膜は、たるみを抑制する観点から、式(1)は、E0/D>0.80を満たすことが好ましく、E0/D>0.85を満たすことがより好ましく、E0/D>0.90を満たすことがさらに好ましい。
  本開示におけるペリクル膜は、E0/D<1.00を満たしていてもよく、E0/D<0.99を満たしていてもよく、E0/D<0.95を満たしていてもよい。
From the viewpoint of suppressing sagging, the pellicle membrane in the present disclosure preferably satisfies E0/D>0.80, more preferably satisfies E0/D>0.85, and E0/D >0.90 is more preferred.
The pellicle membrane in the present disclosure may satisfy E0/D<1.00, may satisfy E0/D<0.99, or may satisfy E0/D<0.95.
 バルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーE0は、式1を満足すれば制限はないが、例えば、0.8×10-5kg・s-2以上4.0×10-3kg・s-2であってもよく、1.0×10-5kg・s-2以上1.0×10-3kg・s-2であることが好ましく、8.0×10-4kg・s-2以上4.0×10-4kg・s-2であることがより好ましい。 Displacement energy E0 when pressure is applied from 0 Pa to 2 Pa in the bulge test is not limited as long as it satisfies Equation 1, but is, for example, 0.8×10 −5 kg·s −2 or more and 4.0×10 − 3 kg·s −2 , preferably 1.0×10 −5 kg·s −2 or more and 1.0×10 −3 kg·s −2 , and 8.0×10 −4 It is more preferable to be 4.0×10 −4 kg·s −2 to 4.0×10 −4 kg·s −2 .
 バルジ試験において0Paから2Paまで圧力を加えた場合の2Paでの変位Dは、ペリクル膜の変形の容易性及びペリクル膜に付与する張力によって調整することができる。
 上記変位Dは、5.0mm以下であってもよく、1.5mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.5mm以下がさらに好ましく、0,3mm以下が特に好ましい。
 変位Dは、0mm超であってもよく、0.01mm以上であってもよく、0.1mm以上であってもよい。
The displacement D at 2 Pa when pressure is applied from 0 Pa to 2 Pa in the bulge test can be adjusted by the ease of deformation of the pellicle membrane and the tension applied to the pellicle membrane.
The displacement D may be 5.0 mm or less, preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, particularly 0.3 mm or less. preferable.
The displacement D may be greater than 0 mm, 0.01 mm or more, or 0.1 mm or more.
(透過率分散3σ)
 本開示におけるペリクル膜は、透過率分散3σが0.70以下であることが好ましい。
 ペリクル膜は、透過率分散3σが0.70以下であることで、透過率のばらつきを抑制することができる。
 上記同様の観点から、ペリクル膜は、透過率分散3σが0.50以下であることがより好ましく、0.30以下であることがさらに好ましい。
 ペリクル膜は、透過率分散3σが0超であってもよく、0.01以上であってもよい。
(Transmittance dispersion 3σ)
The pellicle film in the present disclosure preferably has a transmittance dispersion 3σ of 0.70 or less.
Since the pellicle film has a transmittance dispersion 3σ of 0.70 or less, it is possible to suppress variations in transmittance.
From the same viewpoint as above, the pellicle film preferably has a transmittance dispersion 3σ of 0.50 or less, more preferably 0.30 or less.
The pellicle film may have a transmittance dispersion 3σ of greater than 0 or 0.01 or more.
 透過率分散3σは、以下の方法により測定する。
 1mmに絞ったEUV光をサンプルに対して垂直に入射させて、透過光量を受光素子で計測する。得られた値を、サンプルがない場合と比較することによって、透過率を求める。
 サンプルは、中央部をくりぬいたSi基板にペリクル膜を展張して得られる。自立化面は1cm(縦1cm×横1cm)であり、枠際を除く中央部25mm(縦5mm×横5mm)に対して1mmに絞ったEUV光を照射する。照射箇所は、中央部25mmを1mm(縦1mm×横1mm)の単位で格子状に分割して得られる縦横各5箇所(合計25箇所)である。
 合計25箇所の透過率の標準偏差から透過率分散3σを算出する。
Transmittance dispersion 3σ is measured by the following method.
EUV light narrowed down to 1 mm 2 is vertically incident on the sample, and the amount of transmitted light is measured by a light receiving element. Transmittance is determined by comparing the value obtained with no sample.
A sample is obtained by spreading a pellicle film on a Si substrate whose center is hollowed out. The self-standing surface is 1 cm 2 (length 1 cm×width 1 cm), and EUV light narrowed down to 1 mm 2 is applied to a central portion of 25 mm 2 (length 5 mm×width 5 mm) excluding the edge of the frame. Irradiation points are 5 points each in length and width (25 points in total) obtained by dividing the central portion of 25 mm 2 into a grid pattern in units of 1 mm 2 (1 mm in length×1 mm in width).
Transmittance dispersion 3σ is calculated from the standard deviation of transmittance at 25 points in total.
〔CNT〕
 本開示におけるペリクル膜は、CNTを含む膜である。
 本開示におけるペリクル膜は、CNTを含むことで、良好な強度を示す。
[CNT]
A pellicle membrane in the present disclosure is a membrane containing CNTs.
The pellicle membrane in the present disclosure exhibits good strength by containing CNTs.
 CNT膜におけるCNTチューブの径は、光透過率を向上させる観点から、0.8nm以上400nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、4nm以上100nm以下であることがさらに好ましい。
 カーボンナノチューブにおけるチューブの径は、ペリクル膜中において、単繊維として存在する場合は単繊維の径を指し、CNTの束(即ちバンドル)として存在する場合はバンドルの径を指す。
From the viewpoint of improving light transmittance, the diameter of the CNT tube in the CNT film is preferably 0.8 nm or more and 400 nm or less, more preferably 2 nm or more and 100 nm or less, and further preferably 4 nm or more and 100 nm or less. preferable.
The tube diameter of the carbon nanotube refers to the diameter of a single fiber when present as a single fiber in the pellicle membrane, and refers to the diameter of a bundle when present as a CNT bundle (that is, a bundle).
 CNTとしては、特に制限はなく、シングルウォールCNT又はマルチウォールCNTであってもよい。 The CNTs are not particularly limited, and may be single-wall CNTs or multi-wall CNTs.
 CNTがシングルウォールCNTである場合、光透過率を向上させる観点から、上記シングルウォールCNTにおけるバンドルの径が、4nm~400nmであることが好ましく、4nm~40nmであることがより好ましい。 When the CNTs are single-walled CNTs, the bundle diameter of the single-walled CNTs is preferably 4 nm to 400 nm, more preferably 4 nm to 40 nm, from the viewpoint of improving light transmittance.
 CNTがマルチウォールCNTである場合、光透過率を向上させる観点から、上記マルチウォールCNTの単繊維の径又はバンドルの径が、4nm~400nmであることが好ましく、4nm~100nmであることがより好ましい。 When the CNT is a multi-wall CNT, from the viewpoint of improving light transmittance, the multi-wall CNT single fiber diameter or bundle diameter is preferably 4 nm to 400 nm, more preferably 4 nm to 100 nm. preferable.
 本開示のペリクル膜において、上記CNTが不織布形状を形成していることが好ましい。
 本開示のペリクル膜に含まれるCNTの形状は、通常、繊維形状であるため、本開示のペリクル膜全体として不織布形状を形成することができる。
 ペリクル膜に含まれるCNTが不織布形状を形成していることで、ペリクル膜に通気性を確保することができる。
 例えば、ペリクルを備える露光装置によりEUV光を用いて露光を行う場合、真空又は減圧条件下にてペリクルにEUV光を照射することが求められる。
 本開示のペリクル膜において、上記CNTが不織布形状を形成していることで、不織布形状によって通気性を確保することができ、容易に真空又は減圧環境を作り出すことができる。
In the pellicle membrane of the present disclosure, the CNTs preferably form a non-woven fabric.
Since the shape of the CNTs contained in the pellicle membrane of the present disclosure is usually fibrous, the pellicle membrane of the present disclosure as a whole can form a non-woven fabric shape.
Since the CNTs contained in the pellicle membrane form a non-woven fabric, the pellicle membrane can be ensured with air permeability.
For example, when performing exposure using EUV light with an exposure apparatus having a pellicle, it is required to irradiate the pellicle with EUV light under vacuum or reduced pressure conditions.
In the pellicle membrane of the present disclosure, the CNTs form a nonwoven fabric shape, so that air permeability can be secured by the nonwoven fabric shape, and a vacuum or reduced pressure environment can be easily created.
<酸化防止層>
 本開示のペリクル膜において、他の層が積層されてもよい。
 本開示のペリクル膜において、少なくとも片面側に、酸化防止層をさらに含んでもよい。
 ペリクル膜が酸化防止層をさらに含むことで、光照射又はペリクル保管の際に、ペリクル膜の酸化を抑制することができる。
<Antioxidation layer>
Other layers may be laminated in the pellicle membrane of the present disclosure.
The pellicle film of the present disclosure may further include an antioxidant layer on at least one side.
Since the pellicle film further includes an antioxidant layer, it is possible to suppress oxidation of the pellicle film during light irradiation or storage of the pellicle.
 酸化防止層は、光(好ましくはEUV光)に対して安定な材料からなる層であれば、その種類は特に制限されない。例えば、SiO(x≦2)、Si(x/yは0.7~1.5)、SiON、Y、YN、Mo、Ru、Rb、Sr、Y、Zr、Nb、またはRhからなる層等でありうる。 The type of the anti-oxidation layer is not particularly limited as long as it is a layer made of a material that is stable against light (preferably EUV light). For example, SiO x (x≦2), Si x N y (x/y is 0.7 to 1.5), SiON, Y 2 O 3 , YN, Mo, Ru, Rb, Sr, Y, Zr, Nb , or a layer made of Rh, or the like.
 光の透過を阻害しないためには、酸化防止層の厚みは1nm~10nm程度が好ましく、2nm~5nm程度がより好ましい。酸化防止層の厚みを1nm~10nm程度とすることにより、酸化防止層に光が吸収されることを抑制し、透過率の低下を抑制することができる。 In order not to inhibit the transmission of light, the thickness of the antioxidant layer is preferably about 1 nm to 10 nm, more preferably about 2 nm to 5 nm. By setting the thickness of the anti-oxidation layer to about 1 nm to 10 nm, absorption of light by the anti-oxidation layer can be suppressed, and a decrease in transmittance can be suppressed.
 ペリクル膜の厚みに対する酸化防止層の厚みの割合は、0.03~1.0の範囲にあることが好ましい。上記数値範囲であれば、酸化防止層に光が吸収されることを抑制し、透過率の低下を抑制することができる。 The ratio of the thickness of the antioxidant layer to the thickness of the pellicle film is preferably in the range of 0.03 to 1.0. If it is the said numerical range, it can suppress that light is absorbed by an antioxidant layer, and can suppress the fall of the transmittance|permeability.
 また、ペリクル膜に酸化防止層を積層すると、新たに生成した層界面、すなわち酸化防止層と空気の界面、及び酸化防止層とペリクル膜との界面で、光の反射が生じ、透過率が低下するおそれがある。これらの層界面での光の反射率は、ペリクル膜及び酸化防止層の厚み、ならびにペリクル膜及び酸化防止層を構成する元素の種類に応じて、算出することができる。そして、反射防止膜の原理と同様に膜の厚みを最適化することによって、反射率を低下させることができる。 In addition, when an antioxidant layer is laminated on the pellicle film, light is reflected at the newly formed layer interfaces, that is, the interface between the antioxidant layer and air, and the interface between the antioxidant layer and the pellicle film, resulting in a decrease in transmittance. There is a risk of The light reflectance at these layer interfaces can be calculated according to the thicknesses of the pellicle film and the antioxidant layer, and the types of elements forming the pellicle film and the antioxidant layer. The reflectivity can be reduced by optimizing the thickness of the film, similar to the principle of the antireflection film.
 酸化防止層の厚みは、吸収による光の透過率低下及び反射による光の透過率低下を抑制しつつ、かつ酸化防止の性能を有する範囲で、最適な厚みとすることが好ましい。 The thickness of the anti-oxidation layer is preferably an optimum thickness within the range of suppressing a decrease in light transmittance due to absorption and a decrease in light transmittance due to reflection and having anti-oxidation performance.
 酸化防止層の厚み均一性や表面粗さも特に限定されない。露光のパターニング工程において、厚みの不均一性又は表面粗さに由来した透過率の不均一性、光の散乱による支障等が生じなければ、酸化防止層が連続層あるいは海島状のどちらであってもよく、また、厚みが不均一であっても表面粗さがあってもよい。 The thickness uniformity and surface roughness of the antioxidant layer are not particularly limited. In the patterning step of exposure, the anti-oxidation layer may be either a continuous layer or a sea-island layer as long as there is no problem due to non-uniform thickness, non-uniform transmittance due to surface roughness, or light scattering. Also, the thickness may be non-uniform and the surface may be rough.
 ペリクル膜と酸化防止層とを併せたペリクル膜の平均屈折率は1.9~5.0の範囲であることが好ましい。屈折率は分光エリプソメトリーなどの手法で測定することができる。また、ペリクル膜と酸化防止層とを併せたペリクル膜の平均密度は1.5g/cm~5.0g/cmの範囲であることが好ましい。密度はX線反射法などの手法で測定することができる。 The average refractive index of the pellicle film including the pellicle film and the antioxidant layer is preferably in the range of 1.9 to 5.0. The refractive index can be measured by a technique such as spectroscopic ellipsometry. Further, the average density of the pellicle film including the pellicle film and the antioxidant layer is preferably in the range of 1.5 g/cm 3 to 5.0 g/cm 3 . Density can be measured by techniques such as X-ray reflectometry.
(厚み)
 ペリクル膜の厚み(二層以上からなる場合には総厚)は、例えば、2nm以上200nm以下とすることができ、4nm以上200nm以下とすることもできる。
 ペリクル膜の損傷による劣化を抑制する観点から、ペリクル膜の厚み(二層以上からなる場合には総厚)は、4nm以上であることが好ましく、6nm以上であることがより好ましく、8nm以上であることがさらに好ましく、10nm以上であることが特に好ましく、50nm以上であることがより一層好ましい。
 EUVのエネルギーを透過させる観点から、ペリクル膜の厚み(二層以上からなる場合には総厚)は、100nm以下であることが好ましく、80nm以下であることがより好ましく、60nm以下であることがさらに好ましく、40nm以下であることが特に好ましい。
 これらの観点から、ペリクル膜の厚み(二層以上からなる場合には総厚)は、2nm以上100nm以下であることが好ましく、4nm以上100nm以下であることが好ましく、6nm以上100nm以下であることが好ましく、8nm以上80nm以下であることがより好ましく、10nm以上60nm以下であることがさらに好ましく、10nm以上40nm以下であることが特に好ましい。
(thickness)
The thickness of the pellicle film (the total thickness when it consists of two or more layers) can be, for example, 2 nm or more and 200 nm or less, or can be 4 nm or more and 200 nm or less.
From the viewpoint of suppressing deterioration due to damage to the pellicle film, the thickness of the pellicle film (the total thickness when it consists of two or more layers) is preferably 4 nm or more, more preferably 6 nm or more, and 8 nm or more. It is more preferably 10 nm or more, particularly preferably 10 nm or more, and even more preferably 50 nm or more.
From the viewpoint of transmitting EUV energy, the thickness of the pellicle film (the total thickness if it consists of two or more layers) is preferably 100 nm or less, more preferably 80 nm or less, and 60 nm or less. More preferably, it is particularly preferably 40 nm or less.
From these points of view, the thickness of the pellicle film (the total thickness when it consists of two or more layers) is preferably 2 nm or more and 100 nm or less, preferably 4 nm or more and 100 nm or less, and 6 nm or more and 100 nm or less. is preferably 8 nm or more and 80 nm or less, more preferably 10 nm or more and 60 nm or less, and particularly preferably 10 nm or more and 40 nm or less.
~ペリクル膜の厚みの測定方法~
〔準備〕
 図4A及び図4Bを参照して、厚みの測定のための準備について説明する。
 図4Aは、本開示の実施形態に係るペリクル膜111の自立膜領域をシリコン基板120上に転写する前の状態を説明するための説明図である。
 図4Bは、本開示の実施形態に係るペリクル膜111の自立膜領域をシリコン基板120上に転写した後の状態を説明するための説明図である。
~Method for measuring thickness of pellicle membrane~
[Preparation]
Preparations for thickness measurements will be described with reference to FIGS. 4A and 4B.
FIG. 4A is an explanatory diagram for explaining a state before the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure is transferred onto the silicon substrate 120. FIG.
FIG. 4B is an explanatory diagram for explaining a state after the self-supporting film region of the pellicle film 111 according to the embodiment of the present disclosure has been transferred onto the silicon substrate 120. FIG.
 ペリクル膜の厚みは、ペリクル膜111のうち自立膜領域に対応する部位1110(以下、「自立膜部1110」ともいう。)のみをシリコン基板120に転写し、膜厚み測定装置を用いて、自立膜部1110の特定の部位の厚みを測定することで得られる。 The thickness of the pellicle film is measured by transferring only a portion 1110 of the pellicle film 111 corresponding to the self-supporting film region (hereinafter also referred to as “self-supporting film portion 1110”) to the silicon substrate 120 and measuring the thickness of the self-supporting film using a film thickness measuring device. It is obtained by measuring the thickness of a specific portion of the film portion 1110 .
 具体的に、まず、図4Aに示すように、シリコン基板120に溶媒を滴下し、シリコン基板120上に溶媒層121を形成する。次いで、ペリクルのペリクル膜111をシリコン基板120に対向させて、ペリクルをシリコン基板120上に乗せる。シリコン基板120とペリクル膜111との間には、溶媒層121が介在している。
 シリコン基板120は、ペリクル膜111の自立膜領域のサイズよりも大きければよく、4インチ以上のサイズのシリコンウェハを用いることが好ましい。
 溶媒としては、水、有機溶媒などが挙げられる。
Specifically, first, a solvent is dropped onto a silicon substrate 120 to form a solvent layer 121 on the silicon substrate 120, as shown in FIG. 4A. Next, the pellicle is placed on the silicon substrate 120 with the pellicle film 111 of the pellicle facing the silicon substrate 120 . A solvent layer 121 is interposed between the silicon substrate 120 and the pellicle film 111 .
The silicon substrate 120 may be larger than the size of the self-supporting film region of the pellicle film 111, and it is preferable to use a silicon wafer with a size of 4 inches or more.
Water, an organic solvent, etc. are mentioned as a solvent.
 次いで、溶媒層121を乾燥させることによって、ペリクル膜111をシリコン基板120に隙間なく密着させる。次いで、シリコン基板120を固定してペリクルの支持枠112を持ち上げると、図4Bに示すように、自立膜領域はペリクル膜111から分離して、シリコン基板120に残る。つまり、自立膜部1110は、シリコン基板120に転写される。平面視において、自立膜部1110の輪郭は、支持枠112の開口部H112の輪郭に沿っている。ペリクル膜111のうち被支持領域に対応する部位は、支持枠112に付着したままとなる。 Next, by drying the solvent layer 121, the pellicle film 111 is closely attached to the silicon substrate 120 without gaps. Then, when the silicon substrate 120 is fixed and the pellicle support frame 112 is lifted, the self-supporting film region separates from the pellicle film 111 and remains on the silicon substrate 120, as shown in FIG. 4B. In other words, the self-supporting film portion 1110 is transferred to the silicon substrate 120 . In plan view, the contour of the self-supporting film portion 1110 follows the contour of the opening H112 of the support frame 112 . A portion of the pellicle film 111 corresponding to the region to be supported remains attached to the support frame 112 .
〔測定〕
 まず、ペリクル膜上で、任意の測定位置として9点選定する。
 各測定位置について、波長間隔1nm~2nmの範囲で、波長200nm~600nmの範囲における反射率スペクトルを取得する。ただし、反射率の測定条件は以下の通りである。
<条件>
 測定点の直径:20μm
 測定波長:波長200nm~600nm(波長間隔:1.3~1.5nm)
 測定点数:121点
 隣接する測定点における中心点間距離:40μm
〔measurement〕
First, nine arbitrary measurement positions are selected on the pellicle film.
For each measurement position, a reflectance spectrum is acquired in a wavelength range of 200 nm to 600 nm with a wavelength interval of 1 nm to 2 nm. However, the reflectance measurement conditions are as follows.
<Condition>
Measuring point diameter: 20 μm
Measurement wavelength: wavelength 200 nm to 600 nm (wavelength interval: 1.3 to 1.5 nm)
Number of measurement points: 121 points Distance between center points of adjacent measurement points: 40 μm
 そして、CNT膜の光学定数として表1に示す光学定数(屈折率:n、消衰係数:k)の値を用い、空気層/CNT膜の層/シリコン基板の3層モデルを用いて、波長範囲225~500nmにおける反射率スペクトルを最小二乗法により解析を行うことで、各測定位置の厚みを算出する。
 ペリクル膜の厚みは、各測定位置の厚みの平均値とする。
 波長範囲225~500nmにおける反射率スペクトルを最小二乗法により解析を行うことで、各測定位置の厚みを算出する方法について以下に説明する。
Then, using the values of the optical constants (refractive index: n, extinction coefficient: k) shown in Table 1 as the optical constants of the CNT film, using a three-layer model of air layer / CNT film layer / silicon substrate, wavelength The thickness at each measurement position is calculated by analyzing the reflectance spectrum in the range of 225 to 500 nm by the method of least squares.
The thickness of the pellicle film is the average value of the thicknesses at each measurement position.
A method of calculating the thickness at each measurement position by analyzing the reflectance spectrum in the wavelength range of 225 to 500 nm by the method of least squares will be described below.
 厚みは、空気層/CNT膜の層/シリコン基板の3層モデルを用いて、以下の式(a)~式(c)による関係式を用いて算出する。
 なお、図5は、空気層/CNT膜の層/シリコン基板のモデルを示す概略図である。
The thickness is calculated using a three-layer model of air layer/CNT film layer/silicon substrate and using the following relational expressions (a) to (c).
FIG. 5 is a schematic diagram showing a model of air layer/layer of CNT film/silicon substrate.
 反射率Rsは、振幅反射率rを用いて以下の式(a)で表される。 The reflectance Rs is represented by the following formula (a) using the amplitude reflectance rs .
Figure JPOXMLDOC01-appb-M000001

 
 
Figure JPOXMLDOC01-appb-M000001

 
 
 上記式(a)中、*は複素共役を表す。 In the above formula (a), * represents a complex conjugate.
 空気層/CNT膜の層/シリコン基板の3層からの振幅反射率rは以下の式(b)で表される。 The amplitude reflectance r s from the three layers of air layer/CNT film layer/silicon substrate is expressed by the following equation (b).
Figure JPOXMLDOC01-appb-M000002

 
 
Figure JPOXMLDOC01-appb-M000002

 
 
 上記式(b)中、r01は空気層とCNT膜の層の界面からの振幅反射率を表し、r12はCNT膜の層とシリコン基板層の界面からの振幅反射率を表し、iは虚数単位を表す。
 上記式(b)中、δは波長λの光が膜内を1往復する場合に生じる位相差であり、以下の式(c)で表される。
In the above formula (b), r01 represents the amplitude reflectance from the interface between the air layer and the CNT film layer, r12 represents the amplitude reflectance from the interface between the CNT film layer and the silicon substrate layer, and i Represents an imaginary unit.
In the above formula (b), δ is the phase difference that occurs when light of wavelength λ makes one round trip in the film, and is expressed by the following formula (c).
Figure JPOXMLDOC01-appb-M000003

 
 
Figure JPOXMLDOC01-appb-M000003

 
 
 上記式(c)中、dは厚みを表し、Nは複素屈折率(N=n-ik)を表し、φは入射角を表す。また、iは虚数単位を表す。  In the above formula (c), d represents the thickness, N represents the complex refractive index (N=n−ik), and φ represents the angle of incidence. Moreover, i represents an imaginary unit.
 厚みは、上記式(a)~式(c)による関係式を用いて、波長範囲225~500nmにおける反射率Rsに対して厚みdを変数として、最小二乗法により計算することで得られる。 The thickness is obtained by calculating the thickness d with respect to the reflectance Rs in the wavelength range of 225 to 500 nm by the method of least squares using the relational expressions of the above formulas (a) to (c).
 図6は、不均一なCNT膜をシリコン基板上に転写したサンプルについて、上述した方法にて、波長285nmの反射率及び厚みを測定した場合の、反射率と厚みとの関係をプロットしたグラフである。
 図6に示す通り、上述の方法により、反射率の値によって厚みの違いを精度よく求めることができている。
FIG. 6 is a graph plotting the relationship between reflectance and thickness when the reflectance and thickness at a wavelength of 285 nm are measured by the above-described method for a sample in which a non-uniform CNT film is transferred onto a silicon substrate. be.
As shown in FIG. 6, the difference in thickness can be obtained with high accuracy from the reflectance value by the above-described method.
Figure JPOXMLDOC01-appb-T000004

 
 
Figure JPOXMLDOC01-appb-T000004

 
 
[ペリクル膜の物性]
(放熱性及び耐熱性について)
 露光の際の光として、例えばEUVを用いる場合、EUVのエネルギーが様々な緩和過程を経て熱に変わる。そのため、ペリクル膜は放熱性及び耐熱性を備えることが求められる。
 本開示のペリクル膜は、CNTを含むことで、放熱性及び耐熱性を兼ね備えることができ、EUVリソグラフィー中に、ペリクル膜が破損するおそれが少ない。
 したがって、従来の多結晶シリコンからなるペリクル膜は耐熱性が低く、EUV光照射中に熱的ダメージを受けて変形、あるいは、破損しやすいという問題がある一方、本開示のペリクル膜を用いることによって原版を良好に保護することができる。
 CNTを含むペリクル膜が放熱性及び耐熱性を兼ね備える理由等の詳細については、再表2015/178250号公報に記載の通りである。
[Physical properties of pellicle membrane]
(About heat dissipation and heat resistance)
When, for example, EUV is used as the light for exposure, the energy of the EUV is converted into heat through various relaxation processes. Therefore, the pellicle film is required to have heat dissipation properties and heat resistance.
Since the pellicle film of the present disclosure contains CNTs, it can have both heat dissipation and heat resistance, and the pellicle film is less likely to be damaged during EUV lithography.
Therefore, conventional pellicle films made of polycrystalline silicon have low heat resistance and are susceptible to deformation or breakage due to thermal damage during EUV light irradiation. The original plate can be well protected.
The details of why the pellicle film containing CNTs has both heat dissipation and heat resistance are as described in Re-Table 2015/178250.
<支持枠>
 本開示のペリクルは、ペリクル膜を支持する支持枠を含む。
 支持枠は、ペリクル膜を支持するためのものである。
<Support frame>
A pellicle of the present disclosure includes a support frame that supports a pellicle membrane.
The support frame is for supporting the pellicle membrane.
 支持枠は、ペリクル及び原版に囲まれた領域と、EUV露光装置内との気圧を一定とするための通気孔と、を有していてもよい。なお、通気孔を設けない場合であっても、本開示のペリクル膜は不織布形状であり通気性を有しているため、真空環境及び減圧環境を作り出すことが可能である。
 不織布形状で通気性を有するペリクル膜の例として、カーボンナノチューブからなるペリクル膜が挙げられる。
 EUV光による露光は、真空環境(減圧環境)下で行われるため、減圧及び復圧の際に、ペリクル膜が、圧力差によって伸縮又は破損するおそれがある。通気孔には、ペリクル及び原版に囲まれた領域に異物が入らないよう、フィルターが配設されることが好ましい。
 フィルターとしては、ULPA(Ultra Low Penetration Air)フィルター、金属メッシュなどが挙げられる。また、支持枠14は検査しやすいように露光に支障が無い範囲で着色されていてもよい。
The support frame may have a region surrounded by the pellicle and the original, and a vent hole for maintaining a constant air pressure in the EUV exposure apparatus. It should be noted that even if no ventilation holes are provided, the pellicle membrane of the present disclosure is in the form of a non-woven fabric and has air permeability, so it is possible to create a vacuum environment and a reduced pressure environment.
A pellicle membrane made of carbon nanotubes is given as an example of a pellicle membrane having a non-woven fabric shape and air permeability.
Since exposure to EUV light is performed in a vacuum environment (reduced pressure environment), the pellicle film may expand, contract or break due to the pressure difference during decompression and pressure recovery. A filter is preferably provided in the ventilation hole so that foreign matter does not enter the area surrounded by the pellicle and the master.
Examples of filters include ULPA (Ultra Low Penetration Air) filters and metal meshes. Further, the support frame 14 may be colored within a range that does not interfere with exposure so as to facilitate inspection.
 支持枠の材質、形状などは、本開示のペリクル膜を支持可能な枠であれば特に制限されない。
 支持枠は、材質として、アルミニウム、チタン、ステンレス、セラミック系材料(例えばシリコン、ガラス等)、炭素、ポリエチレンなどの樹脂等を含有してもよい。
 上記の中でも、支持枠は、水の含有量が多くなくアウトガスの量を抑制できる観点から、材質として、アルミニウム、チタン、ステンレス、シリコン、ガラス、又は炭素を含有することが好ましく、アルミニウム、チタン、シリコン、又は炭素を含有することがより好ましい。
The material, shape, etc. of the support frame are not particularly limited as long as the frame can support the pellicle membrane of the present disclosure.
The material of the support frame may include aluminum, titanium, stainless steel, ceramic materials (eg, silicon, glass, etc.), carbon, resin such as polyethylene, and the like.
Among the above, the support frame preferably contains aluminum, titanium, stainless steel, silicon, glass, or carbon as a material from the viewpoint of suppressing the amount of outgassing without having a large water content. It is more preferable to contain silicon or carbon.
 支持枠は、ペリクル膜を支持する第1の支持枠と、第1の支持枠に接続される第2の支持枠と、を備えていてもよい。
 また、支持枠が、第1の支持枠と第2の支持枠とを備える場合、第1の支持枠と第2の支持枠とは接着剤層を介して接着されていてもよい。
 例えば、本開示において、第1の支持枠に第2の支持枠を接続する構成を有する支持枠を備えるペリクルは、ペリクル膜を支持する第1の支持枠を製造する者及び第1の支持枠に第2の支持枠を接続する者の複数で協力して製造してもよい。
 本開示のペリクルは、第2の支持枠に接続される前段階における、ペリクル膜と第1の支持枠とを備える構成も含む。
The support frame may include a first support frame that supports the pellicle membrane and a second support frame that is connected to the first support frame.
Moreover, when the support frame includes a first support frame and a second support frame, the first support frame and the second support frame may be adhered via an adhesive layer.
For example, in the present disclosure, a pellicle comprising a support frame having a configuration for connecting a second support frame to a first support frame is provided by a person who manufactures the first support frame that supports the pellicle membrane and a person who manufactures the first support frame. A plurality of persons who connect the second support frame to the second support frame may cooperate in manufacturing.
The pellicle of the present disclosure also includes a configuration including a pellicle membrane and a first support frame in a stage prior to being connected to the second support frame.
 支持枠は、表面を疎水性とするような処理を施すことが好ましく、水の含有量が多くない材料(例えば無機材料、セラミック系材料等)を用いて表面をコーティングすることも好ましい。 The support frame is preferably treated to make the surface hydrophobic, and it is also preferable to coat the surface with a material that does not contain much water (for example, inorganic material, ceramic material, etc.).
 ペリクル膜を支持枠へ固定する手順や方法は特に制限されない。ペリクル膜が支持枠に直接接触していてもよく、支持枠とペリクル膜とを接着剤層を介して固定してもよい。ペリクル膜が支持枠に接触しているとは、接着剤層を介さず張り付いている状態を表す。
 ペリクル膜が支持枠に接触している構成に該当する場合に、ペリクル膜を支持枠に結合させるために、何らかの材料を用いて、ペリクル膜及び/又は支持枠にコーティング層等の異なる層を設けてもよい。
 また、エッチングされた基板を支持枠の一部として使用してもよい。例えば、金属、シリコン基板、ガラス、樹脂、塩など、特定の処理方法で除去できる基板の上にペリクル膜を積層してもよく、その後に、ペリクル膜の配置面と反対面の基板表面に、枠のサイズに合わせてマスクを施し、マスク形状を残してエッチングまたは溶解させてもよい。これにより、基板の一部を支持枠として使用したペリクルを得ることができる。
The procedure and method for fixing the pellicle membrane to the support frame are not particularly limited. The pellicle membrane may be in direct contact with the support frame, or the support frame and the pellicle membrane may be fixed via an adhesive layer. The pellicle film being in contact with the support frame means that the pellicle film is attached without an adhesive layer interposed therebetween.
When the pellicle membrane is in contact with the support frame, the pellicle membrane and/or the support frame are provided with a different layer, such as a coating layer, using some material to bond the pellicle membrane to the support frame. may
Alternatively, an etched substrate may be used as part of the support frame. For example, a pellicle film may be laminated on a substrate that can be removed by a specific treatment method, such as a metal, silicon substrate, glass, resin, or salt, and then, on the surface of the substrate opposite to the surface on which the pellicle film is placed, A mask may be applied according to the size of the frame and etched or dissolved leaving the mask shape. As a result, a pellicle using part of the substrate as a support frame can be obtained.
 基板の形状を枠形状と合わせるためのトリミング方法は特に制限されない。シリコン基板を用いる場合には、機械的にウエハを割る方法や、レーザートリミングの方法を用いることができる。 The trimming method for matching the substrate shape with the frame shape is not particularly limited. When using a silicon substrate, a method of mechanically dividing the wafer or a method of laser trimming can be used.
<接着剤層>
 本開示のペリクルは、接着剤を含有する接着剤層を含んでもよい。
 接着剤層の態様としては、例えば、以下の(a)~(c)が挙げられる。
(a)支持枠と原版とを接着させる接着剤層(原版用接着剤層ともいう)
(b)支持枠が複数ある場合において、複数の支持枠同士を接着させる接着剤層(支持枠用接着剤層ともいう)
(c)ペリクル膜と支持枠とを接着させる接着剤層(膜用接着剤層ともいう。本開示のペリクルは膜用接着剤層を含まない場合もあり得る。)
<Adhesive layer>
A pellicle of the present disclosure may include an adhesive layer containing an adhesive.
Examples of aspects of the adhesive layer include the following (a) to (c).
(a) Adhesive layer for adhering the support frame and the original (also referred to as the original adhesive layer)
(b) When there are a plurality of support frames, an adhesive layer for bonding the plurality of support frames (also referred to as a support frame adhesive layer)
(c) Adhesive layer for bonding the pellicle membrane and the support frame (also referred to as a membrane adhesive layer. The pellicle of the present disclosure may not include a membrane adhesive layer).
(接着剤)
 接着剤層に含有される接着剤としては、特に制限はない。
 例えば、接着剤は、アクリル樹脂接着剤、エポキシ樹脂接着剤、ポリイミド樹脂接着剤、シリコーン樹脂接着剤、無機系接着剤、両面粘着テープ、又はポリオレフィン系接着剤、水添スチレン系接着剤等が挙げられる。
 上記の中でも、接着剤は、塗布加工のしやすさや、硬化加工処理の容易さの観点から、シリコーン樹脂接着剤、アクリル樹脂接着剤、水添スチレン系接着剤及びエポキシ樹脂接着剤からなる群から選択される少なくとも1つであることが好ましい。
 本開示において、接着剤は、接着剤のみならず粘着剤も含む概念である。
 ペリクルの全周に沿って接着剤を塗布する場合、接着剤層の厚みは、1μm以上、1mm以下であってもよく、好ましくは5μm~500μmであり、さらに好ましくは10~300μmであり、特に好ましくは10~250である。
(glue)
The adhesive contained in the adhesive layer is not particularly limited.
Examples of adhesives include acrylic resin adhesives, epoxy resin adhesives, polyimide resin adhesives, silicone resin adhesives, inorganic adhesives, double-sided adhesive tapes, polyolefin adhesives, and hydrogenated styrene adhesives. be done.
Among the above adhesives, the adhesive is selected from the group consisting of silicone resin adhesives, acrylic resin adhesives, hydrogenated styrene adhesives, and epoxy resin adhesives, from the viewpoint of ease of application processing and ease of curing processing. At least one is preferably selected.
In the present disclosure, an adhesive is a concept that includes not only adhesives but also adhesives.
When the adhesive is applied along the entire circumference of the pellicle, the thickness of the adhesive layer may be 1 μm or more and 1 mm or less, preferably 5 μm to 500 μm, more preferably 10 to 300 μm, particularly It is preferably 10-250.
<酸化防止層>
 本開示のペリクルの変形例として、ペリクルを形成するペリクル膜が、膜の両面に酸化防止層を含んでいてもよい。
 ペリクル膜が酸化防止層を含むことで、EUV光照射又はペリクル保管の際に、ペリクル膜の酸化を抑制することができる。なお、ペリクル膜は、ペリクル膜の片面側のみに酸化防止層を含んでいてもよい。
<Antioxidation layer>
As a variation of the pellicle of the present disclosure, the pellicle membrane forming the pellicle may include an antioxidant layer on both sides of the membrane.
By including the antioxidant layer in the pellicle film, oxidation of the pellicle film can be suppressed during EUV light irradiation or pellicle storage. Note that the pellicle film may include an antioxidant layer only on one side of the pellicle film.
(ペリクルの用途)
 本開示のペリクルは、EUV露光装置内で、原版に異物が付着することを抑制するための保護部材としてだけでなく、原版の保管時や、原版の運搬時に原版を保護するための保護部材としてもよい。例えば、原版にペリクルを装着した状態(露光原版)にしておけば、EUV露光装置から取り外した後、そのまま保管すること等が可能となる。ペリクルを原版に装着する方法には、接着剤で貼り付ける方法、静電吸着法、機械的に固定する方法等がある。
(Usage of pellicle)
The pellicle of the present disclosure is used not only as a protective member for suppressing foreign matter from adhering to the original in the EUV exposure apparatus, but also as a protective member for protecting the original during storage and transportation of the original. good too. For example, if the pellicle is attached to the master plate (exposure master plate), it can be stored as it is after being removed from the EUV exposure apparatus. Methods for mounting the pellicle on the master plate include a method of pasting with an adhesive, an electrostatic adsorption method, a method of mechanically fixing the pellicle, and the like.
 本開示のペリクルは、波長が短い露光光(例えば、EUV光、EUV光よりも更に波長が短い光、等)を用いた露光に好適に用いられる。
 上記の中でも、本開示のペリクルは、EUV光を用いた露光に好適に用いられる。
The pellicle of the present disclosure is suitably used for exposure using exposure light with a short wavelength (eg, EUV light, light with a shorter wavelength than EUV light, etc.).
Among the above, the pellicle of the present disclosure is suitably used for exposure using EUV light.
 本開示において、EUV(Extreme Ultra Violet:極端紫外)光とは、波長1nm以上30nm以下の光を指す。
 EUV光の波長は、5nm以上13.5nm以下が好ましい。
 本開示では、EUV光、及び、EUV光よりも波長が短い光を総称し、「EUV光等」ということがある。
In the present disclosure, EUV (Extreme Ultra Violet) light refers to light with a wavelength of 1 nm or more and 30 nm or less.
The wavelength of EUV light is preferably 5 nm or more and 13.5 nm or less.
In the present disclosure, EUV light and light with a shorter wavelength than EUV light may be collectively referred to as "EUV light, etc.".
≪ペリクルの製造方法≫
 本開示のペリクルの製造方法は、本開示のペリクルを製造する方法であって、カーボンナノチューブを含むペリクル膜を準備する工程と、下記工程(1)及び下記工程(2)の少なくとも一方の工程と、を含む。
 工程(1)は、
 ペリクル膜の膜面に2Pa以上20Pa以下の圧力を加える工程と、
 ペリクル膜に圧力を加えられた状態のペリクル膜を支持枠に張り付ける工程と、を含む工程である。
 工程(2)は、
 ペリクル膜を600℃以上1500℃以下に加熱する工程と、
 加熱後のペリクル膜を伸ばした状態で支持枠に張り付ける工程と、
を含む工程である。
<<Manufacturing method of pellicle>>
A method for manufacturing a pellicle of the present disclosure is a method of manufacturing a pellicle of the present disclosure, comprising a step of preparing a pellicle film containing carbon nanotubes, and at least one of the following steps (1) and (2). ,including.
Step (1) is
a step of applying a pressure of 2 Pa or more and 20 Pa or less to the film surface of the pellicle film;
affixing the pellicle membrane with pressure applied to the pellicle membrane to the support frame.
Step (2) is
a step of heating the pellicle film to 600° C. or more and 1500° C. or less;
a step of attaching the heated pellicle membrane to a support frame in a stretched state;
It is a step including
 本開示のペリクルの製造方法としては、工程(1)を含んでもよく、工程(2)を含んでもよく、工程(1)及び工程(2)の両方の工程を含んでもよい。
 工程(1)を含む本開示のペリクルの製造方法としては、以下の実施形態Aが挙げられる。工程(2)を含む本開示のペリクルの製造方法としては、以下の実施形態Bが挙げられる。
The method for manufacturing the pellicle of the present disclosure may include step (1), may include step (2), or may include both steps (1) and (2).
A method for manufacturing a pellicle of the present disclosure including step (1) includes Embodiment A below. A method for manufacturing a pellicle of the present disclosure including step (2) includes Embodiment B below.
(実施形態A)
 実施形態Aのペリクルの製造方法は、本開示のペリクルを製造する方法であって、カーボンナノチューブを含むペリクル膜を準備する工程(準備工程ともいう)と、前記ペリクル膜の膜面に2Pa以上20Pa以下の圧力を加える工程(加圧工程ともいう)と、前記ペリクル膜に前記圧力を加えられた状態のペリクル膜を支持枠に張り付ける工程(張付工程ともいう)と、を含む。
 準備工程により準備したペリクル膜を、加圧工程及び張付工程により支持枠に張り付けることで、上述の本開示のペリクルを製造することができる。
(Embodiment A)
The method for manufacturing a pellicle according to Embodiment A is a method for manufacturing a pellicle according to the present disclosure, comprising a step of preparing a pellicle film containing carbon nanotubes (also referred to as a preparation step), and It includes the following steps of applying pressure (also referred to as a pressurizing step) and a step of attaching the pellicle membrane to a support frame while the pressure is applied to the pellicle film (also referred to as an attaching step).
The pellicle of the present disclosure described above can be manufactured by attaching the pellicle membrane prepared in the preparation step to the support frame in the pressing step and the attaching step.
<準備工程>
 準備工程は、CNTを含むペリクル膜を準備する工程である。
 CNTは、市販品を入手して準備してもよく、製造して準備してもよい。
<Preparation process>
The preparation step is a step of preparing a pellicle film containing CNTs.
CNT may be prepared by obtaining a commercially available product, or may be prepared by manufacturing.
 CNTとしては、反応系に金属触媒を存在させ、かつ反応雰囲気に酸化剤を添加するCVD(ChemicalVaporDeposition:化学気相成長法)法によって、化学気相成長用基材上に形成されたものを用いることが好ましい。
 CVD法としては、例えばプラズマCVD法が用いられるが、低圧CVD、または熱CVD法を用いてもよい。
 このとき、上記酸化剤には水蒸気が用いられる。水蒸気の濃度としては10ppm以上10000ppm以下であってもよく、600℃以上1000℃以下の温度環境下において水蒸気を添加してもよい。
As the CNT, those formed on a substrate for chemical vapor deposition by a CVD (Chemical Vapor Deposition) method in which a metal catalyst is present in the reaction system and an oxidizing agent is added to the reaction atmosphere are used. is preferred.
As the CVD method, for example, a plasma CVD method is used, but a low-pressure CVD method or a thermal CVD method may also be used.
At this time, water vapor is used as the oxidizing agent. The concentration of water vapor may be 10 ppm or more and 10000 ppm or less, and water vapor may be added in a temperature environment of 600° C. or more and 1000° C. or less.
 また、金属触媒を化学気相成長用基材上に配置あるいはパターニングしてCNTを合成してもよい。
 また、得られるCNTは、単層であっても複層であってもよく、化学気相成長用基材面に対して垂直方向に立設するCNTであってもよい。
 詳細には、たとえば国際公開2006/011655号等を参照して製造することができる。
 このようなCNTの市販品としては、例えば、日本ゼオン株式会社が販売しているスーパーグロース製法のCNTが挙げられる。
Alternatively, CNTs may be synthesized by arranging or patterning a metal catalyst on a substrate for chemical vapor deposition.
The obtained CNTs may be single-layered or multi-layered, and may be CNTs erected in a direction perpendicular to the surface of the substrate for chemical vapor deposition.
For details, it can be manufactured with reference to, for example, International Publication No. 2006/011655.
Commercially available products of such CNTs include, for example, CNTs produced by the super-growth method sold by Zeon Corporation.
 CNT(CNTバルク構造体でもよい)としては、改良直噴熱分解合成法(EnhancedDirectInjectionPyrolyticSynthesis、以下、e-DIPS法という)法によって製造されたものを用いることが好ましい。
 直噴熱分解合成法(DirectInjectionPyrolyticSynthesis、以下、DIPS法という)とは、触媒(あるいは触媒前駆体)、及び反応促進剤を含む炭化水素系の溶液をスプレーで霧状にして高温の加熱炉に導入することによって、流動する気相中で単層CNTを合成する気相流動法である。
 このDIPS法を改良したe-DIPS法とは、触媒で使用されるフェロセンが反応炉内の上流下流側で粒子径が異なるという粒子形成過程に着目し、有機溶媒のみを炭素源として用いてきたDIPS法とは異なり、キャリアガス中に比較的分解されやすい。すなわち炭素源となりやすい第2の炭素源を混合することによって単層CNTの成長ポイントを制御した方法である。
 詳細には、Saitoetal.,J.Nanosci.Nanotechnol.,8(2008)6153-6157を参照して製造することができる。
 このようなCNTの市販品としては、例えば、名城ナノカーボン社製の商品名「MEIJOeDIPS」が挙げられる。
As CNTs (which may be CNT bulk structures), those produced by an enhanced direct injection pyrolytic synthesis method (hereinafter referred to as e-DIPS method) are preferably used.
Direct injection pyrolysis synthesis method (DirectInjection PyrolyticSynthesis, hereinafter referred to as DIPS method) is a hydrocarbon-based solution containing a catalyst (or catalyst precursor) and a reaction accelerator, which is atomized by spraying and introduced into a high-temperature heating furnace. This is a gas-phase flow method for synthesizing single-walled CNTs in a flowing gas phase by
The e-DIPS method, which is an improvement of the DIPS method, focuses on the particle formation process in which the ferrocene used in the catalyst has different particle sizes on the upstream and downstream sides in the reactor, and uses only an organic solvent as a carbon source. Unlike the DIPS method, it is relatively easy to decompose in the carrier gas. That is, it is a method in which the growth point of single-walled CNTs is controlled by mixing a second carbon source that tends to be a carbon source.
For details, see Saito et al. , J. Nanosci. Nanotechnol. , 8 (2008) 6153-6157.
Commercially available products of such CNTs include, for example, Meijo Nano Carbon Co., Ltd.'s product name "MEIJOeDIPS".
 準備工程において、ペリクル膜を準備する方法としては、例えば、カーボンナノチューブをシート状に成膜してペリクル膜を製造する方法が挙げられる。
 CNTをシート状に成膜する方法としては特に制限はないが、例えば、基板上において、CNTをシート状に成膜する方法であってもよい。
 以下に、具体的に説明する。
 CVD法及びe-DIPS法などで得られたCNT(またはCNTバルク構造体)は、溶媒中に分散した状態で用いられ得る。
 CNT(またはCNTバルク構造体)が分散した液体(分散液)を基板上に塗布し、溶媒を蒸発させて除去することにより基板上にCNT膜が形成される。
 本の場合、分散液に用いた溶媒が除去されることにより、基板110の表面に対してCNTが略平行である膜が得られる。
 上記塗布方法は特に限定されず、例えば、スピンコート、ディップコート、バーコート、スプレーコート、エレクトロスプレーコートなどが用いられてもよい。
 なお、CNT形成に用いる金属触媒はEUV透過率低下の原因となる場合があるが、化学気相成長用基材からCNTを剥離した際に、CNT中に金属触媒はほとんど含まれないため影響はない。
In the preparation step, as a method of preparing the pellicle film, for example, a method of forming a sheet of carbon nanotubes into a film to manufacture the pellicle film can be mentioned.
The method of forming a sheet of CNTs is not particularly limited, but for example, a method of forming a sheet of CNTs on a substrate may be used.
A specific description will be given below.
CNTs (or CNT bulk structures) obtained by the CVD method, e-DIPS method, etc. can be used in a state of being dispersed in a solvent.
A CNT film is formed on the substrate by applying a liquid (dispersion) in which CNTs (or CNT bulk structures) are dispersed on the substrate and removing the solvent by evaporation.
In the case of books, a film in which the CNTs are substantially parallel to the surface of the substrate 110 is obtained by removing the solvent used in the dispersion.
The coating method is not particularly limited, and for example, spin coating, dip coating, bar coating, spray coating, electrospray coating, etc. may be used.
The metal catalyst used for CNT formation may cause a decrease in EUV transmittance, but when the CNTs are peeled off from the chemical vapor deposition substrate, there is almost no metal catalyst in the CNTs, so there is no effect. do not have.
 基板としては、無機材料を用いてもよい。
 例えば、基板には、シリコン(Si)が用いられてもよい。なお、基板は、シリコン(Si)に限定されず、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe)、炭化シリコン(SiC)、砒化ガリウム(GaAs)などの半導体材料でもよいし、石英ガラス基板(酸化シリコン(SiO))、ソーダガラス基板、ホウ珪酸ガラス基板、サファイア基板などのガラス基板、窒化シリコン(SiN)、窒化アルミニウム(AlN)基板、ジルコニア(ZrO)基板、酸化アルミニウム(Al)などでもよい。
 また、基板には、CNT膜との熱ひずみを低減する観点からは、ペリクル膜と線熱膨張率の近いシリコン、サファイア、炭化シリコンの少なくともいずれかを含むことが好ましい。
 また、シリコン(Si)は、単結晶シリコン、多結晶シリコン、微結晶シリコン、及びアモルファスシリコンのいずれであってもよいが、単結晶シリコンがエッチング効率の観点、及び、汎用性が高く安価である観点からは好ましい。
 基板の形状は、円形でもよいし、矩形でもよい。
 基板の厚みは、特に限定されないが、100μm以上1000μm以下、取り扱い上の観点から好ましくは200μm以上1000μm以下であることが好ましい。
An inorganic material may be used as the substrate.
For example, silicon (Si) may be used for the substrate. The substrate is not limited to silicon (Si), and may be a semiconductor material such as germanium (Ge), silicon germanium (SiGe), silicon carbide (SiC), gallium arsenide (GaAs), or a quartz glass substrate (silicon oxide). (SiO 2 )), glass substrates such as soda glass substrates, borosilicate glass substrates, sapphire substrates, silicon nitride (SiN), aluminum nitride (AlN) substrates, zirconia (ZrO 2 ) substrates, aluminum oxide (Al 2 O 3 ) etc.
From the viewpoint of reducing thermal strain with the CNT film, the substrate preferably contains at least one of silicon, sapphire, and silicon carbide, which have a coefficient of linear thermal expansion close to that of the pellicle film.
Further, silicon (Si) may be any of single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon, but single crystal silicon is highly versatile and inexpensive from the viewpoint of etching efficiency. It is preferable from the point of view.
The shape of the substrate may be circular or rectangular.
The thickness of the substrate is not particularly limited, but is preferably 100 μm or more and 1000 μm or less, preferably 200 μm or more and 1000 μm or less from the viewpoint of handling.
<加圧工程>
 実施形態Aのペリクルの製造方法は、ペリクル膜の膜面に2Pa以上20Pa以下の圧力を加える工程(加圧工程ともいう)を含む。
 実施形態Aのペリクルの製造方法は、加圧工程を含むことで、ペリクル膜中のCNTの繊維を曲がった状態から伸びた状態にすることができる。
 また、CNTの繊維が伸びた状態を保持したまま、後述の張付工程を行うことで、ペリクル膜のたるみを抑制することができる。
<Pressurization process>
The method for manufacturing a pellicle according to Embodiment A includes a step of applying a pressure of 2 Pa or more and 20 Pa or less to the surface of the pellicle membrane (also referred to as a pressurization step).
The pellicle manufacturing method of Embodiment A includes a pressurizing step, so that the CNT fibers in the pellicle membrane can be stretched from a bent state.
In addition, the pellicle membrane can be prevented from sagging by performing the later-described attaching step while the CNT fibers are kept stretched.
 ペリクル膜の膜面に加える圧力が2Pa以上であることで、ペリクル膜中のCNTの繊維をより良好に伸びた状態にすることができる。
 上記の観点から、ペリクル膜の膜面に加える圧力は、3Pa以上であることが好ましい。
 ペリクル膜の膜面に加える圧力が20Pa以下であることで、ペリクル膜の破損を防止することができる。
 上記の観点から、ペリクル膜の膜面に加える圧力は、15Pa以下であることが好ましく、10Pa以下であることがより好ましく、7Pa以下であることがさらに好ましい。
When the pressure applied to the membrane surface of the pellicle membrane is 2 Pa or more, the CNT fibers in the pellicle membrane can be stretched more satisfactorily.
From the above point of view, the pressure applied to the surface of the pellicle membrane is preferably 3 Pa or more.
When the pressure applied to the surface of the pellicle membrane is 20 Pa or less, damage to the pellicle membrane can be prevented.
From the above viewpoint, the pressure applied to the surface of the pellicle membrane is preferably 15 Pa or less, more preferably 10 Pa or less, and even more preferably 7 Pa or less.
 ペリクル膜の膜面に圧力を加える方法としては、例えば、ペリクル膜を支持枠よりも一回り大きい矩形枠に張り付けた後、ペリクル膜が貼り付けられた矩形枠に対して、差圧付加装置を用いて圧力を付加する方法が挙げられる。 As a method of applying pressure to the film surface of the pellicle membrane, for example, after the pellicle membrane is attached to a rectangular frame that is slightly larger than the support frame, a differential pressure applying device is applied to the rectangular frame to which the pellicle membrane is attached. A method of applying pressure using a
<張付工程>
 実施形態Aのペリクルの製造方法は、前記ペリクル膜に前記圧力を加えた状態でペリクル膜を支持枠に張り付ける工程(張付工程ともいう)を含む。
 張付工程は、ペリクル膜を、開口部を有する支持枠の上記開口部を覆うように支持枠に接続する工程である。
 張付工程において、上述のペリクル膜と基板とを分離した後、分離したペリクル膜を支持枠(即ちペリクル枠)に接続してもよい。
<Affixing process>
The method of manufacturing a pellicle according to Embodiment A includes a step of attaching the pellicle membrane to a support frame while the pressure is applied to the pellicle membrane (also referred to as an attaching step).
The attaching step is a step of connecting the pellicle film to the support frame so as to cover the opening of the support frame having the opening.
In the attaching step, after the pellicle film and the substrate are separated, the separated pellicle film may be connected to a support frame (that is, a pellicle frame).
 ペリクル膜と基板とを分離する方法としては、特に限定されないが、例えば以下の製造例が挙げられる。 The method for separating the pellicle film and the substrate is not particularly limited, but the following manufacturing examples are given.
(基板上に犠牲層を積層して後に除去する方法)
 基板上に犠牲層を積層し、その上にペリクル膜を形成して、後で犠牲層を除去することで自立膜を得ることができる。
 犠牲層は、金属、酸化膜、樹脂、塩など、特定の処理方法で除去できるものとすることができる。例えば、犠牲層は、酸性溶液に溶けるアルミニウムなどの金属でありうる。具体的には、蒸着やスパッタなどでガラス基板やシリコン基板の表面に金属層を積層し、さらに金属層の上にペリクル膜を積層した後に、酸性溶液など金属層を溶かすことができる溶液に浸漬することによって、基板から膜を剥離することができる。
(Method of laminating a sacrificial layer on a substrate and removing it later)
A self-supporting film can be obtained by laminating a sacrificial layer on a substrate, forming a pellicle film thereon, and removing the sacrificial layer later.
The sacrificial layer can be metals, oxides, resins, salts, etc. that can be removed by a particular treatment method. For example, the sacrificial layer can be a metal such as aluminum that dissolves in acidic solutions. Specifically, a metal layer is laminated on the surface of a glass substrate or a silicon substrate by vapor deposition or sputtering, and a pellicle film is further laminated on the metal layer, and then immersed in a solution such as an acid solution that can dissolve the metal layer. By doing so, the film can be separated from the substrate.
 基板として、自然酸化膜又は酸化ケイ素層を有するシリコン基板を用いた場合には、シリコン基板上の自然酸化膜又は酸化ケイ素層にペリクル膜をコーティングした後に、フッ酸水溶液に浸漬することによって自然酸化膜又は酸化ケイ素層を除去し、基板からペリクル膜を剥離することもできる。 When a silicon substrate having a natural oxide film or a silicon oxide layer is used as the substrate, the natural oxide film or silicon oxide layer on the silicon substrate is coated with a pellicle film and then immersed in an aqueous hydrofluoric acid solution for natural oxidation. It is also possible to remove the membrane or silicon oxide layer and peel the pellicle membrane from the substrate.
 基板に積層する犠牲層を、部分けん化ポリビニルアルコール樹脂や塩化ナトリウムなどの塩のような水溶性材料としてもよい。犠牲層の上にペリクル膜を積層した後に、積層体を水に浸漬することによって、基板から膜を剥離することができる。 The sacrificial layer laminated on the substrate may be a water-soluble material such as a partially saponified polyvinyl alcohol resin or a salt such as sodium chloride. After laminating the pellicle film over the sacrificial layer, the film can be peeled off from the substrate by immersing the laminate in water.
 基板上に積層した犠牲層を除去する方法を選定する上で、ペリクル膜のプロセス耐性、膜強度、犠牲層の除去速度、犠牲層の厚み均一性や表面粗さなどの特徴に応じて、もっとも適切な任意の手法を選定することができる。 When selecting a method for removing the sacrificial layer laminated on the substrate, the most suitable method should be selected depending on the process resistance of the pellicle film, film strength, removal rate of the sacrificial layer, thickness uniformity of the sacrificial layer, and surface roughness. Any suitable technique can be chosen.
(基板をエッチングまたは溶解させる方法)
 基板の材質を、金属、酸化膜、樹脂、塩など、特定の処理方法で除去できるものとした場合には、基板の上にペリクル膜を積層したのちに、基板をエッチングまたは溶解させることで、膜を得ることができる。
(Method of etching or dissolving the substrate)
If the material of the substrate is metal, oxide film, resin, salt, or the like, which can be removed by a specific processing method, by etching or dissolving the substrate after laminating a pellicle film on the substrate, membranes can be obtained.
 例えば、基板として銅箔を用いた場合、銅箔表面にペリクル膜を積層した後に、塩化第二銅エッチング液に浸漬することで、銅箔基板をエッチングして基板を除去し、膜を得ることができる。 For example, when a copper foil is used as a substrate, after laminating a pellicle film on the surface of the copper foil, the copper foil substrate is etched by immersing it in a cupric chloride etchant to remove the substrate and obtain a film. can be done.
 基板をガラス基板とした場合、ガラス基板にペリクル膜を積層した後に、フッ化水素酸を用いてガラス基板をエッチングして基板を除去し、膜を得ることができる。 When the substrate is a glass substrate, after laminating a pellicle film on the glass substrate, the substrate can be removed by etching the glass substrate using hydrofluoric acid to obtain the film.
 基板をシリコン基板とした場合、シリコン基板にペリクル膜を積層した後に、ウェットエッチングまたはドライエッチングにより、シリコン基板をエッチングしてシリコン基板を除去し、膜を得ることができる。
 ウェットエッチングは、KOHやTMAH、ヒドラジンなどのエッチング液を用いることができる。ドライエッチングは、フッ素系(SF、CF、NF、PF、BF、CHF、XeF、F+NO)、塩素系(Cl、SiCl)、臭素系(IBr)などのエッチングガスを用いることができる。ウェットエッチング速度は温度によって変化するため、シリコン基板上のCNTを含む薄膜に損傷を与えないようにエッチングするためには、液温を下げエッチングレートを下げることが好ましい。
When the substrate is a silicon substrate, after laminating a pellicle film on the silicon substrate, the silicon substrate is etched by wet etching or dry etching to remove the silicon substrate, whereby the film can be obtained.
Wet etching can use an etchant such as KOH, TMAH, or hydrazine. Dry etching is performed using fluorine-based (SF 6 , CF 4 , NF 3 , PF 5 , BF 3 , CHF 3 , XeF 2 , F 2 +NO), chlorine-based (Cl 2 , SiCl 4 ), bromine-based (IBr), and the like. An etching gas can be used. Since the wet etching rate varies depending on the temperature, it is preferable to lower the liquid temperature and lower the etching rate in order to etch without damaging the thin film containing CNTs on the silicon substrate.
 シリコン基板をドライエッチングする場合には、シリコン基板表面に事前にエッチングストップ層などの層を設けてもよい。
 エッチングストップ層としては、SiOやSiNからなる層などが挙げられる。エッチングストップ層は引張応力が生じる膜により構成されることが好ましい。
 基板及び薄膜の表面に対して平行方向に働く残留応力には引張応力と圧縮応力とがある。薄膜内部に薄膜を拡げようとする力が働くときには引張応力となり、一方で薄膜内部に薄膜を収縮させようとする力が働くときは圧縮応力となる。これらの応力は主に薄膜の製膜過程において生じる。
 残留応力をもたらす要因の一つとして、基板と薄膜との熱膨張率の違いがある。室温に戻すとき基板も薄膜も収縮するがその割合は熱膨張率により異なっており、薄膜の熱膨張率が基板の熱膨張率より大きければ引張応力、逆のときは圧縮応力となる。引張応力が生じる膜により、当該膜上に設けたペリクル膜に張力が加わり、皺のない膜ができるため好ましい。SiNからなる層は引張応力を生じさせるため、シリコン基板をドライエッチングして得られる、ペリクル膜を、皺のない膜とすることができる。エッチングストップ層は、シリコン基板のドライエッチングが終わった後に除去することで、目的とする自立膜を得ることができる。
When dry etching the silicon substrate, a layer such as an etching stop layer may be provided in advance on the surface of the silicon substrate.
Examples of the etching stop layer include layers made of SiO 2 and SiN. The etching stop layer is preferably composed of a film in which tensile stress is generated.
Residual stress acting parallel to the surface of the substrate and thin film includes tensile stress and compressive stress. When a force that tries to expand the thin film acts inside the thin film, it becomes a tensile stress. These stresses are mainly generated during the thin film formation process.
One factor that causes residual stress is the difference in coefficient of thermal expansion between the substrate and the thin film. When the temperature is returned to room temperature, both the substrate and the thin film shrink, but the rate differs depending on the coefficient of thermal expansion. It is preferable because the film in which tensile stress is generated exerts tension on the pellicle film provided on the film, and a wrinkle-free film can be obtained. Since the layer made of SiN generates tensile stress, the pellicle film obtained by dry etching the silicon substrate can be a wrinkle-free film. By removing the etching stop layer after the dry etching of the silicon substrate is completed, the desired self-supporting film can be obtained.
 基板を塩化ナトリウムなどの塩からなる基板とした場合、基板表面にペリクル膜を積層した後に、水に浸漬して基板をエッチングして基板を除去し、膜を得ることができる。
 基板をプラスチック基板とした場合、プラスチック基板表面にペリクル膜を積層した後に、プラスチック基板を可溶な溶媒に浸漬することで、プラスチック基板を溶解させて膜を得ることができる。
When the substrate is made of a salt such as sodium chloride, after laminating a pellicle film on the surface of the substrate, the substrate is immersed in water to etch and remove the substrate, thereby obtaining a film.
When the substrate is a plastic substrate, after laminating a pellicle film on the surface of the plastic substrate, the plastic substrate can be dissolved by immersing the plastic substrate in a soluble solvent to obtain a film.
(基板の表面上を剥離しやすいように前処理を施す方法)
 基板に表面処理を施すことで、ペリクル膜と基板面との相互作用を制御し、溶媒への浸漬や機械的な剥離プロセスにより、基板から膜を容易に剥離することができる。
 ペリクル膜と基板面との相互作用を制御する方法として、例えばシランカップリング剤による表面処理方法が挙げられる。そのほかには、水、有機溶媒、ピラニア溶液、硫酸、UVオゾン処理、などにより基板表面を洗浄する方法が挙げられる。
 基板をシリコン基板とする場合には、過酸化水素水と水酸化アンモニウムとの混合液、塩酸と過酸化水素水との混合液など、RCA洗浄法で用いられる溶液などを使用することができる。
(Method of pre-treating the surface of the substrate so that it can be easily peeled off)
By applying a surface treatment to the substrate, the interaction between the pellicle film and the substrate surface can be controlled, and the film can be easily peeled off from the substrate by immersion in a solvent or a mechanical peeling process.
As a method for controlling the interaction between the pellicle film and the substrate surface, for example, there is a surface treatment method using a silane coupling agent. Other methods include cleaning the substrate surface with water, an organic solvent, a piranha solution, sulfuric acid, UV ozone treatment, and the like.
When the substrate is a silicon substrate, a mixed solution of hydrogen peroxide and ammonium hydroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, and the like, which are used in the RCA cleaning method, can be used.
 犠牲層の製膜、基板上の表面処理は、基板をエッチングまたは溶解させる方法を、それぞれ組み合わせて用いてもよい。犠牲層の製膜又は表面処理に用いられる物質は、ペリクル膜の表面、内部等に残りにくく、また残っても容易な方法で除去できるものが好ましい。
 例えば、ガスによるエッチング、熱による蒸発、溶媒による洗浄、光による分解除去などがあり、それらを組み合わせて除去を実施してもよい。
The deposition of the sacrificial layer and the surface treatment on the substrate may be performed by combining methods of etching or dissolving the substrate. It is preferable that the material used for the formation of the sacrificial layer or the surface treatment does not easily remain on the surface or inside of the pellicle membrane, and if the material remains, it can be easily removed.
For example, etching with gas, vaporization with heat, cleaning with a solvent, decomposition removal with light, etc. may be performed, and removal may be performed by combining them.
<接着剤層形成工程>
 接着剤層形成工程は、支持枠の、ペリクル膜が接続される側とは反対側の開口部における面に対して、接着剤を付与して接着剤層を形成する工程である。
 これによって、フォトマスク等の原版と支持枠とを、接着剤層を介して接着することができる。
 形成された接着剤層の支持枠とは反対側の面に接触するように、セパレータを配置してもよい。これによって、原版と支持枠とを接着剤層を介して接着する時まで、接着剤層の接着性を維持しながら、ペリクルを保管することができる。
<Adhesive Layer Forming Step>
The adhesive layer forming step is a step of forming an adhesive layer by applying an adhesive to the surface of the support frame at the opening on the side opposite to the side to which the pellicle film is connected.
As a result, the original plate such as the photomask and the support frame can be adhered via the adhesive layer.
A separator may be arranged so as to contact the surface of the formed adhesive layer opposite to the support frame. Thus, the pellicle can be stored while maintaining the adhesiveness of the adhesive layer until the original plate and the support frame are adhered via the adhesive layer.
(実施形態B)
 実施形態Bのペリクルの製造方法は、本開示のペリクルを製造する方法であって、前記カーボンナノチューブを含むペリクル膜を準備する工程(準備工程ともいう)と、前記ペリクル膜を600℃以上1500℃以下に加熱する工程(加熱工程ともいう)と、前記ペリクル膜を伸ばした状態で支持枠に張り付ける工程(張付工程ともいう)と、を含む。
 準備工程により準備したペリクル膜を、加熱工程及び張付工程により支持枠に張り付けることで、上述の本開示のペリクルを製造することができる。
(Embodiment B)
A method for manufacturing a pellicle according to Embodiment B is a method for manufacturing a pellicle according to the present disclosure, comprising: a step of preparing a pellicle film containing the carbon nanotubes (also referred to as a preparation step); The following steps include a heating step (also referred to as a heating step) and a step of attaching the pellicle membrane in a stretched state to a support frame (also referred to as an attaching step).
The pellicle of the present disclosure described above can be manufactured by attaching the pellicle membrane prepared in the preparation step to the support frame in the heating step and the attaching step.
 実施形態Bにおける準備工程の具体的態様、好ましい態様等の詳細は、実施形態Aにおける準備工程の具体的態様、好ましい態様等の詳細と同様である。
 実施形態Bにおける張付工程は、ペリクル膜を伸ばした状態で支持枠に張り付ける工程である。
 実施形態Bにおける張付工程は、実施形態Aにおける張付工程と同様に、ペリクル膜を、開口部を有する支持枠の上記開口部を覆うように支持枠に接続する工程である。
 実施形態Bにおける張付工程において、上述のペリクル膜と基板とを分離した後、分離したペリクル膜を支持枠(即ちペリクル枠)に接続してもよい。
 ペリクル膜と基板とを分離する方法の具体的態様、好ましい態様等の詳細は、実施形態Aにおけるペリクル膜と基板とを分離する方法の具体的態様、好ましい態様等の詳細と同様である。
Details such as specific aspects and preferred aspects of the preparation process in Embodiment B are the same as details of specific aspects and preferred aspects of the preparation process in Embodiment A.
The sticking step in Embodiment B is a step of sticking the pellicle membrane in a stretched state to the support frame.
The sticking step in the embodiment B is a step of connecting the pellicle film to the support frame so as to cover the opening of the support frame having the opening, similarly to the sticking step in the embodiment A.
In the attaching step in Embodiment B, after the pellicle film and the substrate are separated, the separated pellicle film may be connected to the support frame (that is, the pellicle frame).
Details such as specific aspects and preferred aspects of the method for separating the pellicle film and the substrate are the same as the details of the specific aspects and preferred aspects of the method for separating the pellicle film and the substrate in Embodiment A.
<加熱工程>
 実施形態Bのペリクルの製造方法は、ペリクル膜を600℃以上1500℃以下に加熱する工程を含む。
 実施形態Bのペリクルの製造方法は、加熱工程を含むことで、ペリクル膜中のCNTの繊維を容易に伸ばすことができる。
 加圧工程においてペリクル膜中のCNTの繊維を容易に伸ばす観点から、加熱の温度は700℃以上であることが好ましい。
 熱によるペリクル膜へのダメージを軽減する観点から、加熱の温度は1300℃以下であることが好ましく、1000℃以下であることがより好ましく、800℃以下であることがさらに好ましい。
<Heating process>
The pellicle manufacturing method of Embodiment B includes a step of heating the pellicle film to 600° C. or more and 1500° C. or less.
The pellicle manufacturing method of Embodiment B includes a heating step, so that the CNT fibers in the pellicle membrane can be easily stretched.
From the viewpoint of easily stretching the CNT fibers in the pellicle membrane in the pressurizing step, the heating temperature is preferably 700° C. or higher.
From the viewpoint of reducing thermal damage to the pellicle film, the heating temperature is preferably 1300° C. or lower, more preferably 1000° C. or lower, and even more preferably 800° C. or lower.
<露光原版>
 本開示の露光原版は、原版と、上記原版に装着された本開示のペリクルと、を含む。
 本開示の露光原版は、本開示のペリクルを備えるので、本開示のペリクルと同様の効果を奏する。
<Exposure master plate>
An exposure master of the present disclosure includes a master and a pellicle of the present disclosure attached to the master.
Since the exposure original plate of the present disclosure includes the pellicle of the present disclosure, it has the same effects as the pellicle of the present disclosure.
 本開示のペリクルに原版を装着する方法は、特に限定されない。例えば、原版を支持枠へ直接貼り付けてもよく、支持枠の一方の端面にある原版用接着剤層を介してもよく、機械的に固定する方法や磁石などの引力を利用して原版と支持枠と、を固定してもよい。 The method of mounting the original on the pellicle of the present disclosure is not particularly limited. For example, the original may be attached directly to the support frame, or may be attached via an adhesive layer for the original on one end face of the support frame. The support frame may be fixed.
 ここで、原版としては、支持基板と、この支持基板上に積層された反射層と、反射層上に形成された吸収体層と、を含む原版を用いることができる。この場合、原版の反射層及び吸収体層が設けられている側にペリクルを装着する。
 吸収体層が光(例えば、EUV光)を一部吸収することで、感応基板(例えば、フォトレジスト膜付き半導体基板)上に、所望の像が形成される。反射層は、モリブデン(Mo)とシリコン(Si)との多層膜でありうる。吸収体層は、クロム(Cr)や窒化タンタル等、EUV光等の吸収性の高い材料でありうる。
Here, as the original, an original including a supporting substrate, a reflective layer laminated on the supporting substrate, and an absorber layer formed on the reflective layer can be used. In this case, a pellicle is mounted on the side of the original on which the reflective layer and the absorber layer are provided.
The absorber layer partially absorbs light (eg, EUV light) to form a desired image on a sensitive substrate (eg, a semiconductor substrate with a photoresist film). The reflective layer may be a multilayer film of molybdenum (Mo) and silicon (Si). The absorber layer can be a material that is highly absorptive of EUV light, such as chromium (Cr) or tantalum nitride.
<露光装置>
 本開示の露光装置は、上述の露光原版を含む。
 より詳細には、本開示の露光装置は、露光光を放出する光源と、本開示の露光原版と、上記光源から放出された露光光を上記露光原版に導く光学系と、を有し、上記露光原版は、上記光源から放出された露光光が上記ペリクル膜を透過して上記原版に照射されるように配置されている。
 このため、本開示の露光装置は、本開示の露光原版と同様の効果を奏する。
<Exposure device>
The exposure apparatus of the present disclosure includes the exposure master plate described above.
More specifically, the exposure apparatus of the present disclosure includes a light source that emits exposure light, an exposure original plate of the present disclosure, and an optical system that guides the exposure light emitted from the light source to the exposure original plate. The exposure original plate is arranged so that the exposure light emitted from the light source passes through the pellicle film and is irradiated onto the original plate.
Therefore, the exposure apparatus of the present disclosure has the same effects as the exposure original plate of the present disclosure.
 本開示の露光装置は、露光光を放出する光源と、本開示の露光原版と、上記光源から放出された露光光を上記露光原版に導く光学系と、を備え、上記露光原版は、上記光源から放出された露光光が上記ペリクル膜を透過して上記原版に照射されるように配置されていることが好ましい。
 この態様によれば、EUV光等によって微細化されたパターン(例えば線幅32nm以下)を形成できることに加え、異物による解像不良が問題となり易いEUV光を用いた場合であっても、異物による解像不良が低減されたパターン露光を行うことができる。
The exposure apparatus of the present disclosure includes a light source that emits exposure light, an exposure master plate of the present disclosure, and an optical system that guides the exposure light emitted from the light source to the exposure master plate, and the exposure master plate is the light source. It is preferable that the exposure light emitted from the pellicle film passes through the pellicle film and is irradiated onto the original plate.
According to this aspect, in addition to being able to form a fine pattern (for example, a line width of 32 nm or less) by EUV light or the like, even when using EUV light, which tends to cause a problem of poor resolution due to foreign matter, Pattern exposure can be performed with reduced resolution defects.
 本開示における露光光は、EUV光である。 The exposure light in the present disclosure is EUV light.
<半導体装置の製造方法>
 本開示の半導体装置の製造方法は、光源から放出された露光光を、本開示の露光原版の上記ペリクル膜を透過させて上記原版に照射し、上記原版で反射させる工程と、上記原版によって反射された露光光を、上記ペリクル膜を透過させて感応基板に照射することにより、上記感応基板をパターン状に露光する工程と、を含む。
 本開示の半導体装置の製造方法によれば、異物による解像不良が問題となり易いEUV光を用いた場合であっても、異物による解像不良が低減された半導体装置を製造することができる。
<Method for manufacturing a semiconductor device>
The method for manufacturing a semiconductor device according to the present disclosure comprises a step of transmitting exposure light emitted from a light source through the pellicle film of the exposure master plate of the present disclosure, irradiating the master plate, and reflecting the exposure light from the master plate; exposing the sensitive substrate in a pattern by irradiating the sensitive substrate with the exposed light that passes through the pellicle film.
According to the method of manufacturing a semiconductor device of the present disclosure, it is possible to manufacture a semiconductor device in which poor resolution due to foreign matter is reduced even when using EUV light, in which poor resolution due to foreign matter is likely to be a problem.
 以下、図7を用いて本開示に係る半導体装置の製造方法の一例について説明する。
 図7は、本開示の露光装置の一例である、EUV露光装置800の概略断面図である。
 図7に示されるように、EUV露光装置800は、EUV光を放出する光源831と、本開示の露光原版の一例である露光原版850と、光源831から放出されたEUV光を露光原版850に導く照明光学系837と、を備える。
 露光原版850は、ペリクル膜812及び支持枠814を含むペリクル810と、原版833と、を備えている。この露光原版850は、光源831から放出されたEUV光がペリクル膜812を透過して原版833に照射されるように配置されている。
 原版833は、照射されたEUV光をパターン状に反射するものである。
 支持枠814及びペリクル810は、それぞれ、本開示の支持枠及びペリクルの一例である。
An example of a method for manufacturing a semiconductor device according to the present disclosure will be described below with reference to FIGS.
FIG. 7 is a schematic cross-sectional view of an EUV exposure apparatus 800, which is an example of the exposure apparatus of the present disclosure.
As shown in FIG. 7, the EUV exposure apparatus 800 includes a light source 831 that emits EUV light, an exposure master plate 850 that is an example of the exposure master plate of the present disclosure, and the EUV light emitted from the light source 831 onto the exposure master plate 850. and illumination optics 837 for guiding.
The exposure original plate 850 includes a pellicle 810 including a pellicle film 812 and a support frame 814 and an original plate 833 . This exposure master plate 850 is arranged so that the EUV light emitted from the light source 831 passes through the pellicle film 812 and irradiates the master plate 833 .
The original plate 833 reflects the irradiated EUV light in a pattern.
Support frame 814 and pellicle 810 are examples of the support frame and pellicle of the present disclosure, respectively.
 EUV露光装置800において、光源831と照明光学系837との間、及び照明光学系837と原版833の間には、フィルター・ウィンドウ820及び825がそれぞれ設置されている。
 また、EUV露光装置800は、原版833が反射したEUV光を感応基板834へ導く投影光学系838を備えている。
In the EUV exposure apparatus 800, filter windows 820 and 825 are installed between the light source 831 and the illumination optical system 837 and between the illumination optical system 837 and the original plate 833, respectively.
The EUV exposure apparatus 800 also includes a projection optical system 838 that guides the EUV light reflected by the master 833 to the sensitive substrate 834 .
 EUV露光装置800では、原版833により反射されたEUV光が、投影光学系838を通じて感応基板834上に導かれ、感応基板834がパターン状に露光される。なお、EUVによる露光は、減圧条件下で行われる。 In the EUV exposure apparatus 800, the EUV light reflected by the original plate 833 is guided onto the sensitive substrate 834 through the projection optical system 838, and the sensitive substrate 834 is exposed in a pattern. The EUV exposure is performed under reduced pressure conditions.
 EUV光源831は、照明光学系837に向けて、EUV光を放出する。
 EUV光源831には、ターゲット材と、パルスレーザー照射部等が含まれる。このターゲット材にパルスレーザーを照射し、プラズマを発生させることで、EUVが得られる。ターゲット材をSnとすると、波長13nm~14nmのEUVが得られる。EUV光源が発する光の波長は、13nm~14nmに限られず、波長5nm~30nmの範囲内の、目的に適した波長の光であればよい。
EUV light source 831 emits EUV light toward illumination optics 837 .
The EUV light source 831 includes a target material, a pulse laser irradiation section, and the like. EUV is obtained by irradiating this target material with a pulse laser to generate plasma. If the target material is Sn, EUV with a wavelength of 13 nm to 14 nm can be obtained. The wavelength of the light emitted by the EUV light source is not limited to 13 nm to 14 nm, and may be light having a wavelength suitable for the purpose within the wavelength range of 5 nm to 30 nm.
 照明光学系837は、EUV光源831から照射された光を集光し、照度を均一化して原版833に照射する。
 照明光学系837には、EUVの光路を調整するための複数枚の多層膜ミラー832と、光結合器(オプティカルインテグレーター)等が含まれる。多層膜ミラーは、モリブデン(Mo)、シリコン(Si)が交互に積層された多層膜等である。
The illumination optical system 837 collects the light emitted from the EUV light source 831 , uniforms the illuminance, and irradiates the master 833 with the light.
The illumination optical system 837 includes a plurality of multilayer film mirrors 832 for adjusting the EUV optical path, an optical coupler (optical integrator), and the like. The multilayer mirror is a multilayer film or the like in which molybdenum (Mo) and silicon (Si) are alternately laminated.
 フィルター・ウィンドウ820,825の装着方法は特に制限されず、接着剤等を介して貼り付ける方法や、機械的にEUV露光装置内に固定する方法等が挙げられる。
 光源831と照明光学系837との間に配置されるフィルター・ウィンドウ820は、光源から発生する飛散粒子(デブリ)を捕捉し、飛散粒子(デブリ)が照明光学系837内部の素子(例えば多層膜ミラー832)に付着しないようにする。
 一方、照明光学系837と原版833との間に配置されるフィルター・ウィンドウ825は、光源831側から飛散する粒子(デブリ)を捕捉し、飛散粒子(デブリ)が原版833に付着しないようにする。
The mounting method of the filter windows 820 and 825 is not particularly limited, and includes a method of sticking them via an adhesive or the like, a method of mechanically fixing them in the EUV exposure apparatus, and the like.
A filter window 820 placed between the light source 831 and the illumination optical system 837 traps the scattered particles (debris) generated from the light source, and the scattered particles (debris) reach the elements inside the illumination optical system 837 (for example, a multilayer film). Avoid sticking to the mirror 832).
On the other hand, a filter window 825 arranged between the illumination optical system 837 and the master 833 catches particles (debris) scattered from the light source 831 side and prevents the scattered particles (debris) from adhering to the master 833. .
 また、原版に付着した異物は、EUV光を吸収、もしくは散乱させるため、ウエハへの解像不良を引き起こす。したがって、ペリクル810は原版833のEUV光照射エリアを覆うように装着されている。EUV光はペリクル膜812を通過して、原版833に照射される。 In addition, foreign matter adhering to the master absorbs or scatters EUV light, causing poor resolution on the wafer. Therefore, the pellicle 810 is mounted so as to cover the EUV light irradiation area of the master 833 . The EUV light passes through the pellicle film 812 and irradiates the original plate 833 .
 原版833で反射されたEUV光は、ペリクル膜812を通過し、投影光学系838を通じて感応基板834に照射される。
 投影光学系838は、原版833で反射された光を集光し、感応基板834に照射する。投影光学系838には、EUVの光路を調製するための複数枚の多層膜ミラー835、836等が含まれる。
The EUV light reflected by the original plate 833 passes through the pellicle film 812 and is irradiated onto the sensitive substrate 834 through the projection optical system 838 .
A projection optical system 838 collects the light reflected by the original 833 and irradiates it onto the sensitive substrate 834 . A projection optical system 838 includes a plurality of multilayer film mirrors 835, 836 and the like for adjusting the EUV optical path.
 感応基板834は、半導体ウエハ上にレジストが塗布された基板等であり、原版833によって反射されたEUVにより、レジストがパターン状に硬化する。このレジストを現像し、半導体ウエハのエッチングを行うことで、半導体ウエハに所望のパターンを形成する。 The sensitive substrate 834 is a substrate or the like in which a resist is applied on a semiconductor wafer, and the EUV reflected by the original plate 833 cures the resist in a pattern. By developing the resist and etching the semiconductor wafer, a desired pattern is formed on the semiconductor wafer.
 また、ペリクル810は、原版用接着剤層等を介して原版833に装着される。原版に付着した異物は、EUVを吸収、もしくは散乱させるため、ウエハへの解像不良を引き起こす。したがって、ペリクル810は原版833のEUV光照射エリアを覆うように装着され、EUVはペリクル膜812を通過して、原版833に照射される。 Also, the pellicle 810 is attached to the original plate 833 via an adhesive layer for the original plate or the like. Foreign matter adhering to the original absorbs or scatters EUV, causing poor resolution on the wafer. Therefore, the pellicle 810 is mounted so as to cover the EUV light irradiation area of the master 833 , and the EUV passes through the pellicle film 812 and irradiates the master 833 .
 ペリクル810の原版833への装着方法としては、原版表面に異物が付着しないように原版に設置できる方法であればよく、支持枠814と原版833とを接着剤で貼り付ける方法や、静電吸着法、機械的に固定する方法などが挙げられるが特に限定されない。好ましくは、接着剤で貼り付ける方法が用いられる。 As a method for mounting the pellicle 810 on the original plate 833, any method can be used as long as it can be installed on the original plate so that foreign matter does not adhere to the surface of the original plate. method, mechanical fixing method, and the like, but are not particularly limited. Preferably, a method of sticking with an adhesive is used.
 本開示は、以下の態様も含む。
<1> カーボンナノチューブを含みかつ以下の式(1A)を満足するペリクル膜と、前記ペリクル膜を支持する支持枠と、を含むペリクル。
 E0/D>0.80  (1A)
(E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
The present disclosure also includes the following aspects.
<1> A pellicle comprising a pellicle membrane containing carbon nanotubes and satisfying the following formula (1A), and a support frame supporting the pellicle membrane.
E0/D>0.80 (1A)
(E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
 以下、実施例等により本開示をさらに詳細に説明するが、本開示の発明がこれら実施例のみに限定されるものではない。
 ペリクル膜の厚みは上述の方法により測定した。
EXAMPLES Hereinafter, the present disclosure will be described in more detail with reference to examples and the like, but the invention of the present disclosure is not limited only to these examples.
The thickness of the pellicle film was measured by the method described above.
(実施例1)
 溶媒に分散させたシングルウォールCNT(SWCNTともいう、名城ナノカーボン株式会社製)をSi基板上にスピンコートし、乾燥することで、Si基板上にCNTの極薄膜(以下、CNT膜ともいう)を形成した。
 次に、このSi基板を弱アルカリ性の水槽中に静かに沈めてSi基板の表面を溶解させ、CNT膜を単膜としてSi基板から遊離させ、水面に浮上させた。
 続いて、大きさが1cm×1cmである開口部を有するステンレス製の矩形枠を上記水槽に一旦沈め、CNT膜を上記矩形枠に載せた後、上記矩形枠をゆっくりと引き上げることでCNT膜(即ちペリクル膜)を自立膜として矩形枠に展張させてペリクル矩形枠体を得た。
(Example 1)
Single-wall CNTs (also referred to as SWCNTs, manufactured by Meijo Nanocarbon Co., Ltd.) dispersed in a solvent are spin-coated on a Si substrate and dried to form an ultra-thin film of CNTs (hereinafter also referred to as a CNT film) on the Si substrate. formed.
Next, the Si substrate was gently submerged in a slightly alkaline water bath to dissolve the surface of the Si substrate, and the CNT film was separated from the Si substrate as a single film and floated on the surface of the water.
Subsequently, a stainless steel rectangular frame having an opening with a size of 1 cm × 1 cm is temporarily submerged in the water tank, the CNT film is placed on the rectangular frame, and then the rectangular frame is slowly lifted to form a CNT film ( That is, a pellicle rectangular frame was obtained by stretching the pellicle film) as a self-supporting film into a rectangular frame.
<加圧工程>
 得られたペリクル矩形枠体に対して、差圧付加装置(すなわち、バルジ試験における測定装置)を用いて、室温にて3Paの圧力を付加し、10分間放置した。
 具体的には、図8を参照して説明する。図8はバルジ試験における測定装置を示す概略図である。
 図8に示すように、チャンバー24に対して、CNT膜(即ちペリクル膜)12と矩形枠14とを含むペリクル矩形枠体を固定した。この際、CNT膜12がチャンバー24の内部側になるように配置した。
 チャンバー24内部に空気を5sccm/secの加速度で流入させ、チャンバー24内部を加圧した。その際、膜の変位Dは大きくなった。CNT膜に加わる圧力は、チャンバー外の気圧P1とチャンバー内の気圧P2との差ΔPであり、差圧計20を用いて計測した。
<Pressurization process>
A pressure of 3 Pa was applied to the obtained rectangular pellicle frame at room temperature using a differential pressure applying device (that is, a measuring device in the bulge test), and left for 10 minutes.
Specifically, it will be described with reference to FIG. FIG. 8 is a schematic diagram showing a measuring device in the bulge test.
As shown in FIG. 8, a pellicle rectangular frame body including a CNT film (that is, a pellicle film) 12 and a rectangular frame 14 was fixed to the chamber 24 . At this time, the CNT film 12 was placed on the inner side of the chamber 24 .
Air was flowed into the chamber 24 at an acceleration of 5 sccm/sec to pressurize the inside of the chamber 24 . At that time, the displacement D of the membrane increased. The pressure applied to the CNT film was the difference ΔP between the pressure P1 outside the chamber and the pressure P2 inside the chamber, and was measured using a differential pressure gauge 20 .
<張付工程>
 ペリクル矩形枠体に対して上記圧力を付加した状態で、ペリクル矩形枠体中の矩形枠の内側から、支持枠でペリクル膜をすくい取ることで、支持枠にペリクル膜を張り付けてペリクルを得た。
 なお、支持枠は、矩形枠よりも一回り小さく、異方性ドライエッチング加工によってΦ4mmの貫通穴を開けたシリコン製の支持枠である。
 上述の方法を用いて、CNT膜の厚み測定を行ったところ、ペリクル膜の厚みは20nmであった。
<Affixing process>
While the pressure was applied to the pellicle rectangular frame, the pellicle was obtained by scooping the pellicle film from the inside of the rectangular frame in the pellicle rectangular frame with the support frame and attaching the pellicle film to the support frame. .
The support frame is one size smaller than the rectangular frame, and is a support frame made of silicon in which a through hole of φ4 mm is opened by anisotropic dry etching.
When the thickness of the CNT film was measured using the method described above, the thickness of the pellicle film was 20 nm.
(実施例2)
 実施例1と同様にしてペリクル矩形枠体を得た後に、ペリクル膜を含むペリクル矩形枠体を、赤外線加熱装置に投入し、イナート環境にて700℃まで昇温して10分間放置した。その後、ペリクル矩形枠体中の矩形枠の内側から、ペリクル膜を伸ばした状態で保持し、支持枠でペリクル膜をすくい取ることで、支持枠にペリクル膜を張り付けてペリクルを得た。
(Example 2)
After obtaining a rectangular pellicle frame in the same manner as in Example 1, the rectangular pellicle frame including the pellicle film was placed in an infrared heating device, heated to 700° C. in an inert environment, and left for 10 minutes. After that, the pellicle film was held in a stretched state from the inside of the rectangular frame in the pellicle rectangular frame body, and the pellicle film was scooped up with a support frame, thereby affixing the pellicle film to the support frame to obtain a pellicle.
<加熱工程>
 ペリクル膜を含むペリクル矩形枠体を、赤外線加熱装置に投入し、イナート環境にて700℃まで昇温して10分間放置した。
<Heating process>
The pellicle rectangular frame including the pellicle film was placed in an infrared heating device, heated to 700° C. in an inert environment, and left for 10 minutes.
(実施例3)
 加熱工程において、イナート環境にて500℃まで昇温して10分間放置したこと以外は、実施例2と同様の方法でペリクルを得た。
(Example 3)
A pellicle was obtained in the same manner as in Example 2, except that in the heating step, the temperature was raised to 500° C. in an inert environment and left for 10 minutes.
(比較例1)
 加圧工程を行わなかったこと以外は実施例1と同様にしてペリクルを得た。
 具体的には、シート製造工程において、ペリクル矩形枠体を作製せず、水の液面上に浮いている状態のペリクル膜を上記支持枠ですくい取ることで、上記支持枠にペリクル膜を張り付けてペリクルを得た。
(Comparative example 1)
A pellicle was obtained in the same manner as in Example 1, except that the pressing step was not performed.
Specifically, in the sheet manufacturing process, the pellicle membrane is attached to the support frame by scooping the pellicle membrane floating on the liquid surface of the water without fabricating the pellicle rectangular frame with the support frame. obtained a pellicle.
<評価>
〔E0/D〕
 各実施例又は比較例で得られたペリクルについて、バルジ試験を行い、0Paから2Paまで圧力を加えた場合の変位エネルギーE0、及び、2Paでの変位Dを測定した。
 得られた変位エネルギーE0及び変位Dから、E0/Dの値を算出した。
 結果を表2に示す。
<Evaluation>
[E0/D]
The pellicle obtained in each example or comparative example was subjected to a bulging test to measure the displacement energy E0 when pressure was applied from 0 Pa to 2 Pa and the displacement D at 2 Pa.
From the obtained displacement energy E0 and displacement D, the value of E0/D was calculated.
Table 2 shows the results.
〔透過率分散3σ〕
 各実施例又は比較例で得られたペリクルについて、透過率分散3σを上述の方法により測定した。
 結果を表2に示す。
[Transmittance dispersion 3σ]
For the pellicle obtained in each example or comparative example, the transmittance dispersion 3σ was measured by the method described above.
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示す通り、CNTを含みかつ式(1)を満足するペリクル膜と、ペリクル膜を支持する支持枠と、を含むペリクルを用いた実施例は、E0/Dが高く、ペリクル膜に圧力を加える前後で膜の伸びが少なくなることが分かった。また、実施例は、透過率分散3σの値が小さかった。
 そのため、実施例に係るペリクルは、たるみが抑制され、ペリクル膜内におけるEUV光の透過率のばらつきを抑制できた。
 一方、E0/Dが0.75以下である比較例1は、たるみを抑制することができなかった。また、比較例は、透過率分散3σの値が大きく、ペリクル膜内におけるEUV光の透過率のばらつきを抑制できなかった。
 実施例の中でも、加熱工程を行った実施例2は、実施例1と比較して、E0/Dが同程度であるが変位Dがより小さい値であった。即ち、実施例2は、バルジ試験において0Paから2Paまで圧力を加えた際に、ペリクル膜のふくらみをより小さく抑えることができるため、例えば、より狭い場所でも露光装置内において他の部材と干渉することなく良好に使用できると考えられる。
As shown in Table 2, the examples using a pellicle containing a pellicle membrane that contains CNTs and that satisfies formula (1) and a support frame that supports the pellicle membrane have a high E0/D and a pressure applied to the pellicle membrane. It was found that the elongation of the film decreased before and after the addition of In addition, the value of transmittance dispersion 3σ was small in the example.
Therefore, the pellicle according to the example was able to suppress sagging and suppress variations in the transmittance of EUV light within the pellicle film.
On the other hand, in Comparative Example 1 in which E0/D was 0.75 or less, sagging could not be suppressed. Further, in the comparative example, the value of the transmittance dispersion 3σ was large, and the variation in the transmittance of EUV light within the pellicle film could not be suppressed.
Among the examples, Example 2, in which the heating process was performed, was comparable in E0/D to Example 1, but the value of displacement D was smaller. That is, in Example 2, when pressure is applied from 0 Pa to 2 Pa in the bulge test, the swelling of the pellicle film can be suppressed to a smaller extent. It is thought that it can be used satisfactorily without
 2021年3月19日に出願された日本国特許出願2021-046208号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-046208 filed on March 19, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.
12 ペリクル膜(CNT膜)
14 矩形枠
20 差圧計
24 チャンバー
111 ペリクル膜
112 支持枠
120 シリコン基板
121 溶媒層
H112 開口部
1110 自立膜部
800 EUV露光装置
810 ペリクル
812 ペリクル膜
814 支持枠
820、825 フィルター・ウィンドウ
831 光源
832、835、836 多層膜ミラー
833 原版
834 感応基板
837 照明光学系
838 投影光学系
850 露光原版
12 Pellicle film (CNT film)
14 Rectangular frame 20 Differential pressure gauge 24 Chamber 111 Pellicle film 112 Support frame 120 Silicon substrate 121 Solvent layer H112 Opening 1110 Self-supporting film part 800 EUV exposure device 810 Pellicle 812 Pellicle film 814 Support frame 820, 825 Filter window 831 Light source 832, 835 , 836 multilayer film mirror 833 original plate 834 sensitive substrate 837 illumination optical system 838 projection optical system 850 exposure original plate

Claims (9)

  1.  カーボンナノチューブを含みかつ以下の式(1)を満足するペリクル膜と、
     前記ペリクル膜を支持する支持枠と、
    を含むペリクル。
     E0/D>0.75  (1)
    (E0はバルジ試験において0Paから2Paまで圧力を加えた場合の変位エネルギーを表し、Dは2Paでの変位を表す。)
    a pellicle film containing carbon nanotubes and satisfying the following formula (1);
    a support frame that supports the pellicle membrane;
    Pellicle containing.
    E0/D>0.75 (1)
    (E0 represents the displacement energy when pressure is applied from 0 Pa to 2 Pa in the bulge test, and D represents the displacement at 2 Pa.)
  2.  前記式(1)は、E0/D>0.80を満たす請求項1に記載のペリクル。 The pellicle according to claim 1, wherein the formula (1) satisfies E0/D>0.80.
  3.  原版と、
     前記原版に装着された請求項1又は請求項2に記載のペリクルと、
    を含む露光原版。
    the original and
    a pellicle according to claim 1 or 2 attached to the original;
    exposure master including
  4.  請求項3に記載の露光原版を含む露光装置。 An exposure apparatus including the exposure original plate according to claim 3.
  5.  露光光を放出する光源と、請求項3に記載の露光原版と、前記光源から放出された前記露光光を前記露光原版に導く光学系と、を有し、前記露光原版は、前記光源から放出された前記露光光が前記ペリクル膜を透過して前記原版に照射されるように配置されている露光装置。 A light source that emits exposure light, an exposure master according to claim 3, and an optical system that guides the exposure light emitted from the light source to the exposure master, wherein the exposure master is emitted from the light source. an exposure apparatus arranged so that the exposed light passes through the pellicle film and is irradiated onto the original.
  6.  請求項1又は請求項2に記載のペリクルを製造する方法であって、
     前記カーボンナノチューブを含むペリクル膜を準備する工程と、
     下記工程(1)及び下記工程(2)の少なくとも一方の工程と、
    を含むペリクルの製造方法。
     工程(1)は、
     前記ペリクル膜の膜面に2Pa以上20Pa以下の圧力を加える工程と、
     前記ペリクル膜に前記圧力を加えられた状態のペリクル膜を支持枠に張り付ける工程と、を含む工程である。
     工程(2)は、
     前記ペリクル膜を600℃以上1500℃以下に加熱する工程と、
     前記加熱後の前記ペリクル膜を伸ばした状態で支持枠に張り付ける工程と、
    を含む工程である。
    A method for manufacturing the pellicle according to claim 1 or claim 2,
    preparing a pellicle film containing the carbon nanotubes;
    At least one step of the following step (1) and the following step (2);
    A method of manufacturing a pellicle comprising:
    Step (1) is
    a step of applying a pressure of 2 Pa or more and 20 Pa or less to the film surface of the pellicle film;
    and a step of attaching the pellicle membrane to which the pressure is applied to the pellicle membrane to a support frame.
    Step (2) is
    a step of heating the pellicle film to 600° C. or more and 1500° C. or less;
    a step of attaching the heated pellicle film to a support frame in a stretched state;
    It is a step including
  7.  前記工程(1)を含む請求項6に記載のペリクルの製造方法。 The method for manufacturing a pellicle according to claim 6, which includes the step (1).
  8.  前記工程(2)を含む請求項6又は請求項7に記載のペリクルの製造方法。 The method for manufacturing a pellicle according to claim 6 or claim 7, which includes the step (2).
  9.  光源から放出された露光光を、請求項3に記載の露光原版の前記ペリクル膜を透過させて前記原版に照射し、前記原版で反射させる工程と、
     前記原版によって反射された露光光を、前記ペリクル膜を透過させて感応基板に照射することにより、前記感応基板をパターン状に露光する工程と、
    を含む半導体装置の製造方法。
    a step of irradiating the original plate with exposure light emitted from a light source, passing through the pellicle film of the exposure original plate according to claim 3, and reflecting the exposure light from the original plate;
    a step of patternwise exposing the sensitive substrate by irradiating the sensitive substrate with the exposure light reflected by the original plate through the pellicle film;
    A method of manufacturing a semiconductor device comprising:
PCT/JP2022/004741 2021-03-19 2022-02-07 Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device WO2022196182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046208 2021-03-19
JP2021-046208 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196182A1 true WO2022196182A1 (en) 2022-09-22

Family

ID=83322247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004741 WO2022196182A1 (en) 2021-03-19 2022-02-07 Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device

Country Status (2)

Country Link
TW (1) TW202238260A (en)
WO (1) WO2022196182A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539372A (en) * 2013-12-05 2016-12-15 エーエスエムエル ネザーランズ ビー.ブイ. Apparatus and method for manufacturing pellicle and pellicle
JP2020091314A (en) * 2018-12-03 2020-06-11 信越化学工業株式会社 Pellicle and method for manufacturing the same
JP2020101788A (en) * 2018-12-20 2020-07-02 アイメック・ヴェーゼットウェーImec Vzw Induced stress for euv pellicle tensioning
JP2020160345A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Producing method of pellicle self-supporting film, producing method of pellicle, and producing method of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539372A (en) * 2013-12-05 2016-12-15 エーエスエムエル ネザーランズ ビー.ブイ. Apparatus and method for manufacturing pellicle and pellicle
JP2020091314A (en) * 2018-12-03 2020-06-11 信越化学工業株式会社 Pellicle and method for manufacturing the same
JP2020101788A (en) * 2018-12-20 2020-07-02 アイメック・ヴェーゼットウェーImec Vzw Induced stress for euv pellicle tensioning
JP2020160345A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Producing method of pellicle self-supporting film, producing method of pellicle, and producing method of semiconductor device

Also Published As

Publication number Publication date
TW202238260A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
CN109416503B (en) Pellicle, pellicle module frame, pellicle module, method for manufacturing pellicle module, exposure master, exposure apparatus, and method for manufacturing semiconductor device
US10108084B2 (en) Pellicle membrane, pellicle, original plate for exposure, exposure apparatus, and method of producing semiconductor device
JP6326056B2 (en) Pellicle film, pellicle using the same, exposure original plate and exposure apparatus, and method for manufacturing semiconductor device
US10053367B2 (en) Method of manufacturing graphene film and method of manufacturing pellicle using the same
CN111324005A (en) Dustproof thin film for photoetching and dustproof thin film assembly with dustproof thin film
WO2022196182A1 (en) Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device
JP2022148581A (en) Pellicle film, pellicle, exposure master plate, exposure device, and method for producing semiconductor device
WO2022210731A1 (en) Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device
JP2020160345A (en) Producing method of pellicle self-supporting film, producing method of pellicle, and producing method of semiconductor device
JP7286870B2 (en) Pellicle film, pellicle, exposure original plate, exposure apparatus, pellicle manufacturing method, and semiconductor device manufacturing method
JP7307281B2 (en) Pellicle, original exposure plate, exposure apparatus, method for manufacturing pellicle, and method for manufacturing semiconductor device
TWI776625B (en) Pellicle assembly and method for forming reticle assembly and increasing lifetime of pellicle membrane
WO2022030499A1 (en) Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770941

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770941

Country of ref document: EP

Kind code of ref document: A1