WO2022193605A1 - 储能装置的放电***及新能源交通车辆的地面放电*** - Google Patents

储能装置的放电***及新能源交通车辆的地面放电*** Download PDF

Info

Publication number
WO2022193605A1
WO2022193605A1 PCT/CN2021/120168 CN2021120168W WO2022193605A1 WO 2022193605 A1 WO2022193605 A1 WO 2022193605A1 CN 2021120168 W CN2021120168 W CN 2021120168W WO 2022193605 A1 WO2022193605 A1 WO 2022193605A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
storage device
energy storage
switch
module
Prior art date
Application number
PCT/CN2021/120168
Other languages
English (en)
French (fr)
Inventor
宋乾儒
蔡宇峰
陈洁莲
陶洪亮
王雄
吴雪峰
谷涛
宁佳伟
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2022193605A1 publication Critical patent/WO2022193605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere

Definitions

  • the present application relates to the field of new energy transportation, in particular to a discharge system of an energy storage device and a ground discharge system of a new energy transportation vehicle.
  • the purpose of this application is to provide a discharge system for an energy storage device and a ground discharge system for a new energy transportation vehicle, which can ensure that the energy storage device can be discharged below a safe voltage value and improve the safety and reliability of the maintenance of the energy storage device .
  • the present application provides a discharge system for an energy storage device, including:
  • a discharge circuit connected to the energy storage device
  • a control module configured to obtain a discharge mode; when the discharge mode is the first discharge mode, control the energy storage device to discharge at a constant discharge current through the discharge circuit until the energy storage device is discharged to below a safe voltage value; When the discharge mode is the second discharge mode, the energy storage device is controlled by the discharge circuit to discharge at the constant discharge current first, and when the energy storage device is discharged until the constant current discharge condition is not satisfied, the energy storage device is discharged through the discharge circuit.
  • the circuit controls the energy storage device to discharge with a decaying discharge current until the energy storage device is discharged below the safe voltage value, and the decaying discharge current is negatively correlated with the discharge duration of the energy storage device.
  • the discharge circuit includes a first inductor, a first capacitor and a switch module connected to the first inductor, and a load module connected to the switch module;
  • the control module is specifically used to obtain the discharge mode; when the discharge mode is the first discharge mode, output a corresponding pulse signal to control the switch module to be in an alternately transformed first switch state or a second switch state, so that the The energy storage device is discharged with a constant discharge current until the energy storage device is discharged to below the safe voltage value; when the discharge mode is the second discharge mode, the corresponding pulse signal is first output to control the switch module to be in the alternately transformed state.
  • the energy storage device In the first switch state or the second switch state, the energy storage device is discharged with the constant discharge current, and when the energy storage device is discharged to the point that the constant current discharge condition is not satisfied, a corresponding pulse signal is output to control the switch
  • the module is maintained in the first switch state, so that the energy storage device is discharged with a decaying discharge current until the energy storage device is discharged below the safe voltage value;
  • the first inductor stores energy first and then releases energy, and the first capacitor discharges
  • the first inductor When the switch module is in the second switch state, the first inductor first releases energy and then stores energy, and the first capacitor charges.
  • the output corresponding pulse signal controls the switch module to be in the alternately transformed first switch state or the first switch state.
  • the process of two switch states including:
  • Outputting a pulse signal whose duty ratio corresponds to the voltage of the energy storage device controls the switch module to be in a first switch state or a second switch state that is alternately transformed.
  • the duty cycle of the pulse signal and the voltage of the energy storage device satisfy a first relational formula, and the first relational formula is:
  • ID is the discharge current of the energy storage device
  • U Cs is the voltage of the energy storage device
  • D is the duty cycle
  • R is the resistance value of the load module.
  • the load module includes a resistive load
  • the load module includes a series connected resistive load and an inductive load.
  • the switch module includes n parallel switch branches, each of the switch branches includes a first switch tube, and n is a positive integer.
  • each of the switch branches further includes a second switch tube and/or m diodes connected to the first switch tube, where m is 1 or 2.
  • the discharge circuit further includes a detection module and a precharge module
  • the detection module for detecting the voltage of the first capacitor
  • the control module is further configured to precharge the first capacitor by controlling the precharging module when the voltage of the first capacitor is 0, and when the voltage of the first capacitor reaches a preset voltage value , and stop precharging the first capacitor by controlling the precharging module.
  • the detection module includes:
  • a first voltage detection unit for monitoring the voltage of the energy storage device
  • a second voltage detection unit for monitoring the voltage of the first capacitor
  • a current detection unit for monitoring the discharge current of the energy storage device.
  • the precharge module includes a precharge switch, a short switch and a precharge resistor, wherein:
  • the first end of the precharge switch is connected to the positive electrode of the energy storage device and the first end of the short switch
  • the second end of the precharge switch is connected to the first end of the precharge resistor
  • the The second end of the precharge resistor is connected to the second end of the short switch and the first end of the first inductor.
  • the discharge circuit further includes:
  • the input positive pole is connected with the positive pole of the energy storage device, and the input negative pole is connected with the negative pole of the energy storage device.
  • the discharge circuit further includes:
  • the drive detection module is used to receive the pulse signal output by the control module, control the switch module to be in the first switch state or the second switch state according to the pulse signal, and also be used for Status information is fed back to the control module.
  • the discharge system of the energy storage device further includes:
  • the human-computer interaction module is used to receive the discharge mode selection command.
  • the present application also provides a ground discharge system for a new energy transportation vehicle, including the discharge system of the energy storage device described in any one of the above.
  • the present application provides a discharge system for an energy storage device.
  • the energy storage device and other components directly electrically connected to the energy storage device need to be maintained or disassembled, the energy storage device is discharged through a discharge circuit.
  • the self-discharge mode of the energy storage device in this application has short discharge time and high efficiency.
  • the application can select different discharge modes according to the actual working conditions, and control the energy storage device to discharge at a constant discharge current or discharge at a constant discharge current and decay.
  • the discharge in the form of a current combination ensures that the energy storage device can be discharged below a safe voltage value, thereby improving the safety and reliability of the maintenance of the energy storage device.
  • the present application also provides a ground discharge system for a new energy transportation vehicle, which has the same beneficial effects as the above-mentioned discharge system of the energy storage device.
  • FIG. 1 is a schematic structural diagram of a discharge system of an energy storage device provided by the application.
  • FIG. 2a is a schematic structural diagram of a switch module provided by the application.
  • 2b is a schematic structural diagram of another switch module provided by the application.
  • 2c is a schematic structural diagram of another switch module provided by the application.
  • 2d is a schematic structural diagram of another switch module provided by the application.
  • 2e is a schematic structural diagram of another switch module provided by the application.
  • 2f is a schematic structural diagram of another switch module provided by the application.
  • 2g is a schematic structural diagram of another switch module provided by the application.
  • 2h is a schematic structural diagram of another switch module provided by the application.
  • 3a is a schematic structural diagram of a discharge system of another energy storage device provided by the application.
  • 3b is a schematic structural diagram of a discharge system of another energy storage device provided by the application.
  • FIG. 4 is a schematic structural diagram of a discharge system of another energy storage device provided by the application.
  • FIG. 5 is a schematic structural diagram of a discharge system of another energy storage device provided by the application.
  • FIG. 6 is a schematic structural diagram of a discharge system of another energy storage device provided by the application.
  • FIG. 7 is a schematic structural diagram of a discharge system of another energy storage device provided by the present application.
  • the core of the present application is to provide a discharge system for an energy storage device and a ground discharge system for a new energy transportation vehicle, which can ensure that the energy storage device can be discharged below a safe voltage value and improve the safety and reliability of the maintenance of the energy storage device .
  • FIG. 1 is a schematic structural diagram of a discharge system of an energy storage device provided by the application.
  • the discharge system of the energy storage device includes:
  • a discharge circuit 2 connected to the energy storage device 1;
  • the control module 3 is used to obtain the discharge mode; when the discharge mode is the first discharge mode, the discharge circuit 2 controls the energy storage device 1 to discharge with a constant discharge current until the energy storage device 1 discharges to a safe voltage value; when the discharge mode is In the second discharge mode, the energy storage device 1 is controlled by the discharge circuit 2 to discharge with a constant discharge current. When the energy storage device 1 is discharged to the point where the constant current discharge condition is not satisfied, the energy storage device 1 is controlled by the discharge circuit 2 to discharge at a decaying discharge current. Until the energy storage device 1 is discharged below the safe voltage value, the decay discharge current is negatively correlated with the discharge duration of the energy storage device 1 .
  • the super capacitor Cs is used as the energy storage device 1 for description, and the description of the super capacitor Cs is represented by the super capacitor, which can be a single unit, a module, a combination of monomers or a module.
  • the energy storage device 1 can also be other devices or systems that have the same function as the supercapacitor Cs, or even a large-capacity capacitor, a battery, and the like.
  • the discharge system includes a discharge circuit 2 and a control module 3 , wherein the discharge circuit 2 is used to connect with the super capacitor Cs, controlled by the control module 3 , and discharge the super capacitor Cs to a safe level under the control of the control module 3 Below the voltage value, in order to ensure safety when the supercapacitor Cs and other equipment connected to the supercapacitor Cs are maintained and/or replaced in the future.
  • the supercapacitor Cs can have the following two discharge modes, one is to discharge with a constant discharge current to below the safe voltage value, the other is to discharge with a constant discharge current first, and then discharge with a decaying discharge current to a safe voltage value
  • the decay discharge current is negatively correlated with the discharge duration of the supercapacitor Cs. The user can flexibly select the discharge mode according to the actual working conditions.
  • the discharge circuit 2 includes but is not limited to a first inductor L, a first capacitor C, a switch module 21 and a load module 22, wherein the first capacitor C and the switch module 21 are connected to the first inductor L, and the load module 22 is connected to the switch module 21 connections.
  • the switch module 21 and the load module 22 can have many different structures.
  • the switch module 21 may include n parallel switch branches, where n is a positive integer, each switch branch includes a first switch tube V1, and may also include a second switch tube connected to the first switch tube V1 V2 and/or m diodes, where m is 1 or 2, that is, in each switch branch in this embodiment, the first switch tube V1 is an essential component, and the second switch tube V2 and the diode are non-essential components.
  • the first switch tube V1 and the second switch tube V2 can be IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), GTO (Gate Turn-off Thyristor, gate can be turned off thyristor), GTR (Giant Transistor) , high-power transistor or power transistor), MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, metal oxide semiconductor field effect transistor), IGCT (Integrated Gate-Commutated Thyristor, integrated gate commutated thyristor), IEGT (Injection Enhanced Gate) Transistor, electron injection enhanced gate transistor) or other semiconductor switching devices with similar functions, as well as wide bandgap semiconductor switching devices represented by SiC (silicon carbide), GaN (gallium nitride), the switches in all drawings in this application
  • the tubes are all represented in the form of IGBT tubes.
  • connection port and the port corresponding to the IGBT can be replaced by equivalent ones.
  • the first diode and the second diode can be power diodes, or power diodes.
  • the diodes in all the drawings in this application are represented by the structure of power diodes.
  • this embodiment provides the structure of 8 switch branches as shown in FIGS. 2a-2h, including a combined structure of two switch tubes and one diode, a combined structure of two switch tubes and two diodes, A combined structure of a switch tube and a diode, a combined structure of a switch tube and two diodes, and a structure of a switch tube.
  • the load module 22 may be composed of a resistive load R, and as shown in FIG. 3b, the load module 22 may also be composed of a resistive load R and an inductive load L01 in series.
  • the super capacitor Cs can have two discharge modes.
  • the first discharge mode corresponds to discharging with a constant discharge current
  • the second discharge mode corresponds to discharging with a constant discharge current and then attenuating the discharge current.
  • the stage of supercapacitor Cs discharging with constant discharge current is the constant current discharge (CCD) stage of supercapacitor Cs
  • the stage of discharging with decaying discharge current is the current decay discharge (DCD) stage of supercapacitor Cs.
  • CCD constant current discharge
  • DCD current decay discharge
  • the switch module that only includes one switch branch and the switch branch adopts the structure shown in FIG. 2a, and the load module that only includes the resistive load R as examples.
  • the constant current discharge stage and the current decay discharge stage of Cs will be described separately.
  • Discharge initial voltage U Cs_Init the super capacitor Cs is connected to the discharge circuit 2, the terminal voltage of the super capacitor Cs before the start of discharge or at the initial moment of discharge;
  • Discharge termination voltage U Cs_End the remaining terminal voltage of the super capacitor Cs after the discharge process is terminated.
  • the discharge termination voltage U Cs_End is not greater than the safe voltage value of 36V.
  • Constant current discharge initial voltage U Cs_CCD_Init the terminal voltage of the super capacitor Cs before the constant current discharge starts or at the initial moment of the constant current discharge.
  • the constant current discharge stage is the initial discharge stage of the super capacitor Cs
  • the constant current discharge initial voltage U Cs_CCD_Init is equal to the discharge initial voltage U Cs_Init .
  • Constant current discharge termination voltage U Cs_CCD_End the remaining terminal voltage of the super capacitor Cs after the constant current discharge phase is terminated.
  • Current decay discharge termination voltage U Cs_DCD_End the remaining terminal voltage of the supercapacitor Cs after the current decay discharge phase is terminated.
  • the current decay discharge stage is the final discharge stage, and the current decay discharge end voltage U Cs_DCD_End is equal to the discharge end voltage U Cs_End .
  • Total discharge time TD the time taken for the supercapacitor Cs to discharge from the initial discharge voltage U Cs_Init to the discharge termination voltage U Cs_End .
  • Constant current discharge time T D_CCD in the constant current discharge stage, the time taken for the supercapacitor Cs to discharge from the constant current discharge initial voltage U Cs_CCD_Init to the constant current discharge termination voltage U Cs_CCD_End .
  • Nominal discharge current ID the nominal discharge current value of the discharge circuit 2, which is equal to the average value of the discharge current in the constant current discharge stage or the average value of the discharge current in each switching cycle.
  • the switching period is the interval from the turn-on (turn-off) of the first switch tube V1 to the next turn-on (turn-off), and the switching frequency is the turn-on (turn-off) of the first switch tube V1 per unit time. off) times.
  • Duty ratio D in one switching period Ts, the ratio of the on-time of the first switch tube V1 to the switching period Ts is called the on-duty ratio, abbreviated as the duty ratio.
  • the pulses of the first switch tube V1 and the second switch tube V2 are blocked, and both are in the off state.
  • the voltage uc of the first capacitor C is equal to the voltage U cs of the super capacitor Cs
  • the current i L of the first inductor L is 0.
  • the control module 3 sends corresponding pulse signals to the first switch tube V1 and the second switch tube V2, so that the switch module 21 is in the first switch state or the second switch state alternately, and the discharge current rapidly increases to The nominal discharge current ID is then maintained at the nominal discharge current ID for continuous discharge.
  • the first switch tube V1 In the first switch state, the first switch tube V1 is turned on, the second switch tube V2 is turned off, the super capacitor Cs, the first inductor L, the first capacitor C, the first switch tube V1, and the load module 22 form a double conduction loop, The first inductor L releases energy first and then stores energy, and the first capacitor C discharges;
  • the first switch tube V1 and the second switch tube V2 are both turned off, the super capacitor Cs, the first inductor L, and the first capacitor C form a conducting loop, the first inductor L stores energy first and then releases energy, and the first A capacitor C is charged;
  • the chopper control of the first switch tube V1 mainly has two modulation modes, namely PWM (Pulse Width Modulation, pulse width modulation) and PFM (Pulse Frequency Modulation, pulse frequency modulation).
  • PWM Pulse Width Modulation, pulse width modulation
  • PFM Pulse Frequency Modulation, pulse frequency modulation
  • the modulation mode of PWM Keep the switching period Ts constant, adjust the on-time ton or duty cycle D
  • the modulation method of PFM keep the on-time ton constant, and adjust the switching period Ts or switching frequency fs
  • this application uses PWM as an example to illustrate .
  • the average value U C_avg of the voltage of the first capacitor C is equal to the voltage U Cs of the super capacitor Cs, the discharge current ID of the super capacitor Cs, or the first capacitor C in one switching period.
  • the average value IL of the inductor current of an inductor L satisfies the following relationship with the voltage U Cs of the super capacitor Cs, the resistance value R of the load module 22, and the duty cycle D corresponding to the first switch tube V1:
  • the discharge current ID of the super capacitor Cs can be adjusted by adjusting the duty cycle D of the pulse signal corresponding to the first switch tube V1.
  • the control module 3 can determine the duty cycle D of the currently output pulse signal according to the obtained voltage U Cs of the supercapacitor Cs, thereby The on-time of the first switch tube V1 is adjusted, and then the discharge current ID of the super capacitor Cs is adjusted to be constant at a certain current value.
  • the voltage U Cs of the supercapacitor Cs decreases, it is appropriate to increase the duty cycle of the currently output pulse signal, so that the discharge current ID of the supercapacitor Cs is constant.
  • the duty cycle D has the minimum value, and the minimum value is:
  • the discharge current ID of the supercapacitor Cs can be controlled to remain unchanged by increasing the duty cycle D , thereby realizing constant current discharge.
  • the discharge current ID is controllable, continuous and non- abrupt .
  • the constant current discharge time T CCD is:
  • the voltage U Cs of the supercapacitor Cs gradually decreases.
  • the super capacitor Cs enters the current decay discharge stage through the discharge circuit 2 .
  • the control module 3 In the current decay and discharge stage, the control module 3 outputs a corresponding pulse signal (a pulse signal with a duty cycle of 1) to keep the first switch tube V1 turned on, and at the same time controls the second switch tube V2 to keep turning off, the supercapacitor Cs, the first switch tube V2
  • a pulse signal with a duty cycle of 1 a pulse signal with a duty cycle of 1
  • the supercapacitor Cs the first switch tube V2
  • An inductor L, a first capacitor C, a first switch tube V1, and a load module 22 form a double conduction loop, the super capacitor Cs continues to discharge, the first inductor L continues to discharge energy, and the first capacitor C continues to discharge; at this stage, the first capacitor C continues to discharge.
  • the requirement can be met by discharging the supercapacitor Cs to a safe voltage value below 36V, that is, the discharge termination voltage U Cs_End ⁇ 36V.
  • the supercapacitor Cs In the first discharge mode, the supercapacitor Cs only needs to directly discharge the supercapacitor Cs to a safe voltage below 36V through the constant current discharge stage; the constant current discharge termination voltage U Cs_CCD_end ⁇ 36V, and no current decay discharge will be performed after the constant current discharge stage. stage, the constant current discharge end voltage UCs_CCD_end is equal to the discharge end voltage UCs_End, and the total discharge time T D is equal to the constant current discharge time T CCD .
  • the constant current discharge end voltage U Cs_CCD_End is equal to the current decay discharge initial voltage U Cs_DCD_Init
  • the current decay discharge end voltage U Cs_DCD_End is equal to the discharge end voltage U Cs_End
  • the total discharge time TD is equal to the difference between the constant current discharge time T CCD and the current decay discharge time T DCD and.
  • the values of the first capacitor C and the first inductance L should be selected as large as possible to ensure that the voltage of the first capacitor C and the first inductance L The current remains stable and continuous.
  • the first capacitor C and the first inductor L can be selected according to the voltage fluctuation ripple requirements of the first capacitor C and the current fluctuation ripple requirements of the first inductor L during the discharge process, so as to ensure the normal completion of the discharge process. The requirements are as follows: :
  • ⁇ U C % max is the maximum allowable peak-to-peak ripple factor of the voltage of the first capacitor C
  • ⁇ ID % max is the maximum allowable peak-to-peak ripple factor of the discharge current.
  • the load module 22 can also select the series combination of the resistive load R and the inductive load L01, so that the resistance current is continuous when the discharge circuit 2 is working, the resistance selection conditions are reduced, and the composition is optimized.
  • the more practical discharge circuit 2 of the supercapacitor Cs During the operation of the discharge circuit 2 , the discharge current ID of the supercapacitor Cs , or the average value of the inductor current IL in the switching period, and the average value of the resistance current IR in the switching period, the supercapacitor Cs voltage U Cs , the resistance R , the conduction duty ratio D of the switch tube V1 satisfies the following relationship:
  • the structure of the load module 22 is also adjusted accordingly.
  • the control module 3 adopts out-of-phase chopper control for the multiple switching branches to multiply the discharge current while reducing the discharge current pulsation, and simultaneously reduce the voltage pulsation of the first capacitor C and the current pulsation of the first inductor L . If the voltage ripple of the first capacitor C and the current ripple of the first inductor L are kept the same, the capacitance value of the first capacitor C and the inductance value of the first inductor L are greatly reduced, thereby reducing the volume and size of the capacitor device and the inductor device. cost.
  • FIG. 4 shows two switch branches and corresponding resistance output configuration forms.
  • the first switch branch and the second switch branch both include a first switch tube, a second switch tube, and a first diode. and the second diode, the load module includes a first resistive load R01 and a second resistive load R02, for ease of distinction, V1, V2, D1, D2 in FIG.
  • the switch tube, the second switch tube, the first diode, and the second diode are represented by V3, V4, D3, and D4, respectively, the first switch tube, the second switch tube, the first switch tube, the first switch tube, the first switch tube, the first switch tube diode and second diode.
  • the pulse signals sent by the control module 3 to V1 and V3 differ by 180° in the switching period Ts, so as to realize the phase-shift control of V1 and V3, and the switching frequency fs remains unchanged. It can be understood that the phase difference varies according to the condition of the switching branch. number confirmed.
  • the discharge current ID of the supercapacitor Cs or the average value of the inductor current IL during the switching period, and the voltage U Cs of the supercapacitor Cs, the resistance value R, the on-duty ratio D of V1 and V3 satisfy the following relationship:
  • the voltage of the first capacitor C is pulsated It is reduced to half of the original single branch, and the current ripple of the first inductor L is reduced to 1/4 of the original single branch.
  • the voltage pulsation of the first capacitor C and the current pulsation of the first inductance L remain the same as the original single branch, then the capacitance of the first capacitor C and the inductance of the first inductor L are both reduced to a single branch half of .
  • the switch module 21 selects the structure shown in Figure 2a, Figure 2b, Figure 2c, Figure 2d, Figure 2f, Figure 2g
  • one end of the load module 22 is connected to point C, and the other end can be connected to The P point or Q point is connected
  • the above-mentioned control scheme is adopted for the switch tubes in each switch branch, when the load module 22 is respectively connected to the C point and the P point
  • the control module 3 controls the first switch tube V1 in each switch branch to turn off continuously, and performs chopper control on the second switch tube V2, so as to realize the discharge of the super capacitor Cs.
  • the discharge circuit 2 further includes a detection module and a precharge module 24;
  • a detection module for detecting the voltage of the first capacitor C
  • the control module 3 is further configured to precharge the first capacitor C by controlling the precharge module 24 when the voltage of the first capacitor C is 0, and when the voltage of the first capacitor C reaches a preset voltage value, precharge by controlling The module 24 stops precharging the first capacitor C.
  • the detection module includes:
  • a first voltage detection unit 231 for monitoring the voltage of the energy storage device 1;
  • a second voltage detection unit 232 for monitoring the voltage of the first capacitor C
  • a current detection unit 233 for monitoring the discharge current of the energy storage device 1 is provided.
  • the precharge module 24 includes a precharge switch K1, a short switch K2 and a precharge resistor R1, wherein:
  • the first end of the precharge switch K1 is connected to the positive electrode of the energy storage device 1 and the first end of the short-circuit switch K2, the second end of the precharge switch K1 is connected to the first end of the precharge resistor R1, and the second end of the precharge resistor R1 is connected.
  • the terminal is connected to the second terminal of the short switch K2 and the first terminal of the first inductor L.
  • the discharge circuit 2 provided in this embodiment is further added with a precharge module 24 and a detection module, wherein the detection module includes a terminal for monitoring the super capacitor Cs A first voltage detection unit 231 for voltage, a second voltage detection unit 232 for monitoring the terminal voltage of the first capacitor C, and a current detection unit 233 for monitoring the discharge current of the super capacitor Cs.
  • the detection module includes a terminal for monitoring the super capacitor Cs A first voltage detection unit 231 for voltage, a second voltage detection unit 232 for monitoring the terminal voltage of the first capacitor C, and a current detection unit 233 for monitoring the discharge current of the super capacitor Cs.
  • the precharge module 24 includes a precharge switch K1 , a precharge resistor R1 and a short switch K2 .
  • the control module 3 controls the first switch tube V1 and the second switch tube V2 to block the pulse, and controls the precharge switch K1 and the short-circuit switch K2 to both disconnect.
  • the inductance current of the first inductor L The capacitor voltages of the first capacitor C and the capacitor C are both zero, and the discharge circuit 2 is in a non-ready state.
  • the control module 3 controls the discharge circuit 2 to first start pre-charging to enter the standby state, and then enter the working state to discharge the supercapacitor Cs.
  • the process for the control module 3 to control the discharge circuit 2 to first start the precharge and enter the standby state includes: the control module 3 first closes the precharge switch K1, and the super capacitor Cs passes through the precharge switch K1, the precharge resistor R1, the current detection unit 233 and the first An inductor L charges the first capacitor C.
  • the control module 3 detects that the voltage of the first capacitor C reaches close to the voltage of the input super capacitor Cs, the control module 3 closes the short-circuit switch K2, opens the pre-charge switch K1, and the first The voltage of the capacitor C is equal to the voltage of the input super capacitor Cs, that is, the startup preparation is completed and the standby state is entered.
  • the voltage of the first capacitor C and the current of the first inductor L change with time as follows:
  • the control module 3 After entering the standby state, if the discharge system of the energy storage device receives an external discharge command again, the control module 3 sends a pulse signal to the first switch tube V1 to make the discharge circuit 2 enter the working state and begin to discharge the super capacitor Cs. If the discharge system of the energy storage device is in the self-judging discharge mode, after entering the standby state, the control module 3 sends a pulse signal to the first switch tube V1 to make the discharge circuit 2 enter the working state to start discharging.
  • the discharge circuit 2 further includes:
  • the input positive pole is connected to the positive pole of the energy storage device 1
  • the input negative pole is connected to the negative pole of the energy storage device 1 .
  • an isolation switch QS is added to the output side of the super capacitor Cs in this embodiment, and a bipolar isolation switch can be selected specifically. After adding the isolating switch QS, the isolating switch QS can be disconnected when the device is maintained and repaired, so as to prevent the high voltage of the super capacitor Cs from being introduced into the back-end circuit of the isolating switch QS, and improve the safety.
  • the discharge circuit 2 further includes:
  • the drive detection module is used to receive the pulse signal output by the control module 3 , control the switch module 21 to be in the first switch state or the second switch state according to the pulse signal, and feed back the state information of the switch module 21 to the control module 3 .
  • the discharge system of the energy storage device 1 further includes:
  • the human-computer interaction module is used to receive the discharge mode selection command.
  • this embodiment also adds a drive detection module connected to the control module 3 , and the drive detection module corresponds to the switch tubes in the switch branch one-to-one, as shown in FIG. 7 .
  • the drive detection module includes a first drive detection module connected to the first switch tube V1, a second drive detection module connected to the second switch tube V2, and the discharge system of the energy storage device also includes a human-computer interaction module connected to the control module 3. , external power supplies, and other equipment.
  • the first drive detection module and the second drive detection module are used to receive the pulse signal sent by the switch tube pulse output port of the control module 3, and feed back the switch tube state information obtained by the switch tube state feedback to the switch tube state feedback of the control module 3. port.
  • the switch control output port of the control module 3 sends an instruction to control the closing and opening of the precharge switch K1 and the short switch K2, and at the same time collects and divides the precharge switch K1 and the short switch K2 through the switch state feedback port.
  • the outputs of the first voltage detection unit 231 , the second voltage detection unit 232 , and the current detection unit 233 are fed back to the voltage and current collection port of the control module 3 .
  • the power input port of the control module 3 is connected to an external power supply
  • the first communication port of the control module 3 is connected to the human-computer interaction module for communication, so as to receive the discharge mode selection instruction input by the user through the human-computer interaction module
  • the second communication port of the control module 3 is connected to the human-computer interaction module.
  • the communication port communicates with other devices.
  • the present application solves the problems of slow discharge rate, uncontrollable discharge current, discontinuous sudden change of discharge in single resistance discharge and multi-stage resistance combined discharge methods, and transfer to other energy storage carrier discharge methods, other energy storage carriers.
  • the energy carrier is large in size, high in cost, complex in structure, and low in reliability, and the device cannot be repeatedly discharged for many times.
  • harmonic pollution is caused to the power grid, and the reliability is reduced, and the grid access is not allowed. , fines, etc.
  • the application effectively combines the simplicity and reliability of the resistance discharge carrier and the discharge current controllable, continuous and low ripple characteristics of the chopper circuit to realize the discharge
  • the device is simple, reliable, and versatile, with multiple repetitive discharge functions, and has a controllable, continuous, and low ripple performance of the discharge current that is friendly to the supercapacitor Cs, and reduces the dependence and impact on other equipment or systems. Adjustable with wide versatility at the same time.
  • the type of resistive load is not limited, it can be any type of resistor that satisfies the resistance characteristics
  • the type of the first capacitor C is not limited, and can be any type of capacitor that satisfies the capacitive characteristics
  • the type of the first inductance L is not limited, it can be Inductive characteristics of any kind of inductance.
  • the present application also provides a ground discharge system for a new energy transportation vehicle, including the discharge system of the energy storage device according to any one of the above.
  • the ground discharge system for a new energy transportation vehicle provided by the present application has the same beneficial effects as the discharge system of the above-mentioned energy storage device.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种储能装置的放电***及一种新能源交通车辆的地面放电***,包括控制模块和与储能装置连接的放电电路,当需要维护或拆卸储能装置及与储能装置直接电连接的其他部件时,通过放电电路对储能装置进行放电,相较于现有技术中的储能装置自放电方式,本申请放电时间短,效率高,同时,本申请可根据实际工况选择不同的放电模式,控制储能装置以恒定放电电流放电或以恒定放电电流及衰减放电电流组合的形式放电,以保证该储能装置可以放电至安全电压值以下,提高了储能装置维护的安全性和可靠性。

Description

储能装置的放电***及新能源交通车辆的地面放电***
本申请要求于2021年03月19日提交中国专利局、申请号为202110295202.3、发明名称为“储能装置的放电***及新能源交通车辆的地面放电***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源交通领域,特别涉及一种储能装置的放电***及新能源交通车辆的地面放电***。
背景技术
当前,新能源交通运输设备与服务已成为可持续绿色发展的重要途径,如电动汽车、储能式有轨电车、储能式无轨电车、ART(Autonomous rail Rapid Transit,智能轨道快运***)智轨列车等。在这些应用中,超级电容作为大功率储能部件应用日益广泛,尤其对车站间距适中、车辆功率大且要求频繁起停、快速充放电的有轨电车、无轨电车、ART智轨列车而言,超级电容以性能稳定、使用寿命长、充放电速度快、充放电次数高等优势而颇受青睐。
对以超级电容为储能部件的新能源交通运输设备,当需要维护或拆卸超级电容及与超级电容直接电连接的其他部件时,如果超级电容内部电量没有放空,直接操作极容易造成放电拉弧或伤人事故,威胁人身设备安全。若采用超级电容自放电方式,当超级电容的容值较大时,放电时间较长,很难满足相关用户的时限要求。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本申请的目的是提供一种储能装置的放电***及新能源交通车辆的地面放电***,能保证该储能装置可以放电至安全电压值以下,提高了储能 装置维护的安全性和可靠性。
为解决上述技术问题,本申请提供了一种储能装置的放电***,包括:
与储能装置连接的放电电路;
控制模块,用于获取放电模式;当所述放电模式为第一放电模式,通过所述放电电路控制所述储能装置以恒定放电电流放电,直至所述储能装置放电至安全电压值以下;当所述放电模式为第二放电模式,通过所述放电电路控制所述储能装置先以所述恒定放电电流放电,当所述储能装置放电至不满足恒流放电条件,通过所述放电电路控制所述储能装置以衰减放电电流放电,直至所述储能装置放电至所述安全电压值以下,所述衰减放电电流与所述储能装置的放电时长呈负相关。
优选的,所述放电电路包括第一电感,与所述第一电感连接的第一电容及开关模块,与所述开关模块连接的负载模块;
所述控制模块,具体用于获取放电模式;当所述放电模式为第一放电模式,输出对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第二开关状态,使所述储能装置以恒定放电电流放电,直至所述储能装置放电至安全电压值以下;当所述放电模式为第二放电模式,先输出对应的脉冲信号控制所述开关模块处于交替变换的所述第一开关状态或所述第二开关状态,使所述储能装置以所述恒定放电电流放电,当所述储能装置放电至不满足恒流放电条件,输出对应的脉冲信号控制所述开关模块维持在所述第一开关状态,使所述储能装置以衰减放电电流放电,直至所述储能装置放电至所述安全电压值以下;
当所述开关模块处于所述第一开关状态,所述第一电感先储能再释能,所述第一电容放电;
当所述开关模块处于所述第二开关状态,所述第一电感先释能再储能,所述第一电容充电。
优选的,当所述放电模式为所述第一放电模式或所述第二放电模式的恒流放电阶段,所述输出对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第二开关状态的过程,包括:
获取储能装置的电压;
输出占空比与所述储能装置的电压对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第二开关状态。
优选的,所述脉冲信号的占空比与所述储能装置的电压满足第一关系式,所述第一关系式为:
Figure PCTCN2021120168-appb-000001
其中,I D为所述储能装置的放电电流,U Cs为所述储能装置的电压,D为所述占空比,R为所述负载模块的电阻值。
优选的,所述负载模块包括阻性负载;
或,所述负载模块包括串联的阻性负载和感性负载。
优选的,所述开关模块包括n条并联的开关支路,每条所述开关支路包括第一开关管,n为正整数。
优选的,每条所述开关支路还包括与所述第一开关管连接的第二开关管和/或m个二极管,m为1或2。
优选的,所述放电电路还包括检测模块和预充电模块;
所述检测模块,用于检测所述第一电容的电压;
所述控制模块,还用于当所述第一电容的电压为0时,通过控制所述预充电模块为所述第一电容预充电,当所述第一电容的电压达到预设电压值时,通过控制所述预充电模块停止为所述第一电容预充电。
优选的,所述检测模块包括:
用于监测所述储能装置的电压的第一电压检测单元;
用于监测所述第一电容的电压的第二电压检测单元;
用于监测所述储能装置的放电电流的电流检测单元。
优选的,所述预充电模块包括预充电开关、短接开关及预充电电阻,其中:
所述预充电开关的第一端连接所述储能装置的正极及所述短接开关的第一端,所述预充电开关的第二端连接所述预充电电阻的第一端,所述预充电电阻的第二端连接所述短接开关的第二端及所述第一电感的第一端。
优选的,所述放电电路还包括:
输入正极与所述储能装置的正极连接、输入负极与所述储能装置的负极连接的隔离开关。
优选的,所述放电电路还包括:
驱动检测模块,用于接收所述控制模块输出的脉冲信号,根据所述脉冲信号控制所述开关模块处于所述第一开关状态或所述第二开关状态,还用于将所述开关模块的状态信息反馈至所述控制模块。
优选的,该储能装置的放电***还包括:
人机交互模块,用于接收放电模式选择指令。
为解决上述技术问题,本申请还提供了一种新能源交通车辆的地面放电***,包括如上文任意一项所述的储能装置的放电***。
本申请提供了一种储能装置的放电***,当需要维护或拆卸储能装置及与储能装置直接电连接的其他部件时,通过放电电路对储能装置进行放电,相较于现有技术中的储能装置自放电方式,本申请放电时间短,效率高,同时,本申请可根据实际工况选择不同的放电模式,控制储能装置以恒定放电电流放电或以恒定放电电流及衰减放电电流组合的形式放电,以保证该储能装置可以放电至安全电压值以下,提高了储能装置维护的安全性和可靠性。本申请还提供了一种新能源交通车辆的地面放电***,具有和上述储能装置的放电***相同的有益效果。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请所提供的一种储能装置的放电***的结构示意图;
图2a为本申请所提供的一种开关模块的结构示意图;
图2b为本申请所提供的另一种开关模块的结构示意图;
图2c为本申请所提供的另一种开关模块的结构示意图;
图2d为本申请所提供的另一种开关模块的结构示意图;
图2e为本申请所提供的另一种开关模块的结构示意图;
图2f为本申请所提供的另一种开关模块的结构示意图;
图2g为本申请所提供的另一种开关模块的结构示意图;
图2h为本申请所提供的另一种开关模块的结构示意图;
图3a为本申请所提供的另一种储能装置的放电***的结构示意图;
图3b为本申请所提供的另一种储能装置的放电***的结构示意图;
图4为本申请所提供的另一种储能装置的放电***的结构示意图;
图5为本申请所提供的另一种储能装置的放电***的结构示意图;
图6为本申请所提供的另一种储能装置的放电***的结构示意图;
图7为本申请所提供的另一种储能装置的放电***的结构示意图。
具体实施方式
本申请的核心是提供一种储能装置的放电***及新能源交通车辆的地面放电***,能保证该储能装置可以放电至安全电压值以下,提高了储能装置维护的安全性和可靠性。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,图1为本申请所提供的一种储能装置的放电***的结构示意图,该储能装置的放电***包括:
与储能装置1连接的放电电路2;
控制模块3,用于获取放电模式;当放电模式为第一放电模式,通过放电电路2控制储能装置1以恒定放电电流放电,直至储能装置1放电至安全电压值以下;当放电模式为第二放电模式,通过放电电路2控制储能装置1先以恒定放电电流放电,当储能装置1放电至不满足恒流放电条件,通过放电电路2控制储能装置1以衰减放电电流放电,直至储能装置1放 电至安全电压值以下,衰减放电电流与储能装置1的放电时长呈负相关。
首先需要说明的是,本实施例中以超级电容Cs作为储能装置1进行说明,对于超级电容Cs的描述以超级电容为代表,具体可以为其单体、模组、单体组合或模组组合的表现形式,当然,储能装置1还可以是与超级电容Cs有同等作用的其他器件或***,甚至可以是大容量电容、蓄电池等。
本实施例中,放电***包括放电电路2和控制模块3,其中,放电电路2用于与超级电容Cs连接,受控于控制模块3,在控制模块3的控制下使超级电容Cs放电至安全电压值以下,以便后续对超级电容Cs及与该超级电容Cs连接的其他设备进行维护和/或更换时,保证安全性。在实际应用中,超级电容Cs可以有以下两种放电模式,一种是以恒定放电电流放电至安全电压值以下,一种是先以恒定放电电流放电,再以衰减放电电流放电至安全电压值以下,其中,衰减放电电流与超级电容Cs的放电时长呈负相关。用户可以根据实际工况,灵活地选择放电模式。
其中,放电电路2包括但不限于第一电感L、第一电容C、开关模块21和负载模块22,其中,第一电容C及开关模块21与第一电感L连接,负载模块22与开关模块21连接。
开关模块21和负载模块22可以有多种不同的结构。本实施例中,开关模块21可以包括n条并联的开关支路,n为正整数,每条开关支路包括第一开关管V1,还可以包括与第一开关管V1连接的第二开关管V2和/或m个二极管,m为1或2,即本实施例中的每条开关支路中,第一开关管V1是必需元器件,第二开关管V2和二极管是非必需元器件。其中,第一开关管V1和第二开关管V2可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)、GTO(Gate Turn-off Thyristor,门极可关断晶闸管)、GTR(Giant Transistor,大功率晶体管或电力晶体管)、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor,金属氧化物半导体场效应晶体管)、IGCT(Integrated Gate-Commutated Thyristor,集成门极换流晶闸管)、IEGT(Injection Enhanced Gate Transistor,电子注入增强栅晶体管)或其他具有相似功能的半导体开关器件,以及以SiC(碳化硅)、GaN(氮化镓)为代表的宽禁带半导体开关器件,本申请所有附图中的开关管 均以IGBT管的形式表示,当选择其他开关器件时,连接端口和IGBT对应的端口做等价替换即可,第一二极管和第二二极管可以为电力二极管,或与电力二极管具有同等作用的其他器件,如肖特基势垒二极管、SiC二极管等,本申请所有附图中的二极管均以电力二极管的结构表示。
具体的,本实施例中提供了如图2a-图2h所示的8个开关支路的结构,包括两个开关管及一个二极管的组合结构、两个开关管及两个二极管的组合结构、一个开关管及一个二极管的组合结构、一个开关管及两个二极管的组合结构以及一个开关管的结构。
具体的,参照图3a所示,负载模块22可以由阻性负载R组成,参照图3b所示,负载模块22还可以由阻性负载R和感性负载L01串联组成。
可以理解的是,当负载模块22为阻性负载R和感性负载L01的串联组合,或阻性负载R及其所连接线路具有不可忽视的寄生电感时,电路工作过程中,当第一开关管V1关断后,负载模块22的电流不能瞬变为零。图2a、图2c、图2d及图2g中存在二极管提供续流回路,当第一开关管V1关断后,负载模块22的电流通过二极管续流,并很快衰减为零,避免产生较大的关断过电压,实际应用价值较大。
参照上文所述,在控制模块3的作用下超级电容Cs可以有两种放电模式,第一放电模式对应以恒定放电电流放电,第二放电模式对应先以恒定放电电流放电再以衰减放电电流放电,超级电容Cs以恒定放电电流放电的阶段即为超级电容Cs的恒流放电(CCD)阶段,以衰减放电电流放电的阶段即为超级电容Cs的电流衰减放电(DCD)阶段。为便于理解放电电路2的工作原理,下文以仅包括一条开关支路且开关支路采用如图2a所示的结构的开关模块、以及仅包括阻性负载R的负载模块为例,对超级电容Cs的恒流放电阶段及电流衰减放电阶段分别进行说明。
为方便阐述放电电路2工作原理,先对以下参数进行定义:
放电初始电压U Cs_Init:超级电容Cs接入放电电路2,在放电开始前或放电初始时刻,超级电容Cs的端电压;
放电终止电压U Cs_End:放电过程终止后,超级电容Cs剩余的端电压。一般情况下,出于安全考虑,放电终止电压U Cs_End不大于安全电压值36V。
恒流放电初始电压U Cs_CCD_Init:恒流放电开始前或恒流放电初始时刻,超级电容Cs的端电压。本申请中,恒流放电阶段为超级电容Cs的开始放电阶段,恒流放电初始电压U Cs_CCD_Init等于放电初始电压U Cs_Init
恒流放电终止电压U Cs_CCD_End:恒流放电阶段终止后,超级电容Cs剩余的端电压。
电流衰减放电初始电压U Cs_DCD_Init:电流衰减放电开始前或电流衰减放电初始时刻,超级电容Cs的端电压。本申请中,恒流放电阶段之后紧接着为电流衰减放电阶段,因此,电流衰减放电初始电压U Cs_DCD_Init等于恒流放电终止电压U Cs_CCD_End
电流衰减放电终止电压U Cs_DCD_End:电流衰减放电阶段终止后,超级电容Cs剩余的端电压。本申请中,电流衰减放电阶段为最终放电阶段,电流衰减放电终止电压U Cs_DCD_End等于放电终止电压U Cs_End
总放电时间T D:超级电容Cs从放电初始电压U Cs_Init放电至放电终止电压U Cs_End所使用的时间。
恒流放电时间T D_CCD:恒流放电阶段,超级电容Cs从恒流放电初始电压U Cs_CCD_Init放电至恒流放电终止电压U Cs_CCD_End所使用的时间。
电流衰减放电时间T D_DCD:电流衰减放电阶段,超级电容Cs从电流衰减放电初始电压U Cs_DCD_Init放电至电流衰减放电终止电压U Cs_DCD_End所使用的时间。
标称放电电流I D:放电电路2标称的放电电流值,等于恒流放电阶段放电电流的平均值或每个开关周期内放电电流的平均值。
开关周期Ts、开关频率fs:开关周期为第一开关管V1从某次开通(关断)到下一次开通(关断)的间隔时间,开关频率为单位时间内第一开关管V1的开通(关断)次数。开关周期Ts、开关频率fs呈倒数关系,即fs=1/Ts。本申请中,采取固定的开关周期Ts与开关频率fs。
占空比D:一个开关周期Ts中,第一开关管V1导通时间占开关周期Ts的比例,称为导通占空比,简称占空比。
以下分别阐述放电电路2在恒流放电阶段与电流衰减放电阶段的工作原理。
具体的,放电电路2在初始待机状态下,第一开关管V1和第二开关管V2脉冲封锁,均处于关断状态,此时第一电容C的电压u c等于超级电容Cs的电压U cs,第一电感L的电流i L为0。当放电电路2接收到控制模块3发送的脉冲信号,进入恒流放电阶段。此阶段开始时,控制模块3向第一开关管V1和第二开关管V2发送对应的脉冲信号,使开关模块21处于交替变换的第一开关状态或第二开关状态,放电电流迅速增大至标称放电电流I D,然后维持在标称放电电流I D持续放电。
当超级电容Cs处于恒流放电阶段,用于控制第一开关管V1的脉冲信号的占空比满足0<D≤1,第一电感L的电流方向向右,每个开关周期内开关模块21有两个开关状态,分别如下:
第一开关状态,第一开关管V1导通,第二开关管V2关断,超级电容Cs、第一电感L、第一电容C、第一开关管V1、负载模块22构成双导通回路,第一电感L先释能再储能,第一电容C放电;
第二开关状态,第一开关管V1和第二开关管V2均关断,超级电容Cs、第一电感L、第一电容C构成导通回路,第一电感L先储能再释能,第一电容C充电;
可以理解的是,第一开关管V1的斩波控制主要有两种调制方式,分别为PWM(Pulse Width Modulation,脉冲宽度调制)和PFM(Pulse Frequency Modulation,脉冲频率调制),PWM的调制方式,保持开关周期Ts恒定不变,调节导通时间ton或占空比D,PFM的调制方式,保持导通时间ton恒定不变,调节开关周期Ts或开关频率fs,本申请以PWM为例进行说明。
放电电路2工作过程中,在每个开关周期Ts内,第一电容C的电压的平均值U C_avg等于超级电容Cs的电压U Cs,超级电容Cs的放电电流I D,或一个开关周期内第一电感L的电感电流的平均值I L,与超级电容Cs的电压U Cs、负载模块22的电阻值R、第一开关管V1对应的占空比D满足以下关系:
Figure PCTCN2021120168-appb-000002
可见,在超级电容Cs的电压U Cs与电阻值R一定时,通过调节第一开关管V1对应的脉冲信号的占空比D即可调节超级电容Cs的放电电流I D。随着 超级电容Cs的放电时长增大,超级电容Cs的电压U Cs会降低,控制模块3可以根据获取到的超级电容Cs的电压U Cs来确定当前输出的脉冲信号的占空比D,从而调节第一开关管V1的导通时间,进而调节超级电容Cs的放电电流I D恒定在某一电流值。具体的,随着超级电容Cs的电压U Cs的降低,适宜增大当前输出的脉冲信号的占空比,使超级电容Cs的放电电流I D恒定。
特别的,当超级电容Cs的电压U Cs为最大值,即放电初始电压U Cs_Init时,占空比D具有最小值,最小值为:
Figure PCTCN2021120168-appb-000003
在恒流放电阶段,随着超级电容Cs的电压U Cs逐渐降低,可通过增大占空比D,控制超级电容Cs的放电电流I D保持不变,从而实现恒流放电。在整个恒流放电阶段中,放电电流I D可控、连续且不突变。
在整个恒流放电阶段,t时刻的超级电容Cs的电压U Cs(t)及放电电流i D(t)或电感电流i L(t),满足以下关系(t=0时刻为此阶段初始时刻):
Figure PCTCN2021120168-appb-000004
恒流放电时间T CCD为:
Figure PCTCN2021120168-appb-000005
随着超级电容Cs放电时长的增加,超级电容Cs的电压U Cs逐渐降低,当超级电容Cs的电压U Cs下降至其对应脉冲信号的占空比D=1时,无法再继续增大占空比,即无法再继续保持放电电流I D恒定,即不满足恒流放电条件,此时,超级电容Cs通过放电电路2进入电流衰减放电阶段。
在电流衰减放电阶段,控制模块3输出对应的脉冲信号(占空比为1的脉冲信号)使第一开关管V1持续导通,同时控制第二开关管V2持续关断,超级电容Cs、第一电感L、第一电容C、第一开关管V1、负载模块22构成双导通回路,超级电容Cs持续放电,第一电感L持续释能,第一电容C持续放电;在此阶段,第一电感L和第一电容C对放电电路2的工作过程影响极小,可忽略第一电感L和第一电容C(L等效为短路,C等效为开路)的影响,超 级电容Cs的电压U Cs(t)及放电电流i D(t),或电感电流i L(t)满足以下关系(t=0时刻为此阶段初始时刻):
Figure PCTCN2021120168-appb-000006
电流衰减放电时间T DCD
Figure PCTCN2021120168-appb-000007
当放电时间足够长时,超级电容Cs的电压U Cs(t)与放电电流i D(t)趋向于0。
一般情况下,将超级电容Cs放电至安全电压值36V以下即可满足要求,即放电终止电压U Cs_End≤36V。
在第一放电模式下,超级电容Cs只需经恒流放电阶段直接将超级电容Cs放电至安全电压36V以下;恒流放电终止电压U Cs_CCD_end≤36V,恒流放电阶段后不再进行电流衰减放电阶段,恒流放电终止电压UCs_CCD_end等于放电终止电压UCs_End,总放电时间T D等于恒流放电时间T CCD
在第二放电模式下,需要先经恒流放电阶段,再经电流衰减放电阶段将超级电容Cs放电至安全电压36V以下,恒流放电终止电压U Cs_CCD_End>36V,放电装置首先经恒流放电阶段将超级电容Cs放电至恒流放电终止电压U Cs_CCD_End,然后进入电流衰减放电阶段,继续放电至电流衰减放电终止电压U Cs_DCD_End,且满足U Cs_DCD_End≤36V。恒流放电终止电压U Cs_CCD_End等于电流衰减放电初始电压U Cs_DCD_Init,电流衰减放电终止电压U Cs_DCD_End等于放电终止电压U Cs_End,总放电时间T D等于恒流放电时间T CCD与电流衰减放电时间T DCD之和。
可以理解的是,在恒流放电阶段,为保证放电电路2正常工作,应使第一电容C和第一电感L选取值尽可能大,以保证第一电容C的电压与第一电感L的电流保持稳定连续。实际应用中,可根据放电过程中第一电容C的电压波动纹波要求与第一电感L的电流波动纹波要求选择第一电容C和第一电感L,从而保证放电过程正常完成,要求如下:
Figure PCTCN2021120168-appb-000008
其中,ΔU Cmax为第一电容C的电压最大允许峰峰值纹波因数,ΔI Dmax为放电电流最大允许峰峰值纹波因数。
在上述实施例的基础上,参照图3b所示,负载模块22还可以选择阻性负载R和感性负载L01的串联组合,使放电电路2工作时电阻电流连续,降低电阻选型条件,组成优化的更具有实用性的超级电容Cs的放电电路2。该放电电路2的工作过程中,超级电容Cs的放电电流I D,或开关周期内电感电流的平均值I L,与开关周期内电阻电流平均值I R,超级电容Cs电压U Cs,电阻R,开关管V1导通占空比D满足以下关系:
Figure PCTCN2021120168-appb-000009
作为另一种优选的实施例,开关模块21包括多条并联的开关支路时,负载模块22的结构也相应进行调整。具体的,控制模块3对多个开关支路采用错相斩波控制,成倍增加放电电流同时减小放电电流脉动,并且同步减小第一电容C的电压脉动与第一电感L的电流脉动。若保持同样第一电容C的电压脉动与第一电感L的电流脉动,则大幅减小第一电容C的容值与第一电感L的感值,从而减小电容器件和电感器件的体积与成本。
参照图4所示,图4中为两条开关支路及对应电阻输出配置形式,第一开关支路和第二开关支路均包括第一开关管、第二开关管、第一二极管和第二二极管,负载模块包括第一阻性负载R01和第二阻性负载R02,为便于区分,图4中以V1、V2、D1、D2分别表示第一开关支路中的第一开关管、第二开关管、第一二极管和第二二极管,以V3、V4、D3、D4分别表示第二开关支路中的第一开关管、第二开关管、第一二极管和第二二极管。控制模块3发送给V1和V3的脉冲信号在开关周期Ts内相差180°,从而实现对V1和V3的错相控制,开关频率fs不变,可以理解的是,相位差根据开关支路的条数确定。
其中,超级电容Cs的放电电流I D,或开关周期内电感电流的平均值I L,与超级电容Cs的电压U Cs,电阻值R,V1和V3的导通占空比D满足以下关系:
Figure PCTCN2021120168-appb-000010
具体的,保持超级电容Cs的放电电流I D与单支路时一致,则在第一电容C的容值与第一电感L的感值不变的前提下,将第一电容C的电压脉动减小为原来单支路时的一半,第一电感L的电流脉动减小为原来单支路时的1/4。或第一电容C的电压脉动与第一电感L的电流脉动保持与原来单支路时一致,则将第一电容C的容值与第一电感L的感值均减小为单支路时的一半。
作为另一种优选的实施例,当开关模块21选择如图2a、图2b、图2c、图2d、图2f、图2g的结构时,负载模块22的一端连接于C点,另一端可以与P点或Q点连接,当负载模块22分别与C点和Q点连接时,对各条开关支路中的开关管采用上述控制方案,当负载模块22分别与C点和P点连接时,控制模块3控制各开关支路中的第一开关管V1持续关断,对第二开关管V2进行斩波控制,从而实现超级电容Cs的放电。
作为一种优选的实施例,放电电路2还包括检测模块和预充电模块24;
检测模块,用于检测第一电容C的电压;
控制模块3,还用于当第一电容C的电压为0时,通过控制预充电模块24为第一电容C预充电,当第一电容C的电压达到预设电压值时,通过控制预充电模块24停止为第一电容C预充电。
作为一种优选的实施例,检测模块包括:
用于监测储能装置1的电压的第一电压检测单元231;
用于监测第一电容C的电压的第二电压检测单元232;
用于监测储能装置1的放电电流的电流检测单元233。
作为一种优选的实施例,预充电模块24包括预充电开关K1、短接开关K2及预充电电阻R1,其中:
预充电开关K1的第一端连接储能装置1的正极及短接开关K2的第一端,预充电开关K1的第二端连接预充电电阻R1的第一端,预充电电阻 R1的第二端连接短接开关K2的第二端及第一电感L的第一端。
具体的,参照图5所示,在上述实施例的基础上,本实施例所提供的放电电路2还增加有预充电模块24和检测模块,其中,检测模块包括用于监测超级电容Cs的端电压的第一电压检测单元231、用于监测第一电容C的端电压的第二电压检测单元232、用于监测超级电容Cs的放电电流的电流检测单元233。
具体的,预充电模块24内部包括预充电开关K1、预充电电阻R1及短接开关K2。当放电电路2在初始状态时,控制模块3控制第一开关管V1、第二开关管V2封锁脉冲,控制预充电开关K1和短接开关K2均断开,此时第一电感L的电感电流与第一电容C的电容电压均为零,放电电路2处于未就绪状态。当超级电容Cs接入放电电路2后,控制模块3控制放电电路2首先启动预充电进入待机状态,然后再进入工作状态,为超级电容Cs放电。
其中,控制模块3控制放电电路2首先启动预充电进入待机状态的过程包括:控制模块3首先闭合预充电开关K1,超级电容Cs通过预充电开关K1、预充电电阻R1、电流检测单元233及第一电感L为第一电容C充电,当控制模块3检测到第一电容C的电压达到接近输入超级电容Cs的电压时,控制模块3闭合短接开关K2,断开预充电开关K1,第一电容C的电压等于输入超级电容Cs的电压,即完成启动准备,进入待机状态。
预充电过程中,第一电容C的电压与第一电感L的电流随时间变化函数如下:
Figure PCTCN2021120168-appb-000011
Figure PCTCN2021120168-appb-000012
进入待机状态后,若储能装置的放电***再收到外部放电指令,控制模块3向第一开关管V1发送脉冲信号,使放电电路2进入工作状态,开始为超级电容Cs放电。若储能装置的放电***为自主判断放电模式,进入待机状态后,控制模块3向第一开关管V1发送脉冲信号,使放电电路2 进入工作状态开始放电。
作为一种优选的实施例,放电电路2还包括:
输入正极与储能装置1的正极连接、输入负极与储能装置1的负极连接的隔离开关QS。
具体的,参照图6所示,在上述实施例的基础上,本实施例在超级电容Cs的输出侧增加了隔离开关QS,具体可以选用双极隔离开关。加入隔离开关QS后,可在本装置进行维护、检修时断开隔离开关QS,防止超级电容Cs的高电压引入隔离开关QS后端电路,提高安全性。
作为一种优选的实施例,放电电路2还包括:
驱动检测模块,用于接收控制模块3输出的脉冲信号,根据脉冲信号控制开关模块21处于第一开关状态或第二开关状态,还用于将开关模块21的状态信息反馈至控制模块3。
作为一种优选的实施例,该储能装置1的放电***还包括:
人机交互模块,用于接收放电模式选择指令。
具体的,参照图7所示,在上述实施例的基础上,本实施例还增加了与控制模块3连接的驱动检测模块,驱动检测模块与开关支路中开关管一一对应,如图7示,包括与第一开关管V1连接的第一驱动检测模块、与第二开关管V2连接的第二驱动检测模块,该储能装置的放电***还包括与控制模块3连接的人机交互模块、外部电源、以及其他设备。其中,第一驱动检测模块、第二驱动检测模块用于接收控制模块3的开关管脉冲输出端口发出的脉冲信号,并将其获取到的开关管状态信息反馈给控制模块3的开关管状态反馈端口。控制模块3的开关控制输出端口发出指令控制预充电开关K1与短接开关K2地闭合与断开,同时通过开关状态反馈端口采集预充电开关K1与短接开关K2的合分状态。第一电压检测单元231、第二电压检测单元232、电流检测单元233的输出反馈至控制模块3的电压电流采集端口。控制模块3的电源输入端口接入外部电源,控制模块3的第一通信端口与人机交互模块进行通信连接,以便接收用户通过人机交互模块输入的放电模式选择指令,控制模块3的第二通信端口与其他设备进行通信连接。
特别的,放电电路2实际工作中,只需对第一开关管V1的脉冲信号进行控制,第二开关管V2处于持续关断状态,因此,与第二开关管V2相连的第二驱动检测模块可以省去。
综上所述,本申请解决了针对单一电阻放电、多级电阻组合放电方式中,放电速率慢,放电电流不可控、突变不连续的问题,和转移至其他储能载体放电方式中,其他储能载体体积大、成本高、结构复杂、可靠性低,且装置无法多次重复放电的问题,以及馈向电网放电方式中,对电网造成谐波污染、可靠性降低,面临电网接入不允许、罚款等考验的问题。本申请在完成释放超级电容Cs内储存的电量至安全电压以下的基本功能的同时,有效结合电阻放电载体的简单可靠与斩波电路的放电电流可控、连续、低纹波特性,实现放电装置的简单、可靠、通用,具备多次重复放电功能,具备对超级电容Cs友好的放电电流可控、连续、低纹波性能,并减小对其他设备或***的依赖与影响,放电电流人工可调,同时具备宽范围通用性。
本申请中阻性负载种类不限,可以是满足电阻特性的任何种类电阻,且第一电容C种类不限,可以是满足电容特性的任何种类电容,第一电感L种类不限,可以是满足电感特性的任何种类电感。
另一方面,本申请还提供了一种新能源交通车辆的地面放电***,包括如上文任意一项的储能装置的放电***。
对于本申请所提供的一种新能源交通车辆的地面放电***的介绍请参照上述实施例,本申请在此不再赘述。
本申请所提供的一种新能源交通车辆的地面放电***具有和上述储能装置的放电***相同的有益效果。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而 且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的状况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种储能装置的放电***,其特征在于,包括:
    与储能装置连接的放电电路;
    控制模块,用于获取放电模式;当所述放电模式为第一放电模式,通过所述放电电路控制所述储能装置以恒定放电电流放电,直至所述储能装置放电至安全电压值以下;当所述放电模式为第二放电模式,通过所述放电电路控制所述储能装置先以所述恒定放电电流放电,当所述储能装置放电至不满足恒流放电条件,通过所述放电电路控制所述储能装置以衰减放电电流放电,直至所述储能装置放电至所述安全电压值以下,所述衰减放电电流与所述储能装置的放电时长呈负相关。
  2. 根据权利要求1所述的储能装置的放电***,其特征在于,所述放电电路包括第一电感,与所述第一电感连接的第一电容及开关模块,与所述开关模块连接的负载模块;
    所述控制模块,具体用于获取放电模式;当所述放电模式为第一放电模式,输出对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第二开关状态,使所述储能装置以恒定放电电流放电,直至所述储能装置放电至安全电压值以下;当所述放电模式为第二放电模式,先输出对应的脉冲信号控制所述开关模块处于交替变换的所述第一开关状态或所述第二开关状态,使所述储能装置以所述恒定放电电流放电,当所述储能装置放电至不满足恒流放电条件,输出对应的脉冲信号控制所述开关模块维持在所述第一开关状态,使所述储能装置以衰减放电电流放电,直至所述储能装置放电至所述安全电压值以下;
    当所述开关模块处于所述第一开关状态,所述第一电感先储能再释能,所述第一电容放电;
    当所述开关模块处于所述第二开关状态,所述第一电感先释能再储能,所述第一电容充电。
  3. 根据权利要求2所述的储能装置的放电***,其特征在于,当所述放电模式为所述第一放电模式或所述第二放电模式的恒流放电阶段,所述输出对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第 二开关状态的过程,包括:
    获取储能装置的电压;
    输出占空比与所述储能装置的电压对应的脉冲信号控制所述开关模块处于交替变换的第一开关状态或第二开关状态。
  4. 根据权利要求3所述的储能装置的放电***,其特征在于,所述脉冲信号的占空比与所述储能装置的电压满足第一关系式,所述第一关系式为:
    Figure PCTCN2021120168-appb-100001
    其中,I D为所述储能装置的放电电流,U Cs为所述储能装置的电压,D为所述占空比,R为所述负载模块的电阻值。
  5. 根据权利要求2所述的储能装置的放电***,其特征在于,所述负载模块包括阻性负载;
    或,所述负载模块包括串联的阻性负载和感性负载。
  6. 根据权利要求2所述的储能装置的放电***,其特征在于,所述开关模块包括n条并联的开关支路,每条所述开关支路包括第一开关管,n为正整数。
  7. 根据权利要求6所述的储能装置的放电***,其特征在于,每条所述开关支路还包括与所述第一开关管连接的第二开关管和/或m个二极管,m为1或2。
  8. 根据权利要求2所述的储能装置的放电***,其特征在于,所述放电电路还包括检测模块和预充电模块;
    所述检测模块,用于检测所述第一电容的电压;
    所述控制模块,还用于当所述第一电容的电压为0时,通过控制所述预充电模块为所述第一电容预充电,当所述第一电容的电压达到预设电压值时,通过控制所述预充电模块停止为所述第一电容预充电。
  9. 根据权利要求8所述的储能装置的放电***,其特征在于,所述检测模块包括:
    用于监测所述储能装置的电压的第一电压检测单元;
    用于监测所述第一电容的电压的第二电压检测单元;
    用于监测所述储能装置的放电电流的电流检测单元。
  10. 根据权利要求8所述的储能装置的放电***,其特征在于,所述预充电模块包括预充电开关、短接开关及预充电电阻,其中:
    所述预充电开关的第一端连接所述储能装置的正极及所述短接开关的第一端,所述预充电开关的第二端连接所述预充电电阻的第一端,所述预充电电阻的第二端连接所述短接开关的第二端及所述第一电感的第一端。
  11. 根据权利要求2所述的储能装置的放电***,其特征在于,所述放电电路还包括:
    输入正极与所述储能装置的正极连接、输入负极与所述储能装置的负极连接的隔离开关。
  12. 根据权利要求2所述的储能装置的放电***,其特征在于,所述放电电路还包括:
    驱动检测模块,用于接收所述控制模块输出的脉冲信号,根据所述脉冲信号控制所述开关模块处于所述第一开关状态或所述第二开关状态,还用于将所述开关模块的状态信息反馈至所述控制模块。
  13. 根据权利要求1-12任意一项所述的储能装置的放电***,其特征在于,该储能装置的放电***还包括:
    人机交互模块,用于接收放电模式选择指令。
  14. 一种新能源交通车辆的地面放电***,其特征在于,包括如权利要求1-13任意一项所述的储能装置的放电***。
PCT/CN2021/120168 2021-03-19 2021-09-24 储能装置的放电***及新能源交通车辆的地面放电*** WO2022193605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110295202.3A CN112803388B (zh) 2021-03-19 2021-03-19 储能装置的放电***及新能源交通车辆的地面放电***
CN202110295202.3 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022193605A1 true WO2022193605A1 (zh) 2022-09-22

Family

ID=75817249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120168 WO2022193605A1 (zh) 2021-03-19 2021-09-24 储能装置的放电***及新能源交通车辆的地面放电***

Country Status (2)

Country Link
CN (1) CN112803388B (zh)
WO (1) WO2022193605A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803388B (zh) * 2021-03-19 2022-04-15 株洲中车时代电气股份有限公司 储能装置的放电***及新能源交通车辆的地面放电***
CN115173535B (zh) * 2022-09-08 2023-01-24 苏州浪潮智能科技有限公司 一种储能模块的放电电路、备电能力确定方法及相关组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689273A1 (de) * 1993-05-03 1995-12-27 Dial Engineering Ag Verfahren zum Laden von verschlossenen Bleibatterien
CN108023371A (zh) * 2016-11-03 2018-05-11 舒尔电子(苏州)有限公司 锂电池的贮存处理装置及贮存处理方法
CN108565936A (zh) * 2018-06-27 2018-09-21 广东电网有限责任公司 一种纯直流蓄电池放电机及其控制方法
CN110518674A (zh) * 2019-09-23 2019-11-29 惠州市威德盛科技有限公司 锂电池充放电电路
CN112803388A (zh) * 2021-03-19 2021-05-14 株洲中车时代电气股份有限公司 储能装置的放电***及新能源交通车辆的地面放电***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160941A (zh) * 1996-03-29 1997-10-01 龙顺游 一种新型充电放电装置
KR100968401B1 (ko) * 2008-10-16 2010-07-07 한국과학기술원 디스플레이 구동장치
CN103954917B (zh) * 2014-05-22 2016-08-24 山东大学 一种单体电池测试模拟装置及实现方法
CN105990615A (zh) * 2015-02-14 2016-10-05 上海西胜电子科技有限公司 工业蓄电池智能再生修复方法
CN106740153B (zh) * 2016-12-29 2019-05-21 西安电子科技大学 一种用于纯电动车的智能动力电源***
CN109245208A (zh) * 2018-09-21 2019-01-18 郑州云海信息技术有限公司 一种储能电容的充放电方法及***
CN111600369B (zh) * 2019-02-21 2023-04-14 株洲中车时代电气股份有限公司 一种大功率储能电源自动充放电装置及方法
CN111103482B (zh) * 2019-12-16 2023-01-06 肇庆绿宝石电子科技股份有限公司 一种超级电容器的全自动测试方法和***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689273A1 (de) * 1993-05-03 1995-12-27 Dial Engineering Ag Verfahren zum Laden von verschlossenen Bleibatterien
CN108023371A (zh) * 2016-11-03 2018-05-11 舒尔电子(苏州)有限公司 锂电池的贮存处理装置及贮存处理方法
CN108565936A (zh) * 2018-06-27 2018-09-21 广东电网有限责任公司 一种纯直流蓄电池放电机及其控制方法
CN110518674A (zh) * 2019-09-23 2019-11-29 惠州市威德盛科技有限公司 锂电池充放电电路
CN112803388A (zh) * 2021-03-19 2021-05-14 株洲中车时代电气股份有限公司 储能装置的放电***及新能源交通车辆的地面放电***

Also Published As

Publication number Publication date
CN112803388B (zh) 2022-04-15
CN112803388A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN110401344B (zh) 一种飞跨电容充电装置及飞跨电容三电平斩波电路
WO2022193605A1 (zh) 储能装置的放电***及新能源交通车辆的地面放电***
US8107268B2 (en) Passive lossless snubber cell for a power converter
CN105846682A (zh) 一种正反激变换器的新型混合控制方式
CN202524283U (zh) 一种模块化多电平变流器子模块的缓冲电路结构
CN112165252B (zh) 一种基于窄脉冲控制的buck变换器自举驱动电路
CN101741240B (zh) 一种双向dc/dc变换器的拓扑结构及变换器
CN111555626A (zh) 一种有源钳位反激变换器的控制方法及其***
CN111064364A (zh) 同步整流Buck变换器全软开关电路及其控制方法
CN103780086A (zh) 基于耦合电感倍压结构的双输出母线型高增益变换器
CN110957923A (zh) 基于移相全桥的高频隔离双向直流变换器和并网储能***
CN206575329U (zh) 一种buck变换器电路
US20120182772A1 (en) Power conversion apparatus
CN108199579A (zh) 一种带耦合电感的高变比软开关dc-dc降压变换器
CN111049383A (zh) 一种直挂高压电源的升压电路及软启动方法
KR20070121643A (ko) 솔리드 스테이트 스위칭 회로
CN111786562A (zh) 一种变压器漏感能量吸收与回馈方法
CN208158436U (zh) 一种同步整流反激式直流-直流电源转换装置
WO2019218706A1 (zh) 一种dc-dc变换器
CN216774625U (zh) 一种新型的ac-dc整流器电路
US20050276084A1 (en) Current source sine wave voltage driving circuit via voltage-clamping and soft-switching techniques
CN211166517U (zh) 一种超级电容复合***的充放电电路
CN212258783U (zh) 一种直流功率变换电路
CN113364334A (zh) 一种双并联Buck-Boost逆变器及其控制方法
Ryu et al. Novel ZVZCS PWM DC-DC converters using one auxiliary switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931180

Country of ref document: EP

Kind code of ref document: A1