WO2022193966A1 - 一种监测电池的方法、电池及无人机 - Google Patents

一种监测电池的方法、电池及无人机 Download PDF

Info

Publication number
WO2022193966A1
WO2022193966A1 PCT/CN2022/079351 CN2022079351W WO2022193966A1 WO 2022193966 A1 WO2022193966 A1 WO 2022193966A1 CN 2022079351 W CN2022079351 W CN 2022079351W WO 2022193966 A1 WO2022193966 A1 WO 2022193966A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
signal
structural
control system
flight control
Prior art date
Application number
PCT/CN2022/079351
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2022193966A1 publication Critical patent/WO2022193966A1/zh
Priority to US18/369,823 priority Critical patent/US20240004405A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/652Take-off
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/80Arrangements for reacting to or preventing system or operator failure
    • G05D1/85Fail-safe operations, e.g. limp home mode
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/187Machine fault alarms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/20Aircraft, e.g. drones
    • G05D2109/25Rotorcrafts
    • G05D2109/254Flying platforms, e.g. multicopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular, to a method for monitoring a battery, a battery, and an unmanned aerial vehicle.
  • Unmanned aerial vehicle referred to as Unmanned Aerial Vehicle (UAV)
  • UAV Unmanned Aerial Vehicle
  • UAV Unmanned Aerial Vehicle
  • the main technical problem solved by the embodiments of the present invention is to provide a method for monitoring a battery, a battery and an unmanned aerial vehicle, which can effectively monitor the battery shedding problem and avoid accidents caused by the battery shedding.
  • the embodiments of the present invention provide a method for monitoring a battery, which is applied to a battery, and the battery is detachably installed on the drone through at least one structural fixing member, and the battery is connected to the drone.
  • the flight control system communication connection of the UAV includes:
  • a first signal is sent to the flight control system, and the first signal is used to instruct the flight control system to control the UAV to take off normally;
  • a second signal is sent to the flight control system, and the second signal is used to instruct the flight control system to control the UAV to prohibit taking off.
  • the method further includes:
  • a third signal is sent to the flight control system, and the third signal is used to instruct the flight control system to control the UAV to maintain normal flight;
  • a fourth signal is sent to the flight control system, where the fourth signal is used to instruct the flight control system to issue a fault prompt, and the fault prompt is used to inform the user
  • the battery is at risk of falling off.
  • the fourth signal is further used to instruct the flight control system to control the UAV to make a forced landing.
  • the flight control system is connected in communication with a mobile terminal, and the fourth signal is further used to instruct the flight control system to send the fault prompt to the mobile terminal, so as to prompt the mobile terminal through the mobile terminal user.
  • the method further includes:
  • fault information is stored, the fault information including identity information of the structural fastener not installed in place.
  • the method before the unmanned aerial vehicle takes off, before the step of detecting whether the at least one structural fastener is installed in place, the method further includes:
  • a battery in the embodiment of the present invention, comprising:
  • the signal monitoring module is connected to the battery main body, the signal monitoring module is used to collect the installation signal of at least one structural fixing piece, and the installation signal is used to reflect whether the at least one structural fixing piece is all installed in place, wherein the at least one structural fastener is used to removably mount the battery to the drone;
  • processor is connected to the signal monitoring module and the battery body respectively, and the processor is used to communicate with the flight control system of the drone;
  • a memory communicatively coupled to the processor, the memory storing instructions executable by the processor, the instructions being executed by the processor to enable the processor to respond to the installation signal.
  • the signal monitoring module includes a first resistor, and the first resistor forms a first series circuit with each structural fixing member of the at least one structural fixing member. When a structural fixing member is not installed in place, The first series circuit is disconnected;
  • the first end of the first series circuit is connected to the first end of the battery body, the second end of the first series circuit is connected to the second end of the battery body, and the first end of the first resistor is connected to the second end of the battery body.
  • One end is connected to the first end of the first series circuit, and the second end of the first resistor is connected to the first port of the processor.
  • the signal monitoring module further includes a second resistor, a first end of the second resistor is connected to a second end of the first resistor, and a second end of the second resistor is connected to the the first port of the processor.
  • the signal monitoring module includes a plurality of third resistors in the same number as the structural fixing member, a third resistor and a structural fixing member form a second series circuit, when a structural fixing member is not installed in place , the corresponding second series circuit is broken;
  • a first end of each of the second series circuits is connected to a first end of the battery body, a second end of each of the second series circuits is connected to a second end of the battery body, and each of the third The first ends of the resistors are respectively connected to the corresponding first ends of the second series circuit, and the second ends of the third resistors are respectively connected to the corresponding second ports on the processor.
  • the signal monitoring module further includes a plurality of fourth resistors in the same number as the structural fixing members, a first end of a fourth resistor is connected to a second end of a third resistor, and the fourth resistor The second end of the processor is connected to the corresponding second port on the processor.
  • an embodiment of the present invention provides an unmanned aerial vehicle, comprising a flight control system and the battery as described in the second aspect above, wherein the battery is communicatively connected to the flight control system.
  • the battery is detachably installed on the drone through at least one structural fastener, and the battery is detachably installed on the drone.
  • the flight control system of the UAV is connected by communication. Before the UAV takes off, check whether all the structural fixing parts are installed in place; if they are installed in place, send the first signal to the flight control system, and the first signal is used to indicate the flight control system.
  • the control system controls the UAV to take off normally; if at least one structural fixture that is not installed in place is detected, a second signal is sent to the flight control system, and the second signal is used to instruct the flight control system to control the UAV to prohibit takeoff. That is, the battery can be detachably installed through at least one structural fixing member, which can stabilize the battery well. Even if the structural fixing member may not be installed in place due to damage, aging or improper installation, etc. The drone is controlled to take off normally only when all the structural fixing parts are installed in place. Otherwise, take off is prohibited. Therefore, the problem of battery shedding can be effectively monitored, and accidents caused by battery shedding can be avoided, ensuring the safety of the drone. safety.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a signal monitoring module in the battery shown in FIG. 2;
  • FIG. 4 is another schematic structural diagram of the signal monitoring module in the battery shown in FIG. 2;
  • FIG. 5 is a schematic flowchart of a method for monitoring a battery according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for monitoring a battery according to another embodiment of the present invention.
  • a first embodiment of the present application provides an unmanned aerial vehicle 100 , including a flight control system 10 , a battery 20 and a fuselage 30 , and the battery 20 is detachably mounted on the unmanned aerial vehicle through at least one structural fixing member 40 fuselage 30, and the battery 20 is communicatively connected with the flight control system 10.
  • the flight control system 10 is the core system in the entire flight process of the UAV completing take-off, aerial flight, execution of tasks, and return to the field, and is equivalent to the pilot of the UAV.
  • the flight control system 10 generally includes three major parts: sensor components, flight control computers and servo actuating equipment.
  • the main functions implemented include UAV attitude stabilization and control, UAV mission equipment management and emergency control.
  • the sensor components mainly include gyroscope (flight attitude perception), accelerometer, geomagnetic induction, air pressure sensor (rough control of hovering height), ultrasonic sensor (precise control of low altitude or obstacle avoidance), optical flow sensor (accurate determination of hovering horizontal position) ), GPS module (horizontal position height rough positioning) and control circuit, etc.
  • gyroscope flight attitude perception
  • accelerometer geomagnetic induction
  • air pressure sensor rough control of hovering height
  • ultrasonic sensor precise control of low altitude or obstacle avoidance
  • optical flow sensor acceleration determination of hovering horizontal position
  • GPS module horizontal position height rough positioning
  • the flight control computer mainly includes hardware such as a main processing controller, a secondary power supply, an input/output interface, a communication interface, and a detection interface, which are integrated in the chassis.
  • the flight control computer combines the flight control software and generates instructions according to the signals of each sensor, and combines the servo actuation equipment to realize the flight control of the UAV.
  • Servo actuation equipment is mainly based on the instructions of the flight control computer, according to the specified static and dynamic requirements, through the control of the control surfaces and the engine throttle in the fuselage of the UAV, to realize the flight control of the UAV.
  • the battery refers to a rechargeable lithium battery (lithium ion or polymer battery).
  • the battery 20 is a battery capable of data communication, such as a data communication battery, which is connected to the flight control system in communication.
  • the battery 20 has a communication port, and the communication port is connected with the communication interface of the flight control system in wired communication to realize data communication.
  • the battery 20 has a wireless communication module, such as Bluetooth or a local area network, etc., and is connected to the flight control system 10 in wireless communication.
  • there is no restriction on the communication connection mode of the battery 20 there is no restriction on the communication connection mode of the battery 20 , as long as the battery 20 can perform data communication with the flight control system 10 .
  • the battery 20 is detachably mounted on the fuselage 30 of the drone 100 through at least one structural fixing member 40 to supply power to the drone 100 .
  • the structural fixing member 40 may be a locking structure such as a buckle, a lock or the like.
  • the battery 20 is installed on the drone through four snaps, and fixed by the four snaps, so that the battery 20 can be prevented from falling off due to severe flight changes during the flight of the drone 100 .
  • the battery 20 needs to be charged, open the buckle to remove the battery 20 and replace it with a new battery. It can be understood that the new battery is also adapted to the buckle.
  • any of the above-mentioned structural fixing members 40 may be damaged, aged or improperly installed and cannot be installed in place, so that the battery 20 is easy to fall off, resulting in an explosion accident.
  • the battery 20 can detect whether the structural fixing parts 40 are installed in place, so as to monitor the installation stability of the battery 20, so that the monitoring results can be sent to the flight control system 10, and the flight control system
  • the control system 10 controls the flying state of the UAV 100 according to the monitoring result, which can effectively avoid the explosion accident caused by the battery 20 falling off and ensure the safety of the UAV 100 .
  • a second embodiment of the present application provides a battery 20 , and the battery 20 can be used as the battery of the drone in the above-mentioned first embodiment.
  • the battery 20 provided in the second embodiment of the present application includes: a battery main body 21 , a signal monitoring module 22 , a processor 23 and a memory 24 .
  • the battery main body 21 is a lithium battery, which is used to supply power to the signal monitoring module 22 , the processor 23 and the drone.
  • the battery 20 is detachably mounted on the drone by at least one structural fastener.
  • the signal monitoring module 22 is connected to the battery main body 21, and the signal monitoring module 22 is used for collecting the installation signal of the at least one structural fixing member, and the installation signal is used to reflect whether the at least one structural fixing member is installed in place.
  • the installation signal reflects whether the 4 structural fixings are all installed in place. If all the 4 structural fixings are installed in place, the installation signal is the first The first state means that the four structural fixing parts are all installed in place. If one or more structural fixing parts are not installed in place, the installation signal is in the second state, and the second state means that there are structural fixing parts that are not installed in place. .
  • the signal monitoring module 22 includes a first resistor 221 , and the first resistor 221 forms a first series circuit with each structural fixing member 40 in the at least one structural fixing member.
  • the first series circuit is broken.
  • the first end of the first series circuit is connected to the first end of the battery body, the second end of the first series circuit is connected to the second end of the battery body, and the first end of the first resistor is connected to the first end of the first series circuit terminal, the second terminal of the first resistor is connected to the first port 231 of the processor 23 .
  • the first end of the battery body can be a positive electrode, and the second end of the battery body can be a negative electrode; correspondingly, the first end of the battery body can be a negative electrode, and the second end of the battery body can be a positive electrode.
  • the first end of the battery body is the positive electrode
  • the second end of the battery body is the negative electrode as an example.
  • the first series circuit when each structural fixing member 40 is installed in place, the first series circuit is turned on, the first resistor 221 acts as a current limiter to prevent short circuit, and the voltage at the second end of the first resistor 221 is the voltage of the negative electrode of the battery body.
  • the signal input to the first port 231 of the processor 23 is at a low level, so the installation signal collected by the first port 231 is at a low level, indicating that all the structural fasteners are installed in place.
  • the first series circuit will be disconnected, and the voltage of the second end of the first resistor 221 is the voltage of the positive electrode of the battery body.
  • the signal input to the first port 231 is a high-level signal , indicating that there are structural fasteners that are not in place. That is, in this embodiment, the installation signal is a level signal, and it is determined whether each structural fixing member is installed in place according to the level of the level signal.
  • the installation signal when the first end of the battery body is the negative electrode, and the second end of the battery body is the positive electrode, when the installation signal is a high-level signal, it means that all structural fixing parts are installed in place, and the installation signal is a low-level signal. , there are structural fasteners that are not in place.
  • each structural fixing member can be locked (installed in place) by pressing a button, so that the first series circuit is turned on.
  • each structural fixing member may also be locked by other means (eg, a latch), thereby making the first series circuit conduct.
  • a latch e.g., a latch
  • the signal monitoring module 22 further includes a second resistor 222, the first end of which is connected to the second resistor 222 At the second end of the first resistor 221 , the second end of the second resistor 222 is connected to the first port 231 of the processor 23 , so that the voltage can be divided.
  • the signal monitoring module 22 includes a plurality of third resistors 223 in the same number as the structural fixing members. 223 and a structural fixing member 40 form a second series circuit. When a structural fixing member is not installed in place, the corresponding second series circuit is disconnected. The first end of each second series circuit is connected to the first end of the battery body, the second end of each second series circuit is connected to the second end of the battery body, and the first end of each third resistor 223 is connected to the corresponding The first ends of the second series circuit and the second ends of the third resistors 223 are respectively connected to the corresponding second ports 232 on the processor 23 .
  • each second series circuit When each structural fixing member is installed in place, each second series circuit is turned on, and each third resistor 223 plays a current limiting role to prevent short circuit.
  • the voltage of the second end of the third resistor 1# is the voltage of the negative electrode of the battery body.
  • the signal input to the second port 1# of the processor is at a low level, so that , the sub-installation signal 1# collected by the second port 1# is a low level, indicating that the corresponding structural fixing part 1# is installed in place.
  • the second series circuit When the structural fixing member 1# is not installed in place, the second series circuit will be disconnected, and the voltage of the second end of the third resistor 223 is the voltage of the positive electrode of the battery body. At this time, the signal input to the second port 1# is high. level signal.
  • the installation signal includes the same number of sub-installation signals as the structural fixtures.
  • each sub-installation signal is a low-level signal, it means that each structure is fixed. If a sub-installation signal is a high-level signal, it means that the corresponding structural fastener is not installed in place.
  • the signal monitoring module 22 further includes a plurality of fourth resistors 224 equal to the number of structural fasteners , the first end of a fourth resistor 224 is connected to the second end of a third resistor 223 , and the second end of the fourth resistor 224 is connected to the corresponding second port 232 on the processor 23 .
  • the sub-installation signal when the first end of the battery body is the negative electrode and the second end of the battery body is the positive electrode, when the sub-installation signal is a high-level signal, it means that the corresponding structural fastener is installed in place, and the sub-installation signal is a low-voltage signal. When the signal is flat, it means that the corresponding structural fasteners are not installed in place.
  • the processor 23 is respectively connected to the signal monitoring module 22 and the battery main body 21 , so that the processor 23 can receive the installation signal generated by the signal monitoring module 22 , and the battery main body 21 can also supply power to the processor 23 .
  • the processor 23 is also used to communicate with the flight control system of the UAV, so that the flight control system can perform corresponding tasks based on the instructions of the processor, for example, control the flight state of the UAV.
  • the processor and the memory are communicatively connected.
  • a bus connection and one processor are used as an example for schematic illustration.
  • the processor 23 can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the processor 23 can implement the method for monitoring a battery in any of the following method embodiments by running the non-transitory software programs, instructions and modules stored in the memory 24 .
  • memory 24 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the method for monitoring a battery provided by the third embodiment of the present invention will be described in detail, and the method may be executed by the processor of the battery in the above-mentioned second embodiment.
  • the method S30 includes but is not limited to the following steps:
  • the battery is detachably installed on the drone by 4 locks (structural fasteners). Before the drone takes off, it is checked whether the 4 locks are installed in place.
  • the specific detection method can be determined by the above-mentioned section No.
  • the implementation of the signal monitoring module in the second embodiment can also be implemented in other ways, such as detection by a pressure sensor, which is not limited herein.
  • a first signal is sent to the flight control system, wherein the first signal is used to instruct the flight control system to control the drone to take off normally. If it is only detected that one of the locks is not installed in place, a second signal is sent to the flight control system, where the second signal is used to instruct the flight control system to control the drone to prohibit take-off, so as to remind the user to check each lock before taking off. Do a test reinstall. Therefore, before taking off, the problem of battery detachment can be effectively monitored, so as to avoid accidents caused by battery detachment, and ensure the safety of the drone.
  • the battery can be detachably installed by at least one structural fixing member, which can stabilize the battery very well. Even if the structural fixing member may not be installed in place due to damage, aging or improper installation, etc. All structural fixings are tested, and the drone can be controlled to take off normally only when all structural fixings are installed in place. Otherwise, takeoff is prohibited. Therefore, the problem of battery shedding can be effectively monitored and accidents caused by battery shedding can be avoided. Human and machine safety.
  • the method S30 further includes:
  • the structural fixings may also be installed in place. In order to eliminate this hidden danger, during the flight of the drone, all structural fasteners are tested to check whether they are installed in place. It can be understood that the detection may be real-time detection or detection at a preset frequency, and the specific detection method is the same as that in the above-mentioned embodiment, and the description will not be repeated here.
  • the battery is detachably installed on the drone by 4 locks (structural fasteners).
  • a third signal is sent to the drone.
  • control system instructing the flight control system to control the drone to maintain normal flight; if only one of the locks is detected not installed in place, a fourth signal will be sent to the flight control system, instructing the flight control system to issue a fault prompt, thereby informing the user that the There is a risk of the battery falling off. That is, during the flight, by monitoring the battery detachment problem, when there is a risk of detachment, a fault prompt is issued in time to remind the user to take timely measures to avoid accidents.
  • the fourth signal is also used to instruct the flight control system to control the UAV to make a forced landing. It can be understood that when at least one structural fixing part that is not installed in place is detected, it indicates that the battery is at risk of falling off. At this time, the fourth signal is used to instruct the flight control system to control the drone to make a forced landing, which can minimize the risk of the drone. Risk of frying due to battery falling off. After controlling the drone to make a forced landing, the user can reinstall the structural fasteners that are not installed in place, or perform maintenance and replacement.
  • the flight control system is connected in communication with the mobile terminal, and the fourth signal is further used to instruct the flight control system to send a fault prompt to the mobile terminal, so as to prompt the user through the mobile terminal.
  • the mobile terminal may be a remote control or a mobile phone or the like.
  • prompting the user through a remote control or mobile terminal such as a mobile phone near the user can more intuitively and quickly inform the user that the battery is at risk of falling off, and it is also convenient for the user to control the drone to land through the mobile terminal in time.
  • the method further includes:
  • the identity information of the structural fixing part a and the structural fixing part b is stored as the fault information, which can be analyzed and located for the subsequent user. Provides data support when structural fasteners are not in place.
  • the identity information of the structural fixing member may be the identity identification or the installation position identification of the structural fixing member or the like.
  • the method before step S31, the method further includes:
  • the drone takes off before the drone takes off, first, it is determined that the communication authentication between the battery and the flight control system is successful. For example, the model pairing of the battery and the flight control system is successful and the communication connection is successful. On the one hand, it is ensured that the battery and the flight control system are normal. Connect and adapt to ensure flight safety. On the other hand, ensure that the flight control system can receive the instructions sent by the battery, so that the monitoring of the battery can be carried out smoothly.
  • the battery is detachably installed on the UAV through at least one structural fastener, and the battery is connected to the flight control system of the UAV.
  • the battery Before the UAV takes off, check whether all the structural fasteners are installed in place; are installed in place, send a first signal to the flight control system, the first signal is used to instruct the flight control system to control the UAV to take off normally; if at least one structural fixture that is not installed in place is detected, send a second signal to the The flight control system, the second signal is used to instruct the flight control system to control the UAV to prohibit take-off.
  • the battery can be detachably installed through at least one structural fixing member, which can stabilize the battery well.
  • the structural fixing member may not be installed in place due to damage, aging or improper installation, etc.
  • the drone is controlled to take off normally only when all the structural fixing parts are installed in place. Otherwise, take off is prohibited. Therefore, the problem of battery shedding can be effectively monitored, and accidents caused by battery shedding can be avoided, ensuring the safety of the drone. safety.
  • An embodiment of the present invention further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, causes The processor executes the method of monitoring a battery in any of the above embodiments.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separated unit, that is, it can be located in one place, or it can be distributed over multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program is During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种监测电池(20)的方法、电池(20)及无人机,涉及无人机技术领域,该方法通过至少一个结构固定件(40)可拆卸安装电池(20),能很好地稳固电池(20),面对结构固定件(40)可能存在因损坏、老化或安装不当等无法安装到位的问题,在起飞前,对各结构固定件(40)均进行检测,只有在各结构固定件(40)均安装到位时才控制无人机正常起飞,否则,禁止起飞,从而,能够有效监测电池(20)脱落问题,避免因电池(20)脱落而发生事故,保证了无人机的安全性。

Description

一种监测电池的方法、电池及无人机
本申请要求于2021年03月19日提交中国专利局、申请号为2021102962256、申请名称为“一种监测电池的方法、电池及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种监测电池的方法、电池及无人机。
背景技术
无人驾驶飞机,简称无人机(Unmanned Aerial Vehicle,UAV),是一种通过无线电遥控设备和内置的程序来控制飞行姿态的不载人飞机,由于其具有机动灵活、反应快速、无人驾驶、操作要求低等优点,现已广泛应用于航拍、植保、电力巡检、救灾等众多领域。一般,无人机在实际应用中,配备多个机载可拆卸的电池,可拆卸的电池方便替换充电。
然而,在飞行的过程中经常会出现电池脱落问题,容易导致炸机事故,这种事故一旦发生不仅给用户造成财产损失,而且不利于厂家分析定位问题。因此,为了避免这类事故的发生,同时也为了精准定位事故原因,本领域技术人员有必要亟需解决电池脱落问题。
发明内容
本发明实施例主要解决的技术问题是提供一种监测电池的方法、电池及无人机,能有效监测电池脱落问题,避免因电池脱落而发生事故。
为解决上述技术问题,第一方面,本发明实施例中提供给了一种监测电池的方法,应用于电池,所述电池通过至少一个结构固定件可拆卸安装于无人机,所述电池与所述无人机的飞控***通信连接,所述方法包括:
在所述无人机起飞前,检测所述至少一个结构固定件是否均安装到位;
若检测到各所述结构固定件均安装到位,则发送第一信号至所述飞控***,所述第一信号用于指示所述飞控***控制所述无人机正常起飞;
若检测到至少一个未安装到位的结构固定件,则发送第二信号至所述飞控***,所述第二信号用于指示所述飞控***控制所述无人机禁止起飞。
在一些实施例中,所述方法还包括:
在所述无人机的飞行过程中,检测所述至少一个结构固定件是否均安装到位;
若检测到各所述结构固定件均安装到位,则发送第三信号至所述飞控***,所述第三信号用于指示所述飞控***控制所述无人机保持正常飞行;
若检测到至少一个未安装到位的结构固定件,则发送第四信号至所述飞控***,所述第四信号用于指示所述飞控***发出故障提示,所述故障提示用于告知用户所述电池存在脱落风险。
在一些实施例中,所述第四信号还用于指示所述飞控***控制所述无人机迫降。
在一些实施例中,所述飞控***与移动终端通信连接,所述第四信号还用于指示所述飞控***将所述故障提示发送给所述移动终端,以通过所述移动终端提示用户。
在一些实施例中,所述方法还包括:
当检测到至少一个未安装到位的结构固定件时,存储故障信息,所述故障信息包括未安装到位的结构固定件的身份信息。
在一些实施例中,在所述无人机起飞前,检测所述至少一个结构固定件是否均安装到位的步骤之前,还包括:
确定所述电池和所述飞控***通信认证成功。
为解决上述技术问题,第二方面,本发明实施例中提供给了一种电 池,包括:
电池主体,
信号监测模块,所述信号监测模块与所述电池主体连接,所述信号监测模块用于采集至少一个结构固定件的安装信号,所述安装信号用于反映所述至少一个结构固定件是否均安装到位,其中,所述至少一个结构固定件用于将所述电池可拆卸安装于无人机;
处理器,所述处理器分别与所述信号监测模块和所述电池主体连接,所述处理器用于与所述无人机的飞控***通信连接;
存储器,所述存储器与所述处理器通信连接,所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够根据所述安装信号执行如上第一方面所述的方法。
在一些实施例中,所述信号监测模块包括第一电阻,所述第一电阻与所述至少一个结构固定件中各结构固定件形成第一串联电路,当一结构固定件未安装到位时,所述第一串联电路发生断路;
所述第一串联电路的第一端连接于所述电池主体的第一端,所述第一串联电路的第二端连接于所述电池主体的第二端,并且所述第一电阻的第一端连接所述第一串联电路的第一端,所述第一电阻的第二端连接所述处理器的第一端口。
在一些实施例中,所述信号监测模块还包括第二电阻,所述第二电阻的第一端连接于所述第一电阻的第二端,所述第二电阻的第二端连接于所述处理器的第一端口。
在一些实施例中,所述信号监测模块包括与结构固定件同等数量的多个第三电阻,一第三电阻与一结构固定件形成一第二串联电路,当一结构固定件未安装到位时,对应的第二串联电路发生断路;
各所述第二串联电路的第一端连接于所述电池主体的第一端,各所述第二串联电路的第二端连接于所述电池主体的第二端,并且各所述第三电阻的第一端分别连接对应的所述第二串联电路的第一端,各所述第三电阻的第二端分别连接所述处理器上对应的第二端口。
在一些实施例中,所述信号监测模块还包括与结构固定件同等数量 的多个第四电阻,一第四电阻的第一端连接于一第三电阻的第二端,所述第四电阻的第二端连接于所述处理器上对应的第二端口。
为解决上述技术问题,第三方面,本发明实施例中提供给了一种无人机,包括飞控***和如上第二方面所述的电池,所述电池与所述飞控***通信连接。
本发明实施例的有益效果:区别于现有技术的情况,本发明实施例提供的监测电池的方法、电池及无人机,电池通过至少一个结构固定件可拆卸安装于无人机,电池与无人机的飞控***通信连接,在无人机起飞前,检测各结构固定件是否均安装到位;若均安装到位,则发送第一信号至飞控***,该第一信号用于指示飞控***控制无人机正常起飞;若检测到至少一个未安装到位的结构固定件,则发送第二信号至飞控***,该第二信号用于指示飞控***控制无人机禁止起飞。也即,通过至少一个结构固定件可拆卸安装电池,能很好的稳固电池,即使结构固定件可能存在因损坏、老化或安装不当等无法安装到位的问题,在起飞前,对各结构固定件均进行检测,只有在各结构固定件均安装到位时才控制无人机正常起飞,否则,禁止起飞,从而,能够有效监测电池脱落问题,避免因电池脱落而发生事故,保证了无人机的安全性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明一实施例提供的无人机的结构示意图;
图2为本发明一实施例提供的电池的结构示意图;
图3为图2所示电池中信号监测模块的结构示意图;
图4为图2所示电池中信号监测模块的另一结构示意图;
图5为本发明一实施例提供的一种监测电池的方法的流程示意图;
图6为本发明另一实施例提供的一种监测电池的方法的流程示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。此外,本文所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,本申请第一实施例提供了一种无人机100,包括飞控***10、电池20和机身30,该电池20通过至少一个结构固定件40可拆卸安装于无人机的机身30,并且,电池20与飞控***10通信连接。
其中,飞控***10是无人机完成起飞、空中飞行、执行任务和返场回收等整个飞行过程中的核心***,相当于无人机的驾驶员。飞控系 统10一般包括传感器组件、飞控计算机和伺服作动设备三大部分,实现的主要功能包括无人机姿态稳定和控制、无人机任务设备管理和应急控制三大类。
传感器组件主要包括陀螺仪(飞行姿态感知),加速计,地磁感应、气压传感器(悬停高度粗略控制),超声波传感器(低空高度精确控制或避障),光流传感器(悬停水平位置精确确定),GPS模块(水平位置高度粗略定位)以及控制电路等。各传感器与飞控计算机连接,飞控计算机接收各传感器的信号,并根据各信号控制无人机飞行。
可以理解的是,该飞控计算机主要包括主处理控制器、二次电源、输入/输出接口、通信接口以及检测接口等硬件,这些硬件集成于机箱中。飞控计算机结合飞控软件,并根据各传感器的信号,生成指令,结合伺服作动设备,实现对无人机的飞行控制。
伺服作动设备主要根据飞控计算机的指令,按规定的静态和动态要求,通过对无人机机身中的各控制舵面和发动机节风门的控制,实现对无人机的飞行控制。
其中,电池是20指可充电的锂电池(锂离子或聚合物电池)。本申请中,电池20为能够进行数据通信的电池,如数据通信电池,与飞控***通信连接。在一些实施例中,该电池20具有通信端口,通过通信端口与飞控***的通信接口有线通信连接,实现数据通信。可以理解的是,在另一些实施例中,该电池20具有无线通信模块,例如蓝牙或局域网等,与飞控***10无线通信连接。在本申请中,对电池20的通信连接方式不作任何限制,能与飞控***10进行数据通信即可。
该电池20通过至少一个结构固定件40可拆卸安装于无人机100的机身30,以为无人机100进行供电。在一些实施例中,结构固定件40可以为卡扣、锁扣等锁紧结构。例如,该电池20通过4个卡扣安装于无人机,通过4个卡扣固定,可以防止电池20在无人机100飞行过程中因飞行变化剧烈而脱落。当需要对电池20充电时,打开卡扣取下该电池20,替换新的电池即可,可以理解的是,新的电池也与该卡扣适配。
上述任一结构固定件40可能存在损坏、老化或安装不当等无法安 装到位的问题,从而,电池20容易脱落,造成炸机事故。为了有效防止电池20脱落带来的事故,该电池20能够检测各结构固定件40是否安装到位,以对电池20的安装稳定性进行监测,从而,可以将监测结果发送给飞控***10,飞控***10根据监测结果控制无人机100的飞行状态,能有效避免因电池20脱落而导致的炸机事故,保证了无人机100的安全性。
请参阅图2,本申请第二实施例提供了一种电池20,该电池20可以作为上述第一实施例中无人机的电池。本申请第二实施例提供的电池20包括:电池主体21、信号监测模块22、处理器23和存储器24。其中,电池主体21为锂电池,用于为信号监测模块22、处理器23和无人机供电。该电池20被至少一个结构固定件可拆卸安装于无人机上。
信号监测模块22与电池主体21连接,信号监测模块22用于采集至少一个结构固定件的安装信号,该安装信号用于反映至少一个结构固定件是否均安装到位。例如,当电池被4个结构固定件可拆卸安装于无人机时,安装信号反映这4个结构固定件是否均安装到位,若这4个结构固定件均安装到位,则安装信号呈第一状态,第一状态代表这4个结构固定件均安装到位,若存在一个或多个结构固定件未安装到位,则安装信号呈第二状态,第二状态代表出现了未安装到位的结构固定件。
如图3所示,在一些实施例中,该信号监测模块22包括第一电阻221,第一电阻221与至少一个结构固定件中各结构固定件40形成第一串联电路,当一结构固定件未安装到位时,第一串联电路发生断路。第一串联电路的第一端连接于电池主体的第一端,第一串联电路的第二端连接于电池主体的第二端,并且第一电阻的第一端连接第一串联电路的第一端,第一电阻的第二端连接处理器23的第一端口231。
其中,电池主体的第一端可以是正极,则电池主体的第二端为负极;相应地,电池主体的第一端可以是负极,则电池主体的第二端为正极。示例性的,以下均以电池主体的第一端为正极,电池主体的第二端为负极为例进行说明。
可以理解的是,当各结构固定件40均安装到位时,第一串联电路 导通,第一电阻221起到限流作用,防止短路,第一电阻221的第二端的电压为电池主体负极的电压,此时,输入处理器23第一端口231的信号为低电平,从而,第一端口231采集到的安装信号为低电平,说明各结构固定件均安装到位。当一结构固定件未安装到位时,该第一串联电路会产生断路,第一电阻221的第二端的电压为电池主体正极的电压,此时,输入第一端口231的信号为高电平信号,说明存在未安装到位的结构固定件。也即,在此实施例中,安装信号为一个电平信号,根据电平信号的高低确定各结构固定件是否均安装到位。
可以理解的是,电池主体的第一端为负极,电池主体的第二端为正极时,则安装信号为高电平信号时,说明各结构固定件均安装到位,安装信号为低电平信号时,说明存在未安装到位的结构固定件。
可以理解的是,在一些实施例中,可以通过按压按键,使各结构固定件锁紧(安装到位),从而,该第一串联电路导通。在其他实施例中,也可以通过其他方式(例如插销)使得各结构固定件锁紧,进而,使得第一串联电路导通。在本申请中,对各结构固定件如何安装到位的方式不作任何限制,能使各结构固定件锁紧(安装到位)即可。
为了防止输入处理器23第一端口231的高电平信号过大而导致处理器损坏,在一些实施例中,信号监测模块22还包括第二电阻222,该第二电阻222的第一端连接于第一电阻221的第二端,第二电阻222的第二端连接于处理器23的第一端口231,从而,能够起到分压作用。
可以理解的是,该信号监测模块还有其它实现方式,如图4所示,在一些实施例中,信号监测模块22包括与结构固定件同等数量的多个第三电阻223,一第三电阻223与一结构固定件40形成一第二串联电路,当一结构固定件未安装到位时,对应的第二串联电路发生断路。各第二串联电路的第一端连接于电池主体的第一端,各第二串联电路的第二端连接于电池主体的第二端,并且各第三电阻223的第一端分别连接对应的第二串联电路的第一端,各第三电阻223的第二端分别连接处理器23上对应的第二端口232。
当各结构固定件均安装到位时,各第二串联电路均导通,各第三电 阻223起到限流作用,防止短路。以其中任意一个第二串联电路1#为例,并以电池主体的第一端为正极,电池主体的第二端为负极进行示例性说明。在该第二串联电路1#导通的情况下,第三电阻1#的第二端的电压为电池主体负极的电压,此时,输入处理器第二端口1#的信号为低电平,从而,第二端口1#采集到的子安装信号1#为低电平,说明对应的结构固定件1#安装到位。当该结构固定件1#未安装到位时,该第二串联电路会产生断路,第三电阻223的第二端的电压为电池主体正极的电压,此时,输入第二端口1#的信号为高电平信号。
基于各包括结构固定件的第二串联电路并联,在此实施例中,安装信号包括与结构固定件同等数量的子安装信号,当各子安装信号均为低电平信号时,说明各结构固定件均安装到位,若某一子安装信号为高电平信号,则说明对应的结构固定件未安装到位。
同理,为了防止输入处理器各第二端口的高电平信号过大而导致处理器损坏,在一些实施例中,信号监测模块22还包括与结构固定件同等数量的多个第四电阻224,一第四电阻224的第一端连接于一第三电阻223的第二端,所述第四电阻224的第二端连接于所述处理器23上对应的第二端口232。
可以理解的是,电池主体的第一端为负极,电池主体的第二端为正极时,则子安装信号为高电平信号时,说明对应的结构固定件安装到位,子安装信号为低电平信号时,说明对应的结构固定件未安装到位。
处理器23分别与该信号监测模块22和电池主体21连接,从而,处理器23能够接收到该信号监测模块22所产生的安装信号,并且,电池主体21还能为处理器23供电。处理器23还用于与无人机的飞控***通信连接,从而,使得飞控***能够基于该处理器的指令执行相应的任务,例如,控制无人机的飞行状态。
处理器和存储器通信连接,图2中以总线连接、一个处理器为例进行示意性说明。
可以理解的是,该处理器23可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等; 还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
存储器24作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的监测电池的方法对应的程序指令/模块。处理器23通过运行存储在存储器24中的非暂态软件程序、指令以及模块,可以实现下述任一方法实施例中的监测电池的方法。具体地,存储器24可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。
以下,对本发明第三实施例提供的监测电池的方法进行详细说明,该方法可由上述第二实施例中电池的处理器执行。
请参阅图5,该方法S30包括但不限制于以下步骤:
S31:在所述无人机起飞前,检测所述至少一个结构固定件是否均安装到位。
S32:若检测到各所述结构固定件均安装到位,则发送第一信号至所述飞控***,所述第一信号用于指示所述飞控***控制所述无人机正常起飞。
S33:若检测到至少一个未安装到位的结构固定件,则发送第二信号至所述飞控***,所述第二信号用于指示所述飞控***控制所述无人机禁止起飞。
例如,电池被4个锁扣(结构固定件)可拆解安装于无人机,在无人机起飞前,检测这4个锁扣是否都安装到位,其中,具体的检测方式可以通过上述第二实施例中信号监测模块来实现,也可以由其他方式实现,例如由压力传感器进行检测,在此不做任何限制。
若检测到这4个锁扣均安装到位时,则发送第一信号至飞控***,其中,第一信号用于指示飞控***控制无人机正常起飞。若只要检测到其中一个锁扣未安装到位,则发送第二信号至飞控***,其中,第二信 号用于指示飞控***控制无人机禁止起飞,以提醒用户在起飞前对各锁扣进行检测重新安装。从而,在起飞前,能够有效监测电池脱落问题,避免因电池脱落而发生事故,保证了无人机的安全性。
在本实施例中,通过至少一个结构固定件可拆卸安装电池,能很好的稳固电池,即使结构固定件可能存在因损坏、老化或安装不当等无法安装到位的问题,在起飞前,对各结构固定件均进行检测,只有在各结构固定件均安装到位时才控制无人机正常起飞,否则,禁止起飞,从而,能够有效监测电池脱落问题,避免因电池脱落而发生事故,保证了无人机的安全性。
在一些实施例中,请参阅图6,所述方法S30还包括:
S34:在所述无人机的飞行过程中,检测所述至少一个结构固定件是否均安装到位。
S35:若检测到各所述结构固定件均安装到位,则发送第三信号至所述飞控***,所述第三信号用于指示所述飞控***控制所述无人机保持正常飞行。
S36:若检测到至少一个未安装到位的结构固定件,则发送第四信号至所述飞控***,所述第四信号用于指示所述飞控***发出故障提示,所述故障提示用于告知用户所述电池存在脱落风险。
在无人机飞行的过程中,结构固定件也可能出现安装不到位的问题,若不及时采取措施,则存在炸机事故隐患。为了杜绝这一隐患,在无人机的飞行过程中,对所有的结构固定件均进行检测,检测是否安装到位。可以理解的是,该检测可以是实时检测,也可以是按预设频率检测,具体的检测方式与上述实施例中相同,在此不再重复说明。
例如,电池被4个锁扣(结构固定件)可拆解安装于无人机,在无人机飞行的过程中,若检测到这4个锁扣均安装到位,则发送第三信号至飞控***,指示飞控***控制该无人机保持正常飞行;若只要检测到其中一个锁扣未安装到位,则发送第四信号至飞控***,指示飞控***发出故障提示,从而告知用户该电池存在脱落风险。也即,在飞行过程中,通过监测电池脱落问题,当存在脱落风险时,及时发出故障提示, 以提醒用户及时采取措施,避免发生事故。
在本实施例中,在无人机飞行过程中,对各结构固定件均进行检测,只要出现一个未安装到位的结构件,则通过飞控***发出故障提示,以告知用户该电池存在脱落风险,从而,用户可以及时采取措施,例如停飞检测,从而能够避免因电池脱落发生事故。
为了进一步保证无人机的飞行安全,在一些实施例中,该第四信号还用于指示飞控***控制无人机迫降。可以理解的是,当检测到至少一个未安装到位的结构固定件时,说明电池存在脱落风险,此时,通过第四信号指示飞控***控制无人机迫降,能最大程度减小无人机因电池脱落而发生炸机的风险。控制无人机迫降后,用户可以对未安装到位的结构固定件重新安装,或进行维修更换等。
在一些实施例中,飞控***与移动终端通信连接,该第四信号还用于指示飞控***将故障提示发送给移动终端,以通过移动终端提示用户。可以理解的是,其中,移动终端可以为遥控器或手机等。当无人机在空中飞行时,通过位于用户身边的遥控器或手机等移动终端提示用户,能够更直观迅速告知用户电池存在脱落风险,也方便用户及时通过移动终端控制无人机降落。
在一些实施例中,所述方法还包括:
S37:当检测到至少一个未安装到位的结构固定件时,存储故障信息,所述故障信息包括未安装到位的结构固定件的身份信息。
例如,当检测到两个未安装到位的结构固定件a和结构固定件b时,此次,将结构固定件a和结构固定件b的身份信息作为故障信息进行存储,为后续用户分析定位出未安装到位的结构固定件时提供数据支持。可以理解的是,结构固定件的身份信息可以为结构固定件的身份标识或安装位置标识等。
在一些实施例中,在步骤S31之前,该方法还包括:
S38:确定所述电池和所述飞控***通信认证成功。
本实施例中,在无人机起飞前,首先,确定电池与飞控***通信认证成功,例如,电池与飞控***的型号配对成功以及通信连接成功,一 方面,保证电池与飞控***正常连接、相适配,保障飞行安全,另一方面,确保飞控***能够接受到电池发送的指令,使得对电池的监测顺利进行。
综上所述,电池通过至少一个结构固定件可拆卸安装于无人机,电池与无人机的飞控***通信连接,在无人机起飞前,检测各结构固定件是否均安装到位;若均安装到位,则发送第一信号至飞控***,该第一信号用于指示飞控***控制无人机正常起飞;若检测到至少一个未安装到位的结构固定件,则发送第二信号至飞控***,该第二信号用于指示飞控***控制无人机禁止起飞。也即,通过至少一个结构固定件可拆卸安装电池,能很好的稳固电池,即使结构固定件可能存在因损坏、老化或安装不当等无法安装到位的问题,在起飞前,对各结构固定件均进行检测,只有在各结构固定件均安装到位时才控制无人机正常起飞,否则,禁止起飞,从而,能够有效监测电池脱落问题,避免因电池脱落而发生事故,保证了无人机的安全性。
本发明其中一实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被处理器所执行时,使所述处理器执行上述任一实施例中的监测电池的方法。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读 存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种监测电池的方法,应用于电池,其特征在于,所述电池通过至少一个结构固定件可拆卸安装于无人机,所述电池与所述无人机的飞控***通信连接,所述方法包括:
    在所述无人机起飞前,检测所述至少一个结构固定件是否均安装到位;
    若检测到各所述结构固定件均安装到位,则发送第一信号至所述飞控***,所述第一信号用于指示所述飞控***控制所述无人机正常起飞;
    若检测到至少一个未安装到位的结构固定件,则发送第二信号至所述飞控***,所述第二信号用于指示所述飞控***控制所述无人机禁止起飞。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述无人机的飞行过程中,检测所述至少一个结构固定件是否均安装到位;
    若检测到各所述结构固定件均安装到位,则发送第三信号至所述飞控***,所述第三信号用于指示所述飞控***控制所述无人机保持正常飞行;
    若检测到至少一个未安装到位的结构固定件,则发送第四信号至所述飞控***,所述第四信号用于指示所述飞控***发出故障提示,所述故障提示用于告知用户所述电池存在脱落风险。
  3. 根据权利要求2所述的方法,其特征在于,所述第四信号还用于指示所述飞控***控制所述无人机迫降。
  4. 根据权利要求2所述的方法,其特征在于,所述飞控***与移动终端通信连接,所述第四信号还用于指示所述飞控***将所述故障提示发送给所述移动终端,以通过所述移动终端提示用户。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    当检测到至少一个未安装到位的结构固定件时,存储故障信息,所述故障信息包括未安装到位的结构固定件的身份信息。
  6. 根据权利要求5所述的方法,其特征在于,在所述无人机起飞前,检测所述至少一个结构固定件是否均安装到位的步骤之前,还包括:
    确定所述电池和所述飞控***通信认证成功。
  7. 一种电池,其特征在于,包括:
    电池主体,
    信号监测模块,所述信号监测模块与所述电池主体连接,所述信号监测模块用于采集至少一个结构固定件的安装信号,所述安装信号用于反映所述至少一个结构固定件是否均安装到位,其中,所述至少一个结构固定件用于将所述电池可拆卸安装于无人机;
    处理器,所述处理器分别与所述信号监测模块和所述电池主体连接,所述处理器用于与所述无人机的飞控***通信连接;
    存储器,所述存储器与所述处理器通信连接,所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够根据所述安装信号执行权利要求1-6任一项所述的方法。
  8. 根据权利要求7所述的电池,其特征在于,所述信号监测模块包括第一电阻,所述第一电阻与所述至少一个结构固定件中各结构固定件形成第一串联电路,当一结构固定件未安装到位时,所述第一串联电路发生断路;
    所述第一串联电路的第一端连接于所述电池主体的第一端,所述第一串联电路的第二端连接于所述电池主体的第二端,并且所述第一电阻的第一端连接所述第一串联电路的第一端,所述第一电阻的第二端连接所述处理器的第一端口。
  9. 根据权利要求8所述的电池,其特征在于,所述信号监测模块还包括第二电阻,所述第二电阻的第一端连接于所述第一电阻的第二端,所述第二电阻的第二端连接于所述处理器的第一端口。
  10. 根据权利要求7所述的电池,其特征在于,所述信号监测模块包括与结构固定件同等数量的多个第三电阻,一第三电阻与一结构固定 件形成一第二串联电路,当一结构固定件未安装到位时,对应的第二串联电路发生断路;
    各所述第二串联电路的第一端连接于所述电池主体的第一端,各所述第二串联电路的第二端连接于所述电池主体的第二端,并且各所述第三电阻的第一端分别连接对应的所述第二串联电路的第一端,各所述第三电阻的第二端分别连接所述处理器上对应的第二端口。
  11. 根据权利要求8所述的电池,其特征在于,所述信号监测模块还包括与结构固定件同等数量的多个第四电阻,一第四电阻的第一端连接于一第三电阻的第二端,所述第四电阻的第二端连接于所述处理器上对应的第二端口。
  12. 一种无人机,其特征在于,包括飞控***和如权利要求7-11任一项所述的电池,所述电池与所述飞控***通信连接。
PCT/CN2022/079351 2021-03-19 2022-03-04 一种监测电池的方法、电池及无人机 WO2022193966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/369,823 US20240004405A1 (en) 2021-03-19 2023-09-18 Battery monitoring method, battery and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110296225.6A CN113064084A (zh) 2021-03-19 2021-03-19 一种监测电池的方法、电池及无人机
CN202110296225.6 2021-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,823 Continuation US20240004405A1 (en) 2021-03-19 2023-09-18 Battery monitoring method, battery and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2022193966A1 true WO2022193966A1 (zh) 2022-09-22

Family

ID=76562444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079351 WO2022193966A1 (zh) 2021-03-19 2022-03-04 一种监测电池的方法、电池及无人机

Country Status (3)

Country Link
US (1) US20240004405A1 (zh)
CN (1) CN113064084A (zh)
WO (1) WO2022193966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064084A (zh) * 2021-03-19 2021-07-02 深圳市道通智能航空技术股份有限公司 一种监测电池的方法、电池及无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167804A1 (en) * 2014-12-16 2016-06-16 The Boeing Company Take-off system and method for unmanned aerial vehicles
CN106687374A (zh) * 2016-11-14 2017-05-17 深圳市大疆创新科技有限公司 检测装置及无人机
CN109239609A (zh) * 2018-11-02 2019-01-18 西安航远数字技术有限公司 一种无人机并联多电池的在位检测***
CN209311651U (zh) * 2018-11-02 2019-08-27 西安航远数字技术有限公司 一种无人机并联多电池的在位检测***
CN110383525A (zh) * 2018-01-19 2019-10-25 深圳市大疆创新科技有限公司 一种电池安全提示***
CN113064084A (zh) * 2021-03-19 2021-07-02 深圳市道通智能航空技术股份有限公司 一种监测电池的方法、电池及无人机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357247B (zh) * 2017-07-18 2019-08-16 国家电网公司 用于电力巡检的无人机自动更换电池装置及其控制方法
CN108808764A (zh) * 2018-04-28 2018-11-13 广州亿航智能技术有限公司 自动防打火无人机电池及其自动防打火方法
CN111751728A (zh) * 2020-07-01 2020-10-09 深圳市道通科技股份有限公司 一种辅助更换汽车电池的方法、装置及电池检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167804A1 (en) * 2014-12-16 2016-06-16 The Boeing Company Take-off system and method for unmanned aerial vehicles
CN106687374A (zh) * 2016-11-14 2017-05-17 深圳市大疆创新科技有限公司 检测装置及无人机
CN110383525A (zh) * 2018-01-19 2019-10-25 深圳市大疆创新科技有限公司 一种电池安全提示***
CN109239609A (zh) * 2018-11-02 2019-01-18 西安航远数字技术有限公司 一种无人机并联多电池的在位检测***
CN209311651U (zh) * 2018-11-02 2019-08-27 西安航远数字技术有限公司 一种无人机并联多电池的在位检测***
CN113064084A (zh) * 2021-03-19 2021-07-02 深圳市道通智能航空技术股份有限公司 一种监测电池的方法、电池及无人机

Also Published As

Publication number Publication date
CN113064084A (zh) 2021-07-02
US20240004405A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US11799787B2 (en) Distributed unmanned aerial vehicle architecture
WO2018058672A1 (zh) 无人机的控制方法、装置及无人飞行器
US10450077B2 (en) Flight termination for air vehicles
WO2019140617A1 (zh) 电池控制方法、电池控制***、无人机及电池
CN113156999B (zh) 一种集群编队飞机异常故障等级处理的方法、***及应用
CN111213106B (zh) 一种无人机的降落控制方法、飞行控制设备及无人机
US20170104353A1 (en) Battery management system
WO2022193966A1 (zh) 一种监测电池的方法、电池及无人机
WO2017185363A1 (zh) 无人飞行器的控制方法、装置及***
WO2018076193A1 (zh) 电池温度检测方法、控制***、电池及无人飞行器
US20200192453A1 (en) Common Unmanned System Architecture
JP7246192B2 (ja) 特定の飛行状態を支援するために航空機の複数のエンジンによって生成される推力を制御するための方法及びシステム
US11354202B1 (en) Mixed-criticality network for common unmanned system architecture
US20190079511A1 (en) Methods and Systems for Rotor Anomaly Detection and Response
US11687400B2 (en) Method and system for controlling auxiliary systems of unmanned system
US20190002087A1 (en) Automated aircraft fuel management and transfer system
US11061397B2 (en) Power module for common unmanned system architecture
WO2020107465A1 (zh) 控制方法、无人机和计算机可读存储介质
US20220130184A1 (en) Flight data recorder for unmanned aircraft systems
WO2021217405A1 (zh) 电池剩余电量的调节方法、装置和可移动平台
US20240152162A1 (en) Control method and device of unmanned aerial vehicle system, unmanned aerial vehicle system and storage medium
CN106886226A (zh) 一种无人机***
CN116620590A (zh) 电池管理方法、电池管理装置及无人机
CN116700309A (zh) 遥控无人机、遥控无人机的控制方法及其控制装置
CN113212774A (zh) 一种无人机故障监控与告警装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770321

Country of ref document: EP

Kind code of ref document: A1