WO2022195920A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2022195920A1
WO2022195920A1 PCT/JP2021/031875 JP2021031875W WO2022195920A1 WO 2022195920 A1 WO2022195920 A1 WO 2022195920A1 JP 2021031875 W JP2021031875 W JP 2021031875W WO 2022195920 A1 WO2022195920 A1 WO 2022195920A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
hole
flow path
housing
coolant
Prior art date
Application number
PCT/JP2021/031875
Other languages
English (en)
French (fr)
Inventor
英明 後藤
隆樹 板谷
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023506716A priority Critical patent/JPWO2022195920A1/ja
Publication of WO2022195920A1 publication Critical patent/WO2022195920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to rotating electric machines.
  • a stator core is known that can achieve high cooling performance in a small space while suppressing performance deterioration of rotating electric machines (see Patent Document 1, for example).
  • An object of the present invention is to provide a rotating electric machine capable of reducing noise from the housing caused by electromagnetic excitation forces generated in the teeth.
  • a rotating electric machine of the present invention includes a stator and a housing that houses the stator, the stator includes teeth around which coils are wound, stator cores that hold the teeth, a fixing portion formed radially outside the stator core and fixed to the housing; and a through hole formed along the axial direction and provided at a position where the fixing portion and the teeth overlap when viewed in the radial direction. , provided.
  • FIG. 1 is a perspective view of a motor according to an embodiment of the invention
  • FIG. 1 is a cross-sectional view of a motor according to an embodiment of the invention
  • FIG. FIG. 3 is a perspective view of the stator shown in FIG. 2
  • FIG. 3 is an explanatory view (radial cross section) of the action of the through hole shown in FIG. 2
  • 3 is an explanatory diagram (axial cross section) of the function of the through hole shown in FIG. 2
  • FIG. FIG. 10 is a cross-sectional view showing Modification 1 of the through hole
  • 5B illustrates the effect of the through holes shown in FIG. 5A
  • FIG. It is a sectional view showing modification 2 of a penetration hole. 6B illustrates the effect of the through holes shown in FIG. 6A
  • FIG. 6B illustrates the effect of the through holes shown in FIG. 6A
  • FIG. 6B illustrates the effect of the through holes shown in FIG. 6A
  • FIG. 6B illustrates the effect of the through holes shown in FIG.
  • FIG. 4 is a partial cross-sectional view of the periphery of a coolant inlet having one opening;
  • FIG. 4 is a partial cross-sectional view of the periphery of a coolant inlet having two openings;
  • FIG. 3 is a cross-sectional view showing coolant flow paths provided inside the shaft and the rotor;
  • the motor 100 mainly consists of a stator 10, a rotor 20 and a housing 30. As shown in FIG. A shaft 27 is attached to the rotor 20 .
  • the motor 100 includes a stator 10 having a coil 14 and a core portion (stator core 11), a housing 30 containing the stator 10, and a rotating shaft (shaft 27) connected to the housing 30. a bearing 31;
  • the stator 10 includes a through hole 15 extending along the rotation axis (shaft 27), and a fixing portion 12 that fixes the core portion (stator core 11) to the housing 30 and is formed radially outward.
  • the stator 10 has teeth (teeth 13) formed radially inward.
  • the through-hole 15 is formed at a position overlapping the fixed portion 12 and the tooth portion (teeth 13) when viewed from the radial direction.
  • the fixing portion 12 is formed as an ear portion radially protruding from the outer surface of the core portion (the stator core 11).
  • the axial through-hole (through-hole 15) is formed so as to overlap the entire ear portion when viewed from the radial direction.
  • the low-rigidity region of the stator core provided with the through holes can increase the damping ratio on the path through which the electromagnetic excitation force generated in the stator is transmitted to the housing. It is possible to reduce the noise generated from
  • axial through-holes are provided on the inner diameter side of the fixing portion 12 (ear portion), which is the core back portion of the stator core 11 . Due to the difference in hole shape (rigidity), specific frequency components can be reduced as shown below.
  • the stator 10 is fixed to the housing 30 via the fixing portion 12 .
  • the coil 14 When the coil 14 is energized, an electromagnetic excitation force is generated in the teeth (teeth 13).
  • a through hole 15 is provided on the transmission path through which the electromagnetic excitation force is transmitted to the housing 30 .
  • the through holes 15 reduce the stiffness of the transmission path and increase the damping ratio so that the equivalent radiated power level at the surface of the housing 30 can be reduced.
  • k spring constant
  • m mass
  • SQRT denotes a function that returns the square root of its argument.
  • the electromagnetic excitation force generated in the teeth (teeth 13) of the stator 10 is transmitted from the stator core 11 to the housing 30 via bolts, fixing surfaces, etc., and radiated from the surface of the housing 30 as noise.
  • the axial through-hole 15 is provided in the core-back portion in the middle of the transmission path from the teeth 13 to the housing 30 to provide a low-rigidity region on the transmission path, thereby increasing the damping ratio. .
  • noise generated on the surface of the housing 30 can be reduced.
  • the cooling performance is improved by providing axial through holes (through holes 15) along the entire periphery of the core-back outer peripheral portion. Further, by providing the through holes 15 around the entire periphery, the overall radiation power level is further reduced.
  • the motor 100 (rotating electrical machine) includes at least a stator 10 and a housing 30 that accommodates the stator 10 .
  • the stator 10 includes teeth 13 , stator cores 11 , fixed portions 12 and through holes 15 .
  • Coils 14 are wound around the teeth 13 .
  • Stator core 11 holds teeth 13 .
  • the fixed portion 12 is formed radially outside the stator core 11 and fixed to the housing 30 with a fixing member such as a bolt.
  • the through-holes 15 are formed along the axial direction and provided at positions overlapping the fixed portion 12 and the teeth 13 when viewed in the radial direction. Accordingly, noise from the housing 30 caused by the electromagnetic excitation force generated in the teeth 13 can be reduced.
  • a plurality of through holes 15 shown in FIG. 3 are provided along the entire circumference of the stator core 11 . Although it is not essential to flow an insulating coolant such as oil through the through holes 15, when the coolant is caused to flow through the through holes 15 provided along the entire circumference, the stator 10 can be uniformly cooled in the circumferential direction. .
  • FIG. 5A (Modification 1 of through-hole)
  • one through-hole 15 is provided for each fixed portion 12 and covers the radially outer side of a plurality of teeth 13 adjacent to the fixed portion 12 .
  • the through hole 15 has a rectangular cross section in the axial direction and extends over the plurality of teeth 13 .
  • FIG. 5B the equivalent radiation power level on the low frequency side can be reduced.
  • Modification 2 of through hole In the example of FIG. 6A , a plurality of through holes 15 are provided for each fixing portion 12 .
  • the plurality of through holes 15 cover the radially outer sides of the plurality of teeth 13 adjacent to the fixing portion 12 . Thereby, as shown in FIG. 6B, the equivalent radiation power level on the high frequency side can be reduced.
  • the housing 30 has a groove forming portion 34 forming a tubular circumferential groove 34A through which the coolant flows.
  • the groove forming portion 34 is formed toward the coil end face (the end face 11A in FIG. 2) of the stator 10 and connected to the coil end face to form the axial through hole (the through hole 15) and the circumferential groove 34A. connect.
  • the circumferential groove 34A is provided as a groove that opens toward the stator 10 in the stator fixing portion (groove forming portion 34) of the housing 30.
  • the axial through hole (through hole 15) is provided in the stator core 11 as a hole penetrating in the axial direction.
  • the circumferential groove 34A is formed in the groove forming portion 34 in a cylindrical shape with an opening on the stator 10 side so as to communicate with all the axial through holes (through holes 15).
  • the housing 30 is connected to the through hole 15 of the stator 10 and has a cylindrical groove (circumferential groove 34A) through which the coolant flows. Thereby, the stator 10 can be cooled.
  • the housing 30 includes a coolant inlet 35 having two or more openings 35A that supply coolant to the groove (circumferential groove 34A).
  • the flow velocity in the circumferential groove 34A becomes constant, and the flow rate to the axial through hole (through hole 15) is increased. Since the inflow amount of the coolant becomes uniform, the temperature gradient within the stator 10 is alleviated.
  • the coolant inlet 35 has a function of communicating the circumferential groove 34A provided in the housing 30 with a coolant cooling device (not shown) that cools the coolant.
  • the coolant inlet 35 shown in FIG. 9B has two or more openings 35A (communicating portions) to the circumferential groove 34A, and has one communicating path with the coolant cooling device.
  • the motor 100 includes a shaft 27 having a first flow path (flow path 29) through which coolant flows, and a rotor 20 having a second flow path (flow path 22).
  • the second flow path (flow path 22) of the rotor 20 is connected to the first flow path (flow path 29) of the shaft 27, and supplies coolant to the coil 14 on the groove (circumferential groove 34A) side.
  • the motor 100 includes a first end ring (end ring 23) and a second end ring (end ring 24).
  • the first end ring (end ring 23) is provided on one end face of the rotor 20 and connects the first flow path (flow path 29) of the shaft 27 and the second flow path (flow path 22) of the rotor 20. It has a third channel (channel 25).
  • the second end ring (end ring 24) is provided on the other end surface of the rotor 20 and directs the coolant from the second flow path (flow path 22) of the rotor 20 to the coil 14 on the side of the groove (circumferential groove 34A). It has a fourth flow path (flow path 26) for guiding.
  • the refrigerant cannot be supplied to the coil end on the side of the circumferential groove 34A. Therefore, when the coolant is supplied to the rotor 20, by adopting a structure in which the coolant is supplied from the anti-circumferential groove side to the circumferential groove side, the coolant that has cooled the rotor 20 is discharged to the circumferential groove side. Thus, the coolant discharged from the rotor 20 is used to cool the coil ends on the circumferential groove side. The temperature gradient can be reduced by cooling both coil ends with a coolant.
  • the noise from the housing 30 caused by the electromagnetic excitation force generated in the teeth 13 can be reduced. Also, the cooling performance of the motor 100 can be improved.
  • the configuration of the above embodiment can be applied to various motors such as PM (Permanent Magnet) motors and induction motors.
  • PM Permanent Magnet
  • the embodiment of the present invention may be the following aspects.
  • a stator 10 having a coil 14 and a core portion (stator core 11), a housing 30 that houses the stator 10, and a bearing 31 that is connected to the housing 30 and supports a rotating shaft (shaft 27).
  • Reference numeral 10 denotes a through hole 15 extending along the rotation axis (shaft 27), a fixing portion 12 that fixes the core portion (stator core 11) to the housing 30 and is formed radially outward, and a tooth portion (teeth 13) formed inside the through hole 15 is formed at a position overlapping the fixing portion 12 and the tooth portion (teeth 13) when viewed from the radial direction. rotating electric machine.
  • the housing 30 has a groove forming portion 34 forming a (cylindrical) circumferential groove 34A through which a coolant flows.
  • the axial through-hole (through-hole 15) and the circumferential groove 34A are connected by connecting to the coil end end face.
  • a coolant inlet 35 for supplying coolant to a circumferential groove 34A provided in a stator fixing surface 33 of the housing 30 is provided in the housing 30. As shown in FIG. Two or more openings 35A may be provided for the circumferential grooves 34A of the coolant inlet 35 .
  • the coolant supplied to the circumferential groove 34A passes through the axial through-hole (through-hole 15) and is supplied to the coil end portion on the side opposite to the fixed surface.
  • the coolant supplied to flow path 29 provided in shaft 27 is supplied to flow path 22 in rotor core 21 through flow path 25 provided in the rotor end ring (end ring 23).
  • the coolant discharged from the rotor 20 is supplied to the coil ends on the circumferential groove 34A side.
  • (1)-(4) make it difficult for the electromagnetic excitation force generated in the stator to be transmitted to the housing, thereby reducing the equivalent radiation power level on the surface of the housing and improving noise.
  • any frequency component can be reduced, and the tone can be adjusted by reducing the maximum NV value or reducing a specific frequency component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

モータ(100)(回転電機)は、ステータ(10)と、ステータ(10)を収納するハウジング(30)と、を備える。ステータ(10)は、ティース、ステータコア(11)、固定部(12)、貫通孔(15)を備える。ティースには、コイル(14)が巻回される。ステータコア(11)は、ティースを保持する。固定部(12)は、ステータコア(11)の径方向の外側に形成され、ハウジング(30)に固定される。貫通孔(15)は、軸方向に沿って形成され、径方向から見て固定部(12)とティースとに重なる位置に設けられる。

Description

回転電機
 本発明は、回転電機に関する。
 近年、モータの高速化による小型化が図られているが、高速化に伴いモータ電磁加振力の周波数も高くなるため、NV(Noise and Vibration)の低減が重要となっている。また、モータの高速化によるモータ損失の増加により冷却性能の向上が求められる。
 回転電機の性能低下を抑えながら省スペースで高い冷却性能を得ることのできるステータコアが知られている(例えば、特許文献1参照)。
特開2020-114085号公報
 ここで、電磁加振力の発生源であるティース部から音の発信源となるハウジング表面までの伝達経路の減衰比を大きくすることがNV低減に効果的である。
 しかし、特許文献1に開示されるような技術では、音の伝達経路の減衰比を大きくすることができず、ハウジングからの騒音を低減することができない。
 本発明の目的は、ティースに生じる電磁加振力に起因するハウジングからの騒音を低減することができる回転電機を提供することにある。
 上記目的を達成するために、本発明の回転電機は、ステータと、前記ステータを収納するハウジングと、を備え、前記ステータは、コイルが巻回されるティースと、前記ティースを保持するステータコアと、前記ステータコアの径方向の外側に形成され、前記ハウジングに固定される固定部と、軸方向に沿って形成され、径方向から見て前記固定部と前記ティースとに重なる位置に設けられる貫通孔と、を備える。
 本発明によれば、ティースに生じる電磁加振力に起因するハウジングからの騒音を低減することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態によるモータの斜視図である。 本発明の実施形態によるモータの断面図である。 図2に示すステータの斜視図である。 図2に示す貫通孔の作用の説明図(径方向断面)である。 図2に示す貫通孔の作用の説明図(軸方向断面)である。 貫通孔の変形例1を示す断面図である。 図5Aに示す貫通孔の効果を示す図である。 貫通孔の変形例2を示す断面図である。 図6Aに示す貫通孔の効果を示す図である。 貫通孔のその他の変形例を示す図である。 周方向溝を示す斜視図である。 開口部を1つ有する冷媒流入口の周辺の部分断面図である。 開口部を2つ有する冷媒流入口の周辺の部分断面図である。 シャフトとロータの内部に設けられる冷媒の流路を示す断面図である。
 以下、図面を用いて、本発明の実施形態によるモータ(回転電機)の構成について説明する。なお、各図において、同一符号は同一部分を示す。
 (モータの構成)
 図1に示すように、モータ100は、主として、ステータ10、ロータ20、ハウジング30から構成される。ロータ20には、シャフト27が取り付けられている。
 図2に示すように、モータ100は、コイル14とコア部(ステータコア11)を有するステータ10と、ステータ10を収納するハウジング30と、ハウジング30に接続されかつ回転軸(シャフト27)を支持するベアリング31と、を備える。ステータ10は、回転軸(シャフト27)に沿う方向の貫通孔15と、コア部(ステータコア11)をハウジング30に固定しかつ径方向の外側に形成される固定部12と、を備える。図3に示すように、ステータ10は、径方向の内側に形成されるティース部(ティース13)を備える。貫通孔15は、径方向から見た場合、固定部12とティース部(ティース13)に重なる位置に形成される。
 換言すれば、固定部12は、コア部(ステータコア11)の外面から径方向に突出する耳部として形成される。軸方向貫通孔(貫通孔15)は、径方向から見た場合、耳部の全体と重なるように形成される。
 図4A、4Bに示すように、貫通孔が設けられたステータコアの低剛性領域により、ステータに生じる電磁加振力がハウジングに伝達する経路上の減衰比を大きくすることができるため、ハウジングの表面から生じる騒音を低減することが出来る。
 ステータ10に生じる電磁加振力の伝達経路および減衰メカニズムについて詳細に説明する。本実施形態では、ステータコア11のコアバック部であって、固定部12(耳部)の内径側に軸方向貫通孔(貫通孔15)を設けている。穴形状(剛性)の違いにより、以下に示すように、特定の周波数成分を低減することができる。
 本実施形態では、ステータ10は固定部12を介してハウジング30に固定される。ティース部(ティース13)にはコイル14に通電することにより電磁加振力が生じる。電磁加振力がハウジング30に伝達する伝達経路上に貫通孔15を設ける。貫通孔15により伝達経路の剛性が低下し、減衰比が大きくなるため、ハウジング30の表面での等価放射パワーレベルを低減できる。また、貫通孔15の形状により伝達経路の剛性を調整することで伝達経路のばね定数が変化(周波数=SQRT(k/m))し、任意の周波数を低減できる。ここで、k=ばね定数、m=質量、SQRTは、引数の平方根を返す関数を示す。
 前述の通り、ステータ10のティース部(ティース13)に生じた電磁加振力はステータコア11からボルト及び固定面等を介してハウジング30に伝達し、ハウジング30の表面から騒音として放射される。上記伝達経路において、ティース13からハウジング30への伝達経路の途中であるコアバック部に軸方向の貫通孔15を設けることにより、伝達経路上に低剛性領域を設けることで、減衰比を大きくできる。伝達経路の減衰比が大きくなることで、ハウジング30の表面に生じる騒音が低減できる。
 なお、軸方向貫通孔(貫通孔15)をコアバック外周部の全周に設けることで冷却性能が向上する。また、全周に貫通孔15を設けることで全体の放射パワーレベルがさらに低減する。
 上記の特徴は次のようにまとめることもできる。
 図2、3に示すように、モータ100(回転電機)は、少なくとも、ステータ10と、ステータ10を収納するハウジング30と、を備える。ステータ10は、ティース13、ステータコア11、固定部12、貫通孔15を備える。ティース13には、コイル14が巻回される。ステータコア11は、ティース13を保持する。固定部12は、ステータコア11の径方向の外側に形成され、ハウジング30にボルト等の固定部材で固定される。貫通孔15は、軸方向に沿って形成され、径方向から見て固定部12とティース13とに重なる位置に設けられる。これにより、ティース13に生じる電磁加振力に起因するハウジング30からの騒音を低減することができる。
 図3に示す貫通孔15は、ステータコア11の全周にわたって複数設けられる。貫通孔15に油等の絶縁性の冷媒を流すことは必須ではないが、全周にわたって設けられた貫通孔15に冷媒を流す場合には、ステータ10を周方向に均一に冷却することができる。
 (貫通孔の変形例1)
 図5Aの例では、貫通孔15は、固定部12ごとに1つ設けられ、固定部12に隣接する複数のティース13の径方向の外側を覆う。換言すれば、貫通孔15の軸方向の断面は、長方形状であり、複数のティース13にまたがる。これにより、図5Bに示すように、低周波数側の等価放射パワーレベルを低減することができる。
 (貫通孔の変形例2)
 図6Aの例では、貫通孔15は、固定部12ごとに複数設けられる。複数の貫通孔15は、固定部12に隣接する複数のティース13の径方向の外側を覆う。これにより、図6Bに示すように、高周波数側の等価放射パワーレベルを低減することができる。
 (貫通孔のその他の変形例)
 図7に示すように、ステータコア11に設ける軸方向貫通孔(貫通孔15)の形状を変更することで剛性を調整し、振動伝達経路のばね定数を変化(周波数=SQRT(k/m))させることで任意の周波数を低減できる。ここで、k=ばね定数、m=質量、SQRTは、引数の平方根を返す関数を示す。
 (周方向溝)
 モータの高速化によるモータ損失の増加により従来のウォータジャケット方式による冷却では冷却性能が不足してしまう問題がある。ここで、冷媒として絶縁性のあるATF(Automatic Transmission Fluid)等の油を用い、ステータコアを直接冷却することが効果的である。
 図8に示すように、ハウジング30は、冷媒が流れる筒状の周方向溝34Aを形成する溝形成部34を有する。溝形成部34は、ステータ10のコイルエンド端面(図2の端面11A)に向かって形成されかつ当該コイルエンド端面に接続することにより軸方向貫通孔(貫通孔15)と周方向溝34Aとを繋げる。
 換言すれば、周方向溝34Aはハウジング30のステータ固定部(溝形成部34)にステータ10に向かって開口する溝として設けられる。軸方向貫通孔(貫通孔15)は軸方向に貫通する孔としてステータコア11に設けられる。ステータ10をハウジング30の固定面(ステータ固定面33)に固定することで周方向溝34Aと軸方向貫通孔(貫通孔15)がステータコア端面で接続される。周方向溝34Aに冷媒を供給することにより軸方向貫通孔(貫通孔15)へ冷媒が供給され、ステータ10を直接冷却することができる。
 なお、周方向溝34Aは、すべての軸方向貫通孔(貫通孔15)に連通するように、ステータ10側を開口とした筒上の形状で溝形成部34に形成される。図8に示すハウジング30は、図9Aに示すように、溝(周方向溝34A)に冷媒を供給する1つの開口部35Aを有する冷媒流入口35を備える。
 上記の特徴は次のようにまとめることもできる。ハウジング30は、ステータ10の貫通孔15に接続され、冷媒が流れる筒状の溝(周方向溝34A)を備える。これにより、ステータ10を冷却することができる。
 (冷媒流入口の変形例)
 図9Bの例では、ハウジング30は、溝(周方向溝34A)に冷媒を供給する2つ以上の開口部35Aを有する冷媒流入口35を備える。
 周方向溝34Aに冷媒を供給する冷媒流入口35の周方向溝34Aに対する開口部35Aを増やすことにより、周方向溝34A内での流速が一定となり、軸方向貫通孔(貫通孔15)への冷媒の流入量が一様となるため、ステータ10内での温度勾配が緩和される。
 なお、冷媒流入口35は、ハウジング30内に設けられ周方向溝34Aと、冷媒を冷却する冷媒冷却装置(不図示)とを連通する機能を有する。図9Bに示す冷媒流入口35は、周方向溝34Aへの開口部35A(連通部)を2箇所以上有し、冷媒冷却装置との連通路は1箇所である。
 (シャフトとロータ)
 図10の例では、モータ100は、冷媒が流れる第1流路(流路29)を有するシャフト27と、第2流路(流路22)を有するロータ20と、を備える。ロータ20の第2流路(流路22)は、シャフト27の第1流路(流路29)に接続され、溝(周方向溝34A)の側のコイル14に冷媒を供給する。
 詳細には、モータ100は、第1エンドリング(エンドリング23)と、第2エンドリング(エンドリング24)を備える。第1エンドリング(エンドリング23)は、ロータ20の一方の端面に設けられ、シャフト27の第1流路(流路29)とロータ20の第2流路(流路22)とを接続する第3流路(流路25)を有する。第2エンドリング(エンドリング24)は、ロータ20の他方の端面に設けられ、ロータ20の第2流路(流路22)からの冷媒を溝(周方向溝34A)の側のコイル14に導く第4流路(流路26)を有する。
 図2に示す構造では、周方向溝34Aと軸方向貫通孔(貫通孔15)は連通するように固定されるため、周方向溝34A側のコイルエンドへ冷媒を供給することが出来ない。そこで、ロータ20へ冷媒を供給する際に、反周方向溝側から周方向溝側へ冷媒を供給するような構造とすることで、ロータ20を冷却した冷媒が周方向溝側へ排出されるようにし、ロータ20より排出された冷媒を用いて周方向溝側のコイルエンドを冷却する。両コイルエンドを冷媒により冷却することで温度勾配を低減することができる。
 以上説明したように、本実施形態によれば、ティース13に生じる電磁加振力に起因するハウジング30からの騒音を低減することができる。また、モータ100の冷却性能を向上することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 上記実施形態の構成は、PM(Permanent Magnet)モータ、誘導モータ等の種々のモータに適用することができる。なお、本発明の実施形態は、以下の態様であってもよい。
 (1).コイル14とコア部(ステータコア11)を有するステータ10と、前記ステータ10を収納するハウジング30と、前記ハウジング30に接続されかつ回転軸(シャフト27)を支持するベアリング31と、を備え、前記ステータ10は、前記回転軸(シャフト27)に沿う方向の貫通孔15と、当該コア部(ステータコア11)を前記ハウジング30に固定しかつ径方向の外側に形成される固定部12と、当該径方向の内側に形成されるティース部(ティース13)と、を備え、前記貫通孔15は、前記径方向から見た場合、前記固定部12と前記ティース部(ティース13)に重なる位置に形成される回転電機。
 (2).前記ハウジング30は、冷媒が流れる(筒状の)周方向溝34Aを形成する溝形成部34を有し、前記溝形成部34は、前記ステータ10のコイルエンド端面(端面11A)に向かって形成されかつ当該コイルエンド端面に接続することにより前記軸方向貫通孔(貫通孔15)と前記周方向溝34Aとを繋げる。
 (3).ハウジング30のステータ固定面33に設けられた周方向溝34Aに冷媒を供給する冷媒流入口35をハウジング30内に設ける。前記冷媒流入口35の周方向溝34Aに対する開口部35Aを2つ以上設けてもよい。
 (4).周方向溝34Aに供給された冷媒は軸方向貫通孔(貫通孔15)を通過し反固定面側のコイルエンド部へ供給される。シャフト27に設けられた流路29へ供給された冷媒はロータエンドリング(エンドリング23)に設けられた流路25を介してロータコア21内の流路22へ供給される。ロータ20から排出された冷媒が周方向溝34A側のコイルエンドへ供給される。
 (1)-(4)により、ステータに生じる電磁加振力をハウジングへ伝わりにくくすることにより、ハウジング表面における等価放射パワーレベルが低減され騒音が改善される。固定部12(耳部)の内径側に設けた孔の形状を変更することにより、任意の周波数成分を低減することで、NV最大値の低減または特定周波数成分の低減による音色の調整ができる。
10…ステータ
11…ステータコア
11A…端面
12…固定部
13…ティース
14…コイル
15…貫通孔
20…ロータ
21…ロータコア
23、24…エンドリング
22、25、26、29…流路
27…シャフト
28…ギア
30…ハウジング
31…ベアリング
32…ギアボックス
33…ステータ固定面
34…溝形成部
34A…周方向溝
35…冷媒流入口
35A…開口部
100…モータ

Claims (8)

  1.  ステータと、前記ステータを収納するハウジングと、を備え、
     前記ステータは、
     コイルが巻回されるティースと、
     前記ティースを保持するステータコアと、
     前記ステータコアの径方向の外側に形成され、前記ハウジングに固定される固定部と、
     軸方向に沿って形成され、径方向から見て前記固定部と前記ティースとに重なる位置に設けられる貫通孔と、
     を備える回転電機。
  2.  請求項1に記載の回転電機であって、
     前記ハウジングは、
     前記ステータの前記貫通孔に接続され、冷媒が流れる筒状の溝を備える
     ことを特徴とする回転電機。
  3.  請求項2に記載の回転電機であって、
     前記ハウジングは、
     前記溝に冷媒を供給する2つ以上の開口部を有する冷媒流入口を備える
     ことを特徴とする回転電機。
  4.  請求項2に記載の回転電機であって、
     冷媒が流れる第1流路を有するシャフトと、
     前記シャフトの第1流路に接続され、前記溝の側の前記コイルに冷媒を供給する第2流路を有するロータと、を備える
     ことを特徴とする回転電機。
  5.  請求項2に記載の回転電機であって、
     前記貫通孔は、
     前記固定部ごとに1つ設けられ、
     前記固定部に隣接する複数の前記ティースの径方向の外側を覆う
     ことを特徴とする回転電機。
  6.  請求項2に記載の回転電機であって、
     前記貫通孔は、
     前記固定部ごとに複数設けられ、
     複数の前記貫通孔は、
     前記固定部に隣接する複数の前記ティースの径方向の外側を覆う
     ことを特徴とする回転電機。
  7.  請求項2に記載の回転電機であって、
     前記貫通孔は、
     前記ステータコアの全周にわたって複数設けられる
     ことを特徴とする回転電機。
  8.  請求項4に記載の回転電機であって、
     前記ロータの一方の端面に設けられ、前記シャフトの第1流路と前記ロータの第2流路とを接続する第3流路を有する第1エンドリングと、
     前記ロータの他方の端面に設けられ、前記ロータの第2流路からの冷媒を前記溝の側の前記コイルに導く第4流路を有する第2エンドリングと、を備える
     ことを特徴とする回転電機。
PCT/JP2021/031875 2021-03-18 2021-08-31 回転電機 WO2022195920A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506716A JPWO2022195920A1 (ja) 2021-03-18 2021-08-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044351 2021-03-18
JP2021044351 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022195920A1 true WO2022195920A1 (ja) 2022-09-22

Family

ID=83322183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031875 WO2022195920A1 (ja) 2021-03-18 2021-08-31 回転電機

Country Status (2)

Country Link
JP (1) JPWO2022195920A1 (ja)
WO (1) WO2022195920A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617345U (ja) * 1992-07-22 1994-03-04 東洋電機製造株式会社 フレーム無しの交流機の固定子
JPH0636333U (ja) * 1992-10-06 1994-05-13 株式会社明電舎 回転電機の固定子鉄心
JP2019009967A (ja) * 2017-06-28 2019-01-17 本田技研工業株式会社 回転電機のステータ
JP2019154146A (ja) * 2018-03-02 2019-09-12 本田技研工業株式会社 回転電機
JP2019187063A (ja) * 2018-04-09 2019-10-24 日産自動車株式会社 回転電機
JP2019193320A (ja) * 2018-04-18 2019-10-31 株式会社デンソー 回転電機
JP2020022232A (ja) * 2018-07-30 2020-02-06 本田技研工業株式会社 ステータコアの内部冷却構造
JP2020114085A (ja) * 2019-01-10 2020-07-27 トヨタ紡織株式会社 ステータコアおよび回転電機の冷却構造
JP2020184850A (ja) * 2019-05-09 2020-11-12 株式会社明電舎 回転電機のステータのコイル冷却器具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617345U (ja) * 1992-07-22 1994-03-04 東洋電機製造株式会社 フレーム無しの交流機の固定子
JPH0636333U (ja) * 1992-10-06 1994-05-13 株式会社明電舎 回転電機の固定子鉄心
JP2019009967A (ja) * 2017-06-28 2019-01-17 本田技研工業株式会社 回転電機のステータ
JP2019154146A (ja) * 2018-03-02 2019-09-12 本田技研工業株式会社 回転電機
JP2019187063A (ja) * 2018-04-09 2019-10-24 日産自動車株式会社 回転電機
JP2019193320A (ja) * 2018-04-18 2019-10-31 株式会社デンソー 回転電機
JP2020022232A (ja) * 2018-07-30 2020-02-06 本田技研工業株式会社 ステータコアの内部冷却構造
JP2020114085A (ja) * 2019-01-10 2020-07-27 トヨタ紡織株式会社 ステータコアおよび回転電機の冷却構造
JP2020184850A (ja) * 2019-05-09 2020-11-12 株式会社明電舎 回転電機のステータのコイル冷却器具

Also Published As

Publication number Publication date
JPWO2022195920A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US10707726B2 (en) Cooling structure for dynamo-electric machine
US9154006B2 (en) Rotor for rotating electric machine
JP2013017297A (ja) 回転電機のロータ
JP2009284603A (ja) 回転電機
JP4730664B2 (ja) インホイールモータ
JP2007517485A (ja) 電気機器
CN113498572A (zh) 具有内部冷却通路的电机
WO2022195920A1 (ja) 回転電機
JP2020141542A (ja) 回転電機のロータ
JP5892091B2 (ja) マルチギャップ型回転電機
JP2004208463A (ja) 回転電機の冷却構造
JP6072199B1 (ja) 回転電機
JP6624025B2 (ja) 回転電機
JP6332876B2 (ja) 回転電機のロータ、および回転電機のロータの製造方法
JP2012210120A (ja) 回転電機
CN113629919A (zh) 转子及旋转电机
WO2021149720A1 (ja) 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
JP7331625B2 (ja) 回転電機
JP6903698B2 (ja) 回転電機のロータ
JP6962772B2 (ja) ステータコアの冷却構造および回転電機
JP2019149859A (ja) 磁石冷却構造および回転電機
JP2019126134A (ja) 回転電機
WO2022255084A1 (ja) 回転電機
JP7483928B2 (ja) 回転子、回転電機
JP2019126133A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931664

Country of ref document: EP

Kind code of ref document: A1