WO2022195957A1 - 光センサ - Google Patents

光センサ Download PDF

Info

Publication number
WO2022195957A1
WO2022195957A1 PCT/JP2021/042037 JP2021042037W WO2022195957A1 WO 2022195957 A1 WO2022195957 A1 WO 2022195957A1 JP 2021042037 W JP2021042037 W JP 2021042037W WO 2022195957 A1 WO2022195957 A1 WO 2022195957A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
material layer
optical sensor
electrode
support
Prior art date
Application number
PCT/JP2021/042037
Other languages
English (en)
French (fr)
Inventor
恭平 岳山
光太郎 廣瀬
真寛 足立
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/279,599 priority Critical patent/US20240147860A1/en
Priority to JP2023506734A priority patent/JPWO2022195957A1/ja
Publication of WO2022195957A1 publication Critical patent/WO2022195957A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present disclosure relates to optical sensors. This application claims priority based on Japanese Application No. 2021-044964 filed on March 18, 2021, and incorporates all the content described in the Japanese Application.
  • thermopile in which two types of materials forming a thermocouple are alternately bonded in series, and a pad electrode for wire bonding made of a material different from that of the thermocouple is connected so as to overlap the thermocouple material (for example, patent documents 1).
  • a pad electrode for wire bonding made of a material different from that of the thermocouple is connected so as to overlap the thermocouple material (for example, patent documents 1).
  • Patent Document 1 an intermediate layer made of a conductive material different from that of the thermocouple material and the pad electrode for wire bonding is interposed between the thermocouple material and the pad electrode for wire bonding.
  • An optical sensor includes a support, a plurality of elongated first material layers composed of SiGe having a first conductivity type and configured to convert thermal energy into electrical energy, a first a plurality of elongated second material layers made of SiGe having a second conductivity type different from the first conductivity type and configured to convert thermal energy into electrical energy; and a third material layer comprising a metal.
  • thermoelectric conversion material portion arranged on one main surface of the support, a heat sink arranged on the other main surface of the support, and a first material when viewed in the thickness direction of the support a light absorbing film arranged to create a temperature difference in the longitudinal direction of the layer and configured to convert received light into thermal energy; a first electrode; and a second spaced apart from the first electrode. an electrode;
  • Each first material layer is disposed in contact with one major surface of the support and includes a first region including a first end and a second region longitudinally opposite the first end. and a second region that includes an end of the Each second material layer includes a third region including a third end and a fourth region including a fourth end longitudinally opposite the third end.
  • the plurality of first material layers and the plurality of second material layers are alternately connected in series.
  • a third material layer is disposed between the first and third regions in contact with the first and third regions, and between the second and fourth regions and between the second and fourth regions. placed in contact.
  • the first region provided in the leading first material layer connected in series is electrically connected to the first electrode
  • the third region provided in the last second material layer connected in series is the second electrode. is electrically connected to
  • FIG. 1 is a schematic plan view of the appearance of an optical sensor according to Embodiment 1.
  • FIG. 2 is a schematic plan view of the appearance of the optical sensor according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing a cross-section along line III--III in FIGS. 1 and 2.
  • FIG. 4 is a schematic cross-sectional view showing part of the optical sensor in Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged part of the optical sensor shown in FIG. 4.
  • FIG. FIG. 6 is an EDX of a portion of the cross-section of the optical sensor shown in FIG.
  • FIG. 7 is a graph showing the relationship between the elements measured by EDX in FIG. 6 and the distance.
  • FIG. 8 is a graph showing the relationship between the contact resistivity in the portion where the first material layer and the second material layer are electrically connected and the thickness of the third material layer.
  • FIG. 9 is a graph showing the relationship between the sensitivity D * of the optical sensor and the thickness of the third material layer.
  • FIG. 10 is a graph showing the relationship between the contact resistivity in the portion where the first material layer and the second material layer are electrically connected and various metals contained in the third material layer.
  • thermopile infrared sensors are required to reduce noise from the viewpoint of improving sensor sensitivity. It is difficult for the technology disclosed in Patent Literature 1 to meet such demands.
  • one object is to provide an optical sensor capable of reducing noise.
  • An optical sensor includes a support, and a plurality of elongated (band-like) first material layers made of SiGe having a first conductivity type and configured to convert thermal energy into electrical energy. , a plurality of elongated (strip-like) second material layers made of SiGe having a second conductivity type different from the first conductivity type and configured to convert thermal energy into electrical energy; and a metal.
  • thermoelectric conversion material portion arranged on one main surface of the support; a heat sink arranged on the other main surface of the support; a light absorbing film arranged to form a temperature difference in the longitudinal direction of the first material layer and configured to convert received light into thermal energy; a first electrode; a disposed second electrode.
  • Each first material layer is disposed in contact with one major surface of the support and includes a first region including a first end and a second region longitudinally opposite the first end. and a second region that includes an end of the Each second material layer includes a third region including a third end and a fourth region including a fourth end longitudinally opposite the third end.
  • the plurality of first material layers and the plurality of second material layers are alternately connected in series.
  • a third material layer is disposed between the first and third regions in contact with the first and third regions, and between the second and fourth regions and between the second and fourth regions. placed in contact.
  • the first region provided in the leading first material layer connected in series is electrically connected to the first electrode
  • the third region provided in the last second material layer connected in series is the second electrode. is electrically connected to
  • thermopile-type optical sensor using a thermoelectric conversion material that converts a temperature difference (thermal energy) into electrical energy such as an infrared sensor, includes a light-receiving part such as a light-absorbing film that converts light energy into thermal energy, A thermoelectric conversion material portion (thermopile) that converts a temperature difference into electrical energy may be provided.
  • a thermocouple formed by connecting a p-type thermoelectric conversion material portion and an n-type thermoelectric conversion material portion is used in the thermoelectric conversion material portion. Output is increased by alternately connecting a plurality of p-type thermoelectric conversion material portions and a plurality of n-type thermoelectric conversion material portions in series.
  • the resistance in the photosensor is represented by the following equation (1).
  • R is the resistance
  • Rp is the resistance per pair of the p-type thermoelectric conversion material
  • Rn is the resistance per pair of the n-type thermoelectric conversion material
  • N is the number of pairs
  • ⁇ c is the contact resistance, that is, the p-type thermoelectric conversion material
  • the resistance of the portion where the portion and the n-type thermoelectric conversion material portion are electrically connected is shown. As can be understood from this formula, if the contact resistance ⁇ c can be reduced, the resistance of the optical sensor can be reduced. Also, the noise in the optical sensor is represented by the following equation (2).
  • Vn Johnson noise (V)
  • k Boltzmann's constant (J/K)
  • T temperature (K)
  • R resistance ( ⁇ )
  • the Johnson noise depends on the resistance, and if the resistance can be reduced, the noise in the photosensor can be reduced.
  • the inventors diligently studied how to reduce the resistance at the portion where the first material layer and the second material layer, which are thermoelectric conversion materials, contact each other. Then, when forming the second material layer after forming the first material layer, the natural oxide film formed on the surface layer of the first material layer inhibits carrier transport and increases the resistance. . Therefore, the inventors of the present invention focused on the viewpoint that the increase in resistance in the oxide film should be suppressed to improve the conductivity, and came up with the configuration of the present disclosure.
  • the optical sensor of the present disclosure further includes a third material layer containing metal.
  • a third material layer is disposed between the first and third regions in contact with the first and third regions, and between the second and fourth regions and between the second and fourth regions. placed in contact. By doing so, the resistance of the portion where the first material layer and the second material layer are electrically connected can be reduced. Therefore, the noise of the optical sensor can be reduced.
  • the metal may be a transition metal.
  • SiGe may have a nanocrystalline structure and/or an amorphous structure.
  • SiGe may be polycrystalline. Such polycrystalline SiGe is also suitably used in the optical sensor of the present disclosure.
  • the crystallization rate of the polycrystalline material of the present disclosure is 99% or more.
  • the metal may have a melting point of 1455°C or higher.
  • a metal is thermally stable and suitable as a material included in the optical sensor.
  • the metals include Ni (nickel), W (tungsten), Mo (molybdenum), Ti (titanium), Au (gold), Pd (palladium), Ge (germanium), Hf (hafnium), Al ( aluminum), and alloys consisting of combinations thereof.
  • the resistance of the portion where the first material layer and the second material layer are electrically connected can be more reliably lowered. Therefore, noise can be reduced more reliably.
  • the metal may be any one of Ni, W, Mo, Ti, and alloys composed of combinations thereof. By doing so, it is possible to further reduce noise.
  • the third material layer may include an oxide film containing 10 at % or more of metal.
  • the thickness of the third material layer may be 3 nm or more and 200 nm or less.
  • FIG. 1 and 2 are schematic plan views of the appearance of the optical sensor according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing a cross-section along line III--III in FIGS. 1 and 2.
  • FIG. 4 is a schematic cross-sectional view showing part of the optical sensor in Embodiment 1.
  • FIG. 4 is a schematic cross-sectional view showing an enlarged portion including a first region, a second region, a third region, and a fourth region, which will be described later.
  • 5 is a schematic cross-sectional view showing an enlarged part of the optical sensor shown in FIG. 4.
  • optical sensor 11a is, for example, an infrared sensor.
  • the optical sensor 11a includes a support 13, a thermoelectric conversion material portion 12 arranged on one main surface 13b of the support 13, a heat sink 14, an infrared absorption film 23 as a light absorption film, and a first electrode 24. and a second electrode 25 .
  • the thermoelectric conversion material portion 12 includes a plurality of first material layers 21 including first material layers 21a, 21b, 21c, and 21d, and a plurality of second material layers 22 including second material layers 22a, 22b, 22c, and 22d. ,including.
  • the optical sensor 11a detects the infrared ray irradiated to the optical sensor 11a by detecting the potential difference generated between the first electrode 24 and the second electrode 25 . If the optical sensor 11a as a whole is plate-shaped, its thickness direction is represented by the Z direction.
  • the support 13 is a thin film and has a rectangular shape when viewed in the thickness direction (Z direction).
  • Support 13 supports thermoelectric conversion material portion 12 including multiple first material layers 21 and multiple second material layers 22 , infrared absorption film 23 , first electrode 24 , and second electrode 25 .
  • Support 13 is made of, for example, a SiO 2 /SiN/SiO 2 film. That is, the support 13 has a structure in which SiO 2 , SiN and SiO 2 are laminated.
  • the outer edge 14c which is the outer edge of the heat sink 14 as a whole, and the outer edge 13c of the support 13 extend continuously in the Z direction.
  • the heat sink 14 includes one surface 14a and the other surface 14b spaced apart in the thickness direction of the optical sensor 11a.
  • a heat sink 14 is arranged on the other main surface 13 a of the support 13 .
  • the heat sink 14 is arranged such that one surface 14a of the heat sink 14 and the other main surface 13a of the support 13 are in contact with each other.
  • the other surface 14b of the heat sink 14 is exposed.
  • the shape of the heat sink 14 is a rectangular loop shape.
  • the heat sink 14 appears in the cross-section shown in FIG. 3 by two trapezoidal shapes.
  • the heat sink 14 is sufficiently thick compared to the support 13 .
  • the thickness of heat sink 14 is ten times or more the thickness of support 13 .
  • the heat sink 14 is a so-called substrate in this embodiment.
  • the heat sink 14 is made of Si, for example.
  • a recess 16 recessed in the thickness direction is formed in the optical sensor 11a.
  • the support 13, specifically the other main surface 13a of the support 13 is exposed.
  • An inner peripheral surface 14d of the heat sink 14 surrounding the recess 16 has a so-called tapered shape with a wide opening on the side of the surface 14b.
  • Recess 16 is formed, for example, by anisotropically wet etching a flat substrate.
  • inner edges 16a, 16b, 16c, and 16d of the heat sink 14, which are boundaries between the heat sink 14 and the support 13, are indicated by dashed lines in FIG.
  • the inner edges 16a, 16b, 16c, 16d of the heat sink 14 have a square shape when viewed in the thickness direction of the support 13. As shown in FIG.
  • the first material layer 21 is composed of SiGe having the n-type, which is the first conductivity type. That is, the first material layer 21 is made of an n-type thermoelectric conversion material, and is made of a compound semiconductor containing Si (silicon) and Ge as constituent elements.
  • the first material layer 21 has an elongated shape.
  • the first material layer 21 includes a first region 28a including a first end 28c, a second region 28b including a second end 28d located on the opposite side of the first end 28c in the longitudinal direction, including.
  • the direction in which the line connecting the first region 28a and the second region 28b extends is the longitudinal direction of the elongated first material layer 21 .
  • the first material layer 21 converts the temperature difference between the first region 28a and the second region 28b into electrical energy.
  • the first material layer 21 is arranged on one major surface 13 b of the support 13 .
  • the first material layer 21 is arranged in contact with one main surface 13b of the support 13 .
  • the first region 28a is positioned closer to the inner edges 16a, 16b, 16c, 16d of the heat sink 14 when viewed in the thickness direction of the support 13, and the second region 28b is positioned closer to the infrared absorption film 23. are located on the side near the outer edges 23a, 23b, 23c, 23d.
  • the second material layer 22 is made of SiGe having p-type conductivity different from the first conductivity type. That is, the second material layer 22 is made of a p-type thermoelectric conversion material, and is made of a compound semiconductor containing Si and Ge as constituent elements.
  • the second material layer 22 has an elongated shape.
  • the second material layer 22 includes a third region 29a including a third end 29c and a fourth region 29b including a fourth end 29d located on the opposite side of the third end 29c in the longitudinal direction. .
  • the direction in which the line connecting the third region 29a and the fourth region 29b extends is the longitudinal direction of the elongated second material layer 22 .
  • the second material layer 22 converts the temperature difference between the third region 29a and the fourth region 29b into electrical energy.
  • the second material layer 22 is arranged on part of an insulating film 26 and part of the first material layer 21 which are arranged in contact with the support 13 and will be described later.
  • the second material layer 22 has a third region 29a positioned closer to the inner edges 16a, 16b, 16c, and 16d of the heat sink 14 when viewed in the thickness direction of the support 13, and a fourth region 29b positioned near the inner edges 16a, 16b, 16c, and 16d of the support 13. are located on the side near the outer edges 23a, 23b, 23c, 23d.
  • the plurality of first material layers 21 and the plurality of second material layers 22 are arranged on the support 13 so as to fit within the area 15 indicated by the rectangular shape of the two-dot chain line in FIG.
  • the thermoelectric conversion material part 12 converts a temperature difference (thermal energy) into electrical energy using the plurality of first material layers 21 and the plurality of second material layers 22 .
  • the thermoelectric conversion material portion 12 includes an insulating film 26 .
  • SiO 2 is selected as the material of the insulating film 26 .
  • the arrangement of the plurality of first material layers 21 and the plurality of second material layers 22 will be detailed later.
  • the infrared absorption film 23 is arranged on one main surface 13 b of the support 13 , part of the first material layer 21 , part of the second material layer 22 and part of the insulating film 26 .
  • the infrared absorbing film 23 is arranged to form a temperature difference in the longitudinal direction of the first material layer 21, that is, between the first region 28a and the second region 28b.
  • the infrared absorbing film 23 exposes the first region 28a of the first material layer 21 and the third region 29a of the second material layer 22, and exposes the second region 28b of the first material layer 21 and the second material layer 21. It is arranged to cover the fourth region 29b of the layer 22 .
  • the infrared absorbing film 23 is arranged to form a temperature difference in the longitudinal direction of the second material layer 22, that is, between the third region 29a and the fourth region 29b.
  • the infrared absorbing film 23 is arranged in a region surrounded by the inner edges 16a, 16b, 16c and 16d of the heat sink 14 when viewed in the thickness direction of the support 13.
  • the infrared absorption film 23 having outer edges 23a, 23b, 23c, and 23d has a square shape when viewed in the thickness direction of the support 13. As shown in FIG.
  • the infrared absorbing film 23 When viewed in the thickness direction of the support 13 , the infrared absorbing film 23 has a center of a square formed by outer edges 23 a , 23 b , 23 c and 23 d of the infrared absorbing film 23 and inner edges 16 a , 16 b and 16 c of the heat sink 14 . , 16d so as to overlap the center of the square shape.
  • the infrared absorption film 23 converts infrared rays into heat.
  • Carbon (C) for example, is selected as the material for the infrared absorption film 23 .
  • the insulating film 26 is arranged on the first material layer 21 in the portion where the first material layer 21 is arranged, and on the support 13 in the portion where the first material layer 21 is not arranged. It is arranged on one main surface 13b.
  • the insulating film 26 is arranged so as not to cover the first region 28 a and the second region 28 b of the first material layer 21 .
  • the second material layer 22 is arranged on part of the one main surface 13 b of the support 13 , on part of the insulating film 26 and on part of the first material layer 21 .
  • the first region 28a of the first material layer 21 and the third region 29a of the second material layer 22 are electrically connected via the third material layer 31a.
  • the second region 28b and the fourth region 29b of the second material layer 22 are arranged to be electrically connected via the third material layer 31b.
  • the third region 29a is arranged on the first region 28a
  • the fourth region 29b is arranged on the second region 28b.
  • the infrared absorbing film 23 is arranged on part of the one main surface 13 b of the support 13 , part of the insulating film 26 and part of the second material layer 22 .
  • the infrared absorption film 23 is arranged so as to expose the first region 28a of the first material layer 21 and the third region 29a of the second material layer 22 .
  • the infrared absorption film 23 is arranged to cover the second region 28b of the first material layer 21 and the fourth region 29b of the second material layer 22 . In other words, each connecting portion where the second region 28b and the fourth region 29b are connected overlaps the infrared absorption film 23 when viewed in the thickness direction of the support 13 .
  • a first region 28 a of the first material layer 21 and a third region 29 a of the second material layer 22 are not covered with the infrared absorbing film 23 . That is, the first material layer 21 and the second material layer 22 are respectively thermally connected to the infrared absorption film 23 so as to form a temperature difference in the longitudinal direction of the first material layer 21 and the second material layer 22. . It is arranged so that the heat of the infrared absorption film 23 is transferred to the second region 28b of the first material layer 21 and the fourth region 29b of the second material layer 22 . Thus, a temperature difference is formed in the longitudinal direction of the first material layer 21 and the second material layer 22 . By doing so, the optical sensor 11a that efficiently utilizes the temperature difference formed by the infrared absorption film 23 and the heat sink 14 can be obtained.
  • the multiple first material layers 21 are spaced apart from each other. Except for the first material layers 21a, 21b, 21c, and 21d, the multiple first material layers 21 are arranged such that the X direction or the Y direction is the longitudinal direction. Except for the first material layers 21a, 21b, 21c, and 21d, the plurality of first material layers 21 extends from each side of the square-shaped region 15 toward the opposite side (the longitudinal direction is in the direction). are placed along the line). The first material layers 21 and the second material layers 22 are alternately electrically connected, except for the first region 28 a connected to the first electrode 24 and the third region 29 a connected to the second electrode 25 .
  • first region 28a of the first material layer 21 and the third region 29a of the second material layer 22 adjacent to one of the first material layers 21 are electrically connected via the third material layer 31a. be done.
  • the second region 28b of the first material layer 21 and the fourth region 29b of the second material layer 22 adjacent on the other side of the first material layer 21 are electrically connected via the third material layer 31b.
  • the plurality of first material layers 21 and the plurality of second material layers 22 are connected to the first electrode 24 and the second electrode 25 except for the first region 28a and the third region 29a, the second region 28b, the fourth region 29b are electrically connected to each other and the first region 28a and third region 29a are electrically connected to each other. That is, the first material layer 21 and the second material layer 22 are paired, and the adjacent first material layer 21 and the second material layer 22 are electrically connected in series alternately in the region including the end portion. ing.
  • the polarity of the voltage generated in the third region 29a including the third end 29c located on one side of the two-material layer 22 is opposite.
  • a plurality of first material layers 21 and a plurality of second material layers 22 are always alternately connected.
  • the first material layer 21 arranged at the head is electrically connected to the first electrode 24 in the first region 28a.
  • the second material layer 22 arranged at the end is electrically connected to the second electrode 25 in the third region 29a.
  • the first electrode 24 and the second electrode 25 are arranged outside the region 15 on one main surface 13 b of the support 13 .
  • the first electrode 24 and the second electrode 25 are arranged apart.
  • Each of the first electrode 24 and the second electrode 25 is, for example, a pad electrode.
  • gold (Au), titanium (Ti), platinum (Pt), or the like is used as the material of the first electrode 24 and the second electrode 25 .
  • thermoelectric conversion material portion 12 includes a third material layer 31a containing metal.
  • the third material layer 31a is arranged between the first region 28a and the third region 29a and in contact with the first region 28a and the third region 29a.
  • the third material layer 31a is arranged between the first region 28a and the third region 29a in the Z direction.
  • thermoelectric conversion material portion 12 includes a third material layer 31b containing metal.
  • the third material layer 31b is arranged between the second region 28b and the fourth region 29b so as to be in contact with the second region 28b and the fourth region 29b.
  • the third material layer 31b is arranged between the second region 28b and the fourth region 29b in the Z direction.
  • the metal contained in the third material layers 31a and 31b is Ni in this embodiment.
  • the third material layers 31a and 31b include oxide films containing 10 at % or more of Ni.
  • the third material layers 31a and 31b include oxide films containing 10 at % or more of Ni.
  • the thickness T1 of the third material layer 31a is 3 nm or more and 200 nm or less (see FIG. 5).
  • the thickness T1 of the third material layer 31a is indicated by the thickness T1, which is the length between one surface 32a and the other surface 33a of the third material layer 31a in the Z direction, which is the thickness direction. .
  • One surface 32a of the third material layer 31a contacts one surface 34a in the thickness direction of the first material layer 21 located on the second material layer 22 side in the thickness direction.
  • the other surface 33a of the third material layer 31a contacts one surface 35a in the thickness direction of the second material layer 22 located on the first material layer 21 side in the thickness direction. Since the thickness of the third material layer 31b is also the same as the thickness of the third material layer 31a, the description thereof will be omitted.
  • a method for manufacturing the optical sensor 11a according to Embodiment 1 will be briefly described.
  • a flat substrate is prepared, and the support 13 is formed on one main surface in the thickness direction. At this time, the substrate and the other main surface 13a of the support 13 are in contact with each other.
  • a first material layer 21 is formed on one main surface 13b of the support 13. As shown in FIG.
  • the specific formation of the first material layer 21 is as follows. First, on one main surface 13b of the support 13, a lift-off resist is applied in layers. Next, a layer of positive resist is applied on the lift-off resist. After that, the positive resist is subjected to photolithography, exposed, and dissolved in a developer. Next, a semiconductor material is deposited to form a pattern, and the resist is removed from the support 13 (lift-off). Thus, the above-described first material layer 21 is formed.
  • the first material layer 21 After forming the first material layer 21, it is immersed in a buffered hydrofluoric acid (BHF (Buffered Hydrogen Fluoride)) solution having a concentration of 10% by mass for 1 minute, and then washed with water. After the water washing process, a natural oxide film having a thickness of about 10 nm to 20 nm is formed on the first material layer 21 . Next, after forming a pattern of Ni, which is an intermediate metal layer, a Ni film is formed to form an intermediate metal layer. Next, an insulating film 26 made of SiO 2 is formed, a pattern of the second material layer 22 is formed, and then the second material layer 22 is formed by vapor deposition. Since the formation of each layer, such as the formation of the second material layer 22, is the same procedure as the formation of the first material layer 21, the description thereof will be omitted.
  • BHF buffered hydrofluoric acid
  • an activation process is performed by heating at about 550°C.
  • Ni which is the metal in the intermediate metal layer, diffuses into the natural oxide film with a thickness of about 10 nm to 20 nm formed on the first material layer 21 that has been washed with water.
  • the third material layers 31a and 31b containing Ni are formed. That is, in this manner, the third material layer 31a arranged in contact with the first region 28a and the third region 29a between the first region 28a and the third region 29a, the second region 28b and the fourth region 29a A third material layer 31b arranged in contact with the second region 28b and the fourth region 29b is formed between the region 29b.
  • a recess 16 is formed in the central region of the substrate from the other main surface of the substrate located on the side opposite to the support 13 in the thickness direction.
  • a concave portion 16 is formed from the other main surface of the substrate to the other main surface 13 a of the support 13 .
  • a heat sink 14 composed of the substrate is formed, and the optical sensor 11a is obtained.
  • the intermediate metal layer may be provided between the first region 28 a and the first electrode 24 .
  • the infrared absorption film 23 converts the light energy into heat energy.
  • the infrared absorbing film 23 is formed in a region surrounded by the inner edges 16a, 16b, 16c, and 16d of the heat sink 14, and the portion where the infrared absorbing film 23 is arranged becomes the high temperature side.
  • the heat sink 14 is arranged outside the inner edges 16a, 16b, 16c, 16d, the temperature does not rise.
  • the second region 28b of the first material layer 21 becomes high temperature, and the first region 28a of the first material layer 21 becomes low temperature. That is, in the longitudinal direction of one first material layer 21, a temperature difference is formed between regions including both ends. This temperature difference creates a potential difference.
  • the longitudinal direction of the second material layer 22 also has an elongated shape. Therefore, a temperature difference is formed between regions including both ends. This temperature difference creates a potential difference.
  • the potential difference output by the first electrode 24 and the second electrode 25 can be divided into a plurality of It is the total potential difference caused by the temperature difference between the first material layer 21 and the plurality of second material layers 22 .
  • the photosensor 11a detects light, in this case infrared rays.
  • the optical sensor 11a includes the third material layers 31a and 31b configured as described above. Therefore, the resistance in the optical sensor 11a can be reduced. Therefore, the noise of the optical sensor 11a can be reduced.
  • FIG. 6 is a diagram showing EDX of a part of the cross section of the optical sensor 11a shown in FIG.
  • the left area 36a shows the concentration of the element Ni
  • the right area 36b shows the concentration of the element O (oxygen).
  • FIG. 7 is a graph showing the relationship between the elements measured by EDX in FIG. 6 and the distance.
  • the horizontal axis indicates the element concentration (at %)
  • the vertical axis indicates the distance (nm).
  • the distance is the distance from the main surface 13b in the Z direction.
  • JEM-2100F manufactured by JEOL Ltd.
  • the acceleration voltage was set to 200 kV.
  • the electron probe diameter was set to 0.2 nm
  • the number of pixels was set to 256 pixels ⁇ 256 pixels
  • the Dwell time was set to 0.5 ms/pixel
  • the number of times of integration was set to 15 as EDX mapping conditions.
  • the concentration of Si decreases as the distance increases, and sharply decreases from 150 nm.
  • the concentration of Ge increases as the distance increases, and rapidly increases from 150 nm.
  • the concentration of Ni is 10 at % or more in the distance from 120 nm to 180 nm.
  • the concentration of O also increases and reaches a peak in the distance from 120 nm to 180 nm. 6 and 7, it can be understood that a third material layer 31a containing metal is arranged on one surface 34a of the first material layer 21.
  • FIG. The thickness T1 of the third material layer 31a in this embodiment is 60 nm.
  • the rate of decrease in resistance at the portion electrically connected to the layer 22 is 99%. Also, compared to the resistance of a photosensor that does not include the third material layers 31a, 31b, the reduction in resistance of such a photosensor 11a of the present disclosure is 38%. Moreover, compared to the Johnson noise of a photosensor that does not include the third material layers 31a, 31b, the Johnson noise reduction of such a photosensor 11a of the present disclosure is 22%.
  • FIG. 8 is a graph showing the relationship between the resistance at the portion where the first material layer 21 and the second material layer 22 are electrically connected and the thickness of the third material layers 31a and 31b.
  • the horizontal axis indicates the thickness (nm) of the third material layers 31a and 31b
  • the vertical axis indicates the contact resistivity at the portion where the first material layer 21 and the second material layer 22 are electrically connected. (m ⁇ cm 2 ).
  • FIG. 9 is a graph showing the relationship between the sensitivity D * of the optical sensor and the thickness of the third material layers 31a and 31b.
  • the horizontal axis indicates the thickness (nm) of the third material layers 31a and 31b
  • the vertical axis indicates the sensitivity D * (cm ⁇ Hz 0.5 /W).
  • the metal can be sufficiently diffused into the oxide film, and the resistance can be set to a suitable value. can be done. Therefore, the sensitivity can be further improved.
  • Ni is used as the metal contained in the third material layers 31a and 31b.
  • SiGe may have a nanocrystalline structure and/or an amorphous structure.
  • SiGe which is a constituent material of the first material layer 21 and the second material layer 22
  • SiGe having an amorphous structure is heat-treated at a temperature of, for example, about 500° C., and a part of the SiGe is formed into a nanocrystalline structure. good too.
  • SiGe may also have a nanocrystalline or amorphous structure.
  • the nanocrystalline structure is a structure partially having nano-sized crystal grains (nanocrystals) in SiGe. Inside the nanocrystal, the atoms are regularly arranged. SiGe may also be polycrystalline. Such polycrystalline SiGe is also suitably used in the optical sensor of the present disclosure.
  • the crystallization rate of the polycrystalline material of the present disclosure is 99% or more.
  • the measurement of the crystallization rate was performed as follows. HORIBA LabRam HR-PL was used as an apparatus. The measurement conditions were a laser wavelength of 532 nm and a laser power of 2.5 mW. As for the analysis conditions, the peak near 400 cm ⁇ 1 was analyzed. In the analysis, Gaussian function and pseudo Voigt function were fitted.
  • the Gaussian function G(x) is represented by the following formula (3).
  • Equation 4 the pseudo Voigt function F(x) is represented by the formula shown in Equation 4 below.
  • Gaussian function G(x) In the variables A g , W g and x g , the initial value of x 0 was set to 400 cm ⁇ 1 .
  • Each parameter was optimized by the method of least squares, and the area was obtained by integrating the pseudo Voigt function and the Gaussian function. Regarding the crystallization rate, the area derived using the Gaussian function corresponds to amorphous, and the area derived using the pseudo-Vogt function corresponds to crystal. area/(area derived using pseudo Voigt function + area derived using Gaussian function).
  • the melting point of the metal contained in the third material layers 31a and 31b may be 1455° C. or higher.
  • Such a metal is thermally stable and suitable as a material included in the optical sensor 11a.
  • FIG. 10 is a graph showing the relationship between the contact resistivity at the portion where the first material layer 21 and the second material layer 22 are electrically connected and various metals contained in the third material layer.
  • the horizontal axis indicates various metals
  • the vertical axis indicates the contact resistivity (m ⁇ cm 2 ) at the portion where the first material layer 21 and the second material layer 22 are electrically connected.
  • the contact resistivity is 400 (m ⁇ cm 2 ).
  • the contact resistivity is 0.6 (m ⁇ cm 2 ).
  • the contact resistivity is 1.0 (m ⁇ cm 2 ).
  • the contact resistivity is 1.5 (m ⁇ cm 2 ).
  • the contact resistivity is 2.0 (m ⁇ cm 2 ).
  • the contact resistivity is 24 (m ⁇ cm 2 ).
  • the contact resistivity is 55 (m ⁇ cm 2 ). In the case of including the third material layer in which the metal is Ge, the contact resistivity is 60 (m ⁇ cm 2 ). In the case of including the third material layer in which the metal is Hf, the contact resistivity is 70 (m ⁇ cm 2 ). In the case of including the third material layer in which the metal is Al, the contact resistivity is 200 (m ⁇ cm 2 ).
  • the metal contained in the third material layers 31a and 31b it is preferable to select one of Ni, W, Mo, Ti, Au, Pd, Ge, Hf, Al, and alloys composed of combinations thereof. be. Such an element can more reliably lower the resistance in the portion where the first material layer 21 and the second material layer 22 are electrically connected. Therefore, noise can be reduced more reliably.
  • noise can be further reduced by adopting any one of Ni, W, Mo, Ti, and an alloy made of a combination thereof as the metal contained in the third material layers 31a and 31b. .
  • the n-type thermoelectric conversion material is used for the first material layer with the first conductivity type being n-type, and the conductivity type different from the first conductivity type is p-type for the second material layer.
  • the conductivity type different from the first conductivity type is p-type for the second material layer.
  • An n-type thermoelectric conversion material may be employed for the second material layer with the type being n-type.
  • the oxide film formed on the first material layer 21 after the water washing process described above preferably has a thickness of about 0.1 nm to 10 nm from the viewpoint of increasing the Seebeck coefficient. .
  • the heat sink has a rectangular loop shape, but it is not limited to this.
  • a heat sink may be formed in a lattice shape when viewed in the thickness direction of the support, and a plurality of rectangular supports may be arranged in regions corresponding to so-called windows of the lattice heat sink.
  • a configuration may be adopted in which a plurality of thin rectangular support members are arranged at intervals, and a heat sink is arranged in a region between the support members. By doing so, it is also possible to reduce noise.
  • Such a configuration is used, for example, when an optical sensor is used as an array sensor.
  • the third area is arranged on the first area
  • the fourth area is arranged on the second area.
  • the region and the second region and the fourth region may be arranged adjacent to each other when viewed in the thickness direction of the support. That is, the third material layer is arranged between the first region and the third region which are arranged adjacent to each other when viewed in the thickness direction of the support so as to be in contact with each of the first region and the third region.
  • a third material layer may be arranged between the second region and the fourth region arranged adjacent to each other so as to be in contact with the second region and the fourth region.
  • thermoelectric conversion material portion 13 supports 13a, 13b main surfaces 13c, 14c, 23a, 23b, 23c, 23d outer edge 14 heat sinks 14a, 14b, 32a, 33a, 34a, 35a surface 14d inner peripheral surface 15, 36a, 36b region 16 recesses 16a, 16b, 16c, 16d inner edges 21, 21a, 21b, 21c, 21d first material layers 22, 22a, 22b, 22c, 22d second material layer 23 infrared absorbing film (light absorbing film), 24 first electrode 25 second electrode 26 insulating film 28a first region 28b second region 28c first end 28d second end 29a third region 29b fourth region 29c second region 3 end, 29d fourth end 31a, 31b third material layer T 1 thickness, D * sensitivity X, Y, Z directions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

光センサは、支持体と、第1材料層と第2材料層と第3材料層を含む熱電変換材料部と、を備える。第1材料層は、第1の端部を含む第1領域と、第2の端部を含む第2領域と、を含む。第2材料層は、第3の端部を含む第3領域と、第4の端部を含む第4領域と、を含む。第1領域と第3領域とが電気的に接続され、第2領域と第4領域とが電気的に接続されることで、第1材料層と第2材料層は交互に直列に接続される。第3材料層は、第1領域と第3領域との間で第1領域および第3領域と接触して配置され、第2領域と第4領域との間で第2領域および第4領域と接触して配置される。直列に接続される先頭の第1材料層に設けられる第1領域は第1電極と電気的に接続され、直列に接続される最後尾の第2材料層に設けられる第3領域は第2電極と電気的に接続される。

Description

光センサ
 本開示は、光センサに関するものである。本出願は、2021年3月18日出願の日本出願第2021-044964号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 熱電対をなす2種類の材料が直列に交互に接合され、熱電対と異なる材料からなるワイヤボンディング用のパッド電極が熱電対材料に重なるように接続されるサーモパイルが知られている(たとえば特許文献1参照)。特許文献1によると、熱電対材料とワイヤボンディング用のパット電極との間に、熱電対材料とワイヤボンディング用のパット電極の材料とは異なる導電材料からなる中間層を介在させている。
特開平9-92892号公報
 本開示に従った光センサは、支持体と、第1の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状の複数の第1材料層と、第1の導電型と異なる第2の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状の複数の第2材料層と、金属を含む第3材料層と、を含み、支持体の一方の主面上に配置される熱電変換材料部と、支持体の他方の主面上に配置されるヒートシンクと、支持体の厚さ方向に見て、第1材料層の長手方向に温度差を形成するよう配置され、受けた光を熱エネルギーに変換するように構成された光吸収膜と、第1電極と、第1電極と隔離して配置される第2電極と、を備える。それぞれの第1材料層は、支持体の一方の主面と接触して配置され、第1の端部を含む第1領域と、長手方向において第1の端部の反対側に位置する第2の端部を含む第2領域と、を含む。それぞれの第2材料層は、第3の端部を含む第3領域と、長手方向において第3の端部の反対側に位置する第4の端部を含む第4領域と、を含む。第1領域と第3領域とが電気的に接続され、第2領域と第4領域とが電気的に接続されることで、複数の第1材料層と複数の第2材料層は交互に直列に接続される。第3材料層は、第1領域と第3領域との間において第1領域および第3領域と接触して配置され、第2領域と第4領域との間において第2領域および第4領域と接触して配置される。直列に接続される先頭の第1材料層に設けられる第1領域は第1電極と電気的に接続され、直列に接続される最後尾の第2材料層に設けられる第3領域は第2電極と電気的に接続される。
図1は、実施の形態1における光センサの外観の概略平面図である。 図2は、実施の形態1における光センサの外観の概略平面図である。 図3は、図1および図2の線分III-IIIに沿う断面を示す概略断面図である。 図4は、実施の形態1における光センサの一部を示す概略断面図である。 図5は、図4に示す光センサの一部を拡大して示す概略断面図である。 図6は、図5に示す光センサの断面の一部のEDXを示す図である。 図7は、図6におけるEDXにおいて計測された元素と距離との関係を示すグラフである。 図8は、第1材料層と第2材料層とが電気的に接続される部分における接触抵抗率と第3材料層の厚さとの関係を示すグラフである。 図9は、光センサの感度Dと第3材料層の厚さとの関係を示すグラフである。 図10は、第1材料層と第2材料層とが電気的に接続される部分における接触抵抗率と第3材料層に含まれる各種金属との関係を示すグラフである。
[本開示が解決しようとする課題]
 サーモパイル型の赤外線センサのような光センサにおいては、センサの感度の向上の観点からノイズの低減が求められる。特許文献1に開示の技術では、このような要望に応じることは困難である。
 そこで、ノイズを低減することができる光センサを提供することを目的の1つとする。
[本開示の効果]
 上記光センサによれば、ノイズを低減することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示に係る光センサは、支持体と、第1の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状(帯状)の複数の第1材料層と、第1の導電型と異なる第2の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状(帯状)の複数の第2材料層と、金属を含む第3材料層と、を含み、支持体の一方の主面上に配置される熱電変換材料部と、支持体の他方の主面上に配置されるヒートシンクと、支持体の厚さ方向に見て、第1材料層の長手方向に温度差を形成するよう配置され、受けた光を熱エネルギーに変換するように構成された光吸収膜と、第1電極と、第1電極と隔離して配置される第2電極と、を備える。それぞれの第1材料層は、支持体の一方の主面と接触して配置され、第1の端部を含む第1領域と、長手方向において第1の端部の反対側に位置する第2の端部を含む第2領域と、を含む。それぞれの第2材料層は、第3の端部を含む第3領域と、長手方向において第3の端部の反対側に位置する第4の端部を含む第4領域と、を含む。第1領域と第3領域とが電気的に接続され、第2領域と第4領域とが電気的に接続されることで、複数の第1材料層と複数の第2材料層は交互に直列に接続される。第3材料層は、第1領域と第3領域との間において第1領域および第3領域と接触して配置され、第2領域と第4領域との間において第2領域および第4領域と接触して配置される。直列に接続される先頭の第1材料層に設けられる第1領域は第1電極と電気的に接続され、直列に接続される最後尾の第2材料層に設けられる第3領域は第2電極と電気的に接続される。
 赤外線センサのような、温度差(熱エネルギー)を電気エネルギーに変換する熱電変換材料を用いたサーモパイル型の光センサについては、光エネルギーを熱エネルギーに変換する光吸収膜のような受光部と、温度差を電気エネルギーに変換する熱電変換材料部(サーモパイル)とを備える場合がある。熱電変換材料部においては、p型熱電変換材料部とn型熱電変換材料部とを接続して形成される熱電対が用いられる。複数のp型熱電変換材料部と複数のn型熱電変換材料部とを交互に直列で接続することにより、出力を増加させている。光センサにおける抵抗については、以下の数1に示す式によって表される。
Figure JPOXMLDOC01-appb-M000001
 Rは抵抗、Rpはp型熱電変換材料部の一対辺りの抵抗、Rnはn型熱電変換材料部の一対辺りの抵抗、Nは対の数、ρcは接触抵抗、すなわち、p型熱電変換材料部とn型熱電変換材料部とが電気的に接続される部分の抵抗を示す。この式からも把握できるように、接触抵抗ρcを低減することができれば、光センサにおける抵抗の低減を図ることができる。また、光センサにおけるノイズについては、以下の数2に示す式によって表される。
Figure JPOXMLDOC01-appb-M000002
 Vnはジョンソンノイズ(V)、kはボルツマン定数(J/K)、Tは温度(K)、Rは抵抗(Ω)、Δfは帯域幅(Hz=1/s)を示す。この式からも把握できるように、ジョンソンノイズは抵抗に依存しており、抵抗を低減することができれば、光センサにおけるノイズの低減を図ることができる。
 本発明者らは、熱電変換材料である第1材料層と第2材料層とが接触する部分における抵抗を減らすべく鋭意検討した。そして、第1材料層を形成後、第2材料層を形成する場合において、第1材料層の表層に形成される自然酸化膜がキャリア輸送を阻害し、抵抗を増大させていることを見出した。そこで本発明者らはこの酸化膜における抵抗の増大を抑制して導電性を向上させればよい観点に着目し、本開示の構成を想到するに至った。
 本開示の光センサは、金属を含む第3材料層をさらに備える。第3材料層は、第1領域と第3領域との間において第1領域および第3領域と接触して配置され、第2領域と第4領域との間において第2領域および第4領域と接触して配置される。そうすると、第1材料層と第2材料層とが電気的に接続される部分の抵抗を低減することができる。したがって、光センサのノイズの低減を図ることができる。
 上記光センサにおいて、金属は、遷移金属であってもよい。SiGeは、ナノ結晶構造およびアモルファス構造のうちの少なくともいずれかを有してもよい。このような金属、第1材料層および第2材料層を構成するSiGeを用いることにより、より確実に光センサのノイズの低減を図ることができる。
 上記光センサにおいて、SiGeは、多結晶体であってもよい。このような多結晶体であるSiGeについても、本開示の光センサにおいて、好適に利用される。なお、本開示の多結晶体の結晶化率については、99%以上である。
 上記光センサにおいて、金属の融点は、1455℃以上であってもよい。このような金属は、熱的に安定であり、光センサに含まれる材質として好適である。
 上記光センサにおいて、金属は、Ni(ニッケル)、W(タングステン)、Mo(モリブデン)、Ti(チタン)、Au(金)、Pd(パラジウム)、Ge(ゲルマニウム)、Hf(ハフニウム)、Al(アルミニウム)、およびそれらの組み合わせからなる合金のうちのいずれかであってもよい。金属としてこのような元素を用いることにより、第1材料層と第2材料層とが電気的に接続される部分の抵抗をより確実に低下させることができる。したがって、より確実にノイズの低減を図ることができる。
 上記光センサにおいて、金属は、Ni、W、Mo、Ti、およびそれらの組み合わせからなる合金のうちのいずれかであってもよい。このようにすることにより、よりノイズの低減を図ることができる。
 上記光センサにおいて、第3材料層は、金属を10at%以上含む酸化膜を含んでもよい。このようにすることにより、より確実に第1材料層と第2材料層とが電気的に接続される部分の抵抗を低減することができる。したがって、光センサのノイズの低減を図ることができる。
 上記光センサにおいて、第3材料層の厚さは、3nm以上200nm以下であってもよい。このようにすることにより、第1材料層と第2材料層とが電気的に接続される部分の抵抗の低下を図りながら、熱電変換材料部における起電力の低下を抑制することができる。
 [本開示の実施形態の詳細]
 次に、本開示の光センサの一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
 (実施の形態1)
 本開示の実施の形態1に係る光センサについて説明する。図1および図2は、実施の形態1における光センサの外観の概略平面図である。理解の容易の観点から、図1では、後述する赤外線吸収膜および絶縁膜の図示を省略している。図1において、赤外線吸収膜が配置される際の外縁は、破線で示されている。図3は、図1および図2の線分III-IIIに沿う断面を示す概略断面図である。図4は、実施の形態1における光センサの一部を示す概略断面図である。図4は、後述する第1領域、第2領域、第3領域および第4領域を含む部分を拡大して示す概略断面図である。図5は、図4に示す光センサの一部を拡大して示す概略断面図である。
 図1、図2、図3、図4および図5を参照して、光センサ11aは、たとえば赤外線センサである。光センサ11aは、支持体13と、支持体13の一方の主面13b上に配置される熱電変換材料部12と、ヒートシンク14と、光吸収膜としての赤外線吸収膜23と、第1電極24と、第2電極25と、を備える。熱電変換材料部12は、第1材料層21a,21b,21c,21dを含む複数の第1材料層21と、第2材料層22a,22b,22c,22dを含む複数の第2材料層22と、を含む。光センサ11aは、第1電極24と第2電極25との間に生ずる電位差を検出することにより、光センサ11aに照射される赤外線を検出する。光センサ11a全体を板状とすると、その厚さ方向は、Z方向によって表される。
 支持体13は、薄膜状であって、厚さ方向(Z方向)に見て長方形の形状を有する。支持体13は、複数の第1材料層21および複数の第2材料層22を含む熱電変換材料部12と、赤外線吸収膜23と、第1電極24と、第2電極25とを支持する。支持体13は、たとえばSiO/SiN/SiO膜から形成されている。すなわち、支持体13は、SiOとSiNとSiOとを積層させた構成である。
 ヒートシンク14全体の外縁である外縁14cと支持体13の外縁13cとは、Z方向に連なって延びている。ヒートシンク14は、光センサ11aの厚さ方向に離れて配置される一方の面14aと、他方の面14bとを含む。ヒートシンク14は、支持体13の他方の主面13a上に配置される。具体的には、ヒートシンク14は、ヒートシンク14の一方の面14aと支持体13の他方の主面13aとが当接するように配置される。ヒートシンク14の他方の面14bは、露出している。本実施形態においては、ヒートシンク14の形状は、矩形ループ状である。ヒートシンク14は、図3に示す断面において、2つの台形状の形状によって表れる。ヒートシンク14は、支持体13と比較して十分に厚い。たとえばヒートシンク14の厚さは、支持体13の厚さの10倍以上である。ヒートシンク14は、本実施形態においては、いわゆる基板である。ヒートシンク14は、たとえばSiから構成されている。
 光センサ11aには、厚さ方向に凹む凹部16が形成される。面14b側から見て凹部16に対応する領域において、支持体13、具体的には、支持体13の他方の主面13aが露出する。凹部16を取り囲むヒートシンク14の内周面14dは、面14b側に位置する開口側が広いいわゆるテーパ状である。凹部16は、たとえば平板状の基板を異方性ウェットエッチングすることにより形成される。このような凹部16を形成することにより、赤外線吸収膜23からヒートシンク14への熱の逃げを抑制できる。よって、後述する第1材料層21および第2材料層22の長手方向の温度差をより大きくすることができる。
 図1において、ヒートシンク14と支持体13との境界であるヒートシンク14の内縁16a,16b,16c,16dは、図1において破線で示される。図1に示すように、本実施形態においては、ヒートシンク14の内縁16a,16b,16c,16dは、支持体13の厚さ方向に見て、正方形の形状を有する。
 第1材料層21は、第1の導電型であるn型を有するSiGeから構成される。すなわち、第1材料層21は、n型熱電変換材料から構成されており、Si(シリコン)およびGeを構成元素とした化合物半導体から構成される。
 第1材料層21は、細長形状の形状を有する。第1材料層21は、第1の端部28cを含む第1領域28aと、長手方向において第1の端部28cの反対側に位置する第2の端部28dを含む第2領域28bと、を含む。第1領域28aと第2領域28bを結ぶ線の延びる方向が、細長形状の第1材料層21の長手方向となる。第1材料層21は、第1領域28aと第2領域28bとの間の温度差を電気エネルギーに変換する。第1材料層21は、支持体13の一方の主面13b上に配置される。第1材料層21は、支持体13の一方の主面13bと接触して配置される。第1材料層21は、支持体13の厚さ方向に見て、第1領域28aがヒートシンク14の内縁16a,16b,16c,16dに近い側に位置し、第2領域28bが赤外線吸収膜23の外縁23a,23b,23c,23dに近い側に位置するよう配置される。
 第2材料層22は、第1の導電型とは異なる導電型であるp型を有するSiGeから構成される。すなわち、第2材料層22は、p型熱電変換材料から構成されており、SiおよびGeを構成元素とした化合物半導体から構成される。
 第2材料層22は、細長形状の形状を有する。第2材料層22は、第3の端部29cを含む第3領域29aと、長手方向において第3の端部29cの反対側に位置する第4の端部29dを含む第4領域29bを含む。第3領域29aと第4領域29bを結ぶ線の延びる方向が、細長形状の第2材料層22の長手方向となる。第2材料層22は、第3領域29aと第4領域29bとの間の温度差を電気エネルギーに変換する。本実施形態においては、第2材料層22は、支持体13と接触して配置される後述する絶縁膜26の一部の上および第1材料層21の一部の上に配置される。第2材料層22は、支持体13の厚さ方向に見て、第3領域29aがヒートシンク14の内縁16a,16b,16c,16dに近い側に位置し、第4領域29bが赤外線吸収膜23の外縁23a,23b,23c,23dに近い側に位置するよう配置される。
 複数の第1材料層21および複数の第2材料層22は、支持体13上において、図1中の二点鎖線の長方形の形状で示す領域15内に収まるように配置される。熱電変換材料部12は、複数の第1材料層21および複数の第2材料層22により、温度差(熱エネルギー)を電気エネルギーに変換する。なお、熱電変換材料部12は、絶縁膜26を含む。絶縁膜26の材質としては、たとえばSiOが選択される。複数の第1材料層21および複数の第2材料層22の配置については、後に詳述する。
 赤外線吸収膜23は、支持体13の一方の主面13b上、第1材料層21の一部上、第2材料層22の一部上および絶縁膜26の一部上に配置される。赤外線吸収膜23は、第1材料層21の長手方向、すなわち、第1領域28aと第2領域28bとの間において温度差を形成するよう配置される。具体的には、赤外線吸収膜23は、第1材料層21の第1領域28aおよび第2材料層22の第3領域29aを露出し、第1材料層21の第2領域28bおよび第2材料層22の第4領域29bを覆うように配置される。本実施形態においては、赤外線吸収膜23は、第2材料層22の長手方向、すなわち、第3領域29aと第4領域29bとの間において温度差を形成するよう配置される。赤外線吸収膜23は、支持体13の厚さ方向に見て、ヒートシンク14の内縁16a,16b,16c,16dに取り囲まれた領域に配置される。本実施形態においては、支持体13の厚さ方向に見て、外縁23a,23b,23c,23dを有する赤外線吸収膜23は、正方形の形状を有する。赤外線吸収膜23は、支持体13の厚さ方向に見て、赤外線吸収膜23の外縁23a,23b,23c,23dによって形成される正方形の形状の中心と、ヒートシンク14の内縁16a,16b,16c,16dによって形成される正方形の形状の中心とが重なるよう配置される。赤外線吸収膜23は、赤外線を熱に変換する。赤外線吸収膜23の材質としては、たとえばカーボン(C)が選択される。
 次に、熱電変換材料部12および赤外線吸収膜23の配置について説明する。絶縁膜26は、具体的には、第1材料層21が配置されている部分においては第1材料層21上に配置され、第1材料層21が配置されていない部分においては支持体13の一方の主面13b上に配置される。絶縁膜26は、第1材料層21の第1領域28aおよび第2領域28bを覆わないように配置される。第2材料層22は、支持体13の一方の主面13bの一部の上、絶縁膜26の一部の上および第1材料層21の一部の上に配置される。第2材料層22は、第1材料層21の第1領域28aと第2材料層22の第3領域29aとが第3材料層31aを介して電気的に接続し、第1材料層21の第2領域28bと第2材料層22の第4領域29bとが第3材料層31bを介して電気的に接続するように配置される。本実施形態においては、第3領域29aは、第1領域28a上に配置され、第4領域29bは、第2領域28b上に配置される。
 赤外線吸収膜23は、支持体13の一方の主面13bの一部の上、絶縁膜26の一部の上および第2材料層22の一部の上に配置される。赤外線吸収膜23は、第1材料層21の第1領域28aおよび第2材料層22の第3領域29aを露出するように配置される。
赤外線吸収膜23は、第1材料層21の第2領域28bおよび第2材料層22の第4領域29bを覆うように配置される。すなわち、第2領域28bと第4領域29bとが接続される各接続部は、支持体13の厚さ方向に見て赤外線吸収膜23と重なっている。第1材料層21の第1領域28aおよび第2材料層22の第3領域29aは、赤外線吸収膜23によって覆われていない。すなわち、第1材料層21および第2材料層22はそれぞれ、第1材料層21および第2材料層22のそれぞれの長手方向に温度差を形成するよう赤外線吸収膜23と熱的に接続される。赤外線吸収膜23の熱が第1材料層21の第2領域28bおよび第2材料層22の第4領域29bに伝達されるように配置される。このようにして、第1材料層21および第2材料層22の長手方向に温度差が形成される。このようにすることにより、赤外線吸収膜23とヒートシンク14により形成される温度差を効率的に利用した光センサ11aを得ることができる。
 次に、複数の第1材料層21および複数の第2材料層22の配置について説明する。複数の第1材料層21は、それぞれ間隔をあけて配置される。第1材料層21a,21b,21c,21dを除き、複数の第1材料層21は、X方向またはY方向が長手方向となるように配置される。第1材料層21a,21b,21c,21dを除き、複数の第1材料層21は、正方形の形状の領域15の各辺側から向かい合う辺側に向けて延びるように(当該方向に長手方向が沿うように)配置される。第1電極24に接続される第1領域28aおよび第2電極25に接続される第3領域29aを除き、第1材料層21と第2材料層22とは交互に電気的に接続される。具体的には、第1材料層21の第1領域28aと第1材料層21の一方で隣り合う第2材料層22の第3領域29aとが第3材料層31aを介して電気的に接続される。第1材料層21の第2領域28bと第1材料層21の他方で隣り合う第2材料層22の第4領域29bとが第3材料層31bを介して電気的に接続される。複数の第1材料層21および複数の第2材料層22は、第1電極24および第2電極25に接続される第1領域28aおよび第3領域29aを除き、第2領域28b、第4領域29b同士および第1領域28a、第3領域29a同士が電気的に接続される。すなわち、第1材料層21と第2材料層22とは対となって、隣り合う第1材料層21および第2材料層22とが端部を含む領域で交互に直列で電気的に接続されている。
 光センサ11aに光が照射された時に発生する温度勾配の向きに対して、第1材料層21の一方に位置する第1の端部28cを含む第1領域28aに発生する電圧の極性と第2材料層22の一方に位置する第3の端部29cを含む第3領域29aに発生する電圧の極性とが逆となる。ここで、常に交互に複数の第1材料層21および複数の第2材料層22が接続されている。交互に直列に接続された第1材料層21および複数の第2材料層22のうち、先頭に配置される第1材料層21は、第1領域28aで第1電極24と電気的に接続される。交互に直列に接続された第1材料層21および第2材料層22のうち、最後尾に配置される第2材料層22は、第3領域29aで第2電極25と電気的に接続される。第1電極24および第2電極25は、支持体13の一方の主面13b上において、領域15外に配置される。第1電極24と第2電極25とは、離れて配置される。第1電極24および第2電極25はそれぞれ、たとえばパッド電極である。第1電極24および第2電極25の材質としては、たとえば金(Au)、チタン(Ti)、白金(Pt)等が採用される。
 ここで、熱電変換材料部12は、金属を含む第3材料層31aを含む。第3材料層31aは、第1領域28aと第3領域29aとの間において第1領域28aおよび第3領域29aと接触して配置される。本実施形態においては、第3材料層31aは、Z方向において、第1領域28aと第3領域29aとの間に配置される。また、熱電変換材料部12は、金属を含む第3材料層31bを含む。第3材料層31bは、第2領域28bと第4領域29bとの間において第2領域28bおよび第4領域29bと接触するように配置される。本実施形態においては、第3材料層31bは、Z方向において、第2領域28bと第4領域29bとの間に配置される。第3材料層31a,31bに含まれる金属は、本実施形態においては、Niである。また、第3材料層は31a,31b、Niを10at%以上含む酸化膜を含む。本実施形態においては、第3材料層31a,31bは、Niを10at%以上含む酸化膜を含む。
 第3材料層31aの厚さTは、3nm以上200nm以下である(図5参照)。
第3材料層31aの厚さTについては、厚さ方向であるZ方向において、第3材料層31aの一方の面32aと他方の面33aとの長さである厚さTで示される。第3材料層31aの一方の面32aは、厚さ方向において第2材料層22側に位置する第1材料層21の厚さ方向の一方の面34aと接触する。第3材料層31aの他方の面33aは、厚さ方向において第1材料層21側に位置する第2材料層22の厚さ方向の一方の面35aと接触する。なお、第3材料層31bの厚さも、第3材料層31aの厚さと同等であるため、その説明を省略する。
 次に、実施の形態1における光センサ11aの製造方法について、簡単に説明する。まず、平板状の基板を準備し、厚さ方向の一方の主面上に支持体13を形成する。この時、基板と支持体13の他方の主面13aは当接している。次に、支持体13の一方の主面13b上に第1材料層21を形成する。具体的な第1材料層21の形成については、以下の通りである。まず支持体13の一方の主面13b上にリフトオフ用レジストを層状に塗布する。次に、リフトオフ用レジストの上にポジ型レジストを層状に塗布する。その後、ポジ型レジストにフォトリソグラフィを施して露光し、現像液により溶解させる。次に、半導体材料を蒸着させてパターンを形成し、レジストを支持体13上から除去する(リフトオフ)。このようにして、上記した第1材料層21を形成する。
 第1材料層21を形成後、濃度が10質量%のバッファードフッ酸(BHF(Buffered Hydrogen Fluoride))溶液に1分間浸漬し、その後水洗処理を施す。水洗処理後には、第1材料層21上に厚さが10nm~20nm程度の自然酸化膜が形成される。次に、中間金属層であるNiのパターン形成を行った後にNiを成膜し、中間金属層を形成する。次に、SiOから構成される絶縁膜26を形成し、第2材料層22のパターンを形成した後、蒸着を行うことにより第2材料層22を形成する。第2材料層22の形成等、各層の形成については第1材料層21の形成と同様の手順であるため、それらの説明を省略する。
 第1材料層21と中間金属層と第2材料層22とを形成した後、550℃程度の加熱による活性化処理を行う。BHF浸漬後、水洗処理を施した第1材料層21上に形成された厚さが10nm~20nm程度の自然酸化膜内に中間金属層中の金属であるNiが拡散する。このようにして、Niを含む第3材料層31a,31bを形成する。すなわち、このようにして、第1領域28aと第3領域29aとの間において第1領域28aおよび第3領域29aと接触して配置される第3材料層31aと、第2領域28bと第4領域29bとの間において第2領域28bおよび第4領域29bと接触して配置される第3材料層31bとが形成される。
 その後、厚さ方向において支持体13とは反対側に位置する基板の他方の主面から基板の中央の領域に凹部16を形成する。この場合、基板の他方の主面から支持体13の他方の主面13aに至るまで凹む凹部16を形成する。このようにして、基板から構成されるヒートシンク14を形成し、上記光センサ11aを得る。ここで、中間金属層は、第1領域28aと第1電極24との間に設けられていてもよい。
 次に、光センサ11aの動作について説明する。光、たとえば赤外線が光センサ11aに照射されると、赤外線吸収膜23によって光エネルギーが熱エネルギーに変換される。この場合、赤外線吸収膜23は、ヒートシンク14の内縁16a,16b,16c,16dに取り囲まれた領域内に形成されており、赤外線吸収膜23が配置されている部分が高温側となる。一方、内縁16a,16b,16c,16dの外側においてはヒートシンク14が配置されているため、温度は上昇しない。ここで、一つの第1材料層21に着目すると、第1材料層21の第2領域28bが高温となり、第1材料層21の第1領域28aが低温となる。すなわち、一つの第1材料層21の長手方向において、両端部を含む領域間に温度差が形成される。この温度差により、電位差が形成される。第2材料層22の長手方向についても同様に細長形状の形状を有する。よって、両端部を含む領域間において温度差が形成される。この温度差により、電位差が形成される。複数の第1材料層21および複数の第2材料層22は交互に極性が逆になるよう直列で接続されているため、第1電極24および第2電極25によって出力される電位差が、複数の第1材料層21および複数の第2材料層22の温度差によって生じた電位差の合計となる。この第1電極24と第2電極25との間の電位差によって流れる電流を検知することにより、光センサ11aは光を、この場合、赤外線を検知する。
 ここで、上記光センサ11aは、上記構成の第3材料層31a,31bを含む。よって、光センサ11aにおける抵抗を低減することができる。したがって、光センサ11aのノイズの低減を図ることができる。
 図6は、図5に示す光センサ11aの断面の一部のEDXを示す図である。図6において、左側の領域36aは、元素Niの濃度を示し、右側の領域36bにおいては、元素O(酸素)の濃度を示している。図7は、図6におけるEDXにおいて計測された元素と距離との関係を示すグラフである。図7において、横軸は元素の濃度(at%)を示し、縦軸は距離(nm)を示す。距離は、Z方向における主面13bからの距離である。なお、計測については、以下のように行った。装置としては、JEM-2100F(日本電子株式会社製)を用い、加速電圧を200kVとした。そして、電子プローブ径を0.2nmとし、EDXマッピング条件として、画素数を256pixel×256pixelとし、Dwell timeを0.5ms/pixelとし、積算回数を15回とした。
 図6および図7を参照して、Siの濃度は、距離が長くなるにつれて濃度が減少し、150nmを境に急減している。一方、Geの濃度は、距離が長くなるにつれて濃度が増加し、150nmを境に急増している。ここで、Niの濃度は、120nmから180nmの距離において、10at%以上となっている。また、Oの濃度についても、120nmから180nmの距離において、増加し、ピークを迎えている。図6および図7を参照すると、第1材料層21の一方の面34a上に金属を含む第3材料層31aが配置されていることが把握できる。本実施形態における第3材料層31aの厚さTは、60nmである。
 第3材料層31a,31bを含まない光センサの第1材料層と第2材料層との接触抵抗と比較して、このような本開示の光センサ11aの第1材料層21と第2材料層22とが電気的に接続される部分における抵抗の減少率は99%となっている。また、第3材料層31a,31bを含まない光センサの抵抗と比較して、このような本開示の光センサ11aの抵抗の減少率は、38%となっている。さらに、第3材料層31a,31bを含まない光センサのジョンソンノイズと比較して、このような本開示の光センサ11aのジョンソンノイズの減少率は、22%となっている。
 図8は、第1材料層21と第2材料層22とが電気的に接続される部分における抵抗と第3材料層31a,31bの厚さとの関係を示すグラフである。図8において、横軸は第3材料層31a,31bの厚さ(nm)を示し、縦軸は第1材料層21と第2材料層22とが電気的に接続される部分における接触抵抗率(mΩcm)を示す。図9は、光センサの感度Dと第3材料層31a,31bの厚さとの関係を示すグラフである。図9において、横軸は第3材料層31a,31bの厚さ(nm)を示し、縦軸は感度D(cm・Hz0.5/W)を示す。
 図8および図9を参照して、第3材料層31a,31bの厚さTについては、3nm以上200nm以下とすることにより、第1材料層21と第2材料層22とが電気的に接続される部分の抵抗の低下を図りながら、熱電変換材料部12における起電力の低下を抑制することができる。第3材料層31a,31bの厚さTについては、20nm以上120nm以下とすることにより、酸化膜への金属の拡散を十分にすることができ、より上記抵抗を好適な値とすることができる。したがって、より感度を向上させることができる。第3材料層31a,31bの厚さTについては、40nm以上80nm以下とすることにより、さらに酸化膜への金属の拡散を十分にすることができ、さらに上記抵抗を好適な値とすることができる。したがって、さらに感度を向上させることができる。
 なお、上記の実施の形態においては、第3材料層31a,31bに含まれる金属をNiとすることとしたが、これに限らず、第3材料層31a,31bに含まれる金属を遷移金属とすることにしてもよい。また、SiGeは、ナノ結晶構造およびアモルファス構造のうちの少なくともいずれかを有してもよい。このような金属、第1材料層21および第2材料層22を構成するSiGeを用いることにより、より確実に光センサ11aのノイズの低減を図ることができる。なお、第1材料層21および第2材料層22の構成材料であるSiGeについては、たとえばアモルファス構造のSiGeを、たとえば500℃程度の温度で熱処理し、その一部でナノ結晶構造を作製してもよい。また、SiGeは、ナノ結晶構造またはアモルファス構造を有してもよい。ここで、ナノ結晶構造とはSiGeの中にナノサイズの結晶粒(ナノ結晶)を部分的に有する構造である。ナノ結晶の内部では、原子が規則的に整列している。また、SiGeは、多結晶体であってもよい。このような多結晶体であるSiGeについても、本開示の光センサにおいて、好適に利用される。なお、本開示の多結晶体の結晶化率については、99%以上である。なお、結晶化率の測定については、以下のように行った。装置として、HORIBA LabRam HR-PLを用いた。測定条件としては、レーザー波長を532nmとし、レーザーパワーを2.5mWとした。解析条件としては、400cm-1付近のピークを分析した。解析に際しては、ガウス関数と疑似フォークト関数をフィッティングした。ガウス関数G(x)については、以下の数3に示す式によって表される。
Figure JPOXMLDOC01-appb-M000003
 また、疑似フォークト関数F(x)については、以下の数4に示す式によって表される。
Figure JPOXMLDOC01-appb-M000004
 ガウス関数G(x):変数A、W、xにおいて、xの初期値を400cm-1とした。疑似フォークト関数F(x):変数A、W、x、mにおいて、xの初期値を380cm-1とし、gを0.5とした。各パラメータを最小二乗法で最適化し、疑似フォークト関数とガウス関数を積分し、面積を求めた。結晶化率については、ガウス関数を用いて導出された面積がアモルファスに対応し、疑似フォークト関数を用いて導出された面積が結晶に対応するとして、結晶化率=疑似フォークト関数を用いて導出された面積/(疑似フォークト関数を用いて導出された面積+ガウス関数を用いて導出された面積)、によって算出した。
 また、第3材料層31a,31bに含まれる金属の融点は、1455℃以上であってもよい。このような金属は、熱的に安定であり、光センサ11aに含まれる材質として好適である。
 図10は、第1材料層21と第2材料層22とが電気的に接続される部分における接触抵抗率と第3材料層に含まれる各種金属との関係を示すグラフである。図10において、横軸は各種金属を示し、縦軸は第1材料層21と第2材料層22とが電気的に接続される部分における接触抵抗率(mΩcm)を示す。
 図10を参照して、第3材料層を含まない場合においては、上記接触抵抗率は400(mΩcm)である。これに対し、金属をNiとした第3材料層を含む場合においては、上記接触抵抗率は0.6(mΩcm)である。金属をWとした第3材料層を含む場合においては、上記接触抵抗率は1.0(mΩcm)である。金属をMoとした第3材料層を含む場合においては、上記接触抵抗率は1.5(mΩcm)である。金属をTiとした第3材料層を含む場合においては、上記接触抵抗率は2.0(mΩcm)である。金属をAuとした第3材料層を含む場合においては、上記接触抵抗率は24(mΩcm)である。金属をPdとした第3材料層を含む場合においては、上記接触抵抗率は55(mΩcm)である。金属をGeとした第3材料層を含む場合においては、上記接触抵抗率は60(mΩcm)である。金属をHfとした第3材料層を含む場合においては、上記接触抵抗率は70(mΩcm)である。金属をAlとした第3材料層を含む場合においては、上記接触抵抗率は200(mΩcm)である。
 第3材料層31a,31bに含まれる金属として、Ni、W、Mo、Ti、Au、Pd、Ge、Hf、Al、およびそれらの組み合わせからなる合金のうちのいずれかを選択することが好適である。このような元素は、第1材料層21と第2材料層22とが電気的に接続される部分における抵抗をより確実に低下させることができる。したがって、より確実にノイズの低減を図ることができる。
 また、第3材料層31a,31bに含まれる金属として、Ni、W、Mo、Ti、およびそれらの組み合わせからなる合金のうちのいずれかを採用することにより、よりノイズの低減を図ることができる。
 (他の実施の形態)
 なお、上記の実施の形態においては、第1の導電型をn型として第1材料層にn型熱電変換材料を採用し、第1の導電型と異なる導電型をp型として第2材料層にp型熱電変換材料を採用することとしたが、これに限らず、第1の導電型をp型として第1材料層にp型熱電変換材料を採用し、第1の導電型と異なる導電型をn型として第2材料層にn型熱電変換材料を採用することにしてもよい。
 また、上記した水洗処理後に第1材料層21上に形成される酸化膜については、エネルギーフィルタリングの効果を考慮すると、0.1nmから10nm程度ある方が、ゼーベック係数が高くなる観点から好適である。
 なお、上記の実施の形態においては、ヒートシンクは矩形ループ状であることとしたが、これに限らない。たとえば、支持体の厚さ方向に見て格子状にヒートシンクが形成され、格子状のヒートシンクのいわゆる窓に相当する領域に、矩形状の複数の支持体がそれぞれ配置される構成としてもよい。具体的にはたとえば、肉の薄い部分である矩形状の支持体がそれぞれ間隔をあけて複数配置され、その支持体の間の領域においてヒートシンクが配置される構成を採用してもよい。このようにすることによっても、ノイズの低減を図ることができる。このような構成は、たとえば光センサが、アレイセンサとして用いられる場合に利用される。
 また、上記の実施の形態においては、第1領域上に第3領域が配置され、第2領域上に第4領域が配置されることとしたが、これに限らず、第1領域と第3領域および第2領域と第4領域とはそれぞれ、支持体の厚さ方向に見て隣り合って配置される構成としてもよい。すなわち、支持体の厚さ方向に見て、隣り合って配置される第1領域と第3領域との間において、第1領域および第3領域のそれぞれと接触するように第3材料層が配置され、隣り合って配置される第2領域と第4領域との間において、第2領域および第4領域のそれぞれと接触するように第3材料層が配置される構成を採用してもよい。このようにすることによっても、ノイズの低減を図ることができる。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本開示の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
11a 光センサ、12 熱電変換材料部、13 支持体
13a,13b 主面
13c,14c,23a,23b,23c,23d 外縁
14 ヒートシンク
14a,14b,32a,33a,34a,35a 面
14d 内周面
15,36a,36b 領域
16 凹部
16a,16b,16c,16d 内縁
21,21a,21b,21c,21d 第1材料層
22,22a,22b,22c,22d 第2材料層
23 赤外線吸収膜(光吸収膜)、24 第1電極、25 第2電極、26 絶縁膜、28a 第1領域、28b 第2領域、28c 第1の端部、28d 第2の端部、29a 第3領域、29b 第4領域、29c 第3の端部、29d 第4の端部
31a,31b 第3材料層
 厚さ、D 感度
X,Y,Z 方向

Claims (9)

  1.  光センサであって、
     支持体と、
     第1の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状の複数の第1材料層と、第1の導電型と異なる第2の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換するように構成された細長形状の複数の第2材料層と、金属を含む第3材料層と、を含み、前記支持体の一方の主面上に配置される熱電変換材料部と、
     前記支持体の他方の主面上に配置されるヒートシンクと、
     前記支持体の厚さ方向に見て、前記第1材料層の長手方向に温度差を形成するように配置され、受けた光を熱エネルギーに変換するように構成された光吸収膜と、
     第1電極と、前記第1電極と隔離して配置される第2電極と、を備え、
     それぞれの前記第1材料層は、
     前記支持体の一方の主面と接触して配置され、
     第1の端部を含む第1領域と、長手方向において第1の端部の反対側に位置する第2の端部を含む第2領域と、を含み、
     それぞれの前記第2材料層は、
     第3の端部を含む第3領域と、長手方向において第3の端部の反対側に位置する第4の端部を含む第4領域と、を含み、
     前記第1領域と前記第3領域とが電気的に接続され、前記第2領域と前記第4領域とが電気的に接続されることで、前記複数の第1材料層と前記複数の第2材料層は交互に直列に接続され、
     前記第3材料層は、前記第1領域と前記第3領域との間において前記第1領域および前記第3領域と接触して配置され、前記第2領域と前記第4領域との間において前記第2領域および前記第4領域と接触して配置され、
     直列に接続される先頭の前記第1材料層に設けられる前記第1領域は前記第1電極と電気的に接続され、直列に接続される最後尾の前記第2材料層に設けられる前記第3領域は前記第2電極と電気的に接続される、光センサ。
  2.  前記金属は、遷移金属であり、
     前記SiGeは、ナノ結晶構造およびアモルファス構造のうちの少なくともいずれかを有する、請求項1に記載の光センサ。
  3.  前記SiGeは、多結晶体である、請求項1に記載の光センサ。
  4.  前記金属の融点は、1455℃以上である、請求項1から請求項3のいずれか1項に記載の光センサ。
  5.  前記金属は、Ni、W、Mo、Ti、Au、Pd、Ge、Hf、Al、およびそれらの組み合わせからなる合金のうちのいずれかである、請求項1に記載の光センサ。
  6.  前記金属は、Ni、W、Mo、Ti、およびそれらの組み合わせからなる合金のうちのいずれかである、請求項5に記載の光センサ。
  7.  前記第3材料層は、前記金属を10at%以上含む酸化膜を含む、請求項1から請求項6のいずれか1項に記載の光センサ。
  8.  前記第3材料層の厚さは、3nm以上200nm以下である、請求項1から請求項7のいずれか1項に記載の光センサ。
  9.  前記第1の導電型はn型であり、前記第2の導電型はp型である、請求項1から請求項8のいずれか1項に記載の光センサ。
PCT/JP2021/042037 2021-03-18 2021-11-16 光センサ WO2022195957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/279,599 US20240147860A1 (en) 2021-03-18 2021-11-16 Optical sensor
JP2023506734A JPWO2022195957A1 (ja) 2021-03-18 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044964 2021-03-18
JP2021044964 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022195957A1 true WO2022195957A1 (ja) 2022-09-22

Family

ID=83319953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042037 WO2022195957A1 (ja) 2021-03-18 2021-11-16 光センサ

Country Status (3)

Country Link
US (1) US20240147860A1 (ja)
JP (1) JPWO2022195957A1 (ja)
WO (1) WO2022195957A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884679B2 (ja) * 1990-03-27 1999-04-19 日本電気株式会社 サーモパイル型赤外線センサ
US20080271772A1 (en) * 2007-03-29 2008-11-06 Stichting Imec Nederland Method for Manufacturing a Thermopile on a Membrane and a Membrane-less Thermopile, the Thermopile thus Obtained and a Thermoelectric Generator Comprising Such Thermopiles
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
US20110155202A1 (en) * 2008-09-18 2011-06-30 University Of Florida Research Foundation, Inc. Miniature Thermoelectric Power Generator
JP2018537848A (ja) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ 熱電発電器
WO2021002221A1 (ja) * 2019-07-03 2021-01-07 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884679B2 (ja) * 1990-03-27 1999-04-19 日本電気株式会社 サーモパイル型赤外線センサ
US20080271772A1 (en) * 2007-03-29 2008-11-06 Stichting Imec Nederland Method for Manufacturing a Thermopile on a Membrane and a Membrane-less Thermopile, the Thermopile thus Obtained and a Thermoelectric Generator Comprising Such Thermopiles
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
US20110155202A1 (en) * 2008-09-18 2011-06-30 University Of Florida Research Foundation, Inc. Miniature Thermoelectric Power Generator
JP2018537848A (ja) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ 熱電発電器
WO2021002221A1 (ja) * 2019-07-03 2021-01-07 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ

Also Published As

Publication number Publication date
US20240147860A1 (en) 2024-05-02
JPWO2022195957A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US11462670B2 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
JP7225203B2 (ja) 熱電材料素子、発電装置および光センサ
US11898903B2 (en) Optical sensor
JPH08152356A (ja) 赤外線センサ
JP2010109073A (ja) 赤外線検知素子及びセンサ並びに赤外線検知素子の製造方法
US20220310868A1 (en) Optical device
KR101020475B1 (ko) 태양 전지 - 열전 소자 통합 모듈 및 이의 제조방법
US11758813B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, optical sensor, and method for manufacturing thermoelectric conversion material
WO2022195957A1 (ja) 光センサ
US20140109965A1 (en) Photoelectric conversion element
WO2023013148A1 (ja) 光センサ
KR102228652B1 (ko) 광다이오드형 무전원 가스센서 및 이의 제조방법
JP7446317B2 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
US20240130238A1 (en) Optical sensor
US20240125651A1 (en) Optical sensor
US20230255114A1 (en) Optical sensor
US11139422B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and optical sensor
JP2022106476A (ja) 光学センサデバイス、及び光学センサデバイスの製造方法
US12002894B2 (en) Photosensor
WO2024048471A1 (ja) 熱電変換素子
KR20220028463A (ko) 실리콘 나노와이어를 이용한 적외선 센서 및 그 제조방법
US20220310897A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor
US20220285602A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor
JP2002531820A (ja) 酸化亜鉛ボロメーター要素を有するボロメーター
US20230180489A1 (en) Photo detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18279599

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931700

Country of ref document: EP

Kind code of ref document: A1