WO2022195653A1 - 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム - Google Patents

撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム Download PDF

Info

Publication number
WO2022195653A1
WO2022195653A1 PCT/JP2021/010315 JP2021010315W WO2022195653A1 WO 2022195653 A1 WO2022195653 A1 WO 2022195653A1 JP 2021010315 W JP2021010315 W JP 2021010315W WO 2022195653 A1 WO2022195653 A1 WO 2022195653A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
voltage
circuit
ctrl
supply voltage
Prior art date
Application number
PCT/JP2021/010315
Other languages
English (en)
French (fr)
Inventor
大樹 山村
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2021/010315 priority Critical patent/WO2022195653A1/ja
Publication of WO2022195653A1 publication Critical patent/WO2022195653A1/ja
Priority to US18/368,125 priority patent/US20240007766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present disclosure relates to imaging systems, control units, camera units, endoscopes, and endoscope systems.
  • the endoscope system includes a camera unit having an imaging device and a control unit.
  • the camera unit and control unit are connected by a transmission cable having a power signal line and a video signal line. Power for driving the camera unit and control signals for controlling the camera unit are transmitted from the control unit via transmission cables.
  • the control unit supplies power to the imaging device via the power signal line.
  • the voltage V cis for driving the imaging device is a value that is RI lower than the voltage V out supplied by the control unit due to the electrical resistance R of the power signal line. Therefore, the voltage V out supplied by the control unit needs to be increased in consideration of the voltage drop RI in the power signal line.
  • the voltage Vout supplied by the control unit is increased, the power consumption of the imaging device and the amount of heat generated by the power signal line may increase, which may adversely affect body tissues.
  • the current value I flowing through the power signal line changes depending on the driving state of the imaging device. Therefore, it is required to monitor the voltage V cis for driving the imaging device and adjust the voltage V cis to a desired voltage, for example, 3.3 V, which is the recommended operating voltage.
  • Patent Document 1 discloses connecting the tip of the endoscope scope and a control unit with a feedback cable and measuring the voltage at the tip of the endoscope scope with the feedback cable. Techniques are disclosed.
  • the present disclosure provides an imaging system, a control unit, a camera unit, an endoscope, and an endoscope that can monitor the voltage supplied to the imaging element and can realize a thin transmission cable.
  • the object is to provide a mirror system.
  • An imaging system is an imaging system in which a camera unit and a control unit are connected by a transmission cable having a power signal line and a video signal line, wherein the camera unit has a driving voltage V
  • the control unit includes an imaging device that is driven by cis and generates a photoelectric conversion signal corresponding to the amount of received light, and a selector circuit that switches a path through which the current flows so that the resistance value R2 of the power signal line can be calculated.
  • a supply voltage control circuit that controls a supply voltage Vctrl , a feedback voltage Vfb that is a voltage on the control unit side of the video signal line, and a feedback current that is a current on the control unit side after passing through the video signal line.
  • a feedback value measuring circuit for measuring I fb and a supply current I ctrl corresponding to the supply voltage V ctrl ;
  • the sum R 1 +R 2 of the resistance value R 1 and the resistance value R 2 of the power signal line is calculated, and the drive voltage V is calculated from the resistance value R 2 , the supply current I ctrl , and the supply voltage V ctrl .
  • an arithmetic circuit for calculating cis .
  • a control unit is a control unit connectable to a camera unit including an imaging element via a power signal line and a video signal line, the control unit comprising: a supply voltage control circuit for controlling a supply voltage V ctrl ; A feedback voltage V fb that is a voltage on the control unit side of the video signal line, a feedback current I fb that is a current on the control unit side after passing through the video signal line, and a supply corresponding to the supply voltage V ctrl a feedback value measuring circuit for measuring the current I ctrl , and from the supply voltage V ctrl , the feedback voltage V fb and the feedback current Ifb , the resistance value R1 of the video signal line and the resistance value R of the power signal line an arithmetic circuit for calculating the sum of 2 , R 1 +R 2 , and for calculating the drive voltage V cis from the resistance value R 2 , the supply current I ctrl , and the supply
  • An endoscope system is an endoscope system in which a camera unit and a control unit are connected by a transmission cable having a power signal line and a video signal line, wherein the camera unit an imaging device driven by a drive voltage V cis to generate a photoelectric conversion signal corresponding to the amount of received light;
  • the control unit includes a supply voltage control circuit for controlling a supply voltage V ctrl , a feedback voltage V fb which is a voltage on the control unit side of the video signal line, and a current on the control unit side after passing through the video signal line.
  • the control unit, the camera unit, the endoscope, and the endoscope system of the present disclosure it is possible to monitor the voltage supplied to the imaging element and to achieve a thinner transmission cable. .
  • FIG. 1 is a perspective view showing an endoscope system according to a first embodiment of the present disclosure
  • FIG. It is a block diagram of a camera unit and a control unit provided in the endoscope system according to the same embodiment. It is a flowchart which shows the outline
  • FIG. 4 is a block diagram of a camera unit and a control unit included in an endoscope system according to a second embodiment of the present disclosure
  • FIG. It is a flowchart which shows the outline
  • Imaging systems according to the present disclosure include endoscope systems. Therefore, it can be said that the endoscope system described below is an embodiment of the imaging system according to the present disclosure.
  • FIG. 1 An endoscope system 100 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
  • FIG. It should be noted that the dimensions and ratios of each component in the drawing do not represent the actual dimensions and ratio of each component.
  • FIG. 1 is a perspective view of an endoscope system 100.
  • the endoscope system 100 includes an endoscope 1 , a universal cord 5 , a control unit 6 , a light source device 7 and a display device 8 .
  • Control unit 6 and light source device 7 are connected to endoscope 1 via universal cord 5 .
  • the endoscope 1 is a device for observing or treating a diseased part inside the body.
  • the endoscope 1 includes an insertion section 10 and an operation section 17 .
  • the endoscope 1 is a flexible endoscope, but the endoscope 1 may be another type of endoscope (for example, a rigid endoscope or an ultrasonic endoscope).
  • the insertion portion 10 is a long tubular member that is inserted into the body.
  • the insertion portion 10 has a hard distal end portion 11, a bending portion 12 that can bend in a plurality of different directions, and a flexible tube portion 13 that has flexibility.
  • the distal end portion 11, the bending portion 12, and the flexible tube portion 13 are connected in order from the distal end side.
  • the flexible tube portion 13 is connected to the operating portion 17 .
  • the tip portion 11 has an endoscope scope 14 .
  • the endoscope 14 has a light source 15 , an optical system 16 and a camera unit 2 .
  • the bending portion 12 bends as the operator operates the operating portion 17 .
  • the flexible tube portion 13 is a tubular portion having flexibility.
  • the operation unit 17 accepts operations for the endoscope 1 .
  • a universal cord 5 is connected to the operation unit 17 .
  • the control unit 6 comprehensively controls the entire endoscope system 100.
  • the control unit 6 applies image processing to the video signal output from the camera unit 2 .
  • the light source device 7 supplies illumination light emitted by the light source 15 .
  • the light source device 7 has, for example, a halogen lamp or an LED.
  • the light source device 7 supplies the generated illumination light to the light source 15 under the control of the control unit 6 .
  • the display device 8 displays an image of the affected area captured by the endoscope 1, various information about the endoscope system 100, and the like.
  • FIG. 2 is a block diagram of the camera unit 2 and control unit 6 provided in the endoscope system 100 according to this embodiment.
  • the camera unit 2 and control unit 6 are connected by a transmission cable 3 .
  • the transmission cable 3 is a general term for a transmission path composed of a cable inserted through the insertion portion 10 of the endoscope 1, the universal cord 5, and the like.
  • the transmission cable 3 has a video signal line 31 for transmitting video signals, a power signal line 32 for transmitting power, and a control signal line 33 for transmitting signals for controlling the camera unit 2 .
  • the control signal line 33 transmits signals and clock signals for controlling the selector circuit 22, which will be described later.
  • a camera unit (imaging device) 2 converts a subject image formed via an optical system 16 to generate an imaging signal.
  • the camera unit 2 outputs the generated imaging signal to the control unit 6 via the video signal line 31 .
  • the camera unit 2 also receives power supply from the control unit 6 via the power signal line 32 .
  • the camera unit 2 has an imaging element 21, a selector circuit 22, and a constant voltage circuit 23, as shown in FIG.
  • the imaging device 21 is specifically an image sensor, such as a CCD image sensor or a CMOS image sensor.
  • the imaging device 21 is driven by a driving voltage Vcis , receives the subject image formed by the optical system 16, and generates a photoelectric conversion signal corresponding to the amount of received light.
  • the drive voltage V cis is a voltage supplied to the image pickup device 21 and refers to a voltage between a voltage pad of the image pickup device 21 and a power supply voltage supply point of the image pickup device 21 .
  • the selector circuit 22 switches the path through which the current flows so that the resistance value R2 of the power signal line 32 can be calculated. Specifically, the selector circuit 22 switches a plurality of paths through which current flows among the camera unit 2 , the transmission cable 3 and the control unit 6 . The plurality of paths will be described in [Operation of Endoscope System 100].
  • the constant voltage circuit 23 is a circuit that supplies a predetermined voltage V1 to the video signal line 31 .
  • the constant voltage circuit 23 is, for example, a known three-terminal regulator, and has an input terminal, an output terminal, and a common terminal. The input terminal is connected to the selector circuit 22, the output terminal is connected to the video signal line 31, and the common terminal is grounded.
  • Control unit (control device) 6 The control unit (control device) 6 has a control circuit 60, a power supply circuit 65, and a recording section 66, as shown in FIG.
  • the control circuit 60 centrally controls the entire endoscope system 100 .
  • the control circuit 60 applies image processing to the video signal output from the camera unit 2 .
  • the control circuit 60 transfers an image to be displayed on the display device 8 .
  • the control circuit 60 is a program-executable processing circuit (computer) having one or more processors (CPU, GPU, DSP, etc.) and a program-readable memory.
  • the control circuit 60 controls the endoscope system 100 by executing an endoscope control program.
  • Control circuitry 60 may include dedicated circuitry.
  • a dedicated circuit is a processor separate from the processor included in the control circuit 60, a logic circuit implemented in an ASIC or FPGA, or a combination thereof.
  • the control circuit 60 has a supply voltage control circuit 61 , a feedback value measurement circuit 62 , a selector circuit control circuit 63 and an arithmetic circuit 64 .
  • the supply voltage control circuit 61 controls the supply voltage V ctrl that is the voltage supplied to the camera unit 2 .
  • the supply voltage control circuit 61 changes the supply voltage Vctrl based on the feedback voltage Vfb and the feedback current Ifb measured by the feedback value measurement circuit 62, for example.
  • the feedback value measuring circuit 62 measures the feedback voltage V fb on the control unit 6 side of the video signal line 31, the feedback current I fb that is the current on the control unit 6 side after passing through the video signal line 31, and the supply voltage V ctrl . Measure the supplied current I ctrl .
  • the selector circuit control circuit 63 transmits a control signal for controlling the selector circuit 22 via the control signal line 33 .
  • the arithmetic circuit 64 calculates the resistance value R1 of the video signal line 31 and the resistance value R2 of the power signal line 32 from the supply voltage Vctrl , the feedback voltage Vfb , and the feedback current Ifb based on the following equation (1). Calculate the sum of R 1 +R 2 . Further, the arithmetic circuit 64 calculates the drive voltage V cis from the resistance value R 2 , the supply current I ctrl and the supply voltage V ctrl based on the following equation (2).
  • R 1 +R 2 (V ctrl ⁇ V fb )/I fb Equation (1)
  • V ctrl V cis +R 2 ⁇ I ctrl Equation (2)
  • the arithmetic circuit 64 may calculate the resistance value R1 of the video signal line 31 from the following equation ( 3 ) based on the predetermined voltage V1 supplied by the constant voltage circuit 23.
  • R 1 (V 1 - V fb )/I fb (3) formula
  • the power supply circuit 65 supplies power for driving the control circuit 60 , the recording section 66 and the camera unit 2 .
  • Power for driving the camera unit 2 is controlled by the supply voltage control circuit 61 and supplied via the power signal line 32 .
  • the recording unit 66 is a non-volatile recording medium that stores each program executed by each component described above and data necessary for executing each program.
  • the recording unit 66 includes, for example, a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a storage device such as a hard disk built into a computer system, and the like. be.
  • FIG. 3 is a flowchart showing an outline of operation processing executed by the endoscope system 100.
  • FIG. 4 is a block diagram showing the third route in the endoscope system 100 according to this embodiment.
  • FIG. 5 is a block diagram showing the first route in the endoscope system 100 according to this embodiment.
  • FIG. 6 is a block diagram showing the second route in the endoscope system 100 according to this embodiment. 4 to 6, solid lines indicate power lines to which power is supplied, and dashed lines indicate control lines.
  • the feedback voltage in the second path is the feedback voltage V fb2
  • the feedback current in the first path is the feedback voltage I fb1
  • the feedback voltage in the third path is the feedback voltage V fb1
  • the feedback current in the third path may be referred to as the feedback voltage I fb3 .
  • the selector circuit control circuit 63 transmits a control signal to the selector circuit 22 via the control signal line 33, and the selector circuit 22 controls the supply voltage control circuit 61, the power signal A third path is formed to which the line 32, the constant voltage circuit 23, the video signal line 31, and the feedback value measuring circuit 62 are connected (step S101). After the third path is formed, the voltage supplied from the power supply circuit 65 to the control unit 6 is controlled by the supply voltage control circuit 61 and supplied to the constant voltage circuit 23 via the power signal line 32 and the selector circuit 22 .
  • the constant voltage circuit 23 converts the supplied voltage into a predetermined voltage V1 and supplies it to the video signal line 31, and the feedback value measuring circuit 62 determines the feedback voltage Vfb3 in the third path based on the voltage V1. And the feedback current Ifb3 is measured (step S103).
  • the arithmetic circuit 64 calculates the resistance value R1 of the video signal line 31 from the following equation (4) (step S105).
  • R 1 (V 1 - V fb3 )/I fb3 (4) formula
  • the selector circuit control circuit 63 transmits a control signal to the selector circuit 22 via the control signal line 33, and the selector circuit 22 controls the supply voltage control circuit 61, the power signal line 32, and the video signal.
  • a first path is formed to which line 31 and feedback value measuring circuit 62 are connected (step S107).
  • a supply voltage control circuit 61 supplies a supply voltage V ctrl and a supply current I ctrl to the power signal line 32, and a feedback value measurement circuit 62 determines the feedback voltage V fb1 and the feedback A current Ifb1 is measured (step S109).
  • the arithmetic circuit 64 calculates the sum R 1 +R 2 of the resistance value R 1 of the video signal line 31 and the resistance value R 2 of the power signal line 32 from the following equation (2) (step S111). Since the resistance value R1 of the video signal line 31 is calculated in step S105, the resistance value R2 of the power signal line 32 is calculated in step S111.
  • R 1 +R 2 (V ctrl ⁇ V fb1 )/I fb1 (5) formula
  • the selector circuit control circuit 63 transmits a control signal to the selector circuit 22 via the control signal line 33, and the selector circuit 22 controls the supply voltage control circuit 61, the power signal line 32, and the imaging A second path to which the element 21 is connected is formed (step S113).
  • the supply voltage control circuit 61 supplies the supply voltage Vctrl to the power signal line 32
  • the feedback value measurement circuit 62 measures the supply current Ictrl based on the supply voltage Vctrl
  • the arithmetic circuit 64 calculates the following equation (6):
  • the driving voltage V cis to be supplied to the image sensor is calculated (step S115).
  • V ctrl V cis +(R 1 ⁇ I ctrl ) Equation (6)
  • the supply voltages V ctrl and I ctrl are adjusted so that the calculated drive voltage V cis becomes the target voltage V target (step S117).
  • the target voltage V target is, for example, 3.3V.
  • the resistance value R1 of the video signal line 31 and the resistance value R2 of the power signal line 32 can be calculated by switching the path by the selector circuit 22 .
  • the driving voltage V cis can be monitored based on the resistance value R 1 of the video signal line 31 and the resistance value R 2 of the power signal line 32 . Therefore, it is not necessary to provide a dedicated line for calculating the drive voltage Vcis .
  • steps S101 to S111 are performed in blanking periods, but they may be performed in each blanking period, or during a plurality of blanking periods occurring while the endoscope system is operating. may be performed in any one of the blanking periods.
  • the arithmetic circuit 64 calculates the resistance value R1 of the video signal line 31 based on the predetermined voltage V1 supplied by the constant voltage circuit 23.
  • the method of calculating the resistance value R1 is not limited to the above method. For example, if a cable made of the same material as the power signal line 32 is used for the video signal line 31, the resistance value R1 of the video signal line 31 is determined based on the diameter of the video signal line 31 and the diameter of the power signal line 32. 31 resistance values R1 can be calculated. By changing the diameter of the video signal line 31 and the diameter of the power signal line 32, the ratio R1 / R2 of the resistance value R1 of the video signal line 31 to the resistance value R2 of the power signal line 32 can be controlled.
  • FIG. 7 is a block diagram of the camera unit 2 and control unit 6 provided in the endoscope system 100B according to this embodiment.
  • the same reference numerals are given to the same configurations as those already described, and redundant descriptions will be omitted.
  • the ratio a of the resistance value R1 of the video signal line 31 to the resistance value R2 of the power signal line 32 is known. No measurement is required, and the constant voltage circuit 23 can be omitted.
  • FIG. 8 is a flowchart showing an outline of operation processing executed by the endoscope system 100B.
  • the ratio a of the resistance value R1 of the video signal line 31 to the resistance value R2 of the power signal line 32 is known. Steps S101 to S105 in the operation are omitted.
  • the selector circuit control circuit 63 transmits a control signal to the selector circuit 22 via the control signal line 33, and the selector circuit 22 controls the supply voltage.
  • a first path connecting the circuit 61, the power signal line 32, the video signal line 31 and the feedback value measuring circuit 62 is formed (step S201).
  • a supply voltage control circuit 61 supplies a supply voltage V ctrl and a supply current I ctrl to the power signal line 32, and a feedback value measurement circuit 62 determines the feedback voltage V fb1 and the feedback A current Ifb1 is measured (step S203).
  • the arithmetic circuit 64 calculates the sum R 1 +R 2 of the resistance value R 1 of the video signal line 31 and the resistance value R 2 of the power signal line 32 from the following equation (5) (step S205). Since the ratio a of the resistance value R1 of the video signal line 31 to the resistance value R2 of the power signal line 32 is known, the following equation (5) is converted into the following equation (7), and step S205 , the resistance value R2 of the power signal line 32 is calculated from the following equation (7).
  • Steps S207 to S211 in the operation of the endoscope system 100B according to the present embodiment are the same as steps S113 to S117 in the operation of the endoscope system 100B according to the first embodiment, so description here will be omitted. are omitted.
  • the ratio R 1 /R 2 of the resistance value R 1 of the video signal line 31 to the resistance value R 2 of the power signal line 32 is known. Compared to the operation of the endoscope system 100 according to the embodiment, calculation of the resistance value R1 of the video signal line 31 is unnecessary. Therefore, compared to the endoscope system 100 according to the first embodiment, the constant voltage circuit 23 becomes unnecessary. As a result, the diameter and length of the distal end portion 11 can be further reduced.
  • the diameter of the video signal line 31 and the diameter of the power signal line 32 are: The diameters may be different from each other, or the diameter of the video signal line 31 and the diameter of the power signal line 32 may be substantially the same.
  • the program in each embodiment may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the “computer system” includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • the program may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)

Abstract

本開示に係る撮像システムは、カメラユニットとコントロールユニットとが、電力信号線及び映像信号線を有する伝送ケーブルで接続された撮像システムであって、前記カメラユニットは、駆動電圧Vcisによって駆動する撮像素子と、前記電力信号線の抵抗値Rを算出可能に電流が流れる経路を切り替えるセレクタ回路と、を備え、前記コントロールユニットは、前記映像信号線の前記コントロールユニット側における電圧Vfb、前記映像信号線を通過した後の前記コントロールユニット側の電流である電流Ifb及び前記供給電圧Vctrlに応じた電流Ictrlを測定するフィードバック値測定回路と、供給電圧Vctrl及び供給電流Ictrlを制御する供給電圧制御回路と、供給電圧Vctrl、電圧Vfb、電流Ifb、前記映像信号線の抵抗値R、前記電力信号線の抵抗値R、及び供給電流Ictrlから駆動電圧Vcisを算出する演算回路と、を備える。

Description

撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム
 本開示は、撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システムに関する。
 内視鏡システムは、撮像素子を有するカメラユニットとコントロールユニットとを備える。カメラユニットとコントロールユニットとは、電力信号線及び映像信号線を有する伝送ケーブルで接続される。カメラユニットを駆動する電力やカメラユニットを制御する制御信号は、コントロールユニットから伝送ケーブルを経由して伝送される。
 撮像素子を駆動するため、コントロールユニットは電力信号線を介して、撮像素子に電力を供給する。電力信号線を流れる電流値をIとしたとき、電力信号線の電気抵抗Rにより、撮像素子を駆動する電圧Vcisは、コントロールユニットが供給する電圧VoutからRIだけ降下した値となる。そのため、コントロールユニットが供給する電圧Voutは、電力信号線での電圧降下分RIを加味して、Voutを大きくする必要がある。
 しかしながら、コントロールユニットが供給する電圧Voutを大きくすると、撮像素子の消費電力、電力信号線の発熱量の増大を招くことがあり、体内組織に悪影響を招くおそれがある。また、電力信号線を流れる電流値Iは、撮像素子の駆動状態によって変化する。そのため、撮像素子を駆動する電圧Vcisをモニターし、電圧Vcisを所望の電圧、例えば、動作推奨電圧である3.3Vに調整することが求められている。
 撮像素子を駆動する電圧Vcisを調整する技術として、例えば、特許文献1には、内視鏡スコープ先端とコントロールユニットをフィードバックケーブルで接続し、フィードバックケーブルで内視鏡スコープ先端の電圧を測定する技術が開示されている。
日本国特開2011-206333号公報
 しかしながら、電圧を測定する専用線を設けることは伝送ケーブルの細径化を妨げる。
 上記事情を踏まえ、本開示は、撮像素子に供給される電圧をモニターできるとともに、伝送ケーブルの細径化を実現することができる撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システムを提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
 本開示の第一の態様に係る撮像システムは、カメラユニットとコントロールユニットとが、電力信号線及び映像信号線を有する伝送ケーブルで接続された撮像システムであって、上記カメラユニットは、駆動電圧Vcisによって駆動し受光量に応じた光電変換信号を生成する撮像素子と、上記電力信号線の抵抗値Rを算出可能に電流が流れる経路を切り替えるセレクタ回路と、を備え、上記コントロールユニットは、供給電圧Vctrlを制御する供給電圧制御回路と、上記映像信号線の上記コントロールユニット側における電圧であるフィードバック電圧Vfb、上記映像信号線を通過した後の上記コントロールユニット側の電流であるフィードバック電流Ifb、及び上記供給電圧Vctrlに応じた供給電流Ictrlを測定するフィードバック値測定回路と、上記供給電圧Vctrl、上記フィードバック電圧Vfb、及び上記フィードバック電流Ifbから、上記映像信号線の抵抗値Rと上記電力信号線の抵抗値Rの和R+Rを算出し、かつ、上記抵抗値R、上記供給電流Ictrl、及び上記供給電圧Vctrlから、上記駆動電圧Vcisを算出する演算回路と、を備える。
 本開示の第二の態様に係るコントロールユニットは、撮像素子を備えるカメラユニットに電力信号線及び映像信号線によって接続可能なコントロールユニットであって、供給電圧Vctrlを制御する供給電圧制御回路と、上記映像信号線の上記コントロールユニット側における電圧であるフィードバック電圧Vfb、上記映像信号線を通過した後の上記コントロールユニット側の電流であるフィードバック電流Ifb、及び上記供給電圧Vctrlに応じた供給電流Ictrlを測定するフィードバック値測定回路と、上記供給電圧Vctrl、上記フィードバック電圧Vfb、及び上記フィードバック電流Ifbから、上記映像信号線の抵抗値Rと上記電力信号線の抵抗値Rの和R+Rを算出し、かつ、上記抵抗値R、上記供給電流Ictrl、及び上記供給電圧Vctrlから上記駆動電圧Vcisを算出する演算回路と、を備える。
 本開示の第三の態様に係る内視鏡システムは、カメラユニットとコントロールユニットとが、電力信号線及び映像信号線を有する伝送ケーブルで接続された内視鏡システムであって、上記カメラユニットは、駆動電圧Vcisによって駆動し受光量に応じた光電変換信号を生成する撮像素子と、上記電力信号線の抵抗値Rを算出可能に電流が流れる経路を切り替えるセレクタ回路と、を備え、上記コントロールユニットは、供給電圧Vctrlを制御する供給電圧制御回路と、上記映像信号線の上記コントロールユニット側における電圧であるフィードバック電圧Vfb、上記映像信号線を通過した後の上記コントロールユニット側の電流であるフィードバック電流Ifb、及び上記供給電圧Vctrlに応じた供給電流Ictrlを測定するフィードバック値測定回路と、上記供給電圧Vctrl、上記フィードバック電圧Vfb、及び上記フィードバック電流Ifbから、上記映像信号線の抵抗値Rと上記電力信号線の抵抗値Rの和R+Rを算出し、かつ、上記抵抗値R、上記供給電流Ictrl、及び上記供給電圧Vctrlから上記駆動電圧Vcisを算出する演算回路と、を備える。
 本開示の撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システムによれば、撮像素子に供給される電圧をモニターできるとともに、伝送ケーブルの細径化を実現することができる。
本開示の第一の実施形態に係る内視鏡システムを示す斜視図である。 同実施形態に係る内視鏡システムが備えるカメラユニットとコントロールユニットのブロック図である。 同実施形態に係る内視鏡システムが実行する動作処理の概要を示すフローチャートである。 同実施形態に係る内視鏡システムにおける第3の経路を示すブロック図である。 同実施形態に係る内視鏡システムにおける第1の経路を示すブロック図である。 同実施形態に係る内視鏡システムにおける第2の経路を示すブロック図である。 本開示の第二の実施形態に係る内視鏡システムが備えるカメラユニットとコントロールユニットのブロック図である。 同実施形態に係る内視鏡システムが実行する動作処理の概要を示すフローチャートである。
 以下、図面を参照して本開示の実施の形態について詳細に説明する。本開示に係る撮像システムは内視鏡システムを含む。よって、以下で説明する内視鏡システムは、本開示に係る撮像システムの実施形態であるといえる。
(第一実施形態)
 本開示の第一実施形態に係る内視鏡システム100について、図1から図5を参照して説明する。なお、図中の各構成要素の寸法、比率は、実際の各構成要素の寸法、比率を表すものではない。
[内視鏡システム100]
 図1は内視鏡システム100の斜視図である。内視鏡システム100は、内視鏡1と、ユニバーサルコード5と、コントロールユニット6と、光源装置7と、表示装置8と、を備える。コントロールユニット6および光源装置7は、ユニバーサルコード5を経由して内視鏡1と接続されている。
 内視鏡1は、体内の患部を観察または処置する装置である。内視鏡1は、挿入部10と、操作部17と、を備える。なお、本実施形態において内視鏡1は軟性内視鏡であるが、内視鏡1は他の態様の内視鏡(例えば硬性内視鏡や超音波内視鏡)であってもよい。
 挿入部10は、体内に挿入される長尺の管状部材である。挿入部10は、硬質な先端部11と、複数の異なる方向に湾曲可能な湾曲部12と、柔軟性を有する可撓管部13と、を有する。先端部11と、湾曲部12と、可撓管部13と、は先端側から順に接続されている。可撓管部13は、操作部17に接続されている。
 先端部11は、内視鏡スコープ14を有する。内視鏡スコープ14は、光源15と、光学系16と、カメラユニット2と、を有する。湾曲部12は、操作者による操作部17の操作により湾曲する。可撓管部13は、可撓性を有する管状の部位である。
 操作部17は、内視鏡1に対する操作を受け付ける。操作部17には、ユニバーサルコード5が接続されている。
 コントロールユニット6は、内視鏡システム100全体を統括的に制御する。コントロールユニット6は、カメラユニット2から出力された映像信号に画像処理を施す。
 光源装置7は、光源15が照射する照明光を供給する。光源装置7は、例えばハロゲンランプやLEDを有する。光源装置7は、生成した照明光をコントロールユニット6の制御に基づいて光源15に供給する。
 表示装置8は、内視鏡1により撮像された患部の画像や、内視鏡システム100に関する各種情報等を表示する。
 図2は、本実施形態に係る内視鏡システム100に備えられるカメラユニット2とコントロールユニット6のブロック図である。
 カメラユニット2とコントロールユニット6とは、伝送ケーブル3により接続される。伝送ケーブル3は、内視鏡1の挿入部10を挿通するケーブルおよびユニバーサルコード5などにより構成される伝送経路を総称するものである。伝送ケーブル3は、映像信号を伝送する映像信号線31と、電力を伝送する電力信号線32と、カメラユニット2を制御する信号を伝送する制御信号線33と、を有する。制御信号線33は、後述するセレクタ回路22を制御する信号やクロック信号を伝送する。
[カメラユニット(撮像装置)2]
 カメラユニット(撮像装置)2は、光学系16を経由して結像された被写体像を変換して撮像信号を生成する。カメラユニット2は、映像信号線31を経由してコントロールユニット6に生成した撮像信号を出力する。また、カメラユニット2は、電力信号線32を経由してコントロールユニット6から電力供給を受ける。
 カメラユニット2は、図2に示すように、撮像素子21と、セレクタ回路22と、定電圧回路23と、を有する。
 撮像素子21は、具体的にはイメージセンサであり、例えば、CCDイメージセンサ又はCMOSイメージセンサである。撮像素子21は、駆動電圧Vcisによって駆動し、光学系16が結像した被写体像を受光し、受光量に応じた光電変換信号を生成する。駆動電圧Vcisは、撮像素子21に供給される電圧であり、撮像素子21の電圧パッドと撮像素子21の電源電圧供給ポイントの間の電圧を言う。
 セレクタ回路22は、電力信号線32の抵抗値Rを算出可能に電流が流れる経路を切り替える。詳細には、セレクタ回路22は、カメラユニット2、伝送ケーブル3及びコントロールユニット6間で電流が流れる複数の経路を切り替える。この複数の経路については、[内視鏡システム100の動作]で説明する。
 定電圧回路23は、所定の電圧Vを映像信号線31に供給する回路である。定電圧回路23は、例えば、公知の三端子のレギュレータであり、入力端子と、出力端子と、共通端子と、を有している。入力端子はセレクタ回路22に接続されており、出力端子は映像信号線31に接続されており、共通端子はグラウンドに接続されている。
[コントロールユニット(制御装置)6]
 コントロールユニット(制御装置)6は、図2に示すように、制御回路60と、電源回路65と、記録部66と、を有する。
 制御回路60は、内視鏡システム100全体を統括的に制御する。制御回路60は、カメラユニット2から出力された映像信号に画像処理を施す。制御回路60は、表示装置8に表示する画像を転送する。
 制御回路60は、1つ以上のプロセッサ(CPU,GPU,DSP等)と、プログラムを読み込み可能なメモリ等を有するプログラム実行可能な処理回路(コンピュータ)である。制御回路60は、内視鏡制御プログラムを実行することにより内視鏡システム100の制御を実施する。制御回路60は、専用回路を含んでもよい。専用回路とは、制御回路60が有するプロセッサとは別体のプロセッサ、ASICやFPGAに実装された論理回路、またはそれらの組み合わせである。
 制御回路60は、供給電圧制御回路61と、フィードバック値測定回路62と、セレクタ回路制御回路63と、演算回路64と、を有する。
 供給電圧制御回路61は、カメラユニット2に供給する電圧である供給電圧Vctrlを制御する。供給電圧制御回路61は、例えば、フィードバック値測定回路62で測定された、フィードバック電圧Vfb及びフィードバック電流Ifbに基づいて、供給電圧Vctrlを変更する。
 フィードバック値測定回路62は、映像信号線31のコントロールユニット6側におけるフィードバック電圧Vfb、映像信号線31を通過した後のコントロールユニット6側の電流であるフィードバック電流Ifb及び供給電圧Vctrlに応じた供給電流Ictrlを測定する。
 セレクタ回路制御回路63は、制御信号線33を介してセレクタ回路22を制御する制御信号を送信する。
 演算回路64は、供給電圧Vctrl、フィードバック電圧Vfb、及びフィードバック電流Ifbから、下記(1)式に基づいて、映像信号線31の抵抗値Rと電力信号線32の抵抗値Rの和R+Rを算出する。また、演算回路64は、抵抗値R、供給電流Ictrl、及び供給電圧Vctrlから下記(2)式に基づいて、駆動電圧Vcisを算出する。
 R+R=(Vctrl-Vfb)/Ifb ・・・(1)式
 Vctrl=Vcis+R×Ictrl ・・・(2)式
 演算回路64は、定電圧回路23が供給する所定の電圧Vに基づいて、下記(3)式から映像信号線31の抵抗値Rを算出してもよい。
  R=(V-Vfb)/Ifb ・・・(3)式
 電源回路65は、制御回路60、記録部66、及びカメラユニット2を駆動するための電力を供給する。カメラユニット2を駆動する電力は、供給電圧制御回路61によって制御されて、電力信号線32を経由して供給される。
 記録部66は、上述した各構成要素が実行する各プログラムや各プログラムを実行するために必要なデータを記憶する不揮発性の記録媒体である。記録部66は、例えばフレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリなどの書き込み可能な不揮発性メモリ、CD-ROMなどの可搬媒体、コンピュータシステムに内蔵されるハードディスクなどの記憶装置等で構成される。
[内視鏡システム100の動作]
 次に図3~6を参照して内視鏡システム100の動作(内視鏡システム100の制御方法)について説明する。図3は、内視鏡システム100が実行する動作処理の概要を示すフローチャートである。図4は、本実施形態に係る内視鏡システム100における第3の経路を示すブロック図である。図5は、本実施形態に係る内視鏡システム100における第1の経路を示すブロック図である。図6は、本実施形態に係る内視鏡システム100における第2の経路を示すブロック図である。図4~6において、実線は電力が供給される電力線を示し、破線は制御線を示す。なお、以下では、便宜のため、第2の経路でのフィードバック電圧をフィードバック電圧Vfb2、第1の経路でのフィードバック電流をフィードバック電圧Ifb1、第3の経路でのフィードバック電圧をフィードバック電圧Vfb1、第3の経路でのフィードバック電流をフィードバック電圧Ifb3、と呼称することがある。
 まず、ブランキング期間において、図4に示すように、セレクタ回路制御回路63が制御信号線33を介してセレクタ回路22に制御信号を送信し、セレクタ回路22は、供給電圧制御回路61、電力信号線32、定電圧回路23、映像信号線31、及びフィードバック値測定回路62が接続された第3の経路を形成する(ステップS101)。第3の経路が形成した後、電源回路65からコントロールユニット6に供給された電圧を供給電圧制御回路61が制御し、電力信号線32及びセレクタ回路22を介して定電圧回路23に供給する。定電圧回路23は、供給された電圧を所定の電圧Vに変換して映像信号線31に供給し、フィードバック値測定回路62が電圧Vに基づき、第3の経路でのフィードバック電圧Vfb3及びフィードバック電流Ifb3を測定する(ステップS103)。演算回路64は、下記(4)式から映像信号線31の抵抗値Rを算出する(ステップS105)。
  R=(V-Vfb3)/Ifb3 ・・・(4)式
 次いで、図5に示すように、セレクタ回路制御回路63が制御信号線33を介してセレクタ回路22に制御信号を送信し、セレクタ回路22は、供給電圧制御回路61、電力信号線32、映像信号線31及びフィードバック値測定回路62が接続された第1の経路を形成する(ステップS107)。供給電圧制御回路61は、電力信号線32に供給電圧Vctrl及び供給電流Ictrlを供給し、フィードバック値測定回路62が供給電圧Vctrlに基づき、第1の経路でのフィードバック電圧Vfb1及びフィードバック電流Ifb1を測定する(ステップS109)。演算回路64は、下記(2)式から映像信号線31の抵抗値Rと電力信号線32の抵抗値Rの和R+Rを算出する(ステップS111)。ステップS105で映像信号線31の抵抗値Rが算出されているため、ステップS111において電力信号線32の抵抗値Rが算出されることになる。
  R+R=(Vctrl-Vfb1)/Ifb1 ・・・(5)式
 次いで、図6に示すように、セレクタ回路制御回路63が制御信号線33を介してセレクタ回路22に制御信号を送信し、セレクタ回路22は、供給電圧制御回路61、電力信号線32、及び撮像素子21が接続された第2の経路を形成する(ステップS113)。供給電圧制御回路61は、電力信号線32に供給電圧Vctrlを供給し、フィードバック値測定回路62が供給電圧Vctrlに基づく供給電流Ictrlを測定し、演算回路64が、下記(6)式から撮像素子に供給される駆動電圧Vcisを算出する(ステップS115)。
  Vctrl=Vcis+(R×Ictrl) ・・・(6)式
 続いて、算出された駆動電圧Vcisが目標電圧Vtargetになるように供給電圧Vctrl及びIctrlを調整する(ステップS117)。なお、目標電圧Vtargetは、例えば、3.3Vである。
 本実施形態に係る内視鏡システム100によれば、セレクタ回路22が経路を切り替えることで、映像信号線31の抵抗値R及び電力信号線32の抵抗値Rを算出することができる。そして、映像信号線31の抵抗値R及び電力信号線32の抵抗値Rに基づいて駆動電圧Vcisをモニタリングすることができる。そのため、駆動電圧Vcisを算出するための専用線を設ける必要がない。本実施形態に係る内視鏡システム100によれば、上記専用線を設ける必要がないため、伝送ケーブル3の径を細くすることが可能である。そして、算出された駆動電圧Vcisを基に実際の駆動電圧Vcisを目標電圧Vtargetに調整することができる。
 以上、本開示の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の実施形態および変形例において示す構成要素は適宜に組み合わせて構成することが可能である。
(変形例1-1)
 上記実施形態において、ステップS101~ステップS111はブランキング期間で行われるが、ブランキング期間ごとに実行されてもよいし、内視鏡システムが作動している間に生じる複数のブランキング期間のうちのいずれかのブランキング期間で実行されてもよい。
 また、第1の実施形態では、定電圧回路23が供給する所定の電圧Vに基づいて、演算回路64が映像信号線31の抵抗値Rを算出しているが、映像信号線31の抵抗値Rの算出方法は、上記の方法に限られない。映像信号線31の抵抗値Rは、例えば、電力信号線32と同じ材質のケーブルを映像信号線31に用いれば、映像信号線31の径及び電力信号線32の径に基づいて映像信号線31の抵抗値Rを算出可能である。映像信号線31の径及び電力信号線32の径を変更することで、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比R/Rを制御することができ、映像信号線31の抵抗値Rを算出することができる。以下では、第二実施形態として、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比R/Rが既知である場合の内視鏡システムを説明する。
(第二実施形態)
 本開示の第二実施形態に係る内視鏡システム100Bについて、図7を参照して説明する。図7は、本実施形態に係る内視鏡システム100Bに備えられるカメラユニット2とコントロールユニット6のブロック図である。以降の説明において、既に説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。内視鏡システム100Bは、第一実施形態に係る内視鏡システム100と比較して、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比R/R(=a)が既知である点が異なる。本実施形態に係る内視鏡システム100Bでは、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比aが既知であるため、映像信号線31の抵抗値Rの測定が不要であり、定電圧回路23を省略することができる。
[内視鏡システム100Bの動作]
 図8を参照して内視鏡システム100Bの動作(内視鏡システム100Bの制御方法)について説明する。図8は、内視鏡システム100Bが実行する動作処理の概要を示すフローチャートである。内視鏡システム100Bの動作では、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比aが既知であるため、第1の実施形態に係る内視鏡システム100の動作におけるステップS101~ステップS105が省略される。
 本実施形態に係る内視鏡システム100Bの動作において、ブランキング期間において、セレクタ回路制御回路63が制御信号線33を介してセレクタ回路22に制御信号を送信し、セレクタ回路22は、供給電圧制御回路61、電力信号線32、映像信号線31及びフィードバック値測定回路62が接続された第1の経路を形成する(ステップS201)。供給電圧制御回路61は、電力信号線32に供給電圧Vctrl及び供給電流Ictrlを供給し、フィードバック値測定回路62が供給電圧Vctrlに基づき、第1の経路でのフィードバック電圧Vfb1及びフィードバック電流Ifb1を測定する(ステップS203)。演算回路64は、下記(5)式から映像信号線31の抵抗値Rと電力信号線32の抵抗値Rの和R+Rを算出する(ステップS205)。電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比aが既知であるため、下記(5)式は、下記(7)式に変換されることになり、ステップS205において下記(7)式から電力信号線32の抵抗値Rが算出されることになる。
  R+R=(Vctrl-Vfb1)/Ifb1 ・・・(5)式
  (1+a)×R=(Vctrl-Vfb1)/Ifb1 ・・・(7)式
 本実施形態に係る内視鏡システム100Bの動作におけるステップS207~ステップS211は、第1の実施形態に係る内視鏡システム100Bの動作におけるステップS113~ステップS117と同様であるため、ここでの説明は省略する。
 本実施形態に係る内視鏡システム100Bによれば、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比R/Rが既知であるため、第1の実施形態に係る内視鏡システム100の動作と比較して、映像信号線31の抵抗値Rの算出が不要である。そのため、第1の実施形態に係る内視鏡システム100と比較して、定電圧回路23が不要となる。その結果、先端部11の径及び長さをより一層細くすることができる。
 よって、電力信号線32の抵抗値Rに対する映像信号線31の抵抗値Rの比R/Rが既知であれば、映像信号線31の径と電力信号線32の径とは、互いに異なる径であってもよいし、映像信号線31の径と電力信号線32の径とが略同径であってもよい。
 各実施形態におけるプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 1   内視鏡
 2   カメラユニット
 3   伝送ケーブル
 5   ユニバーサルコード
 6   コントロールユニット
 7   光源装置
 8   表示装置
 10  挿入部
 11  先端部
 12  湾曲部
 13  可撓管部
 14  内視鏡スコープ
 15  光源
 16  光学系
 17  操作部
 21  撮像素子
 22  セレクタ回路
 23  定電圧回路
 31  映像信号線
 32  電力信号線
 33  制御信号線
 60  制御回路
 61  供給電圧制御回路
 62  フィードバック値測定回路
 63  セレクタ回路制御回路
 64  演算回路
 65  電源回路
 66  記録部

Claims (10)

  1.  カメラユニットとコントロールユニットとが、電力信号線及び映像信号線を有する伝送ケーブルで接続された撮像システムであって、
     前記カメラユニットは、
     駆動電圧Vcisによって駆動し受光量に応じた光電変換信号を生成する撮像素子と、
     前記電力信号線の抵抗値Rを算出可能に電流が流れる経路を切り替えるセレクタ回路と、
    を備え、
     前記コントロールユニットは、
     供給電圧Vctrlを制御する供給電圧制御回路と、
     前記映像信号線の前記コントロールユニット側における電圧であるフィードバック電圧Vfb、前記映像信号線を通過した後の前記コントロールユニット側の電流であるフィードバック電流Ifb、及び前記供給電圧Vctrlに応じた供給電流Ictrlを測定するフィードバック値測定回路と、
     前記供給電圧Vctrl、前記フィードバック電圧Vfb、及び前記フィードバック電流Ifbから、前記映像信号線の抵抗値Rと前記電力信号線の抵抗値Rの和R+Rを算出し、かつ、前記抵抗値R、前記供給電流Ictrl、及び前記供給電圧Vctrlから基づいて、前記駆動電圧Vcisを算出する演算回路と、
    を備える、
     撮像システム。
  2.  前記演算回路が、前記駆動電圧Vcisの算出結果を前記供給電圧制御回路に送信し、前記供給電圧制御回路が前記算出結果に基づいて前記供給電圧Vctrlを調整する、請求項1に記載の撮像システム。
  3.  前記セレクタ回路は、前記供給電圧制御回路、前記電力信号線、前記映像信号線及び前記フィードバック値測定回路が接続されて形成される第1の経路と、前記供給電圧制御回路、前記電力信号線、及び前記撮像素子が接続されて形成される第2の経路との間で経路を切り替える、請求項1に記載の撮像システム。
  4.  前記カメラユニットは、一定の電圧Vを供給する定電圧回路を更に備え、
     前記演算回路は、前記一定の電圧V、前記電圧Vfb、及び前記電流Ifbから下記(3)式に基づいて、前記映像信号線の抵抗値R、を算出することを特徴とする、請求項1に記載の撮像システム。
      R=(V-Vfb)/Ifb ・・・(3)式
  5.  前記セレクタ回路は、前記供給電圧制御回路、前記電力信号線、前記定電圧回路、前記映像信号線、及び前記フィードバック値測定回路が接続されて形成される第3の経路と、前記供給電圧制御回路、前記電力信号線、前記映像信号線及び前記フィードバック値測定回路が接続されて形成される第1の経路と、前記供給電圧制御回路、前記電力信号線、及び前記撮像素子が接続されて形成される第2の経路との間で経路を切り替える、請求項4に記載の撮像システム。
  6.  前記電力信号線の抵抗値Rに対する前記映像信号線の抵抗値Rの比R/Rが既知であることを特徴とする、請求項1に記載の撮像システム。
  7.  前記電力信号線と前記映像信号線とは略同径であることを特徴とする、請求項1に記載の撮像システム。
  8.  前記演算回路は、ブランキング期間において、前記電力信号線の抵抗値Rを算出する、請求項1に記載の撮像システム。
  9.  撮像素子を備えるカメラユニットに電力信号線及び映像信号線によって接続可能なコントロールユニットであって、
     供給電圧Vctrlを制御する供給電圧制御回路と、
     前記映像信号線の前記コントロールユニット側における電圧であるフィードバック電圧Vfb、前記映像信号線を通過した後の前記コントロールユニット側の電流であるフィードバック電流Ifb、及び前記供給電圧Vctrlに応じた供給電流Ictrlを測定するフィードバック値測定回路と、
     前記供給電圧Vctrl、前記フィードバック電圧Vfb、及び前記フィードバック電流Ifbから、前記映像信号線の抵抗値Rと前記電力信号線の抵抗値Rの和R+Rを算出し、かつ、前記抵抗値R、前記供給電流Ictrl、及び前記供給電圧Vctrlから駆動電圧Vcisを算出する演算回路と、
    を備える、
    コントロールユニット。
  10.  請求項1に記載の撮像システムを備える、内視鏡システム。
PCT/JP2021/010315 2021-03-15 2021-03-15 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム WO2022195653A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/010315 WO2022195653A1 (ja) 2021-03-15 2021-03-15 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム
US18/368,125 US20240007766A1 (en) 2021-03-15 2023-09-14 Imaging system, control unit, camera unit, endoscopic scope, and endoscopic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010315 WO2022195653A1 (ja) 2021-03-15 2021-03-15 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/368,125 Continuation US20240007766A1 (en) 2021-03-15 2023-09-14 Imaging system, control unit, camera unit, endoscopic scope, and endoscopic system

Publications (1)

Publication Number Publication Date
WO2022195653A1 true WO2022195653A1 (ja) 2022-09-22

Family

ID=83320058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010315 WO2022195653A1 (ja) 2021-03-15 2021-03-15 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム

Country Status (2)

Country Link
US (1) US20240007766A1 (ja)
WO (1) WO2022195653A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110568U (ja) * 1988-01-20 1989-07-26
JPH07283981A (ja) * 1994-04-11 1995-10-27 Fujitsu General Ltd テレビジョンカメラの電源装置
JP2011206333A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 内視鏡装置におけるcmos撮像素子の電源装置
JP2014036724A (ja) * 2012-08-13 2014-02-27 Olympus Medical Systems Corp 撮像システム
JP2015192695A (ja) * 2014-03-31 2015-11-05 Hoya株式会社 負荷電圧制御装置、電子内視鏡および電子内視鏡システム
JP2016214571A (ja) * 2015-05-20 2016-12-22 オリンパス株式会社 内視鏡システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110568U (ja) * 1988-01-20 1989-07-26
JPH07283981A (ja) * 1994-04-11 1995-10-27 Fujitsu General Ltd テレビジョンカメラの電源装置
JP2011206333A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 内視鏡装置におけるcmos撮像素子の電源装置
JP2014036724A (ja) * 2012-08-13 2014-02-27 Olympus Medical Systems Corp 撮像システム
JP2015192695A (ja) * 2014-03-31 2015-11-05 Hoya株式会社 負荷電圧制御装置、電子内視鏡および電子内視鏡システム
JP2016214571A (ja) * 2015-05-20 2016-12-22 オリンパス株式会社 内視鏡システム

Also Published As

Publication number Publication date
US20240007766A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP6602979B2 (ja) 内視鏡装置
US8517926B2 (en) Endoscope
US9627960B2 (en) Load voltage control device, electronic endoscope and electronic endoscope system
WO2012005063A1 (ja) 内視鏡システム及び内視鏡アクチュエータの制御方法
US8360966B2 (en) Lens drive control apparatus, lens drive apparatus and endoscope system
US20200121176A1 (en) Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US11805986B2 (en) Flexible tube insertion apparatus, stiffness control apparatus, insertion method, and recording medium storing stiffness control program
US20180064310A1 (en) Flexible tube insertion apparatus
WO2022195653A1 (ja) 撮像システム、コントロールユニット、カメラユニット、内視鏡スコープ、及び内視鏡システム
WO2018211852A1 (ja) 内視鏡システム
JP6342592B1 (ja) 内視鏡システム
JP2016214381A (ja) 内視鏡装置
US11213186B2 (en) Endoscope apparatus and image processing apparatus
JP5800702B2 (ja) 内視鏡システム
JP6564536B2 (ja) 撮像装置
JP6165356B2 (ja) 内視鏡システム
EP3685732B1 (en) Systems for regulating temperature and illumination intensity at the distal tip of an endoscope
JP5253018B2 (ja) 内視鏡装置
JP7328091B2 (ja) 内視鏡及び医療用観察システム
JP6257174B2 (ja) 内視鏡装置
WO2017065004A1 (ja) 撮像装置
WO2022195743A1 (ja) 内視鏡システムおよび内視鏡の加熱制御方法
JP6535143B1 (ja) 内視鏡および内視鏡の作動方法
JP6883469B2 (ja) 内視鏡
JPH114805A (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931409

Country of ref document: EP

Kind code of ref document: A1