WO2022196046A1 - 強化ガラス板および強化ガラス板の製造方法 - Google Patents

強化ガラス板および強化ガラス板の製造方法 Download PDF

Info

Publication number
WO2022196046A1
WO2022196046A1 PCT/JP2022/000558 JP2022000558W WO2022196046A1 WO 2022196046 A1 WO2022196046 A1 WO 2022196046A1 JP 2022000558 W JP2022000558 W JP 2022000558W WO 2022196046 A1 WO2022196046 A1 WO 2022196046A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempered glass
glass sheet
glass plate
etching
compressive stress
Prior art date
Application number
PCT/JP2022/000558
Other languages
English (en)
French (fr)
Inventor
尚利 稲山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2022196046A1 publication Critical patent/WO2022196046A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present disclosure relates to a tempered glass sheet and a method for manufacturing the tempered glass sheet.
  • an ultra-thin tempered glass plate (with a thickness of 100 ⁇ m or less as an example) disclosed in Patent Document 1 is adopted.
  • the tempered glass plate is manufactured by chemically strengthening a flexible, ultra-thin glass plate.
  • a technical problem to be solved is to realize a tempered glass sheet having a small thickness and a small warp.
  • the inventors have found the following reasons for the fact that the thinner the glass sheet to be tempered, the more likely it is to warp. That is, during chemical strengthening, there may be a difference in the degree of strengthening between the front side and the back side of the glass plate (hereinafter referred to as "difference in strengthening between the front and back sides"). Examples of the cause of the difference in strength between the front and back surfaces include uneven adhesion of the molten salt (strengthening liquid) used for chemical strengthening when the glass is pulled up, and uneven temperature distribution during strengthening. As the thickness of the glass sheet to be strengthened decreases, the bending rigidity of the glass sheet decreases. Therefore, the tempered glass sheet tends to warp greatly due to the difference in strengthening between the front and back surfaces.
  • the difference in strengthening between the front and back is the difference in the depth of the compressive stress layers formed on both the front and back sides of the glass plate due to chemical strengthening, or the difference in the maximum compressive stress value , and the compressive stress layer is deeper or the maximum compressive stress value is larger on the side with a large degree of strengthening between the front and back
  • the convex side of the warp that occurred on the side with a large degree of strengthening between the front and back I came to know that
  • a method for manufacturing a tempered glass sheet for solving the above problems is a tempered glass sheet in which a compressive stress layer is formed on each of the front and back sides by chemically strengthening a flexible glass sheet. wherein the tempered glass sheet includes a warped portion warped so that one of the front and back surfaces is convex, and the surface layer of the compressive stress layer on the convex side of the warped portion is removed. and a removing step of reducing the warpage.
  • the surface layer portion of the compressive stress layer on the convex side of the warped portion is removed as the removal step is performed.
  • the depth of the compressive stress layer on the side with the greater degree of strengthening between the front and back or the surface maximum compressive stress value is reduced.
  • the difference in the depth of the compressive stress layer or the maximum compressive stress value between the front and back surfaces can be reduced, and thus the difference in strengthening between the front and back surfaces can be reduced.
  • a tempered glass sheet having a small thickness and a small bending rigidity can be reduced in warpage.
  • a tempered glass sheet having a small thickness and a small warp can be obtained.
  • the surface layer of the compressive stress layer corresponding to the partial area may be removed by etching or polishing only the partial area on the convex surface of the warped portion.
  • etching or polishing only needs to be performed on a part of the convex surface rather than on the entire area, which makes it possible to complete the removal process more quickly. Moreover, the cost required for the removal process can also be suppressed.
  • etching is preferably performed while the tempered glass plate is suspended and supported in a vertical position.
  • the apex of the convex surface in the warped part has a strong tendency to correspond to the part where the difference in strengthening between the front and back sides is the largest. Therefore, by etching the region including the apex of the convex surface, the warpage can be effectively reduced.
  • the tempered glass sheet includes a plurality of warped portions, and among the plurality of warped portions, the tempered glass sheet includes a warped portion having a convex surface and a warped portion having a convex back surface. It may be
  • the warp is reduced in both the warped portion with the convex surface and the warped portion with the convex back surface. This makes it possible to reduce the overall warpage of the tempered glass sheet.
  • etching may be performed by using an etching member having a flat surface capable of holding an etchant, and bringing the flat surface of the etching member into contact with a partial region on the convex surface of the warped portion. preferable.
  • the area of the flat surface of the etching member is equal to or larger than the area of the tempered glass plate.
  • the etching member is a sponge-like member impregnated with an etchant, and the etchant preferably contains HF or a mixed acid containing HF.
  • etching can be performed efficiently by including HF or a mixed acid containing HF in the etchant.
  • the surface layer portion of the compressive stress layer corresponding to the entire region is etched or polished by etching or polishing the entire region of the convex surface of the warped portion. may be removed.
  • etching or polishing may be performed on the entire area of the convex surface, so it is possible to simplify the treatment in the removal process. becomes.
  • the tempered glass sheet has a thickness of 100 ⁇ m or less before the removal step, and that the tempered glass sheet has a warpage amount of 1 mm or less after the removal step.
  • the thinner the tempered glass sheet the more likely it is to warp. Therefore, if the removal process is performed on an ultra-thin tempered glass sheet having a thickness of 100 ⁇ m or less before the removal process, the effect can be favorably received. If the amount of warpage of the tempered glass sheet after the removing step is 1 mm or less, it is possible to make the tempered glass sheet suitable as a cover glass of a foldable device or the like.
  • a tempered glass plate for solving the above problems is a tempered glass plate having a thickness of 100 ⁇ m or less, including a warped portion in which one of the front and back surfaces is convex, and on the convex surface of the warped portion At least a part of the tempered glass plate has a treated region that is etched, and the tempered glass plate has a warpage amount of 1 mm or less.
  • this tempered glass sheet is an ultra-thin tempered glass sheet with a thickness of 100 ⁇ m or less, the amount of warpage is suppressed to 1 mm or less. Therefore, it can be suitably used as a cover glass of a foldable device or the like.
  • the method for manufacturing a tempered glass sheet according to the present disclosure it is possible to obtain a tempered glass sheet that is thin and has little warpage.
  • the tempered glass sheet according to the present disclosure is a tempered glass sheet with small warp even if the thickness is thin.
  • FIG. 4 is a side view schematically showing a removing step in the method for manufacturing a tempered glass sheet.
  • FIG. 4 is a side view schematically showing a tempered glass plate after a removal step;
  • FIG. 4 is a side view schematically showing a removing step in the method for manufacturing a tempered glass sheet.
  • FIG. 4 is a side view schematically showing a removing step in the method for manufacturing a tempered glass sheet.
  • a method for manufacturing a tempered glass sheet according to the first embodiment includes a tempering step and a removing step.
  • a flexible glass sheet is chemically strengthened to obtain a tempered glass sheet having compressive stress layers (layers to which compressive stress acts) formed on the front side and the back side, respectively.
  • a glass plate for chemical strengthening is prepared.
  • the glass plate is obtained by cutting and processing a glass ribbon formed by the overflow down-draw method.
  • the glass plate of the present embodiment is alkali aluminosilicate glass suitable for chemical strengthening.
  • the glass plate has a composition capable of obtaining a particularly high compressive stress value among alkali aluminosilicate glasses, and further has a composition capable of realizing a high liquidus viscosity to enable molding by the overflow down-draw method.
  • the overflow downdraw method is used to obtain the glass plate, but in addition to this, the slot downdraw method, the float method, the redraw method, or the like may be used to obtain the glass plate.
  • the end face of the glass plate it is preferable to subject the end face of the glass plate to chamfering and strength improvement by polishing, heat treatment, etching, or the like.
  • the front and back surfaces of the glass plate may be polished. may be left unpolished without being polished. Note that when the glass plate is formed by the overflow down-draw method and is not polished, the front and back surfaces of the glass plate are fire-polished surfaces.
  • the glass plate may be further subjected to a slimming treatment to reduce the thickness by etching.
  • the glass plate has, as an example of the glass composition, SiO 2 50 to 80%, Al 2 O 3 5 to 25%, B 2 O 3 0 to 35%, Li 2 O 0 to 20%, and Na 2 O in mol%. 1-20%, Li 2 O+Na 2 O 1-20%, K 2 O 0-10%. It should be noted that each component with a range including 0% indicates that it is an optional component. That is, it does not have to contain the said component. Further, the glass plate may contain the following components in addition to the above components.
  • mole % MgO 0.1-12%, CaO 0-10%, SrO 0-5%, BaO 0-5%, ZnO 0-6%, ZrO 2 0.001-10%, P 2 O 5 0 ⁇ 10%.
  • one or more selected from the group of As2O3 , Sb2O3 , SnO2, F, Cl and SO3 may contain 0 to 3%. From the viewpoint of environmental considerations, it is preferable that substantially no As 2 O 3 , F, PbO, or Bi 2 O 3 be contained.
  • the shape of the glass plate is not particularly limited, but in this embodiment, it has a rectangular shape with long sides and short sides.
  • the length of the long side of the glass plate is, for example, 50 mm or more and 500 mm or less, preferably 60 mm or more and 450 mm or less, more preferably 65 mm or more and 400 mm or less, still more preferably 70 mm or more and 300 mm or less, 75 mm or more and 200 mm or less, 80 mm or more and 160 mm or less. be.
  • the length of the short side of the glass plate is, for example, 40 mm or more and 400 mm or less, preferably 45 mm or more and 350 mm or less, more preferably 50 mm or more and 300 mm or less, still more preferably 55 mm or more and 120 mm or less, and 60 mm or more and 80 mm or less.
  • the glass plate has a thickness that can impart flexibility, and in the present embodiment, the maximum thickness of the glass plate is, for example, 100 ⁇ m or less, preferably 5 ⁇ m or more and 95 ⁇ m or less, and more preferably 10 ⁇ m or more. It is 85 ⁇ m or less, more preferably 15 ⁇ m or more and 75 ⁇ m or less. For further thinning, the thickness of the glass plate may be 65 ⁇ m or less, or 55 ⁇ m or less. On the other hand, the lower limit of the thickness of the glass plate is preferably 20 ⁇ m or more and 25 ⁇ m or more.
  • the thickness of the glass plate is preferably constant, and the thickness deviation is preferably within 3 ⁇ m.
  • the glass plate in the present embodiment is a non-film-formed glass plate on which no film-forming process has been performed. That is, the case where the front and back surfaces are glass plates is exemplified.
  • the present invention can also be applied to a film-formed glass plate on which a film-forming process has been performed.
  • the glass plate prepared as described above is chemically strengthened by ion exchange treatment. Specifically, the glass plate is immersed in a molten salt (strengthening liquid) for ion exchange treatment.
  • Molten salts are salts containing components that can be ion-exchanged with components in the glass sheet, typically alkali nitrates.
  • Alkali nitrates include NaNO 3 , KNO 3 , LiNO 3 and the like. % by mass. When a plurality of types of alkali nitrates are mixed , the mixing ratio may be arbitrarily determined. ⁇ 70%, or ratios such as 50-70% NaNO 3 and 30-50% KNO 3 .
  • Conditions such as the temperature and immersion time of the molten salt in the ion exchange treatment may be set according to the composition etc. within the range where the desired stress characteristics can be obtained.
  • the temperature of the molten salt is, for example, 350-500°C, preferably 355-470°C, 360-450°C, 365-430°C and 370-410°C.
  • the immersion time is, for example, 3 minutes to 300 minutes, preferably 5 minutes to 120 minutes, more preferably 7 minutes to 100 minutes.
  • a tempered glass plate is obtained through the ion exchange treatment described above. It is preferable to wash and dry the tempered glass plate after the ion exchange treatment. Note that the ion exchange treatment is not limited to one time, and may be performed multiple times.
  • the maximum depth DOC of the compressive stress layer of the tempered glass plate is 15.0 ⁇ m or less, preferably 0.5 ⁇ m or more and 12.0 ⁇ m or less, preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less, preferably 1.0 ⁇ m. 8.5 ⁇ m or less, more preferably 2.0 ⁇ m or more and 8.0 ⁇ m or less, more preferably 2.5 ⁇ m or more and 7.5 ⁇ m or less, and 2.5 ⁇ m or more and 5.5 ⁇ m or less.
  • the maximum depth of the compressive stress layer is It has been found that it is effective to set the thickness to 9.0 ⁇ m or less. By doing so, it is possible to ensure safety while having sufficient strength against bending.
  • the DOC in the present invention is the depth at which the stress in the tempered glass plate changes from compressive stress to tensile stress, and is the depth at which the stress becomes zero.
  • the maximum compressive stress CS in the compressive stress layer of the tempered glass plate is, for example, 520 MPa or more and 2000 MPa or less, preferably 650 MPa or more and 1800 MPa or less, more preferably 700 MPa or more and 1700 MPa or less.
  • the maximum compressive stress CS can be more preferably 760 MPa or more and 1600 MPa or less, and still more preferably 820 MPa or more and 1550 MPa or less.
  • the upper limit of the maximum compressive stress CS can be limited to 1000 MPa or less, 900 MPa or less, 800 MPa or less, or 740 MPa or less.
  • the tempered glass plate 1 obtained in the tempering process includes a warped portion 4 in which one of the front and back surfaces 2 and 3 is convex.
  • the case where the surface 2 is convex is illustrated here. That is, the surface 2 side is the side with a large degree of strengthening between the front and back surfaces.
  • the entire tempered glass plate 1 consists of a single warped portion 4 . That is, only the front surface 2 is convex in the entire tempered glass plate 1 (the rear surface 3 does not have a convex portion).
  • Compressive stress layers 5 and 6 are formed on the front surface 2 side and the rear surface 3 side of the tempered glass plate 1, respectively.
  • the cross-hatched portions in FIG. 1 are the portions where the compressive stress layers including the compressive stress layers 5 and 6 on the front and back sides of the tempered glass plate 1 are formed.
  • the warp of the tempered glass plate 1 may occur along either one of the long side direction and the short side direction of the tempered glass plate 1, or may occur along both directions. or along a direction that intersects both directions (eg, diagonally).
  • the tempered glass plate 1 is placed flat on a horizontal support surface provided on a surface plate (placed with the convex surface 2 in contact with the support surface), the tempered glass
  • the amount of warpage is defined as the dimension by which the edge of the plate 1 rises from the supporting surface.
  • the amount of warp generated in the tempered glass sheet 1 having a thickness of 100 ⁇ m or less is, for example, 5 mm to 15 mm before the removal step is performed.
  • warping is reduced by removing the surface layer portion of the compressive stress layer 5 on the surface 2 side (convex side) of the tempered glass plate 1 .
  • a partial region on the surface 2 of the tempered glass plate 1 is etched to remove the surface layer portion of the compressive stress layer 5 corresponding to the partial region. That is, the depth of the compressive stress layer 5 on the side with the greater degree of reinforcement is reduced between the front and back sides, and the difference between the depths of both the compressive stress layers 5 and 6 is reduced.
  • the region to be etched in the tempered glass plate 1 is referred to as "etching target region".
  • the area of the etching target region is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and most preferably 50% or more of the area of the tempered glass plate 1. . Also, the area of the etching target region is less than 100%, preferably 90% or less of the area of the tempered glass plate 1 .
  • the area to be etched is an area including the apex of the surface 2 of the tempered glass sheet 1, that is, the area that protrudes most in the thickness direction of the tempered glass sheet 1 on the convex surface.
  • the apex of the front surface 2 tends to correspond to the portion where the front-back strengthening difference (the difference in the degree of strengthening between the front surface 2 side and the back surface 3 side) of the tempered glass plate 1 is the largest.
  • the maximum compressive stress CS is generated at the vertices of the surface 2 before execution of the removal step.
  • the area including the location may be set as the etching target area.
  • the tempered glass plate 1 When etching the area to be etched, the tempered glass plate 1 is vertically suspended and supported. In order to suspend and support the tempered glass sheet 1, for example, the upper region of the rear surface 3 of the tempered glass sheet 1 in a vertical position may be held by a holding member (suction pad or the like). Further, the upper side portion of the tempered glass plate 1 in the vertical posture may be gripped by a gripping member (such as a chuck).
  • a gripping member such as a chuck
  • an etching member 8 having a flat surface 7 capable of holding an etchant (details will be described later) is used. Specifically, the etching is performed by bringing the etching target region and the flat surface 7 of the etching member 8 into contact with each other. In this embodiment, the area to be etched is etched while partially flattening the surface 2 of the tempered glass plate 1 so as to follow the flat surface 7 of the etching member 8 as the two come into contact with each other. At this time, the area on the surface 2 of the tempered glass plate 1 excluding the area to be etched is in a state of floating above the flat surface 7 of the etching member 8 .
  • the etching member 8 has a plate-like outer shape.
  • the flat surface 7 of the etching member 8 is substantially perpendicular to the horizontal plane.
  • the area of the flat surface 7 of the etching member 8 is equal to or larger than the area of the tempered glass plate 1 , and in the present embodiment, the area of the flat surface 7 is larger than the area of the tempered glass plate 1 .
  • the etching member 8 is a sponge-like member impregnated with an etching liquid, and is a PVA sponge in this embodiment.
  • a member other than a sponge-like member may be used as the etching member 8 as long as the etching liquid can be retained on the flat surface 7 .
  • the etching member 8 it is possible to use a polyurethane sponge or the like.
  • the etching target region is etched, but this is not the only option.
  • the flat surface 7 of the etching member 8 is deformed into a concavely curved surface so as to follow the warpage of the tempered glass plate 1 (curvature of the surface 2).
  • etching may be applied to the area to be etched.
  • an acidic or alkaline liquid that can etch glass can be used.
  • an acidic etchant is used.
  • an acidic etching solution for example, an aqueous solution containing HF can be used. When an aqueous solution containing HF is used, the etching rate for glass is high, and etching can be performed efficiently.
  • the aqueous solution containing HF is, for example, an aqueous solution containing only HF or a combination of HF and HCl, HF and HNO3 , HF and H2SO4 , or HF and NH4F .
  • HF, HCL, HNO 3 , H 2 SO 4 and NH 4 F the concentration of each compound is preferably 0.1 to 30 mol/L.
  • a fluoride containing a glass component is produced as a by - product, which may cause a decrease in the etching rate or cause defects.
  • the by-product can be decomposed to suppress a decrease in productivity.
  • the temperature of the etchant is, for example, 10° C. to 30° C.
  • the treatment time is, for example, preferably 0.1 to 60 minutes, preferably 0.5 to 60 minutes. 30 minutes is more preferable, and 1 to 10 minutes is even more preferable.
  • the maximum depth of the compressive stress layer 5 on the surface 2 side before the removal step is performed is DOC
  • the thickness of the surface layer portion of the compressive stress layer 5 to be removed in the removal step is ⁇ t
  • the removing process is performed so as to satisfy ⁇ t ⁇ 0.8 ⁇ DOC.
  • ⁇ t ⁇ 0.85 ⁇ DOC more preferably ⁇ t ⁇ 0.9 ⁇ DOC, still more preferably ⁇ t ⁇ 0.95 ⁇ DOC, and most preferably ⁇ t ⁇ 0.97 ⁇ DOC in the removal step to run.
  • ⁇ t is 0.01 to 2 ⁇ m, preferably 0.03 to 1.5 ⁇ m, more preferably 0.05 to 1.2 ⁇ m, still more preferably 0.07 to 1 ⁇ m.
  • the numerical values such as the maximum compressive stress CS, the maximum tensile stress CT, and the maximum depth DOC of the compressive stress layer are obtained by measuring the stress distribution of the glass with a measuring device such as FSM-6000 or SLP-1000 manufactured by Orihara Seisakusho. can be derived from
  • the etching member 8 when removing the surface layer portion of the compressive stress layer 5 in the removal step, the etching member 8 is used to etch the etching target region.
  • the tempered glass sheet 1 after masking the entire area of the back surface 3 of the tempered glass plate 1 and the area excluding the etching target area on the front surface 2, the tempered glass sheet 1 is immersed in an etching solution to be etched. Areas may be etched.
  • etching instead of etching, only a partial region (region including the vertex of the surface 2) on the surface 2 of the tempered glass plate 1 is subjected to polishing processing, so that the compressive stress layer corresponding to the partial region 5 may be removed.
  • the entire area (100% of the area) of the surface 2 is the etching target area.
  • the surface layer portion of the compressive stress layer 5 may be removed.
  • the etchant may be sprayed onto the entire surface 2 using a spray or the like, or only the surface 2 of the front and back surfaces 2 and 3 may be immersed in the etchant.
  • the entire area of the surface 2 may be subjected to polishing.
  • a tempered glass plate 1 with less warpage than before the removal process is obtained.
  • the tempered glass sheet 1 after the removal process is referred to as a "treated tempered glass sheet 1" to distinguish it from the tempered glass sheet 1 before the removal process.
  • the tempered glass plate 1 after the treatment has a convex surface 2 on the front and back surfaces 2 and 3. Only some areas of have etched processing areas. That is, part of the surface 2 includes an etched surface.
  • the tempered glass plate 1 after treatment has the convex surface 2 of the front and back surfaces 2 and 3, It has an etched processing area. That is, the entire surface 2 becomes an etching surface.
  • the thickness of the tempered glass sheet 1 after treatment partially decreases at the removed portion depending on the above-mentioned ⁇ t, but the maximum thickness of the tempered glass sheet 1 after treatment is, for example, 100 ⁇ m or less, preferably 5 ⁇ m or more and 95 ⁇ m or less. It is more preferably 10 ⁇ m or more and 85 ⁇ m or less, still more preferably 15 ⁇ m or more and 75 ⁇ m or less.
  • the maximum depth DOC of the compressive stress layer of the treated tempered glass sheet 1 is, for example, 0.5 ⁇ m. 0.5 ⁇ m or more and 12.0 ⁇ m or less, more preferably 2.0 ⁇ m or more and 8.0 ⁇ m or less, more preferably 2.5 ⁇ m or more and 7.5 ⁇ m or less, and 2.5 ⁇ m or more and 5.5 ⁇ m or less.
  • the maximum compressive stress CS in the compressive stress layer of the tempered glass sheet 1 after treatment is, for example, 520 MPa or more and 2000 MPa or less, preferably 650 MPa or more and 1800 MPa or less, and more preferably 700 MPa or more and 1700 MPa or less.
  • the warpage of the tempered glass sheet 1 after treatment is, for example, 1.0 mm or less, preferably 0.7 mm or less, and more preferably 0.5 mm or less.
  • the difference of the second embodiment from the first embodiment is that in the removing step, the tempered glass plate 1 is laid flat instead of being vertically suspended. It is a point. Specifically, with the etching member 8 laid flat on a surface plate, the tempered glass plate 1 is placed on the etching member 8 so that the convex surface 2 of the tempered glass plate 1 faces downward. Place. As a result, the etching target region and the flat surface 7 of the etching member 8 are brought into contact with each other and etched. Also in the second embodiment, the treated tempered glass sheet 1 similar to that in the first embodiment is obtained.
  • the third embodiment differs from the first embodiment in that the entire tempered glass plate 1 is not formed from a single warped portion 4, but from a plurality of warped portions (two in this embodiment). and the etching target region exists on both the front surface 2 and the back surface 3 of the tempered glass plate 1 in the removing step.
  • the warped portion 4 located relatively upward and having the front surface 2 convex is referred to as a first warped portion 4a
  • the warped portion located relatively downward and having the back surface 3 convex 4 is referred to as a second warped portion 4b.
  • the degree of strengthening is greater on the surface 2 side than on the surface 2 side and the back surface 3 side, and the compressive stress layer 5 is deeper than the compressive stress layer 6 on average.
  • the second warped portion 4b the degree of strengthening is large on the back surface 3 side, opposite to the first warped portion 4a, and the compressive stress layer 6 is deeper than the compressive stress layer 5 on average.
  • the etching target region In the first warped portion 4a, only a partial region (region including the vertex of the surface 2) on the surface 2 of the first warped portion 4a is the etching target region.
  • the second warped portion 4b only a partial region (region including the vertex of the back surface 3) on the back surface 3 of the second warped portion 4b is an etching target region.
  • the flat surface 7 of the etching member 8 is brought into contact with the etching target regions from the front surface 2 side and the back surface 3 side of the tempered glass plate 1, respectively.
  • the surface layer portion of the compressive stress layer 5 corresponding to a partial area on the surface 2 and the surface layer portion of the compressive stress layer 6 corresponding to a partial area on the back surface 3 are removed.
  • the amount of warpage is 1 mm or less (preferably 0.7 mm or less, more preferably 0.5 mm or less).
  • This post-treatment tempered glass sheet 1 includes a first warp portion 4a and a second warp portion 4b, a partial region on the surface 2 at the first warp portion 4a, and a region on the back surface 3 at the second warp portion 4b. Some areas have process areas that have been etched. That is, part of the front surface 2 of the first warped portion 4a and part of the back surface 3 of the second warped portion 4b include etched surfaces.
  • the degree of strengthening of the compressive stress layer 5 on the front surface 2 side and the compressive stress layer 6 on the back surface 3 side is average
  • the depth of the layer is the same between the side with a large degree of strengthening and the side with a small degree of strengthening, and there is a difference only in the value of the maximum compressive stress CS.
  • the etching member 8 is provided with the flat surface 7, but this is not the only option. It may be provided on the member 8 .
  • the treated tempered glass sheet 1 was manufactured in the same manner as in the above embodiment, and the amount of warpage in the tempered glass sheet 1 before the removal step and the amount of warp in the treated tempered glass plate 1 after the removal step were measured. compared with The results are shown in [Table 1] below.
  • the glass composition is 66.4% SiO2 , 11.5% Al2O3 , 0.5% B2O3 , 1.4% K2O , and 15% Na2O . .2% Li 2 O 0.02% MgO 4.8% CaO 0.1% SnO 2 0.1% glass plate for chemical strengthening (longitudinal dimension x lateral dimension: 200 mm x 100 mm, thickness: 50 ⁇ m) were immersed in molten salt (KNO 3 , 430° C.) for 10 minutes to obtain a plurality of tempered glass plate 1 samples.
  • KNO 3 molten salt
  • Example 1 the same aspect as the second embodiment described above, and in Example 2, the first embodiment described above.
  • a removal step was performed by etching in the same manner as the morphology to produce a post-treated tempered glass sheet 1 .
  • the item "processing method" in [Table 1] below indicates the posture of the tempered glass plate 1 when performing the removal step.
  • a PVA sponge manufactured by Aion Co., Ltd. (product name: B-Fine) was used as the etching member 8 for etching, and an etching solution (HF 1 wt% aqueous solution) was applied to the PVA sponge. Impregnated.
  • the contact time between the sample and the PVA sponge is as shown in the "treatment time" item in [Table 1] below.
  • each item “convex side CS”, “concave side CS”, “convex side DOC”, “concave side DOC”, and “warp amount” in "before treatment” in the following [Table 1] is the tempered glass before the removal process.
  • the maximum compressive stress CS on the convex side, the maximum compressive stress CS on the concave side, the maximum depth DOC of the compressive stress layer on the convex side, the maximum depth DOC of the compressive stress layer on the concave side, and the amount of warpage are shown respectively.
  • the items "convex side CS”, “convex side DOC”, and “warp amount” of “after treatment” are the maximum compressive stress CS on the convex side and the convex side The maximum depth DOC and the amount of warpage of the compressive stress layer at .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

可撓性を有するガラス板を化学強化することで表裏両側にそれぞれ圧縮応力層5,6が形成された強化ガラス板1を得る強化工程、を含んだ強化ガラス板の製造方法であって、強化ガラス板1が、表裏面2,3の一方が凸となるように反った反り部4を含み、反り部4における表面2側(凸面側)の圧縮応力層5の表層部を除去することで反りを小さくする除去工程、を更に含むようにした。

Description

強化ガラス板および強化ガラス板の製造方法
 本開示は、強化ガラス板および強化ガラス板の製造方法に関する。
 近年、スマートフォンやタブレットPC等の携帯用電子デバイスにおいて、画面の大型化が推進されている。しかしながら、画面を大型化させるとデバイス全体が大きくなって携帯性が悪化してしまう。そこで、大画面と良好な携帯性とを両立させるべく、折り畳みが可能なフォルダブルデバイスが提案されている。
 フォルダブルデバイス用のカバーガラスとしては、例えば、特許文献1に開示されるような超薄型の強化ガラス板(一例として厚みが100μm以下)が採用される。当該強化ガラス板は、可撓性を有する超薄型のガラス板を化学強化することで製造される。
特開2018-188360号公報
 ところで、上述のごとくガラス板を化学強化する場合、強化の対象となるガラス板の厚みが薄いほど、強化ガラス板に大きな反り(表裏面の一方が凸となる反り)が発生しやすいという問題があった。このような事情に鑑みて解決すべき技術的課題は、厚みが薄くとも反りの小さい強化ガラス板を実現することである。
 発明者は鋭意研究の結果、強化の対象となるガラス板の厚みが薄いほど、強化ガラス板に大きな反りが発生しやすくなる要因として、以下の理由を知見するに至った。すなわち、化学強化に際してガラス板の表面側と裏面側との間では強化の程度に差(以下、「表裏間強化差」と表記する)が生じる場合がある。表裏間強化差が生じる原因の一例としては、化学強化に用いる溶融塩(強化液)からガラスを引き上げる際の溶融塩の付着状態のむらや、強化時の温度分布のばらつき等が挙げられる。そして、強化の対象となるガラス板の厚みが薄いほど、その曲げ剛性も小さくなることから、表裏間強化差により強化ガラス板に大きな反りが発生しやすくなる。
 さらに、発明者は鋭意研究の結果、(1)表裏間強化差は、化学強化に伴ってガラス板の表裏両側にそれぞれ形成される圧縮応力層の深さの差、或いは最大圧縮応力値の差となって表れ、表裏間で強化の程度が大きい側において圧縮応力層がより深く、或いは最大圧縮応力値が大きくなること、(2)表裏間で強化の程度が大きい側が発生した反りの凸側となること、を知見するに至った。
 上記の知見に基づいて、上記の課題を解決するための強化ガラス板の製造方法は、可撓性を有するガラス板を化学強化することで表裏両側にそれぞれ圧縮応力層が形成された強化ガラス板を得る強化工程、を含んだ方法であって、強化ガラス板が、表裏面の一方が凸となるように反った反り部を含み、反り部における凸面側の圧縮応力層の表層部を除去することで反りを小さくする除去工程、を更に含むことを特徴とする。
 本方法においては、除去工程の実行に伴って、反り部における凸面側の圧縮応力層の表層部を除去する。つまり、表裏間で強化の程度が大きい側の圧縮応力層の深さ、或いは表面最大圧縮応力値を減じるように処置を施す。これにより、表裏間での圧縮応力層の深さ或いは最大圧縮応力値の差を小さくでき、ひいては表裏間強化差を小さくすることが可能となる。その結果、厚みが薄くて曲げ剛性が小さい強化ガラス板であっても、その反りを小さくすることができる。以上のことから、本方法によれば、厚みが薄くとも反りの小さい強化ガラス板が得られる。
 上記の方法では、反り部における凸面上の一部の領域のみにエッチング又は研磨加工を施すことにより、一部の領域に対応する圧縮応力層の表層部を除去してもよい。
 このようにすれば、凸面上の全領域ではなく、一部の領域のみにエッチング又は研磨加工を施せばよいことから、その分だけ迅速に除去工程を完了させることが可能となる。また、除去工程に要するコストについても抑制できる。
 上記の方法では、強化ガラス板を縦姿勢で吊り下げ支持した状態でエッチングを施すことが好ましい。
 このようにすれば、強化ガラス板を縦姿勢で吊り下げ支持したことにより、平置き姿勢で水平面上に載置するような場合とは異なり、重力の影響で反りの形状が本来の形状から変形してしまうような恐れを排除できる。つまり、反りの本来の形状を露わにした状態で除去工程を実行することが可能となる。これにより、除去工程を的確に実行する上で有利となる。
 上記の方法では、反り部における凸面の頂点を含んだ領域にエッチングを施すことが好ましい。
 反り部における凸面の頂点は、表裏間強化差が最大になっている部位に対応している傾向が強い。そのため、凸面の頂点を含んだ領域にエッチングを施すようにすれば、効果的に反りを小さくできる。
 上記の方法では、強化ガラス板が反り部を複数含み、複数の反り部の中には、強化ガラス板の表面が凸となった反り部と、裏面が凸となった反り部と、が含まれていてもよい。
 この場合、除去工程の実行に伴い、表面が凸となった反り部と、裏面が凸となった反り部との双方において、その反りを小さくする。これにより、強化ガラス板の全体の反りを小さくすることが可能となる。
 上記の方法では、エッチング液を保持可能な平坦面を備えたエッチング部材を用いて、反り部における凸面上の一部の領域と、エッチング部材の平坦面と、を接触させてエッチングを施すことが好ましい。
 このようにすれば、凸面上の全領域ではなく、一部の領域のみにエッチングを施す上で、当該処置を簡易かつ確実に行うことができる。
 上記の方法では、エッチング部材の平坦面の面積を、強化ガラス板の面積以上にすることが好ましい。
 このようにすれば、強化ガラス板に含まれたエッチングの対象となる各領域に対し、確実に同時進行でエッチングを施すことが可能となるため、より迅速に除去工程を完了させることができる。
 上記の方法では、エッチング部材が、エッチング液を含浸させたスポンジ状部材であり、エッチング液が、HF又はHFを含んだ混酸、を含むことが好ましい。
 このようにすれば、スポンジ状部材にエッチング液が含浸されているため、除去工程を実行する度に、逐一エッチング部材に対してエッチング液を供給するような手間を省くことが可能となる。また、エッチング液が、HF又はHFを含んだ混酸、を含むことにより、エッチングを効率よく行うことができる。
 上記の方法では、強化ガラス板の全体が単一の反り部からなる場合には、反り部における凸面の全領域にエッチング又は研磨加工を施すことにより、全領域に対応する圧縮応力層の表層部を除去してもよい。
 この場合、強化ガラス板の全体において表裏面の一方が凸となっている状態の下、凸面の全領域にエッチング又は研磨加工を施せばよいことから、除去工程における処置を簡易にすることが可能となる。
 上記の方法では、除去工程前における凸面側の圧縮応力層の最大深さをDOCとし、除去工程で除去される圧縮応力層の表層部の厚みをΔtとしたとき、Δt≦0.8×DOCを満たすことが好ましい。
 このようにすれば、圧縮応力層を不当に消失させることなく、除去工程による反りを小さくする効果を享受することが可能となる。
 上記の方法では、除去工程前における強化ガラス板の厚みが100μm以下であり、除去工程後における強化ガラス板の反り量が1mm以下であることが好ましい。
 上述のとおり、厚みが薄いほど強化ガラス板に大きな反りが発生しやすい。従って、除去工程前における厚みが100μm以下であるような超薄型の強化ガラス板を対象として除去工程を実行すれば、その効果を好適に享受できる。そして、除去工程後における強化ガラス板の反り量が1mm以下であれば、フォルダブルデバイスのカバーガラス等として好適な強化ガラス板とすることが可能である。
 さらに、上記の課題を解決するための強化ガラス板は、厚みが100μm以下の強化ガラス板であって、表裏面の一方が凸となるように反った反り部を含み、反り部における凸面上の少なくとも一部の領域にエッチングが施された処理領域を有し、当該強化ガラス板の反り量が1mm以下であることを特徴とする。
 本強化ガラス板は、厚みが100μm以下の超薄型の強化ガラス板であるにも関わらず、反り量が1mm以下に抑制されている。このため、フォルダブルデバイスのカバーガラス等として好適に採用することが可能である。
 本開示に係る強化ガラス板の製造方法によれば、厚みが薄くとも反りの小さい強化ガラス板が得られる。また、本開示に係る強化ガラス板は、厚みが薄くとも反りの小さい強化ガラス板である。
強化ガラス板の製造方法における除去工程を模式的に示す側面図である。 除去工程後の強化ガラス板を模式的に示す側面図である。 強化ガラス板の製造方法における除去工程を模式的に示す側面図である。 強化ガラス板の製造方法における除去工程を模式的に示す側面図である。
 以下、実施形態に係る強化ガラス板の製造方法および強化ガラス板について、添付の図面を参照しながら説明する。
<第一実施形態>
 第一実施形態に係る強化ガラス板の製造方法は、強化工程と除去工程とを含んでいる。
[強化工程]
 強化工程では、可撓性を有するガラス板を化学強化することで表面側および裏面側にそれぞれ圧縮応力層(圧縮応力が作用した層)が形成された強化ガラス板を得る。強化工程を実行するに際しては、まず、化学強化用のガラス板を準備する。
 ガラス板は、オーバーフローダウンドロー法により成形したガラスリボンを切断、加工して得る。ガラス板の種類を限定するものではないが、本実施形態のガラス板は、化学強化に適したアルカリアルミノシリケートガラスである。また、ガラス板は、アルカリアルミノシリケートガラスの中でも特に高い圧縮応力値を得られる組成でなり、さらにオーバーフローダウンドロー法による成形を可能にするために高い液相粘度を実現できる組成でなる。なお、本実施形態では、オーバーフローダウンドロー法を利用してガラス板を得ているが、この他、スロットダウンドロー法、フロート法、リドロー法等を利用してガラス板を得てもよい。
 ガラス板の端面に対しては、研磨、熱処理、エッチング等により面取りや強度向上のための処理を施すことが好ましい。ガラス板の表裏面は研磨処理してよいが、例えば、オーバーフローダウンドロー法により表裏面が予め平滑に成形されている場合や、厚みが均一且つ精度よく成形されている場合には、表裏面には研磨処理を施さず、非研磨面のままとしてよい。なお、オーバーフローダウンドロー法により成形し、非研磨とした場合、ガラス板の表裏面は火造り面となる。ガラス板には、さらにエッチングにより厚みを減少させるスリミング処理を施してもよい。
 ガラス板は、ガラス組成の一例として、モル%で、SiO2 50~80%、Al23 5~25%、B23 0~35%、Li2O 0~20%、Na2O 1~20%、Li2O+Na2O 1~20%、K2O 0~10%を含有する。なお、0%を含めて範囲を記載した各成分は任意成分であることを示す。つまり、当該成分を含有していなくともよい。また、ガラス板は、上記の各成分の他に下記の各成分を含有していてもよい。モル%で、MgO 0.1~12%、CaO 0~10%、SrO 0~5%、BaO 0~5%、ZnO 0~6%、ZrO2 0.001~10%、P25 0~10%。この他、清澄剤として、As23、Sb23、SnO2、F、Cl、SO3の群(好ましくはSnO2、Cl、SO3の群)から選択された一種又は二種以上を0~3%含有していてもよい。なお、環境面の配慮から、実質的にAs23、F、PbO、Bi23を含有しないことが好ましい。
 ガラス板の形状は特に限定されないが、本実施形態では、長辺および短辺を有する矩形状をなす。ガラス板の長辺の長さは、例えば、50mm以上500mm以下、好ましくは60mm以上450mm以下、より好ましくは65mm以上400mm以下、更に好ましくは70mm以上300mm以下、75mm以上200mm以下、80mm以上160mm以下である。ガラス板の短辺の長さは、例えば、40mm以上400mm以下、好ましくは45mm以上350mm以下、より好ましくは50mm以上300mm以下、さらに好ましくは55mm以上120mm以下、60mm以上80mm以下である。
 ガラス板は可撓性を付与できる程度の厚みを有し、本実施形態では、ガラス板の最大厚さは、例えば、100μm以下であり、好ましくは5μm以上95μm以下であり、より好ましくは10μm以上85μm以下、更に好ましくは15μm以上75μm以下である。更なる薄板化のために、ガラス板の厚みは、65μm以下、55μm以下とすることもできる。一方、ガラス板の厚みの下限は、20μm以上、25μm以上とすることが好ましい。ガラス板を薄くしすぎると強度を確保し難くなり、また過度にガラス板を薄くしすぎると、強化により圧縮応力値を高くすることが困難になり、かえって可撓性を損なう恐れがある。本実施形態においてガラス板の厚みは一定であることが好ましく、厚みの偏差が3μm以内であることが好ましい。
 ここで、本実施形態におけるガラス板は、成膜処理が行われていない非成膜のガラス板である場合を一例として示す。つまり、表裏面がガラス面からなるガラス板である場合を例示する。なお、本発明は成膜処理が行われた成膜ガラス板へも適用し得る。
 次に、上述のように準備したガラス板をイオン交換処理により化学強化する。具体的には、ガラス板をイオン交換処理用の溶融塩(強化液)に浸漬させて処理する。
 溶融塩は、ガラス板中の成分とイオン交換可能な成分を含む塩であり、典型的にはアルカリ硝酸塩である。アルカリ硝酸塩としては、NaNO3、KNO3、LiNO3等が挙げられ、これらを各々単独で(100質量%で)、或いは、複数種を混合して用いることができ、典型的にはKNO3 100質量%とすることができる。複数種のアルカリ硝酸塩を混合する場合における混合比率は任意に定めてよいが、例えば、質量%で、NaNO3 5~95%且つKNO3 5~95%、NaNO3 30~80%且つKNO3 20~70%、または、NaNO3 50~70%且つKNO3 30~50%等の比率とすることができる。
 イオン交換処理における溶融塩の温度および浸漬時間等の条件は、所望の応力特性を得られる範囲で、組成等に応じて設定してよい。溶融塩の温度は、例えば、350℃~500℃、好ましくは355℃~470℃、360℃~450℃、365℃~430℃、370℃~410℃である。また、浸漬時間は、例えば、3分~300分、好ましくは5分~120分、より好ましくは7分~100分である。
 上述のイオン交換処理を経て強化ガラス板を得る。イオン交換処理後の強化ガラス板は、洗浄および乾燥することが好ましい。なお、イオン交換処理は、一回のみに限らず、複数回を行うようにしてもよい。
 なお、強化ガラス板の圧縮応力層の最大深さDOCは、15.0μm以下であり、好ましくは0.5μm以上12.0μm以下、好ましくは1.0μm以上10.0μm以下、好ましくは1.0μm以上8.5μm以下、より好ましくは2.0μm以上8.0μm以下、より好ましくは2.5μm以上7.5μm以下、2.5μm以上5.5μm以下である。強化ガラス板の破壊時に危険な破壊様態とならない圧縮応力値、圧縮応力層の最大深さの閾値について発明者らが種々検討の結果、厚みが100μm以下の薄いガラスでは、圧縮応力層の最大深さを9.0μm以下とすることが効果的であることを見出した。こうすることで曲げに対する十分な強度を持ちながら、安全性も確保できる。なお、本発明におけるDOCは、強化ガラス板内の応力が圧縮応力から引張応力に変化する深さであり、応力がゼロとなる深さである。
 強化ガラス板の圧縮応力層における最大圧縮応力CSは、例えば、520MPa以上2000MPa以下であり、好ましくは650MPa以上1800MPa以下であり、より好ましくは700MPa以上1700MPa以下とすることができる。最大圧縮応力CSをこのような範囲とすることで、高い曲げ強度を得ることができる。なお、さらなる曲げ強度の向上を図る場合、最大圧縮応力CSは、より好ましくは760MPa以上1600MPa以下、さらに好ましくは820MPa以上1550MPa以下とすることができる。一方、破損時の粉砕の抑制を重視し、最大引張応力CTの抑制を優先する場合、最大圧縮応力CSの上限値は、1000MPa以下、900MPa以下、800MPa以下、740MPa以下に制限することもできる。
[除去工程]
 上述の強化工程が完了すると、図1に示すように、強化工程で得られた強化ガラス板1に対して除去工程を実行する。
 強化工程で得られた強化ガラス板1は、表裏面2,3の一方が凸となるように反った反り部4を含んでいる。なお、ここでは表面2が凸となっている場合を例示する。すなわち、表面2側が表裏間で強化の程度が大きい側となっている。本実施形態では、強化ガラス板1の全体が単一の反り部4からなる。つまり、強化ガラス板1の全体において表面2のみが凸となっている(裏面3に凸部を有しない)。強化ガラス板1の表面2側および裏面3側にはそれぞれ圧縮応力層5,6が形成されている。強化の程度が大きい側である表面2側の圧縮応力層5は、強化の程度が小さい側である裏面3側の圧縮応力層6に比べて、平均的に層が深くなっている。図1にてクロスハッチングを施した箇所は、強化ガラス板1における表裏の圧縮応力層5,6を含め、圧縮応力層が形成された箇所である。
 なお、強化ガラス板1(反り部4)の反りは、強化ガラス板1の長辺方向および短辺方向のいずれか一方のみに沿って発生している場合もあれば、両方向に沿って発生している場合もあるし、両方向と交差する方向(例えば、対角方向)に沿って発生している場合もある。ここで、定盤に備わった水平な支持面上に強化ガラス板1を平置き姿勢で載置(凸となった表面2を支持面に接触させた状態で載置)した場合に、強化ガラス板1の端部が支持面から浮き上がった寸法を反り量と規定する。この場合、除去工程の実行前において、厚みが100μm以下の強化ガラス板1に発生する反り量は、一例として5mm~15mmである。
 除去工程では、強化ガラス板1における表面2側(凸面側)の圧縮応力層5の表層部を除去することで反りを小さくする。具体的には、強化ガラス板1の表面2上における一部の領域のみにエッチングを施すことにより、当該一部の領域に対応する圧縮応力層5の表層部を除去する。すなわち、表裏間で強化の程度が大きい側の圧縮応力層5の深さを減じるように処置を施し、両圧縮応力層5,6の深さの差を小さくする。以下の説明では、強化ガラス板1においてエッチングを施す領域を「エッチング対象領域」と表記する。ここで、エッチング対象領域の面積は、強化ガラス板1の面積のうちの20%以上とすることが好ましく、より好ましくは30%以上、更に好ましくは40%以上、最も好ましくは50%以上である。また、エッチング対象領域の面積は、強化ガラス板1の面積のうちの100%未満、好ましくは90%以下である。
 エッチング対象領域は、強化ガラス板1における表面2の頂点、つまり凸面上で強化ガラス板1の厚み方向に最も突出した箇所、を含んだ領域である。表面2の頂点は、強化ガラス板1において表裏間強化差(表面2側と裏面3側との間での強化の程度の差)が最大になっている部位に対応している傾向が強い。本実施形態では、除去工程の実行前において、表面2の頂点にて最大圧縮応力CSが発生している。なお、表面2上における頂点以外の箇所で最大圧縮応力CSが発生している場合には、当該箇所を含んだ領域をエッチング対象領域としても構わない。
 エッチング対象領域にエッチングを施すに際しては、強化ガラス板1を縦姿勢で吊り下げ支持した状態にする。強化ガラス板1を吊り下げ支持するにあたっては、例えば、縦姿勢にした強化ガラス板1の裏面3における上部領域を保持部材(吸着パッド等)により保持させればよい。また、縦姿勢にした強化ガラス板1における上辺部を把持部材(チャック等)により把持させてもよい。
 さらに、エッチング対象領域にエッチングを施すに際しては、エッチング液(詳細は後述)を保持可能な平坦面7を備えたエッチング部材8を用いる。具体的には、エッチング対象領域と、エッチング部材8の平坦面7との両者を接触させることでエッチングを施す。本実施形態では、両者の接触に伴い、エッチング部材8の平坦面7に倣うように強化ガラス板1の表面2を部分的に平坦化させつつ、エッチング対象領域にエッチングを施す。このとき、強化ガラス板1の表面2上におけるエッチング対象領域を除いた領域は、エッチング部材8の平坦面7から浮き上がった状態にある。
 ここで、エッチング部材8の詳細について説明する。エッチング部材8は板状の外形を有する。エッチング部材8の平坦面7は、水平面に対して略垂直な面となっている。エッチング部材8の平坦面7の面積は、強化ガラス板1の面積以上とされており、本実施形態では、平坦面7の面積が、強化ガラス板1の面積よりも大きくなっている。エッチング部材8は、エッチング液を含浸させたスポンジ状部材であり、本実施形態ではPVAスポンジである。なお、平坦面7にエッチング液を保持可能なものであれば、エッチング部材8としてスポンジ状部材以外の部材を用いても構わない。ただし、平坦面7が変形し難いものを用いることが好ましい。例えば、エッチング部材8としては、ポリウレタンスポンジ等を用いることが可能である。
 なお、本実施形態においては、エッチング部材8の平坦面7に倣うように強化ガラス板1の表面2を部分的に平坦化させつつ、エッチング対象領域にエッチングを施しているが、この限りではない。エッチング対象領域と、エッチング部材8の平坦面7との両者の接触に伴い、強化ガラス板1の反り(表面2の湾曲)に倣うようにエッチング部材8の平坦面7を凹湾曲面に変形させつつ、エッチング対象領域にエッチングを施してもよい。
 エッチング液としては、ガラスをエッチング可能な酸性またはアルカリ性の液を使用できる。本実施形態においては、酸性のエッチング液を使用している。酸性のエッチング液としては、例えば、HFを含む水溶液を用いることができる。HFを含む水溶液を用いた場合、ガラスに対するエッチングレートが高く、エッチングを効率よく行うことができる。
 HFを含む水溶液は、例えば、HFのみ、或いは、HFとHCl、HFとHNO3、HFとH2SO4、HFとNH4F、の組み合わせ、を含有した水溶液である。HF、HCL、HNO3、H2SO4、NH4F、各々の化合物の濃度は、0.1~30mol/Lであることが好ましい。HFを含む水溶液を用いたエッチングにおいては、ガラス成分を含むフッ化物が副産物として生成され、エッチングレートの低下や欠陥の要因となり得るが、上述のようにHCL、HNO3、或いは、H2SO4等の他の酸との混酸とすることで、当該副産物を分解して生産性の低下を抑制できる。酸性のエッチング液を用いてエッチングを行う場合、エッチング液の温度は、例えば10℃~30℃であり、処理時間は、例えば0.1分~60分間であることが好ましく、0.5分~30分であることがより好ましく、1分~10分であることが更に好ましい。
 ここで、本実施形態においては、除去工程の実行前における表面2側の圧縮応力層5の最大深さをDOCとし、除去工程で除去される圧縮応力層5の表層部の厚み(すなわち除去量)をΔtとしたとき、Δt≦0.8×DOCを満たすように除去工程を実行する。なお、好ましくはΔt≦0.85×DOC、より好ましくはΔt≦0.9×DOC、更に好ましくはΔt≦0.95×DOC、最も好ましくはΔt≦0.97×DOCを満たすように除去工程を実行する。より具体的な例示として、Δtは、0.01~2μm、好ましくは0.03~1.5μm、より好ましくは0.05~1.2μm、さらに好ましくは0.07~1μmである。除去される圧縮応力層5の表層部の厚みをこのような範囲とすることで、除去工程の前後における最大圧縮応力CSや圧縮応力層の最大深さDOCの変動量を可及的に小さくし、制御し易くする。
 なお、最大圧縮応力CS、最大引張応力CT、圧縮応力層の最大深さDOC等の数値は、例えば、折原製作所製FSM-6000やSLP-1000等の測定装置によりガラスの応力分布を測定することにより導出可能である。
 ここで、本実施形態では、除去工程において圧縮応力層5の表層部を除去するにあたり、エッチング部材8を用いてエッチング対象領域にエッチングを施している。しかしながらこの限りではなく、強化ガラス板1の裏面3の全領域、及び、表面2上におけるエッチング対象領域を除いた領域、をマスキングした上で、強化ガラス板1をエッチング液に浸漬させてエッチング対象領域にエッチングを施してもよい。さらには、エッチングの代わりに、強化ガラス板1の表面2上における一部の領域(表面2の頂点を含む領域)のみに研磨加工を施すことで、当該一部の領域に対応する圧縮応力層5の表層部を除去してもよい。
 また、本実施形態では、強化ガラス板1の表面2上における一部の領域のみをエッチング対象領域としているが、表面2の全領域(面積の100%)をエッチング対象領域として、全領域に対応する圧縮応力層5の表層部を除去してもよい。この場合、スプレー等を用いて表面2の全領域にエッチング液を噴射してもよいし、表裏面2,3のうちの表面2のみをエッチング液に浸漬させるようにしてもよい。さらに、表面2の全領域に対応する圧縮応力層5の表層部を除去する場合には、表面2の全領域に対して研磨加工を施してもよい。
 上述の除去工程が完了すると、図2に示すように、除去工程の実行前と比較して反りが小さくなった強化ガラス板1が得られる。以下の説明では、除去工程後の強化ガラス板1を「処理後強化ガラス板1」と表記して除去工程前の強化ガラス板1と区別する。
 上述の除去工程において、強化ガラス板1の表面2上における一部の領域のみをエッチング対象領域としていた場合、処理後強化ガラス板1は、表裏面2,3のうちの凸面である表面2上の一部の領域のみに、エッチングが施された処理領域を有する。すなわち、表面2の一部にエッチング面が含まれる。一方、除去工程において、強化ガラス板1の表面2の全領域をエッチング対象領域としていた場合、処理後強化ガラス板1は、表裏面2,3のうちの凸面である表面2の全領域に、エッチングが施された処理領域を有する。すなわち、表面2の全面がエッチング面となる。勿論であるが、本実施形態において処理後強化ガラス板1の裏面3上には処理領域が存在しない。すなわち、裏面3は非エッチング面となる。
 処理後強化ガラス板1の厚みは上述のΔtに応じて除去箇所において部分的に減少するが、処理後強化ガラス板1の最大厚さは、例えば100μm以下であり、好ましくは5μm以上95μm以下、より好ましくは10μm以上85μm以下、更に好ましくは15μm以上75μm以下である。
 処理後強化ガラス板1の圧縮応力深さは上述のΔtに応じて除去箇所において部分的に減少するが、処理後強化ガラス板1の圧縮応力層の最大深さDOCは、例えば、0.5μm以上であり、好ましくは0.5μm以上12.0μm以下、より好ましくは2.0μm以上8.0μm以下、より好ましくは2.5μm以上7.5μm以下、2.5μm以上5.5μm以下である。
 処理後強化ガラス板1の圧縮応力層における最大圧縮応力CSは、例えば、520MPa以上2000MPa以下であり、好ましくは650MPa以上1800MPa以下であり、より好ましくは700MPa以上1700MPa以下とすることができる。
 処理後強化ガラス板1の反りは、例えば、1.0mm以下であり、好ましくは、0.7mm以下であり、より好ましくは0.5mm以下である。
<第二実施形態>
 以下、第二実施形態について説明する。なお、第二実施形態および後述する第三実施形態の説明において、上記の第一実施形態で説明済みの要素と実質的に同一の要素については、第二、第三実施形態の説明で参照する図面に同一符号を付すことで重複する説明を省略し、第一実施形態との相違点についてのみ説明する。
 図3に示すように、第二実施形態が第一実施形態と相違している点は、除去工程において、強化ガラス板1を縦姿勢で吊り下げ支持するのではなく、平置き姿勢にしている点である。具体的には、定盤上にエッチング部材8を平置きにした状態の下、強化ガラス板1の凸になっている表面2が下面となるように、エッチング部材8上に強化ガラス板1を載置する。これにより、エッチング対象領域と、エッチング部材8の平坦面7との両者を接触させてエッチングを施す。第二実施形態においても、第一実施形態と同様の処理後強化ガラス板1が得られる。
<第三実施形態>
 図4に示すように、第三実施形態が第一実施形態と相違している点は、強化ガラス板1の全体が単一の反り部4からではなく、複数(本実施形態では二つ)の反り部4からなる点と、除去工程において、エッチング対象領域が強化ガラス板1の表面2上および裏面3上の双方に存在している点である。
 同図に示すように、縦姿勢で吊り下げ支持された強化ガラス板1の上方側部位と下方側部位とは相互に逆向きに反っている。以下の説明では、相対的に上方に位置すると共に表面2が凸となった反り部4を第一反り部4aと表記し、相対的に下方に位置すると共に裏面3が凸となった反り部4を第二反り部4bと表記する。第一反り部4aにおいては、表面2側と裏面3側とのうち、表面2側で強化の程度が大きく、圧縮応力層5は圧縮応力層6に比べて、平均的に層が深くなっている。一方、第二反り部4bにおいては、第一反り部4aとは反対に裏面3側で強化の程度が大きく、圧縮応力層6は圧縮応力層5に比べて、平均的に層が深くなっている。
 第一反り部4aでは、当該第一反り部4aにおける表面2上の一部の領域(表面2の頂点を含む領域)のみがエッチング対象領域となる。一方、第二反り部4bでは、当該第二反り部4bにおける裏面3上の一部の領域(裏面3の頂点を含む領域)のみがエッチング対象領域となる。これらエッチング対象領域にエッチングを施すに際しては、強化ガラス板1の表面2側および裏面3側から、それぞれエッチング対象領域に対してエッチング部材8の平坦面7を接触させる。これにより、表面2上の一部の領域に対応する圧縮応力層5の表層部、及び、裏面3上の一部の領域に対応する圧縮応力層6の表層部を除去する。
 第三実施形態で得られる処理後強化ガラス板1においても、その反り量が1mm以下(好ましくは、0.7mm以下、より好ましくは0.5mm以下)となっている。この処理後強化ガラス板1は、第一反り部4aおよび第二反り部4bを含み、第一反り部4aにおける表面2上の一部の領域、及び、第二反り部4bにおける裏面3上の一部の領域に、エッチングが施された処理領域を有する。すなわち、第一反り部4aにおける表面2の一部、及び、第二反り部4bにおける裏面3の一部にエッチング面が含まれる。
 なお、上記の第一~第三実施形態では、強化ガラス板1において、表面2側の圧縮応力層5と裏面3側の圧縮応力層6とのうち、強化の程度が大きい側にて平均的に層が深くなっていたが、この限りではない。強化の程度が大きい側と小さい側とで層の深さが同等で、最大圧縮応力CSの値にのみ差が生じている場合もある。勿論、層の深さと最大圧縮応力CSの値との双方に差が生じている場合もある(下記の実施例を参照)。
 ここで、上記の各実施形態に対しては、以下のような変形例を適用することも可能である。上記の各実施形態においては、エッチング部材8に平坦面7が備わっているが、この限りではなく、強化ガラス板1の反り(反り部4における凸面の湾曲)に倣うような凹湾曲面がエッチング部材8に備わっていてもよい。
 実施例として、上記の実施形態と同様の要領で処理後強化ガラス板1を製造すると共に、除去工程前の強化ガラス板1における反り量と、除去工程後の処理後強化ガラス板1における反り量とを比較した。その結果を下記の[表1]に示す。
 まず、強化工程として、ガラス組成としてモル%で、SiO2 66.4%、Al23 11.5%、B23 0.5%、K2O 1.4%、Na2O 15.2%、Li2O 0.02%、MgO 4.8%、CaO 0.1%、SnO2 0.1%を含む化学強化用ガラス板(縦寸法×横寸法:200mm×100mm、厚み:50μm)の複数枚を溶融塩(KNO3、430℃)に10分間浸漬させることで、複数枚の強化ガラス板1のサンプルを得た。
 次に、複数枚のサンプルの中から反りが発生しているサンプルを二枚抜き出し、洗浄した後、それぞれに対して除去工程を実行した。具体的には、二枚のサンプルの一方を実施例1、他方を実施例2とした上で、実施例1では上記の第二実施形態と同様の態様、実施例2では上記の第一実施形態と同様の態様でエッチングを施すことにより除去工程を実行して、処理後強化ガラス板1を製造した。なお、下記の[表1]における「処理方法」の項目は、除去工程を実行する際の強化ガラス板1の姿勢を示している。
 実施例1及び2の双方について、エッチングを施すにあたっては、アイオン株式会社製のPVAスポンジ(製品名:ビーファイン)をエッチング部材8として使用し、当該PVAスポンジにエッチング液(HF1wt%の水溶液)を含浸させた。実施例1及び2の各々において、サンプルとPVAスポンジとを接触させた時間は、下記の[表1]における「処理時間」の項目のとおりである。
 そして、実施例1及び2の各々において、除去工程の前後における反り量の変化について検証を行った。下記の[表1]における「処理前」の各項目「凸側CS」、「凹側CS」、「凸側DOC」、「凹側DOC」、「反り量」は、除去工程前の強化ガラス板1における、凸面側での最大圧縮応力CS、凹面側での最大圧縮応力CS、凸面側での圧縮応力層の最大深さDOC、凹面側での圧縮応力層の最大深さDOC、反り量をそれぞれ示している。また、「処理後」の各項目「凸側CS」、「凸側DOC」、「反り量」は、除去工程後の処理後強化ガラス板1における、凸面側での最大圧縮応力CS、凸面側での圧縮応力層の最大深さDOC、反り量をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000001
 [表1]に示す結果から明白なように、除去工程後においては除去工程前と比較して反り量が大きく抑制されていることが分かる。さらに、厚みが50μmである超薄型の強化ガラス板であっても、反り量を1mm以下に小さくできていることが分かる。また、[表1]に示す結果から理解できるように、除去工程後における凸側CSや凸側DOCの値は、除去工程前における凹側CSや凹側DOCと近い値が実現されている。つまり、除去工程の実行に伴って表裏間強化差を極めて小さくできている。以上のことから、本開示に係る強化ガラス板の製造方法によれば、厚みが薄くとも反りの小さい強化ガラス板を実現できるものと推認される。
 1      強化ガラス板
 2      表面
 3      裏面
 4      反り部
 4a     第一反り部
 4b     第二反り部
 5      圧縮応力層
 6      圧縮応力層
 7      平坦面
 8      エッチング部材

Claims (12)

  1.  可撓性を有するガラス板を化学強化することで表裏両側にそれぞれ圧縮応力層が形成された強化ガラス板を得る強化工程、を含んだ強化ガラス板の製造方法であって、
     前記強化ガラス板が、表裏面の一方が凸となるように反った反り部を含み、
     前記反り部における凸面側の前記圧縮応力層の表層部を除去することで反りを小さくする除去工程、を更に含むことを特徴とする強化ガラス板の製造方法。
  2.  前記反り部における前記凸面上の一部の領域のみにエッチング又は研磨加工を施すことにより、前記一部の領域に対応する前記圧縮応力層の表層部を除去することを特徴とする請求項1に記載の強化ガラス板の製造方法。
  3.  前記強化ガラス板を縦姿勢で吊り下げ支持した状態でエッチングを施すことを特徴とする請求項2に記載の強化ガラス板の製造方法。
  4.  前記反り部における前記凸面の頂点を含んだ領域にエッチングを施すことを特徴とする請求項2又は3に記載の強化ガラス板の製造方法。
  5.  前記強化ガラス板が前記反り部を複数含み、
     前記複数の反り部の中には、前記強化ガラス板の表面が凸となった前記反り部と、裏面が凸となった前記反り部と、が含まれることを特徴とする請求項3又は4に記載の強化ガラス板の製造方法。
  6.  エッチング液を保持可能な平坦面を備えたエッチング部材を用いて、
     前記反り部における前記凸面上の前記一部の領域と、前記エッチング部材の前記平坦面と、を接触させてエッチングを施すことを特徴とする請求項2~5のいずれかに記載の強化ガラス板の製造方法。
  7.  前記エッチング部材の前記平坦面の面積を、前記強化ガラス板の面積以上にすることを特徴とする請求項6に記載の強化ガラス板の製造方法。
  8.  前記エッチング部材が、前記エッチング液を含浸させたスポンジ状部材であり、
     前記エッチング液が、HF又はHFを含んだ混酸、を含むことを特徴とする請求項6又は7に記載の強化ガラス板の製造方法。
  9.  前記強化ガラス板の全体が単一の前記反り部からなり、
     前記反り部における前記凸面の全領域にエッチング又は研磨加工を施すことにより、前記全領域に対応する前記圧縮応力層の表層部を除去することを特徴とする請求項1に記載の強化ガラス板の製造方法。
  10.  前記除去工程前における前記凸面側の前記圧縮応力層の最大深さをDOCとし、前記除去工程で除去される前記圧縮応力層の表層部の厚みをΔtとしたとき、
     Δt≦0.8×DOCを満たすことを特徴とする請求項1~9のいずれかに記載の強化ガラス板の製造方法。
  11.  前記除去工程前における前記強化ガラス板の厚みが100μm以下であり、
     前記除去工程後における前記強化ガラス板の反り量が1mm以下であることを特徴とする請求項1~10のいずれかに記載の強化ガラス板の製造方法。
  12.  厚みが100μm以下の強化ガラス板であって、
     表裏面の一方が凸となるように反った反り部を含み、
     前記反り部における凸面上の少なくとも一部の領域にエッチングが施された処理領域を有し、
     当該強化ガラス板の反り量が1mm以下であることを特徴とする強化ガラス板。
PCT/JP2022/000558 2021-03-17 2022-01-11 強化ガラス板および強化ガラス板の製造方法 WO2022196046A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-043689 2021-03-17
JP2021043689A JP7520293B2 (ja) 2021-03-17 2021-03-17 強化ガラス板および強化ガラス板の製造方法

Publications (1)

Publication Number Publication Date
WO2022196046A1 true WO2022196046A1 (ja) 2022-09-22

Family

ID=83320164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000558 WO2022196046A1 (ja) 2021-03-17 2022-01-11 強化ガラス板および強化ガラス板の製造方法

Country Status (3)

Country Link
JP (1) JP7520293B2 (ja)
TW (1) TW202248163A (ja)
WO (1) WO2022196046A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089191A (ja) * 1999-09-27 2001-04-03 Nippon Sheet Glass Co Ltd ディスプレイ用ガラス基板の製造方法及び該製造方法により製造されたディスプレイ用ガラス基板
JP2005174500A (ja) * 2003-12-12 2005-06-30 Hoya Corp 情報記録媒体用ガラス基板の製造方法
JP2013001593A (ja) * 2011-06-15 2013-01-07 Febacs:Kk 基板処理装置
JP2015157733A (ja) * 2014-02-25 2015-09-03 旭硝子株式会社 化学強化ガラス板の製造方法
JP2018188360A (ja) * 2014-09-12 2018-11-29 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 超薄板化学強化ガラス物品およびそのようなガラス物品の製造方法
JP2019535637A (ja) * 2016-11-29 2019-12-12 コーニング インコーポレイテッド 強化ガラス系物品及び強化ガラス系物品の反りを低減する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406309A (zh) 2015-03-25 2017-11-28 旭硝子株式会社 玻璃板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089191A (ja) * 1999-09-27 2001-04-03 Nippon Sheet Glass Co Ltd ディスプレイ用ガラス基板の製造方法及び該製造方法により製造されたディスプレイ用ガラス基板
JP2005174500A (ja) * 2003-12-12 2005-06-30 Hoya Corp 情報記録媒体用ガラス基板の製造方法
JP2013001593A (ja) * 2011-06-15 2013-01-07 Febacs:Kk 基板処理装置
JP2015157733A (ja) * 2014-02-25 2015-09-03 旭硝子株式会社 化学強化ガラス板の製造方法
JP2018188360A (ja) * 2014-09-12 2018-11-29 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 超薄板化学強化ガラス物品およびそのようなガラス物品の製造方法
JP2019535637A (ja) * 2016-11-29 2019-12-12 コーニング インコーポレイテッド 強化ガラス系物品及び強化ガラス系物品の反りを低減する方法

Also Published As

Publication number Publication date
JP2022143262A (ja) 2022-10-03
JP7520293B2 (ja) 2024-07-23
TW202248163A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US11548810B2 (en) Textured glass-based articles with scratch resistance and methods of making the same
JP5066617B2 (ja) 携帯端末装置のカバーガラス用のガラス基材およびその製造方法
JP6312722B2 (ja) 耐衝撃損傷性ガラス板の製造方法
US11198642B2 (en) Production method of chemically strengthened glass, and chemically strengthened glass
JP5066626B2 (ja) 携帯機器用カバーガラスのガラス基材及び携帯機器用カバーガラス
JP7301546B2 (ja) ガラス製品及びその製造方法
US11905202B2 (en) Method of modifying a textured glass substrate with a region under compressive stress to increase strength of the glass substrate
US11254605B2 (en) Methods of reducing the thickness of textured glass, glass-ceramic, and ceramic articles with high concentration alkali hydroxide at elevated temperature
US20210331961A1 (en) Enhanced strength of glass by combining redraw and chemical thinning processes
JP7247454B2 (ja) 化学強化ガラスの製造方法及び化学強化ガラス
WO2018062141A1 (ja) 化学強化ガラスの製造方法
WO2020243211A1 (en) Etching glass and glass ceramic materials in hydroxide containing molten salt
WO2018043361A1 (ja) 化学強化ガラスの製造方法
WO2022196046A1 (ja) 強化ガラス板および強化ガラス板の製造方法
JP7305982B2 (ja) 凹凸形状付きガラス基体およびその製造方法
US20220289623A1 (en) Ion exchange process for ultra-thin glass
JP7331628B2 (ja) カバーガラスの製造方法及びカバーガラス
JP5462224B2 (ja) 携帯機器用カバーガラスのガラス基材の製造方法
WO2023278223A1 (en) Methods of etching glass-based sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770808

Country of ref document: EP

Kind code of ref document: A1