WO2022195977A1 - ゴム組成物及びタイヤ - Google Patents

ゴム組成物及びタイヤ Download PDF

Info

Publication number
WO2022195977A1
WO2022195977A1 PCT/JP2021/044784 JP2021044784W WO2022195977A1 WO 2022195977 A1 WO2022195977 A1 WO 2022195977A1 JP 2021044784 W JP2021044784 W JP 2021044784W WO 2022195977 A1 WO2022195977 A1 WO 2022195977A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conjugated diene
rubber composition
mass
rubber
Prior art date
Application number
PCT/JP2021/044784
Other languages
English (en)
French (fr)
Inventor
遼大 曽根
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP21931719.5A priority Critical patent/EP4309915A1/en
Priority to JP2023506743A priority patent/JPWO2022195977A1/ja
Priority to CN202180095940.1A priority patent/CN116981730A/zh
Priority to US18/282,920 priority patent/US20240182697A1/en
Publication of WO2022195977A1 publication Critical patent/WO2022195977A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to rubber compositions and tires.
  • Patent Document 1 discloses that 0.5 to 20 parts by weight of potassium titanate fiber is added to 100 parts by weight of a rubber component made of natural rubber and butadiene rubber, and the amount of iodine adsorption is A rubber composition containing 5 to 200 parts by weight of carbon black of 100 to 300 mg/g has been proposed, and the rubber composition is used for the cap tread of a tread having a two-layer structure consisting of a cap tread and a base tread.
  • a technique is disclosed that improves performance on ice (performance on ice and snow) while suppressing deterioration in wear resistance.
  • Patent Document 2 at least two diene-based polymers, silica, and carbon black are included, and by controlling the blending amount and modified state of the diene-based polymer, wear-resistant Techniques for achieving compatibility with on-ice performance while suppressing the deterioration have been disclosed.
  • Patent Documents 1 and 2 both have the effect of enhancing performance on ice, further improvements have been desired in terms of steering stability.
  • an object of the present invention is to provide a rubber composition that can achieve excellent performance on ice and steering stability when applied to tires. Another object of the present invention is to provide a tire having excellent performance on ice and excellent steering stability.
  • the gist and configuration of the present invention for solving the above problems are as follows.
  • a rubber component comprising a modified conjugated diene-based polymer; a filler comprising at least silica; 5 parts by mass or more of a thermoplastic resin with respect to 100 parts by mass of the rubber component; characterized by comprising
  • the tire of the present invention is characterized by using the rubber composition of the present invention described above.
  • the present invention it is possible to provide a rubber composition that can achieve excellent performance on ice and steering stability when applied to tires. Moreover, according to the present invention, it is possible to provide a tire having excellent performance on ice and excellent steering stability.
  • the rubber composition of the present invention contains a rubber component, a filler, and a thermoplastic resin. Each component constituting the rubber composition of the present invention will be described below.
  • an isoprene-based rubber and a specific modified conjugated diene-based polymer in the rubber component By including an isoprene-based rubber and a specific modified conjugated diene-based polymer in the rubber component, a site capable of reacting with a filler described later can be formed in the rubber component, so that the dispersibility of the filler is improved. As a result of being able to improve the balance between flexibility and strength of the rubber component, it is possible to achieve excellent performance on ice and steering stability when applied to tires.
  • the isoprene-based rubber is a rubber having an isoprene skeleton.
  • examples include natural rubber and synthetic isoprene rubber. These isoprene-based rubbers may be contained singly or as a blend of two or more. By including an isoprene-based rubber in the rubber component, the performance on ice and steering stability of the rubber composition can be enhanced.
  • isoprene-based rubber is an unmodified isoprene-based rubber in order to distinguish it from the modified conjugated diene-based polymer described later.
  • the content ratio of the isoprene-based rubber in the rubber component is not particularly limited, but from the viewpoint of improving the balance between performance on ice and steering stability when the rubber composition is applied to a tire, it is preferably 10% by mass or more. It is preferably 20% by mass or more, more preferably 30% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less, and 60% by mass. More preferably:
  • the conjugated diene-based polymer constituting the modified conjugated diene-based polymer is obtained by polymerizing a monomer containing a conjugated diene-based compound.
  • the conjugated diene compound used in this polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3- -heptadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like.
  • the conjugated diene-based polymer preferably has a vinyl bond content of 10 to 60% by mass, preferably 20 to 60% by mass, from the viewpoint of a balance between excellent ice performance and steering stability when applied to tires. is more preferable.
  • the conjugated diene-based polymer may be a homopolymer of a conjugated diene compound, or a copolymer of a conjugated diene compound.
  • the conjugated diene-based polymer constituting the modified conjugated diene-based polymer is preferably a copolymer having an aromatic vinyl unit and a conjugated diene-based unit.
  • aromatic vinyl compounds used in the polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-ty
  • the conjugated diene-based polymer when the conjugated diene-based polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound, it has high living properties in anionic polymerization, and among others, 1,3-butadiene and styrene are used as monomer units. It is preferably a copolymer containing Furthermore, this copolymer preferably has a random copolymerization portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular, and may further have a block portion composed of the conjugated diene compound or the aromatic vinyl compound. can.
  • the proportion of the aromatic vinyl unit in the conjugated diene-based polymer is 10% by mass or less. It is preferably 7% by mass or less, and more preferably 7% by mass or less. This is because if the proportion of the aromatic vinyl unit exceeds 10% by mass, there is a possibility that sufficient ice and snow performance cannot be obtained when applied to a tire.
  • compounds other than conjugated diene compounds and aromatic vinyl compounds may be used as monomers.
  • Other monomers include, for example, acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate.
  • the proportion of other monomers used is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total amount of monomers used for polymerization.
  • the polymerization method for obtaining the conjugated diene-based polymer is not particularly limited, and for example, solution polymerization method, gas phase polymerization method, bulk polymerization method, etc. can be used, but solution polymerization method can be used. is preferred. Moreover, as a polymerization system, either a batch system or a continuous system may be used. When using the solution polymerization method, as an example of a specific polymerization method, in an organic solvent, a monomer containing a conjugated diene compound is polymerized in the presence of a polymerization initiator and, optionally, a randomizer. method.
  • At least one of an alkali metal compound and an alkaline earth metal compound can be used as the polymerization initiator used in the polymerization.
  • alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and t-butyllithium, 1,4-dilithiobutane, phenyllithium, stilbenelithium, Naphthyllithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene)dilithium, naphthyl sodium, naphthyl potassium, di-n -Butylmagnesium, di-n-hexylmagnesium, potassium ethoxy, calcium stearate and the like.
  • lithium compounds are preferred.
  • the total amount of the polymerization initiator such as
  • the polymerization reaction may be carried out using, as an initiator, a mixture of at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica.
  • an initiator a mixture of at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica.
  • the polymerization initiation terminal of the conjugated diene-based polymer can be modified with a functional group that interacts with silica.
  • the term "functional group that interacts with silica” means a group having an element that interacts with silica, such as nitrogen, sulfur, phosphorus, and oxygen.
  • Interaction means forming a covalent bond between molecules or an intermolecular force weaker than a covalent bond (e.g., ion-dipole interaction, dipole-dipole interaction, hydrogen bonding, van der Waals It means to form an electromagnetic force acting between molecules such as force.
  • nitrogen-containing compounds such as secondary amine compounds are particularly preferable as the compound having a functional group that interacts with silica, which is used for modifying the polymerization initiation terminal.
  • the nitrogen-containing compound include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)piperazine, 1, and 3-ditrimethylsilyl-1,3,5-triazinane.
  • the polymerization When the polymerization is carried out in the presence of the mixture, at least one of the alkali metal compound and the alkaline earth metal compound and a compound having a functional group that interacts with silica are mixed in advance, and the mixture is added to the polymerization system.
  • Polymerization may be carried out by adding to the inside.
  • at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and the two are mixed in the polymerization system to carry out polymerization. good. Any of these cases is included in the aspect of "polymerizing a monomer containing a conjugated diene compound in the presence of an initiator containing at least one of an alkali metal compound and an alkaline earth metal compound".
  • the randomizer used in the polymerization can be used for the purpose of adjusting the vinyl bond content, which indicates the content of vinyl bonds in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine. , N-methylmorpholine, tetramethylethylenediamine, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons.
  • hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, and isobutene.
  • trans-2-butene cis-2-butene
  • 1-pentyne, 2-pentyne 1-hexene, 2-hexene
  • benzene toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1 -pentene, 2-pentene, cyclohexene and the like.
  • an organic solvent it can be used individually by 1 type or in combination of 2 or more types.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. is more preferable.
  • the temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C.
  • the polymerization reaction is preferably conducted under sufficient pressure to keep the monomers substantially in the liquid phase. Such a pressure can be obtained by a method such as pressurizing the interior of the reactor with a gas inert to the polymerization reaction.
  • the obtained conjugated diene-based polymer preferably has a polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 5.0 ⁇ 10 4 to 2.0 ⁇ 10 6 . .
  • Mw polystyrene equivalent weight average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • R 1 is hydrogen atoms or hydrocarbyl groups
  • a 1 is a monovalent group having an alkoxysilyl group.
  • the hydrocarbyl group for R 1 includes, for example, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. and the like.
  • the rest of the structure of A1 is not particularly limited as long as it has an alkoxysilyl group, but it is preferably a group that further has a methylene group or a polymethylene group, and has a methylene group or a polymethylene group and an alkoxysilyl group.
  • the number of specific imino groups possessed by the compound [M] may be 2 or more, preferably 2 to 6.
  • a plurality of R1 and A1 in compound [M] may be the same or different.
  • R 2 and R 3 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 4 is an alkanediyl group having 1 to 20 carbon atoms
  • R 1 is a hydrogen atom or a hydrocarbyl group and “*” is a bond attached to R 5
  • R 5 has at least one atom selected from the group consisting of an m-valent hydrocarbyl group having 1 to 20 carbon atoms, or a nitrogen atom, an oxygen atom and a sulfur atom, and It is an m-valent group having 1 to 20 carbon atoms and having no active hydrogen
  • n is an integer of 1 to 3
  • m is an integer of 2 to 10.
  • the hydrocarbyl groups of R 2 and R 3 are, for example, alkyl groups having 1 to 20 carbon atoms, allyl groups, cycloalkyl groups having 3 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and the like. mentioned.
  • the hydrocarbylene group for R 4 include an alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, and the like.
  • R4 is preferably linear.
  • n is preferably 2 or 3, and more preferably 3, in terms of improving silica dispersibility.
  • the m-valent hydrocarbyl group for R 5 is a chain hydrocarbon having 1 to 20 carbon atoms, an alicyclic hydrocarbon having 3 to 20 carbon atoms, or an aromatic hydrocarbon having 6 to 20 carbon atoms and m hydrogen atoms. are removed, and the like.
  • a group obtained by removing m hydrogen atoms from a ring portion of an aromatic hydrocarbon (aromatic ring group) is preferable because it has a high effect of improving the abrasion resistance of the resulting vulcanized rubber.
  • aromatic hydrocarbon examples include a ring structure represented by the following formula (2) and a polycyclic structure in which two or more such ring structures are linked (for example, a biphenyl group, etc.).
  • r is an integer of 0 to 5.
  • R 5 is a C 1-20 m-valent group having at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom and having no active hydrogen
  • examples include an m-valent heterocyclic group and an m-valent group having a tertiary amine structure.
  • the heterocyclic group is preferably a conjugated system, for example, a monocyclic or condensed ring such as pyridine, pyrimidine, pyrazine, quinoline, naphthalidine, furan, thiophene, or a structure in which a plurality of such monocyclic or condensed rings are linked.
  • active hydrogen means a hydrogen atom bonded to an atom other than a carbon atom, preferably having a lower bond energy than the carbon-hydrogen bond of polymethylene.
  • compound [M] examples include compounds represented by the following formulas (M-1) to (M-23).
  • compound [M] may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R7 in formula (M-11) represents a hydrogen atom or an alkyl group.
  • the compound [M] can be synthesized by appropriately combining standard methods of organic chemistry.
  • a monofunctional amine compound having an alkoxysilyl group and R4 for example, 3-aminopropyltriethoxysilane, 3-aminopropyl methyldiethoxysilane, etc.
  • a polyfunctional aldehyde compound having R5 e.g., terephthalaldehyde, isophthalaldehyde, phthaldialdehyde, 2,4-pyridinedicarboxaldehyde, etc.
  • a polyfunctional amine compound having e.g., tris (2-aminoethyl) amine, N,N'-bis (2-aminoethyl) methylamine, etc.
  • a monofunctional hydroxyl group-containing compound having an alkoxysilyl group and R4 for example, 4-(triethoxysilyl)
  • the reaction between the conjugated diene-based polymer having an active terminal and the compound [M] can be carried out, for example, as a solution reaction.
  • the proportion of the compound [M] used (the total amount when two or more types are used) is 0 per 1 mol of the metal atom involved in the polymerization of the polymerization initiator. It is preferably 0.01 mol or more, more preferably 0.05 mol or more.
  • the upper limit is preferably less than 2.0 mol, more preferably less than 1.5 mol, per 1 mol of the metal atom involved in polymerization of the polymerization initiator. is more preferred.
  • the temperature of the modification reaction is generally the same as that of the polymerization reaction, preferably from -20°C to 150°C, more preferably from 0 to 120°C.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the conjugated diene-based polymer having an active terminal and the compound [M] other modifiers or coupling agents may be used together with the compound [M].
  • the other modifier or coupling agent is not particularly limited as long as it is a compound capable of reacting with the active terminal of the conjugated diene polymer obtained by the above polymerization.
  • a known compound can be used.
  • other modifiers or coupling agents their usage ratio is preferably 10 mol % or less, more preferably 5 mol % or less.
  • Isolation of the modified conjugated diene-based polymer contained in the reaction solution can be carried out by, for example, a known solvent removal method such as steam stripping and a drying operation such as heat treatment.
  • the weight average molecular weight of the modified conjugated diene-based polymer in terms of polystyrene by GPC is sufficiently high to obtain a modified conjugated diene-based polymer having sufficiently high Mooney viscosity and good shape stability, and a rubber composition excellent in processability. It is preferably 1.0 ⁇ 10 5 to 4.0 ⁇ 10 6 from the viewpoint of compatibility with obtaining a product. It is more preferably 1.8 ⁇ 10 5 to 3.0 ⁇ 10 6 , still more preferably 2.0 ⁇ 10 5 to 2.0 ⁇ 10 6 .
  • the weight average molecular weight of the modified conjugated diene-based polymer is a value obtained from the maximum peak molecular weight of the GPC curve measured by GPC after the reaction between the conjugated diene-based polymer having an active terminal and the compound [M].
  • the modified conjugated diene-based polymer thus obtained preferably has a peak top molecular weight of the lowest molecular weight peak measured by GPC of less than 1.0 ⁇ 10 6 . This is because the performance on ice when applied to tires can be further improved.
  • the number of branches of the polymer chain per molecule of the modified conjugated diene-based polymer is preferably 3 or more from the viewpoint of sufficiently high Mooney viscosity of the obtained modified conjugated diene-based polymer and good cold flow. and more preferably in the range of 3-20.
  • the modified conjugated diene-based polymer is preferably represented by the following formula (3).
  • R 2 is a hydrocarbyl group having 1 to 20 carbon atoms
  • R 6 is a hydrocarbyloxy group having 1 to 20 carbon atoms, or a modified or unmodified conjugated diene polymer chain
  • R 4 is an alkanediyl group having 1 to 20 carbon atoms
  • Z is a group represented by the following formula (4) or (5)
  • R 5 is an m-valent group having 1 to 20 carbon atoms.
  • a plurality of R 2 , R 4 , R 6 , Z and n may be the same or different.
  • R 1 is a hydrogen atom or a hydrocarbyl group
  • Poly is a modified or unmodified conjugated diene-based polymer chain.
  • "*" is a bond that binds to R 5 indicates that it is a hand.
  • R 1 , R 2 , R 4 and R 5 are the same as explained for the above formula (1).
  • the hydrocarbyloxy group of R6 is preferably an ethoxy group or a methoxy group.
  • the conjugated diene polymer chain of R6 and the conjugated diene polymer chain Poly in formulas (4) and (5) have a structure corresponding to the conjugated diene polymer having an active terminal obtained in the above polymerization step. be.
  • These conjugated diene-based polymer chains may have functional groups that interact with silica at the ends.
  • the content ratio of the modified conjugated diene-based polymer in the rubber component is not particularly limited, but from the viewpoint of improving the balance of performance on ice and steering stability when the rubber composition is applied to a tire, it is 20% by mass or more. It is preferably 30% by mass or more, more preferably 40% by mass or more. From the same viewpoint, the content ratio of the modified conjugated diene-based polymer in the rubber component is preferably 90% by mass or less, more preferably 80% by mass or less, and 70% by mass or less. is more preferred.
  • the rubber composition of the present invention further contains a filler containing at least silica in addition to the rubber component.
  • a filler containing at least silica in addition to the rubber component.
  • silica is not particularly limited.
  • wet silica hydrous silicic acid
  • dry silica anhydrous silicic acid
  • calcium silicate aluminum silicate and the like
  • wet silica is preferably used.
  • These silicas may be used individually by 1 type, and may use 2 or more types together.
  • precipitated silica can be used as the wet silica.
  • precipitated silica means that in the early stage of production, the reaction solution is reacted at a relatively high temperature and in a neutral to alkaline pH range to grow primary silica particles, and then controlled to the acidic side to aggregate the primary particles. It is the silica obtained as a result of
  • the silica conditions are not particularly limited, but for example, the CTAB specific surface area (cetyltrimethylammonium bromide adsorption specific surface area) can be 70 m 2 /g or more and 250 m 2 /g or less.
  • the CTAB specific surface area means a value measured according to ASTM D3765-92.
  • the adsorption cross-sectional area per molecule of cetyltrimethylammonium bromide on the silica surface is 0.35 nm 2
  • the specific surface area (m 2 /g) calculated from the adsorption amount of CTAB is defined as the CTAB specific surface area.
  • the BET specific surface area of the silica can be 100 m 2 /g or more and 250 m 2 /g or less.
  • the BET specific surface area is a specific surface area determined by the BET method, and can be measured according to ASTM D4820-93 in the present invention.
  • the silica content is not particularly limited, and can be appropriately set according to the required performance.
  • the silica content is preferably 10 to 160 parts by mass, more preferably 30 to 120 parts by mass, per 100 parts by mass of the rubber component. If the content of the silica is 10 parts by mass or more with respect to 100 parts by mass of the rubber component, the performance on ice and the steering stability when the rubber composition is applied to a tire can be more reliably improved. When the content is 160 parts by mass or less, deterioration of the processability of the rubber composition and deterioration of rolling resistance after application to a tire can be more reliably suppressed.
  • the filler may further contain carbon black in addition to the silica described above.
  • carbon black By including carbon black, the wear resistance of the tire can be further improved.
  • the carbon black is not particularly limited, and examples thereof include carbon black of GPF, FEF, HAF, ISAF, and SAF grades. Among these, ISAF and SAF grade carbon blacks are preferable from the viewpoint of improving the abrasion resistance of the rubber composition. These carbon blacks may be used individually by 1 type, and may use 2 or more types together.
  • the content of the carbon black in the rubber composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 2 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferable that it is above.
  • the content of the carbon black in the rubber composition is preferably 15 parts by mass or less, and 12 parts by mass or less with respect to 100 parts by mass of the rubber component. is more preferable.
  • the ratio of the content of the carbon black to the content of the silica is preferably 0.05 to 1.2, more preferably 0.07 to 1.0, and 0.08 to 0.7 is particularly preferred.
  • the content ratio of the carbon black is preferably 0.05 to 1.2, more preferably 0.07 to 1.0, and 0.08 to 0.7.
  • the filler may be the following general formula (XX): nM.xSiOy.zH2O ( XX) [In the formula, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, and hydrates thereof, or carbonates of these metals n, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10]. Inorganic compounds can also be included.
  • the inorganic compound examples include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, alumina monohydrate (Al 2 O 3 ⁇ H 2 O) such as boehmite and diaspore, gibbsite, and bayerite.
  • alumina Al 2 O 3
  • Al 2 O 3 ⁇ H 2 O aluminum hydroxide
  • Al2 ( CO3 ) 3 aluminum carbonate
  • Mg(OH) 2 magnesium hydroxide
  • MgO magnesium oxide
  • MgCO3 magnesium carbonate
  • the rubber composition of the present invention also contains a specific amount of thermoplastic resin in addition to the rubber component and filler described above. By including a certain amount of thermoplastic resin in the rubber composition, the on-ice performance of the tire can be enhanced.
  • the content of the thermoplastic resin is required to be 5 parts by mass or more, preferably 7 parts by mass or more, with respect to 100 parts by mass of the rubber component. This is because if the content of the thermoplastic resin is 5 parts by mass or more with respect to 100 parts by mass of the rubber component, the performance on ice can be further improved. Further, the content of the thermoplastic resin is preferably 70 parts by mass or less with respect to 100 parts by mass of the rubber component, from the viewpoint of suppressing deterioration of steering stability due to a decrease in the elastic modulus of the rubber composition. It is more preferable to set the content to parts by mass or less.
  • thermoplastic resins examples include C5-based resins, C5- C9 - based resins, C9 - based resins, dicyclopentadiene resins, terpenephenol resins, terpene resins, rosin resins, alkylphenol resins, and the like. , C5-based resins, C5- C9 - based resins, C9 - based resins, dicyclopentadiene resins, terpene phenol resins, terpene resins, rosin resins, and alkylphenol resins.
  • thermoplastic resin contains at least one of C5-based resin, C5- C9 - based resin, C9 - based resin, dicyclopentadiene resin, terpenephenol resin, terpene resin, rosin resin, and alkylphenol resin
  • the said thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the C5 - based resin refers to a C5 - based synthetic petroleum resin, and examples of the C5 - based resin include C5 fraction obtained by thermal decomposition of naphtha in the petrochemical industry, AlCl3, BF3 , etc. and an aliphatic petroleum resin obtained by polymerization using a Friedel-Crafts-type catalyst.
  • the C5 fraction usually includes olefinic hydrocarbons such as 1 - pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, 2- Diolefinic hydrocarbons such as methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene and 3-methyl-1,2-butadiene are included.
  • olefinic hydrocarbons such as 1 - pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene
  • 2- Diolefinic hydrocarbons such as methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene and 3-methyl-1,2-butadiene are included.
  • the C5 - based resin commercially available products can be used. "A100, B170, M100, R100" in the "Quinton (registered trademark) 100 series” of petroleum resins
  • the C 5 -C 9 resin refers to a C 5 -C 9 synthetic petroleum resin, and examples of the C 5 -C 9 resin include petroleum-derived C 5 fraction and C 9 fraction. , AlCl 3 , BF 3 and the like, and solid polymers obtained by polymerization using Friedel-Crafts-type catalysts. and copolymers.
  • the C 5 -C 9 resin a resin containing less C 9 or higher components is preferable from the viewpoint of compatibility with the rubber component.
  • the phrase "lower amount of C9 or higher components” means that the C9 or higher components in the total amount of the resin are less than 50% by mass, preferably 40% by mass or less.
  • Commercially available products can be used as the C 5 -C 9 resins. (manufactured by Tonen Chemical Co., Ltd.), trade name "T-REZ RD104" (manufactured by Tonen Chemical Co., Ltd.), and the like.
  • the C9 -based resin is, for example, vinyl toluene, alkylstyrene, and indene, which are C9 fractions by-produced together with petrochemical basic raw materials such as ethylene and propylene by thermal decomposition of naphtha in the petrochemical industry, as main monomers. It is a resin obtained by polymerizing an aromatic group having 9 carbon atoms. Specific examples of C9 fractions obtained by pyrolysis of naphtha include vinyl toluene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, indene, etc. is mentioned.
  • the C9 -based resin together with the C9 fraction, includes the C8 fraction such as styrene, the C10 fraction such as methylindene, 1,3-dimethylstyrene, etc., as well as naphthalene, vinylnaphthalene, vinylanthracene, p
  • the C 8 -C 10 fraction or the like can be obtained by copolymerizing the mixture as it is, for example, with a Friedel-Crafts-type catalyst.
  • the C9 -based resin may be a modified petroleum resin modified with a compound having a hydroxyl group, an unsaturated carboxylic acid compound, or the like.
  • Neopolymer 120 "Nisseki Neopolymer (registered trademark) 130", and “Nisseki Neopolymer (registered trademark) 140" (manufactured by JX Nippon Oil & Energy Corporation).
  • the dicyclopentadiene resin is a petroleum resin produced mainly from dicyclopentadiene obtained by dimerizing cyclopentadiene.
  • dicyclopentadiene resin commercially available products can be used. For example, "1105, 1325, 1340” and the like.
  • the terpene phenol resin can be obtained, for example, by reacting terpenes with various phenols using a Friedel-Crafts catalyst, or by further condensing them with formalin.
  • Terpenes used as raw materials are not particularly limited, and monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferred, those containing ⁇ -pinene are more preferred, and ⁇ -pinene is particularly preferred.
  • commercially available products can be used, for example, trade names "Tamanol 803L” and “Tamanol 901" (manufactured by Arakawa Chemical Industries, Ltd.), trade names "YS Polyster (registered trademark) U” series.
  • the terpene resin is a solid resin obtained by blending turpentine oil obtained at the same time as rosin is obtained from a tree of the genus Pinus, or a polymer component separated from it, and polymerizing it using a Friedel-Crafts type catalyst.
  • ⁇ -pinene resins ⁇ -pinene resins, and the like.
  • commercially available products can be used, for example, the product name "YS Resin” series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd., and the product name "Picolite” series manufactured by Hercules. (A115, S115, etc.) and the like.
  • the rosin resin is a residue remaining after collecting balsams such as pine resin (pine resin), which is the sap of plants of the pine family, and distilling turpentine essential oil.
  • pine resin pine resin
  • They are natural resins as the main component, and modified resins and hydrogenated resins processed by modification, hydrogenation, and the like. Examples include natural resin rosin, its polymerized rosin and partially hydrogenated rosin; glycerol ester rosin, its partially hydrogenated rosin, fully hydrogenated rosin and polymerized rosin; pentaerythritol ester rosin, its partially hydrogenated rosin and polymerized rosin, and the like. .
  • Examples of natural resin rosin include raw pine resin, gum rosin contained in tall oil, tall oil rosin, wood rosin, and the like.
  • As the rosin resin commercially available products can be used. No. 1”, “Pencel A” and “Pencel AD” (manufactured by Arakawa Chemical Industries, Ltd.), trade names “Polypail” and “Pentalin C” (manufactured by Eastman Chemical Co., Ltd.), trade name “Hydrogen (registered trademark) S” (manufactured by Taisha Matsu Oil Co., Ltd.) and the like.
  • the alkylphenol resin is obtained, for example, by a condensation reaction of alkylphenol and formaldehyde under a catalyst.
  • a commercially available product can be used, for example, trade name "Hitanol 1502P” (alkylphenol formaldehyde resin, manufactured by Hitachi Chemical Co., Ltd.), trade name "Tackirole 201” (alkylphenol formaldehyde resin, Taoka Chemical Co., Ltd.).
  • the rubber composition of the present invention can contain other components by appropriately selecting them according to the purpose or need within a range that does not impair the effects of the present invention.
  • Other components include anti-aging agents, cross-linking accelerators, cross-linking agents, cross-linking accelerator aids, silane coupling agents, softening agents, stearic acid, antiozonants, interface Additives such as activators can be appropriately blended.
  • a known anti-aging agent can be used, and is not particularly limited.
  • phenol-based anti-aging agents, imidazole-based anti-aging agents, amine-based anti-aging agents and the like can be mentioned. These antioxidants can be used singly or in combination of two or more.
  • cross-linking accelerator a known one can be used, and it is not particularly limited.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl-2-benzothiazylsulfenamide and Nt-butyl-2-benzothiazylsulfenamide Sulfenamide-based vulcanization accelerators; guanidine-based vulcanization accelerators such as diphenylguanidine; Thiuram-based vulcanization accelerators such as pentamethylenethiuram tetrasulfide; dithiocarbamate-based vulcanization accelerators such as zinc dimethyldithiocarbamate; and zinc dialkyldithiophosphate.
  • the cross-linking agent is also not particularly limited.
  • sulfur may be mentioned.
  • the cross-linking accelerator may also be a known one and is not particularly limited.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl-2-benzothiazylsulfenamide and Nt-butyl-2-benzothiazylsulfenamide Sulfenamide-based vulcanization accelerators; guanidine-based vulcanization accelerators such as diphenylguanidine; Thiuram-based vulcanization accelerators such as pentamethylenethiuram tetrasulfide; dithiocarbamate-based vulcanization accelerators such as zinc dimethyldithiocarbamate; and zinc dialkyldithiophosphate.
  • the cross-linking accelerator aid examples include zinc oxide (ZnO) and fatty acids.
  • the fatty acid may be saturated or unsaturated, linear or branched, and the number of carbon atoms in the fatty acid is not particularly limited. More specifically, cyclohexanoic acid (cyclohexanecarboxylic acid), naphthenic acids such as alkylcyclopentane having a side chain; hexanoic acid, octanoic acid, decanoic acid (including branched carboxylic acids such as neodecanoic acid), dodecanoic acid, tetradecane saturated fatty acids such as acid, hexadecanoic acid and octadecanoic acid (stearic acid); unsaturated fatty acids such as methacrylic acid, oleic acid, linoleic acid and linolenic acid; and resin acids such as rosin, tall oil acid and abietic acid. These may be used individually
  • silane coupling agent examples include bis(3-triethoxysilylpropyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(2-tri ethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,
  • the softening agent examples include naphthenic base oils, paraffinic base oils, aromatic base oils, and the like.
  • the content of the softening agent is preferably 2 to 30 parts by mass per 100 parts by mass of the rubber component. If the content of the softening agent exceeds 30 parts by mass with respect to 100 parts by mass of the rubber component, the softening agent may ooze out on the surface of the rubber product, or the wear resistance may deteriorate. In addition, it interacts with the tetrazine sites in the modified rubber component and shields them, so that the reactivity may decrease, and the low-loss performance and wear resistance may decrease.
  • a naphthenic base oil or a paraffinic base oil it is preferable to use a naphthenic base oil or a paraffinic base oil, and it is most preferable to use a naphthenic base oil.
  • aromatic oils are not preferable because they contain a large amount of aromatic components and thus have a high affinity with the drug, which is an aromatic compound, and further hinder the reaction with the polymer.
  • naphthenic base oils and paraffinic base oils have the effect of facilitating diffusion and reaction in polymers, and oils with low pour points diffuse better in polymers.
  • the classification of the naphthenic base oil, the paraffinic base oil, and the aromatic base oil is determined by the CA value, CP value, and CN value.
  • the naphthenic base oils are classified into TDAE, SRAE, RAE, Black Oil, and the like.
  • paraffinic base oils are spindle oils and paraffin oils.
  • a mixed oil obtained by mixing the naphthenic base oil and the naphthenic asphalt also produces favorable effects.
  • the timing of adding these lubricating oils is not particularly limited. For example, they may be extended during the production of the rubber component, or added during kneading of the rubber composition.
  • the rubber composition of the present invention is prepared by blending the rubber component with the filler and the thermoplastic resin, kneading other appropriately selected components, extruding or rolling, and then vulcanizing. can be manufactured.
  • the kneading conditions are not particularly limited, and various conditions such as the input volume of the kneading device, the rotation speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of the kneading device, etc. It can be selected as appropriate.
  • the kneading device include Banbury mixers, intermixes, kneaders, rolls, etc., which are usually used for kneading rubber compositions.
  • the heating conditions are not particularly limited, and various conditions such as the heating temperature, the heating time, and the heating device can be appropriately selected according to the purpose.
  • the heating device include a heating roll machine or the like which is usually used for heating the rubber composition.
  • extrusion conditions are not particularly limited, and various conditions such as extrusion time, extrusion speed, extrusion equipment, and extrusion temperature can be appropriately selected according to the purpose.
  • extrusion apparatus include an extruder generally used for extrusion of a rubber composition for tires. The extrusion temperature can be determined appropriately.
  • the apparatus, method, conditions, etc. for performing the vulcanization are not particularly limited, and can be appropriately selected according to the purpose.
  • a vulcanization apparatus a molding vulcanizer with a mold used for vulcanization of a rubber composition for tires is commonly used.
  • the temperature is, for example, about 100 to 190.degree.
  • the tire of the present invention is characterized by using the rubber composition of the present invention described above.
  • the rubber composition of the present invention as a tire material, excellent on-ice performance and steering stability can be achieved.
  • the tire of the present invention is not particularly limited except that the rubber composition of the present invention is used for any of the tire members, and can be produced according to a conventional method.
  • gas to be filled in the tire in addition to normal air or air with adjusted oxygen partial pressure, inert gas such as nitrogen, argon and helium can be used.
  • the rubber composition of the present invention is used for any of the tire members, and among the tire members, it is preferably used for the tread rubber. This is because by applying the rubber composition of the present invention to the tread rubber, the effect of improving the above-described performance on ice and steering stability can be exhibited more remarkably.
  • Example 1 Comparative Example 1> According to the formulation shown in Table 1, each component is blended and kneaded using a Banbury mixer to prepare a rubber composition sample. The compounding amounts in Table 1 are shown in parts by mass with respect to 100 parts by mass of the rubber component. Each sample of the obtained rubber composition is subjected to a production vulcanization step (temperature during vulcanization: 150° C.) to obtain a vulcanized rubber composition sample.
  • the modified conjugated diene-based polymers A and B contained in the rubber composition sample are prepared according to the following method.
  • a modifier compound (M-1) is obtained under the following conditions.
  • a 100 mL eggplant flask was charged with 80 mL of toluene solvent, 4.55 g (33.92 mmol) of terephthalaldehyde, and 15.02 g (67.84 mmol) of 3-aminopropyltriethoxysilane, and refluxed at 120° C. using a Dean-Stark apparatus. I do. After the water has run out, the mixture is refluxed for 2 hours, filtered, and the toluene solvent is distilled off under reduced pressure.
  • a modified conjugated diene polymer B is obtained by drying with heated hot rolls.
  • the resulting modified conjugated diene polymer B has a bound styrene content of 5% by mass, a vinyl bond content of the butadiene portion of 40% by mass, and a peak top molecular weight (Mp) of 120 ⁇ 10 3 .
  • Example 1 Balance between performance on ice and handling stability
  • the average of the evaluation results (index values) in (1) and (2) above is used as an index for evaluating the balance between performance on ice and handling stability.
  • the average of the evaluation results (index values) of (1) and (2) above was used as an index for evaluating the balance between performance on ice and steering stability.
  • the average of the evaluation results (index values) in (1) and (2) above is used as an index for evaluating the balance between performance on ice and steering stability. The larger the obtained index value, the higher the ice performance and the handling stability are compatible with each other.
  • Anti-aging agent B "Nonflex RD-S” manufactured by Seiko Chemical Co., Ltd. *9 Vulcanization accelerator A: “Sokushinol DG” manufactured by Sumitomo Chemical Co., Ltd. * 10 Vulcanization accelerator B: “Suncellar DM-TG” manufactured by Sanshin Chemical Industry Co., Ltd. * 11 Vulcanization accelerator C: "Noccellar NS-P” manufactured by Ouchi Shinko Chemical Industry Co., Ltd. *12 Others: The total amount of stearic acid, oil, wax, fatty acid metal salt, processing aid, and the blending amount of each component are the same in Example 1 and Comparative Example 1.
  • the present invention it is possible to provide a rubber composition that can achieve excellent performance on ice and steering stability when applied to tires. Moreover, according to the present invention, it is possible to provide a tire having excellent performance on ice and excellent steering stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

タイヤへ適用した際に、優れた氷上性能及び操縦安定性を実現できるゴム組成物を提供する。 上記課題を解決するべく、本発明は、イソプレン系ゴム、並びに、活性末端を有する共役ジエン系重合体と、基「-CR1=N-A1」及び基「-N=CR1-A1」(ただし、R1は水素原子又はヒドロカルビル基であり、A1はアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つを合計2個以上有する化合物[M]との反応生成物である変性共役ジエン系重合体、を含むゴム成分と、少なくともシリカを含む充填剤と、前記ゴム成分100質量部に対して5質量部以上の熱可塑性樹脂と、を含むことを特徴とする。

Description

ゴム組成物及びタイヤ
 本発明は、ゴム組成物及びタイヤに関するものである。
 従来、通常の路面上に加え、氷上でも安全に走行するためのタイヤとして、トレッドゴムを柔らかくしたスタッドレスタイヤが使用されており、トレッドゴムを柔らかくすることで、タイヤの氷上性能が向上することが知られている。しかしながら、一般に柔らかいトレッドゴムを具えるタイヤは、通常の路面における操縦安定性が悪化するという問題があり、タイヤの氷上性能と操縦安定性は二律背反の関係にある。
 このような問題を解決するタイヤとして、特許文献1には、天然ゴム及びブタジエンゴムからなるゴム成分100重量部に対して、チタン酸カリウム繊維を0.5~20重量部、ならびにヨウ素吸着量が100~300mg/gであるカーボンブラックを5~200重量部配合したゴム組成物が提案されており、該ゴム組成物を、キャップトレッド及びベーストレッドからなる2層構造のトレッドのキャップトレッドに使用することで、耐摩耗性の低下を抑制しつつ、氷上性能(氷雪上性能)が向上する技術が開示されている。
 また、特許文献2には、少なくとも二種のジエン系重合体と、シリカと、カーボンブラックと、を含み、前記ジエン系重合体の配合量や、変性状態を制御することによって、耐摩耗性の低下を抑制しつつ、氷上性能との両立を図る技術が開示されている。
特開2008-303334号公報 国際公開第2017/221943号
 しかしながら、特許文献1及び2に開示された技術は、いずれも、氷上性能を高める効果はあるものの、操縦安定性の点については、さらなる改善が望まれていた。
 そこで、本発明は、タイヤへ適用した際に、優れた氷上性能及び操縦安定性を実現できるゴム組成物を提供することを目的とする。また、本発明は、氷上性能及び操縦安定性に優れたタイヤを提供することを目的とする。
 上記課題を解決する本発明の要旨構成は、以下の通りである。
 本発明のゴム組成物は、イソプレン系ゴム、並びに、活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つを合計2個以上有する化合物[M]との反応生成物である変性共役ジエン系重合体、を含むゴム成分と、
 少なくともシリカを含む充填剤と、
 前記ゴム成分100質量部に対して5質量部以上の熱可塑性樹脂と、
を含むことを特徴とする。
 上記構成を具えることで、タイヤへ適用した際に、優れた氷上性能及び操縦安定性を実現できる。
 また、本発明のタイヤは、上述した本発明のゴム組成物を用いたことを特徴とする。
 上記構成を具えることで、優れた氷上性能及び操縦安定性を実現できる。
 本発明によれば、タイヤへ適用した際に、優れた氷上性能及び操縦安定性を実現できるゴム組成物を提供することができる。また、本発明によれば、氷上性能及び操縦安定性に優れたタイヤを提供することができる。
 以下に、本発明のゴム組成物及びタイヤの一実施形態について、例示説明する。
<ゴム組成物>
 本発明のゴム組成物は、ゴム成分と、充填剤と、熱可塑性樹脂と、を含む。
 以下、本発明のゴム組成物を構成する各成分について説明する。
(ゴム成分)
 本発明のゴム組成物に含まれるゴム成分は、イソプレン系ゴム、並びに、活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つを合計2個以上有する化合物[M]との反応生成物である変性共役ジエン系重合体、を含む。
 前記ゴム成分中に、イソプレン系ゴム及び特定の変性共役ジエン系重合体を含むことによって、ゴム成分に後述する充填剤と反応できる部位を形成できるため、充填剤の分散性が改良され、また、ゴム成分の柔軟性と強度とのバランスを高めることができる結果、タイヤへ適用した際の優れた氷上性能及び操縦安定性を実現できる。
 ここで、前記イソプレン系ゴムとは、イソプレン骨格を有するゴムのことである。例えば、天然ゴムや、合成イソプレンゴムが挙げられる。これらのイソプレン系ゴムについては、1種単独で含有してもよいし、2種以上のブレンドとして含有してもよい。
 前記ゴム成分中にイソプレン系ゴムを含有することによって、ゴム組成物の氷上性能及び操縦安定性を高めることができる。
 なお、前記イソプレン系ゴムについては、後述する変性共役ジエン系重合体と区別するため、無変性のイソプレン系ゴムである。
 前記ゴム成分における前記イソプレン系ゴムの含有比率は、特に限定はされないが、ゴム組成物のタイヤへ適用した際の氷上性能及び操縦安定性バランスを改善できる観点から、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、また、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
 そして、前記ゴム成分は、活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つを合計2個以上有する化合物[M]との反応生成物である変性共役ジエン系重合体を含有することを特徴とする。
 前記変性共役ジエン系重合体が、後述する充填剤と反応できる部位を多く有するため、充填剤の分散性が改良され、また、該変性共役ジエン系重合体は、柔軟性と強度とのバランスが高度に両立できているため、タイヤへ適用した際の優れた氷上性能及び操縦安定性を実現できる。
 前記変性共役ジエン系重合体を構成する前記共役ジエン系重合体は、共役ジエン系化合物を含むモノマーを重合することで得られる。
 この重合に用いられる前記共役ジエン系化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの化合物の中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンのうちの少なくとも一種を用いることが好ましい。
 また、前記共役ジエン系重合体は、タイヤへ適用した際の優れた氷上性能及び操縦安定性のバランスの観点から、ビニル結合量が10~60質量%であることが好ましく、20~60質量%であることがより好ましい。
 前記共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよく、共役ジエン化合物の共重合体とすることもできる。
 また、前記ゴム成分の強度を高める観点から、前記変性共役ジエン系重合体を構成する前記共役ジエン系重合体は、芳香族ビニル単位及び共役ジエン系単位を有する共重合体であることが好ましい。
 前記重合に使用する芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。芳香族ビニル化合物としては、これらの中でもスチレン、α-メチルスチレンを用いることが好ましい。
 また、共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、アニオン重合におけるリビング性が高い点で、中でも、1,3-ブタジエンとスチレンとをモノマー単位として含む共重合体であることが好ましい。さらに、この共重合体は、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有することが好ましく、共役ジエン化合物又は芳香族ビニル化合物からなるブロック部分をさらに有することもできる。
 さらに、共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、前記共役ジエン系重合体における前記芳香族ビニル単位の割合は、10質量%以下であることが好ましく、7質量%以下であることがより好ましい。
 前記芳香族ビニル単位の割合が10質量%を超えると、タイヤに適用した際の氷雪性能を十分に得られないおそれがあるためである。
 前記重合に際しては、モノマーとして、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用するモノマーの全体量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。
 なお、共役ジエン系重合体を得るための重合法としては、特に限定はされず、例えば、溶液重合法、気相重合法、バルク重合法等を用いることができるが、溶液重合法を用いることが好ましい。
 また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合の際に用いる重合開始剤としては、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかを用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でもリチウム化合物が好ましい。
 さらに、前記重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。
 また、前記重合反応は、開始剤として、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物との混合物を用いて行ってもよい。当該混合物の存在下で重合を行うことにより、共役ジエン系重合体の重合開始末端を、シリカと相互作用を有する官能基で変性することができる。
 なお、本明細書において「シリカと相互作用する官能基」とは、窒素、硫黄、リン、酸素等のシリカと相互作用する元素を有する基を意味する。「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。
 また、前記重合開始末端の変性に用いる、シリカと相互作用する官能基を有する化合物としては、中でも、第2級アミン化合物などの窒素含有化合物が好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。
 なお、前記混合物の存在下で重合を行う場合、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを予め混合しておき、その混合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合して重合を行ってもよい。これらいずれの場合も、「アルカリ金属化合物及びアルカリ土類金属化合物の少なくとも一方を含む開始剤の存在下、共役ジエン化合物を含むモノマーを重合」する態様に含まれる。
 また、前記重合に用いるランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。
 さらに、前記重合に使用する有機溶媒としては、反応に不活性な有機溶剤であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2 種以上を組み合わせて使用することができる。
 なお、溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0~120℃であることがより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。
 また、得られた前記共役ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)が、好ましくは5.0×10~2.0×10である。Mwが5.0×10よりも小さいと、架橋重合体の引張強度、低発熱性及び耐摩耗性が低下しやすい傾向にあり、2.0×10よりも大きいと、変性重合体を用いて得られるゴム組成物の加工性が低下しやすい傾向にある。より好ましくは、1.0×10~1.0×10である。
 そして、前記変性共役ジエン系重合体は、上述した共役ジエン系重合体を、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つ(以下、「特定イミノ基」ともいう。)を合計2個以上有する化合物[M]と反応させて得られる。
 前記特定イミノ基を合計2個以上有する化合物を変性剤として用いることで、当該変性工程によって重合体鎖の分岐数が多く、シリカ等の充填剤と相互作用する基で変性された変性共役ジエン系重合体を得ることができる。
 前記特定イミノ基において、R1のヒドロカルビル基としては、例えば炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基等が挙げられる。A1は、アルコキシシリル基を有していればその余の構造は特に限定されないが、メチレン基又はポリメチレン基をさらに有する基であることが好ましく、メチレン基又はポリメチレン基とアルコキシシリル基とを有し、且つ、メチレン基又はポリメチレン基で、炭素-窒素二重結合を構成する窒素原子又は炭素原子に結合していることがより好ましい。化合物[M]が有する特定イミノ基の数は2個以上であればよく、2~6個が好ましい。なお、化合物[M]が有する複数のR1、A1は同一でも異なっていてもよい。
 前記化合物[M]としては、中でも下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R及びRは、それぞれ独立して炭素数1~20のヒドロカルビル基であり、R4は、炭素数1~20のアルカンジイル基であり、A2は、基「*-C(R)=N-」又は基「*-N=C(R)-」(ただし、Rは水素原子又はヒドロカルビル基であり、「*」はRに結合する結合手であることを示す。)である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、A、nは、同一でも異なっていてもよい。)
 上記式(1)において、R、Rのヒドロカルビル基は、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。Rのヒドロカルビレン基としては、例えば炭素数1~20のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。Rは、好ましくは直鎖状である。
 Aが有するRについては上記の説明が適用される。nは、シリカ分散性の改善効果が高い点で、2又は3が好ましく、3がより好ましい。
 Rのm価のヒドロカルビル基としては、炭素数1~20の鎖状炭化水素、炭素数3~20の脂環式炭化水素又は炭素数6~20の芳香族炭化水素からm個の水素原子を取り除いた基等が挙げられる。得られる加硫ゴムの耐摩耗性の改善効果が高い点で、好ましくは、芳香族炭化水素の環部分からm個の水素原子を取り除いた基(芳香族環基)である。当該芳香族炭化水素の具体例としては、例えば下記式(2)で表される環構造、当該環構造が2個以上連結してなる多環構造(例えばビフェニル基等)が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、rは0~5の整数である。)
 Rが、窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である場合の好ましい具体例としては、m価の複素環基、3級アミン構造を有するm価の基等が挙げられる。複素環基は、共役系であることが好ましく、例えばピリジン、ピリミジン、ピラジン、キノリン、ナフタリジン、フラン、チオフェン等の単環若しくは縮合環、又は当該単環若しくは縮合環が複数個連結してなる構造の環部分からm個の水素原子を取り除いた基等が挙げられる。
 mは2~10の整数である。mは、ゴム組成物の加工性の観点から、2~6が好ましい。なお、本明細書において「活性水素」とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギが低いものを指す。
 前記化合物[M]の具体例としては、例えば下記式(M-1)~式(M-23)のそれぞれで表される化合物等が挙げられる。なお、化合物[M]は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、式(M-11)中のR7は水素原子又はアルキル基を表す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 前記化合物[M]は、有機化学の定法を適宜組み合わせることによって合成することができる。例えば、上記式(1)で表される化合物を得る方法の一例としては、(i)アルコキシシリル基及びRを有する単官能アミン化合物(例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン等)と、R5を有する多官能アルデヒド化合物(例えば、テレフタルアルデヒド、イソフタルアルデヒド、フタルジアルデヒド、2,4-ピリジンジカルボキシアルデヒド等)とを脱水縮合させる方法、(ii)R5を有する多官能アミン化合物(例えば、トリス(2-アミノエチル)アミン、N,N’-ビス(2-アミノエチル)メチルアミン等)と、アルコキシシリル基及びR4を有する単官能型の水酸基含有化合物(例えば、4-(トリエトキシシリル)ブタナール等)とを脱水縮合させる方法、等が挙げられる。これらの合成反応は、好ましくは適当な有機溶媒中、必要に応じて適当な触媒の存在下で行われる。ただし、化合物[M]の合成方法は上記の方法に限定されるものではない。
 前記活性末端を有する共役ジエン系重合体と化合物[M]との反応は、例えば溶液反応として行うことができる。化合物[M]の使用割合(2種以上使用する場合にはその合計量)は、変性反応を十分に進行させる観点から、重合開始剤が有する重合に関与する金属原子1モルに対して、0.01モル以上とすることが好ましく、0.05モル以上とすることがより好ましい。また、上限値については、過剰な添加を避けるため、重合開始剤が有する重合に関与する金属原子1モルに対して、2.0モル未満とすることが好ましく、1.5モル未満とすることがより好ましい。
 前記変性反応の温度は、通常、重合反応と同じであり、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低いと、変性後の重合体の粘度が上昇する傾向があり、反応温度が高いと重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 前記活性末端を有する共役ジエン系重合体と化合物[M]との反応に際しては、化合物[M]と共にその他の変性剤又はカップリング剤を用いてもよい。その他の変性剤又はカップリング剤としては、上記重合により得られる共役ジエン系重合体の活性末端と反応し得る化合物であれば特に限定されず、共役ジエン系重合体の変性剤又はカップリング剤として公知の化合物を用いることができる。その他の変性剤又はカップリング剤を使用する場合、その使用割合は、10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。
 前記反応溶液に含まれる変性共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。前記変性共役ジエン系重合体の、GPCによるポリスチレン換算の重量平均分子量は、ムーニー粘度が十分に高く、形状安定性が良好な変性共役ジエン系重合体を得ることと、加工性に優れたゴム組成物を得ることとを両立させる観点から、好ましくは1.0×10~4.0×10である。より好ましくは1.8×10~3.0×10であり、さらに好ましくは2.0×10~2.0×10である。なお、変性共役ジエン系重合体の重量平均分子量は、活性末端を有する共役ジエン系重合体と化合物[M]との反応後にGPCにより測定されるGPC曲線の最大ピーク分子量から求めた値である。
 また、得られた前記変性共役ジエン系重合体は、GPCにより測定される、分子量が最も小さいピークのピークトップ分子量は、1.0×10未満であることが好ましい。タイヤへ適用した際の氷上性能をより改善することができるためである。
 得られた前記変性共役ジエン系重合体は、化合物[M]が有する複数の反応点(炭素-窒素二重結合(C=N基)、アルコキシシリル基)に、変性又は未変性の共役ジエン系重合体鎖が結合された分岐構造を有する。
 前記変性共役ジエン系重合体1分子当たりの重合体鎖の分岐数は、得られる変性共役ジエン系重合体のムーニー粘度を十分に高く、且つ、コールドフローを良好にできる観点から、好ましくは3以上であり、より好ましくは3~20の範囲である。なお、C=N基はアルコキシシリル基よりも反応性が高く、共役ジエン系重合体の活性末端と優先的に反応するため、残アルコキシシリル基数が多くなり、得られる変性共役ジエン系重合体とシリカとの相互作用が向上し、これにより優れた低発熱性を示したことが考えられる。
 また、前記変性共役ジエン系重合体は、下記式(3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(3)中、Rは炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のヒドロカルビルオキシ基、又は変性若しくは未変性の共役ジエン系重合体鎖であり、Rは、炭素数1~20のアルカンジイル基であり、Zは、下記式(4)又は式(5)で表される基である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、Z、nは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000010
(式(4)及び式(5)中、Rは水素原子又はヒドロカルビル基であり、Polyは、変性又は未変性の共役ジエン系重合体鎖である。「*」はRに結合する結合手であることを示す。)
 なお、上記式(3)、式(4)及び式(5)において、R、R、R及びRについては、上記式(1)の説明と同様である。また、Rのヒドロカルビルオキシ基は、エトキシ基又はメトキシ基が好ましい。R6の共役ジエン系重合体鎖、並びに式(4)及び式(5)中の共役ジエン系重合体鎖Polyは、上記重合工程で得られる活性末端を有する共役ジエン系重合体に対応する構造である。これら共役ジエン系重合体鎖は、端部にシリカと相互作用する官能基を有していてもよい。
 前記ゴム成分における前記変性共役ジエン系重合体の含有比率は、特に限定はされないが、ゴム組成物のタイヤへ適用した際の氷上性能及び操縦安定性バランスを改善できる観点から、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。また、同様の観点から、前記ゴム成分における前記変性共役ジエン系重合体の含有比率は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
(充填剤)
 本発明のゴム組成物は、前記ゴム成分に加えて、少なくともシリカを含む充填剤をさらに含む。
 前記ゴム組成物中に、一定量のシリカを含むことによって、低発熱性等を良好に維持しつつ、タイヤに適用した際の操縦安定性及び氷上性能を高めることができる。
 ここで、前記シリカの種類については、特に限定はされない。例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等を用いることができ、これらの中でも、湿式シリカを用いることが好ましい。これらシリカは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、前記湿式シリカは、沈降シリカを用いることができる。なお、沈降シリカとは、製造初期に、反応溶液を比較的高温、中性~アルカリ性のpH領域で反応を進めてシリカ一次粒子を成長させ、その後酸性側へ制御することで、一次粒子を凝集させる結果得られるシリカのことである。
 前記シリカの条件については、特に限定されないが、例えばCTAB比表面積(セチルトリメチルアンモニウムブロミド吸着比表面積)を、70m/g以上、250m/g以下とすることができる。なお、前記CTAB比表面積は、ASTMD3765-92に準拠して測定された値を意味する。ただし、シリカ表面に対するセチルトリメチルアンモニウムブロミド1分子当たりの吸着断面積を0.35nmとして、CTABの吸着量から算出される比表面積(m/g)をCTAB比表面積とする。
 また、前記シリカのBET比表面積を、100m/g以上、250m/g以下とすることもできる。なお、前記BET比表面積は、BET法により求めた比表面積のことであり、本発明では、ASTMD4820-93に準拠して測定することができる。
 前記シリカの含有量については、特に限定はされず、要求される性能に応じて適宜設定することができる。例えば、前記シリカの含有量を、前記ゴム成分100質量部に対して10~160質量部とすることが好ましく、30~120質量部とすることがより好ましい。
 前記シリカの含有量が、前記ゴム成分100質量部に対して10質量部以上であれば、ゴム組成物をタイヤに適用した際の氷上性能や操縦安定性をより確実に向上させることができ、160質量部以下であれば、ゴム組成物の加工性悪化やタイヤへ適用した後の転がり抵抗の悪化をより確実に抑えることができる。
 また、前記充填剤については、上述したシリカに加えて、カーボンブラックをさらに含むこともできる。カーボンブラックを含むことで、タイヤの耐摩耗性をより向上できる。
 前記カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。これらの中でも、ゴム組成物の耐摩耗性を向上させる観点から、ISAF、SAFグレードのカーボンブラックが好ましい。これらカーボンブラックは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ゴム組成物中の前記カーボンブラックの含有量については、前記ゴム成分100質量部に対して、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましい。また、タイヤの低ロス性を向上させる観点からは、ゴム組成物中の前記カーボンブラックの含有量は、ゴム成分100質量部に対して、15質量部以下であることが好ましく、12質量部以下であることがより好ましい。
 さらに、ゴム組成物をタイヤに適用した際の転がり抵抗の悪化を抑えつつ、氷上性能及び操縦安定性をより高めることができる観点から、前記シリカの含有量に対する前記カーボンブラックの含有量の割合(カーボンブラックの含有量/シリカの含有量)は、0.05~1.2であることが好ましく、0.07~1.0であることがより好ましく、0.08~0.7であることが特に好ましい。前記カーボンブラックの含有量の割合を、0.05以上とすることで、ゴムの強度を高め、タイヤに適用した際の操縦安定性をより向上でき、前記カーボンブラックの含有量の割合を、以下とすることで、カーボンブラックが多くなることによる低発熱性の悪化を抑え、タイヤに適用した際の転がり抵抗を良好に維持できる。
 なお、前記充填剤は、上述したシリカ及びカーボンブラックの他にも、下記一般式(XX):
  nM・xSiO・zHO ・・・ (XX)
[式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、またはこれらの金属の炭酸塩から選ばれる少なくとも一種であり;n、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である]で表されるような無機化合物を含むこともできる。
 前記無機化合物としては、例えば、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・H2O)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・H2O)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・H2O)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように、電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等が挙げられる。
(熱可塑性樹脂)
 また、本発明のゴム組成物は、上述したゴム成分及び充填剤に加えて、特定量の熱可塑性樹脂を含む。
 ゴム組成物中に特定量の熱可塑性樹脂を含むことによって、タイヤに適用した際の氷上性能を高めることができる。
 ここで、前記熱可塑性樹脂の含有量は、前記ゴム成分100質量部に対して、5質量部以上であることを要し、7質量部以上であることが好ましい。前記熱可塑性樹脂の含有量が前記ゴム成分100質量部に対して5質量部以上であれば、氷上性能をより向上できるためである。また、前記熱可塑性樹脂の含有量は、ゴム組成物の弾性率の低下による操縦安定性の悪化を抑える観点から、前記ゴム成分100質量部に対して70質量部以下とすることが好ましく、50質量部以下とすることがより好ましい。
 前記熱可塑性樹脂としては、C系樹脂、C-C系樹脂、C系樹脂、ジシクロペンタジエン樹脂、テルペンフェノール樹脂、テルペン樹脂、ロジン樹脂、アルキルフェノール樹脂等が挙げられ、これらの中でも、C系樹脂、C-C系樹脂、C系樹脂、ジシクロペンタジエン樹脂、テルペンフェノール樹脂、テルペン樹脂、ロジン樹脂、及び、アルキルフェノール樹脂から選択される少なくとも一種であることが好ましい。前記熱可塑性樹脂として、C系樹脂、C-C系樹脂、C系樹脂、ジシクロペンタジエン樹脂、テルペンフェノール樹脂、テルペン樹脂、ロジン樹脂、及び、アルキルフェノール樹脂の少なくとも一種を含む場合、タイヤの氷上性能を更に向上させることができる。なお、前記熱可塑性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記C系樹脂とは、C系合成石油樹脂を指し、該C系樹脂としては、例えば、石油化学工業のナフサの熱分解によって得られるC留分を、AlCl、BF等のフリーデルクラフツ型触媒を用いて重合して得られる脂肪族系石油樹脂が挙げられる。前記C留分には、通常、1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、3-メチル-1,2-ブタジエン等のジオレフィン系炭化水素等が含まれる。なお、前記C系樹脂としては、市販品を利用することができ、例えば、エクソンモービルケミカル社製脂肪族系石油樹脂である「エスコレッツ(登録商標)1000シリーズ」、日本ゼオン株式会社製脂肪族系石油樹脂である「クイントン(登録商標)100シリーズ」の内「A100、B170、M100、R100」、東燃化学社製「T-REZ RA100」等が挙げられる。
 前記C-C系樹脂とは、C-C系合成石油樹脂を指し、該C-C系樹脂としては、例えば、石油由来のC留分とC留分とを、AlCl、BF等のフリーデルクラフツ型触媒を用いて重合して得られる固体重合体が挙げられ、より具体的には、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体等が挙げられる。該C-C系樹脂としては、C以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。ここで、「C以上の成分が少ない」とは、樹脂全量中のC以上の成分が50質量%未満、好ましくは40質量%以下であることを言うものとする。前記C-C系樹脂としては、市販品を利用することができ、例えば、商品名「クイントン(登録商標)G100B」(日本ゼオン株式会社製)、商品名「ECR213」(エクソンモービルケミカル社製)、商品名「T-REZ RD104」(東燃化学社製)等が挙げられる。
 前記C系樹脂は、例えば、石油化学工業のナフサの熱分解により、エチレン、プロピレン等の石油化学基礎原料と共に副生するC留分である、ビニルトルエン、アルキルスチレン、インデンを主要なモノマーとする炭素数9の芳香族を重合した樹脂である。ここで、ナフサの熱分解によって得られるC留分の具体例としては、ビニルトルエン、α-メチルスチレン、β-メチルスチレン、γ-メチルスチレン、o-メチルスチレン、p-メチルスチレン、インデン等が挙げられる。該C系樹脂は、C留分と共に、C留分であるスチレン等、C10留分であるメチルインデン、1,3-ジメチルスチレン等、更にはナフタレン、ビニルナフタレン、ビニルアントラセン、p-tert-ブチルスチレン等をも原料として用い、これらのC~C10留分等を混合物のまま、例えばフリーデルクラフツ型触媒により共重合して得ることができる。また、前記C系樹脂は、水酸基を有する化合物、不飽和カルボン酸化合物等で変性された変性石油樹脂であってもよい。なお、前記C系樹脂としては、市販品を利用することができ、例えば、未変性C系石油樹脂としては、商品名「日石ネオポリマー(登録商標)L-90」、「日石ネオポリマー(登録商標)120」、「日石ネオポリマー(登録商標)130」、「日石ネオポリマー(登録商標)140」(JX日鉱日石エネルギー株式会社製)等が挙げられる。
 前記ジシクロペンタジエン樹脂は、シクロペンタジエンを二量体化して得られるジシクロペンタジエンを主原料に製造された石油樹脂である。前記ジシクロペンタジエン樹脂としては、市販品を利用することができ、例えば、日本ゼオン株式会社製脂環式系石油樹脂である商品名「クイントン(登録商標)1000シリーズ」の内「1105、1325、1340」等が挙げられる。
 前記テルペンフェノール樹脂は、例えば、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、又はさらにホルマリンで縮合する方法で得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネン等のモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。該テルペンフェノール樹脂としては、市販品を利用することができ、例えば、商品名「タマノル803L」、「タマノル901」(荒川化学工業株式会社製)、商品名「YSポリスター(登録商標)U」シリーズ、「YSポリスター(登録商標)T」シリーズ、「YSポリスター(登録商標)S」シリーズ、「YSポリスター(登録商標)G」シリーズ、「YSポリスター(登録商標)N」シリーズ、「YSポリスター(登録商標)K」シリーズ、「YSポリスター(登録商標)TH」シリーズ(ヤスハラケミカル株式会社製)等が挙げられる。
 前記テルペン樹脂は、マツ属の木からロジンを得る際に同時に得られるテレピン油、或いは、これから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等が挙げられる。該テルペン樹脂としては、市販品を利用することができ、例えば、ヤスハラケミカル株式会社製の商品名「YSレジン」シリーズ(PX-1250、TR-105等)、ハーキュリーズ社製の商品名「ピコライト」シリーズ(A115、S115等)等が挙げられる。
 前記ロジン樹脂は、マツ科の植物の樹液である松脂(松ヤニ)等のバルサム類を集めてテレピン精油を蒸留した後に残る残留物で、ロジン酸(アビエチン酸、パラストリン酸、イソピマール酸等)を主成分とする天然樹脂、及びそれらを変性、水素添加等で加工した変性樹脂、水添樹脂である。例えば、天然樹脂ロジン、その重合ロジンや部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジンや重合ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや重合ロジン等が挙げられる。天然樹脂ロジンとして、生松ヤニやトール油に含まれるガムロジン、トール油ロジン、ウッドロジン等がある。前記ロジン樹脂としては、市販品を利用することができ、例えば、商品名「ネオトール105」(ハリマ化成株式会社製)、商品名「SNタック754」(サンノプコ株式会社製)、商品名「ライムレジンNo.1」、「ペンセルA」及び「ペンセルAD」(荒川化学工業株式会社製)、商品名「ポリペール」及び「ペンタリンC」(イーストマンケミカル株式会社製)、商品名「ハイロジン(登録商標)S」(大社松精油株式会社製)等が挙げられる。
 前記アルキルフェノール樹脂は、例えば、アルキルフェノールとホルムアルデヒドとの触媒下における縮合反応によって得られる。該アルキルフェノール樹脂としては、市販品を利用することができ、例えば、商品名「ヒタノール1502P」(アルキルフェノールホルムアルデヒド樹脂、日立化成株式会社製)、商品名「タッキロール201」(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「タッキロール250-I」(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「タッキロール250-III」(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「R7521P」、「SP1068」、「R7510PJ」、「R7572P」及び「R7578P」(SI GROUP INC.製)等が挙げられる。
(その他の成分)
 本発明のゴム組成物は、上述した各成分に加えて、本発明の効果を損なわない範囲で、目的ないし必要に応じて、その他の成分を適宜に選択して配合することができる。その他の成分としては、例えば、ゴム工業で通常使用されている、老化防止剤、架橋促進剤、架橋剤、架橋促進助剤、シランカップリング剤、軟化剤、ステアリン酸、オゾン劣化防止剤、界面活性剤等の添加剤を適宜配合することができる。
 前記老化防止剤としては、公知のものを用いることができ、特に制限されない。例えば、フェノール系老化防止剤、イミダゾール系老化防止剤、アミン系老化防止剤等を挙げることができる。これら老化防止剤は、1種又は2種以上を併用することができる。
 前記架橋促進剤としては、公知のものを用いることができ、特に制限されるものではない。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系加硫促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン等のグアニジン系加硫促進剤;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛等のジチオカルバミン酸塩系加硫促進剤;ジアルキルジチオリン酸亜鉛等が挙げられる。
 前記架橋剤についても、特に制限はされない。例えば、硫黄が挙げられる。
 前記架橋促進剤についても、公知のものを用いることができ、特に制限されるものではない。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系加硫促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン等のグアニジン系加硫促進剤;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛等のジチオカルバミン酸塩系加硫促進剤;ジアルキルジチオリン酸亜鉛等が挙げられる。
 前記架橋促進助剤については、例えば、亜鉛華(ZnO)や脂肪酸等が挙げられる。脂肪酸としては、飽和若しくは不飽和、直鎖状若しくは分岐状のいずれの脂肪酸であってもよく、脂肪酸の炭素数も特に制限されないが、例えば炭素数1~30、好ましくは15~30の脂肪酸、より具体的にはシクロヘキサン酸(シクロヘキサンカルボン酸)、側鎖を有するアルキルシクロペンタン等のナフテン酸;ヘキサン酸、オクタン酸、デカン酸(ネオデカン酸等の分岐状カルボン酸を含む)、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸(ステアリン酸)等の飽和脂肪酸;メタクリル酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸;ロジン、トール油酸、アビエチン酸等の樹脂酸などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。本発明においては、亜鉛華及びステアリン酸を好適に用いることができる。
 前記シランカップリング剤については、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール(エボニック・デグッサ社製の商品名「Si363」)等が挙げられる。なお、これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
 前記軟化剤としては、例えば、ナフテン系ベースオイル、パラフィン系ベースオイル、アロマ系ベースオイル等が挙げられる。ここで、前記軟化剤の含有量は、前記ゴム成分100質量部に対し、2~30質量部配合することが好ましい。前記軟化剤の含有量がゴム成分100質量部に対して30質量部を超える場合、軟化剤がゴム製品の表面に滲み出るおそれや、耐摩耗性が低下したりするおそれがある。また、変性したゴム成分中のテトラジン部位と相互作用し、遮蔽してしまうため反応性が落ち、低ロス性能や耐摩耗性が低下するおそれもある。
 さらに、上述した軟化剤の中でも、ナフテン系ベースオイル又はパラフィン系ベースオイルを用いることが好ましく、ナフテン系ベースオイルを用いることが最も好ましい。アロマオイルは、芳香族成分が多いため、芳香族化合物である当該薬品との親和性が高く、ポリマーとの反応をより阻害するため好ましくないためである。一方で、ナフテン系ベースオイルやパラフィン系ベースオイルは、ポリマー中に拡散し反応することを助ける効果があり、流動点が低いオイルの方がよくポリマー中に拡散するためである。
 なお、前記ナフテン系ベースオイル、前記パラフィン系ベースオイル、前記アロマ系ベースオイルという分類については、CA値、CP値、CN値により決定される。例えば、前記ナフテン系ベースオイル前記分類されるのは、TDAE、SRAE、RAE、Black Oil等である。また、前記パラフィン系ベースオイルとして分類されるのは、スピンドルオイルヤパラフィンオイルである。
 さらにまた、前記ナフテン系ベースオイルと前記ナフテン系アスファルトを混合した混合油でも好ましい効果が得られる。
 これらの潤滑油を配合するタイミングについては特に限定はされず、例えば、前記ゴム成分の製造の段階で 油展させてもよいし、ゴム組成物を混錬する際に、添加させてもよい。
(ゴム組成物の製造)
 本発明のゴム組成物は、前記ゴム成分に、前記充填剤及び前記熱可塑性樹脂を配合し、さらに、適宜に選択したその他成分を混練りして、押出或いは圧延した後、加硫することにより製造することができる。
 前記混練りの条件としては、特に制限はなく、混練り装置の投入体積やローターの回転速度、ラム圧等、及び混練り温度や混練り時間、混練り装置の種類等の諸条件について目的に応じて適宜に選択することができる。混練り装置としては、通常、ゴム組成物の混練りに用いるバンバリーミキサーやインターミックス、ニーダー、ロール等が挙げられる。
 また、前記熱入れの条件についても、特に制限はなく、熱入れ温度や熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜に選択することができる。
該熱入れ装置としては、通常、ゴム組成物の熱入れに用いる熱入れロール機等が挙げられる。
 さらに、上記押出の条件についても、特に制限はなく、押出時間や押出速度、押出装置、押出温度等の諸条件について目的に応じて適宜に選択することができる。押出装置としては、通常、タイヤ用ゴム組成物の押出に用いる押出機等が挙げられる。押出温度は、適宜に決定することができる。
 さらにまた、前記加硫を行う装置や方式、条件等については、特に制限はなく、目的に応じて適宜に選択することができる。加硫を行う装置としては、通常、タイヤ用ゴム組成物の加硫に用いる金型による成形加硫機などが挙げられる。加硫の条件として、その温度は、例えば100~190℃程度である。
<タイヤ>
 本発明のタイヤは、上述した本発明のゴム組成物を用いたことを特徴とする。本発明のゴム組成物をタイヤ材料として含むことで、優れた氷上性能及び操縦安定性を実現できる。
 なお、本発明のタイヤは、上述した本発明のゴム組成物をタイヤ部材のいずれかに用いること以外、特に制限はなく、常法に従って製造することができる。
 前記タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
 また、本発明のタイヤでは、上述した本発明のゴム組成物をタイヤ部材のいずれかに用いるが、タイヤ部材の中でも、トレッドゴムに用いることが好ましい。本発明のゴム組成物をトレッドゴムに適用することで、上述した氷上性能及び操縦安定性の向上効果をより顕著に発揮できるからである。
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<実施例1、比較例1>
 表1に示す配合に従い、各成分を配合し、バンバリーミキサーを用いて混練りすることで、ゴム組成物のサンプルを作製する。なお、表1中の配合量については、ゴム成分100質量部に対する質量部で示している。
 得られるゴム組成物の各サンプルに対して、生産加硫工程(加硫時の温度:150℃)を実施し、加硫ゴム組成物のサンプルを得る。
 なお、上記ゴム組成物のサンプル中に含まれる変性共役ジエン系重合体A及びBについては、以下の方法に従って作製する。
(変性共役ジエン系重合体Aの作製)
 乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及び、スチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6ミリモルを加え、0.8ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、〔N,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)〕(メチル)(ジエトキシ)シランを0.72ミリモル添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性共役ジエン系重合体Aを得た。
  また、得られた変性共役ジエン系重合体Aの、ビニル含量が40質量%、結合スチレン含量は10質量%、ピークトップ分子量(Mp)が215×10である。
(変性共役ジエン系重合体Bの作製方法)
(i)まず、以下の条件で、変性剤化合物(M-1)を得る。
 100mLのナスフラスコに、トルエン溶媒80mL、テレフタルアルデヒド4.55g(33.92mmol)、3-アミノプロピルトリエトキシシラン15.02g(67.84mmol)を仕込み、ディーン・スターク装置を用いて120℃で還流を行う。水が出切ってから更に2時間還流を続けた後、フィルター濾過し、トルエン溶媒を減圧留去する。生成物の純度をH-NMRスペクトル分析とGC/MS分析により見積もった上で、変性共役ジエン系重合体Bの変性剤化合物(M-1)として使用する。
 H-NMR(溶媒:CDCl)化学シフトδ:8.26ppm(N=C-Ph、2H)、7.73ppm(ベンゼン環上水素、4H)、3.80ppm(CH-C -O-、12H)、3.61ppm(Si-CH-CH-C -N、4H)、1.83ppm(Si-CH-C -CH-N、4H)、1.20ppm(C -CH-O、18H)、0.67ppm(Si-C -CH-CH-N、4H)
Figure JPOXMLDOC01-appb-C000011
(ii)次に、窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,000g、テトラヒドロフラン30.3g、スチレン23g及び1,3-ブタジエン420gを仕込む。反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム6.26mmolを添加し、更にシリカと相互作用する官能基を有する化合物としてN-(トリメチルシリル)ピペラジン6.26mmolを添加して、重合を開始する。重合は断熱条件で実施し、最高温度は85℃に達する。重合転化率が99%に達した時点で(重合開始から20分経過後に)、1,3-ブタジエン10gを2分間かけて追加し、その後、変性剤化合物(M-1)を2.79mmol加えて15分間反応を行う。
 その後、変性共役ジエン系重合体を含む重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを3.96g添加し、次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールで乾燥することにより変性共役ジエン系重合体Bを得る。
 得られる変性共役ジエン系重合体Bは、結合スチレン量が5質量%、ブタジエン部分のビニル結合量が40質量%、ピークトップ分子量(Mp)が120×10である。
<評価>
 得られたゴム組成物の各サンプルについては、加硫ゴム組成物のサンプルを得た後、以下の評価を行う。評価結果を表1に示す。
(1)氷上性能
 実施例1の加硫ゴム組成物のサンプルについては、動的機械分析機(TA社)を使用して、-20℃、歪1%、周波数10Hzの条件で、貯蔵せん断弾性係数G’(Pa)を測定する。
 比較例1の加硫ゴム組成物のサンプルについては、動的機械分析機(TA社)を使用して、-20℃、歪1%、周波数10Hzの条件で、貯蔵せん断弾性係数G’(Pa)を測定した。
 得られたG’の値は、比較例1の値を100としたときの指数として表示し、表1に示す。なお、G’の指数値は、大きい程、タイヤへ適用した際の氷上性能に優れることを示す。
(2)操縦安定性
 実施例1の加硫ゴム組成物のサンプルについては、Metravib社製の高周波数用動的粘弾性測定装置を用い、30℃、歪み72%、周波数15Hzの条件で、貯蔵せん断弾性係数G’(Pa)を測定する。
 比較例1の加硫ゴム組成物のサンプルについては、Metravib社製の高周波数用動的粘弾性測定装置を用い、30℃、歪み72%、周波数15Hzの条件で、貯蔵せん断弾性係数G’(Pa)を測定した。
 得られたG’の値は、比較例1の値を100としたときの指数として表示し、表1に示す。なお、G’の指数値は、大きい程、タイヤへ適用した際の操縦安定性に優れることを示す。
(3)氷上性能と操縦安定性のバランス
 実施例1について、上記(1)及び(2)の評価結果(指数値)を平均したものを、氷上性能と操縦安定性のバランス評価の指標として用いる。
 比較例1について、上記(1)及び(2)の評価結果(指数値)を平均したものを、氷上性能と操縦安定性のバランス評価の指標として用いた。
 それぞれ、上記(1)及び(2)の評価結果(指数値)を平均したものを、氷上性能と操縦安定性のバランス評価の指標として用いる。
 得られた指標値は、大きいほど氷上性能と操縦安定性とが高いレベルで両立できていることを示す。
Figure JPOXMLDOC01-appb-T000012
*1 天然ゴム:RSS♯3
*2 カーボンブラック:旭カーボン社製「旭#80」
*3 シリカ:CTAB比表面積195m/gのシリカ
*4 樹脂:芳香族系炭化水素樹脂、東燃化学社製「T-REZ RD104」
*5 亜鉛華:ハクスイテック社製「酸化亜鉛2種」
*6 老化防止剤A:住友化学社製「アンチゲン6C」
*7 シランカップリング剤:信越化学工業社製「ABC-856」
*8 老化防止剤B:精工化学社製「ノンフレックスRD-S」
*9 加硫促進剤A:住友化学社製「ソクシノールD-G」
*10 加硫促進剤B:三新化学工業社製「サンセラーDM-TG」
*11 加硫促進剤C:大内新興化学工業社製「ノクセラーNS-P」
*12 その他:ステアリン酸、オイル、ワックス、脂肪酸金属塩、加工助剤の合計量、各成分の配合量は実施例1と比較例1で同じ
 表1の結果から、実施例に該当するゴム組成物の各サンプルは、氷上性能及び操縦安定性のいずれについても、バランスよく優れた効果を示すことがわかる。
 本発明によれば、タイヤへ適用した際に、優れた氷上性能及び操縦安定性を実現できるゴム組成物を提供することができる。また、本発明によれば、氷上性能及び操縦安定性に優れたタイヤを提供することができる。

Claims (5)

  1.  イソプレン系ゴム、並びに、活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)のうちの少なくとも1つを合計2個以上有する化合物[M]との反応生成物である変性共役ジエン系重合体、を含むゴム成分と、
     少なくともシリカを含む充填剤と、
     前記ゴム成分100質量部に対して5質量部以上の熱可塑性樹脂と、
    を含むことを特徴とする、ゴム組成物。
  2.  前記変性共役ジエン系重合体が、下記式(3)で表されることを特徴とする、請求項1に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(3)中、Rは炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のヒドロカルビルオキシ基、又は変性若しくは未変性の共役ジエン系重合体鎖であり、Rは、炭素数1~20のアルカンジイル基であり、Zは、下記式(4)又は式(5)で表される基である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、Z、nは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(4)及び式(5)中、Rは水素原子又はヒドロカルビル基であり、Polyは、変性又は未変性の共役ジエン系重合体鎖である。「*」はRに結合する結合手であることを示す。)
  3.  前記共役ジエン系重合体が、芳香族ビニル単位及び共役ジエン系単位を有し、前記共役ジエン系重合体における前記芳香族ビニル単位の割合が10質量%以下であることを特徴とする、請求項1又は2に記載のゴム組成物。
  4.  前記変性共役ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される、分子量が最も小さいピークのピークトップ分子量が1.0×10未満であることを特徴とする、請求項1~3のいずれか1項に記載のゴム組成物。
  5.  請求項1~4のいずれか1項に記載のゴム組成物を用いたことを特徴とする、タイヤ。
PCT/JP2021/044784 2021-03-19 2021-12-06 ゴム組成物及びタイヤ WO2022195977A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21931719.5A EP4309915A1 (en) 2021-03-19 2021-12-06 Rubber composition and tire
JP2023506743A JPWO2022195977A1 (ja) 2021-03-19 2021-12-06
CN202180095940.1A CN116981730A (zh) 2021-03-19 2021-12-06 橡胶组合物和轮胎
US18/282,920 US20240182697A1 (en) 2021-03-19 2021-12-06 Rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046551 2021-03-19
JP2021-046551 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022195977A1 true WO2022195977A1 (ja) 2022-09-22

Family

ID=83320298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044784 WO2022195977A1 (ja) 2021-03-19 2021-12-06 ゴム組成物及びタイヤ

Country Status (5)

Country Link
US (1) US20240182697A1 (ja)
EP (1) EP4309915A1 (ja)
JP (1) JPWO2022195977A1 (ja)
CN (1) CN116981730A (ja)
WO (1) WO2022195977A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303334A (ja) 2007-06-08 2008-12-18 Sumitomo Rubber Ind Ltd キャップトレッド用ゴム組成物およびそれを用いたキャップトレッドを有するタイヤ
WO2017014283A1 (ja) * 2015-07-22 2017-01-26 Jsr株式会社 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2017221943A1 (ja) 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2018190429A1 (ja) * 2017-04-14 2018-10-18 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2019524736A (ja) * 2016-07-15 2019-09-05 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. イミノ官能性シランの安定化方法
WO2019235075A1 (ja) * 2018-06-05 2019-12-12 株式会社ブリヂストン ゴム組成物、加硫ゴム組成物及び空気入りタイヤ
WO2020196899A1 (ja) * 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2020255823A1 (ja) * 2019-06-18 2020-12-24 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2021020189A1 (ja) * 2019-07-26 2021-02-04 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2021039985A1 (ja) * 2019-08-30 2021-03-04 Jsr株式会社 重合体組成物、架橋体及びタイヤ
JP2021120448A (ja) * 2019-12-12 2021-08-19 旭化成株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤの製造方法
JP2021165356A (ja) * 2020-04-08 2021-10-14 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ。

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303334A (ja) 2007-06-08 2008-12-18 Sumitomo Rubber Ind Ltd キャップトレッド用ゴム組成物およびそれを用いたキャップトレッドを有するタイヤ
WO2017014283A1 (ja) * 2015-07-22 2017-01-26 Jsr株式会社 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2017221943A1 (ja) 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2019524736A (ja) * 2016-07-15 2019-09-05 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. イミノ官能性シランの安定化方法
WO2018190429A1 (ja) * 2017-04-14 2018-10-18 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
WO2019235075A1 (ja) * 2018-06-05 2019-12-12 株式会社ブリヂストン ゴム組成物、加硫ゴム組成物及び空気入りタイヤ
WO2020196899A1 (ja) * 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2020255823A1 (ja) * 2019-06-18 2020-12-24 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2021020189A1 (ja) * 2019-07-26 2021-02-04 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2021039985A1 (ja) * 2019-08-30 2021-03-04 Jsr株式会社 重合体組成物、架橋体及びタイヤ
JP2021120448A (ja) * 2019-12-12 2021-08-19 旭化成株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤの製造方法
JP2021165356A (ja) * 2020-04-08 2021-10-14 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ。

Also Published As

Publication number Publication date
US20240182697A1 (en) 2024-06-06
JPWO2022195977A1 (ja) 2022-09-22
EP4309915A1 (en) 2024-01-24
CN116981730A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
JPWO2018186367A1 (ja) ゴム組成物及びタイヤ
JP7364442B2 (ja) ゴム組成物及びタイヤ
JP2020059778A (ja) ゴム組成物、トレッド及びタイヤ
EP4067110B1 (en) Rubber composition and tire
JP6891291B2 (ja) 結合ポリマー生成物、作製方法及び組成物
JP2022054761A (ja) 水添ランダム共重合体の製造方法
WO2020158678A1 (ja) ゴム組成物、架橋体及びタイヤ
JP7314034B2 (ja) ゴム組成物及びタイヤ
WO2022124241A1 (ja) ゴム組成物及びタイヤ
WO2022195977A1 (ja) ゴム組成物及びタイヤ
WO2020075829A1 (ja) ゴム組成物、トレッド及びタイヤ
WO2022195978A1 (ja) ゴム組成物及びタイヤ
WO2022196643A1 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
WO2023074773A1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2024090556A1 (ja) 重合体組成物及びタイヤ
WO2023085309A1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
EP4382542A1 (en) Modified conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2023171627A1 (ja) 重合体組成物及びその製造方法、架橋体、並びにタイヤ
WO2023171628A1 (ja) 重合体組成物及びその製造方法、架橋体、並びにタイヤ
WO2020075831A1 (ja) タイヤ
WO2022249766A1 (ja) タイヤ用ゴム組成物、トレッドゴム及びタイヤ
WO2020075832A1 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506743

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095940.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18282920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021931719

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021931719

Country of ref document: EP

Effective date: 20231019